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    Chapter 14   
 Role of Biochar in Remediating Heavy Metals 
in Soil                     

     Amina     Hayyat    ,     Maryam     Javed    ,     Iqra     Rasheed    ,     Shafaqat     Ali     , 
    Munazzam     Jawad     Shahid    ,     Muhammad     Rizwan    ,     Muhammad     Tariq     Javed    , 
and     Qasim     Ali   

14.1          Introduction 

  Soil contamination   in these days has become a worldwide problem of greatest 
magnitude. Despite comprehensive regulations, a huge increase in concentration of 
different elements and compounds from threshold level is observed in recent years 
[ 1 ]. The main reasons of contamination are natural processes like volcanic eruption 
and weathering of rocks, as well as anthropogenic activities such as smelting, min-
ing, and overapplication of agrochemicals such as fertilizers and pesticide [ 1 ,  2 ]. 
Industrial and technological advancement increased pollutant intake into the envi-
ronment. Heavy metals among these pollutants have great infl uence on fertility of 
agricultural soils [ 3 ]. Urbanization leads to promote the farmer’s concern to use 
contaminated soil for the production of food crops [ 4 ]. Urban agricultural soils are 
contaminated because of waste water irrigation to increase the crop yield [ 5 ]. The 
wastewater used for irrigation is rich in toxic heavy metals which are major con-
tributor to heavy metal pollution in the soils irrigated are amended with waste water 
and material [ 6 ,  7 ].  Heavy metals   are toxic and stored in the environment because 
they cannot be broken down [ 8 ,  9 ]. Due to its persistent nature, heavy metals become 
part of the food chain and pose risks to human health and degrade soil quality. 
Generally soil chemistry and the chemical form of heavy metal are responsible for 
the existence of these metals in crops and plants. In soil, commonly the accessibility 
of all the metals surges due to acidic environments; the transfer factor of a particular 
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element to the plants is also affected by the crop’s type, such as Cd which is mainly 
considered a toxic element in soil and fertilizers because of its highest transfer fac-
tor for any crop [ 10 ]. The transfer of heavy metals from soil to plant is one of the 
basic mechanisms of human exposure to heavy metals through the food chain [ 11 ]. 

 Here the overview of heavy metal pollution due to Pb, Cd, Cr, As Ni, Zn, and Cu 
is described. The concentration of these heavy metals above threshold level is lethal 
to human health. Some elements such as Cd and Pb, without microbial degradation 
above optimum level of concentration, put the plant growth at risk due to permanent 
adulteration in soil [ 12 ]. The continuous use of inorganic and biological fertilizers 
increased heavy metal pollution in soil [ 1 ]. It is very necessary to minimize the 
accessibility and phyto-availability of heavy metals to plants along with the restora-
tion of contaminated soil for safe and healthy food production [ 13 ]. In situ remedia-
tion techniques have been emphasized in various studies about remediation of heavy 
metals. In recent years researchers much investigated the use of biochar as in situ 
soil amendment, and it was found to be effective in reducing the mobility of heavy 
metals in soils [ 9 ,  14 ]. Biochar method is known as  Terra Preta de Indio  , introduced 
from the dark soil of the Amazon basin and is of high utility. Biochar have high 
chemical stability in contaminated soils and is a C-rich material. A lot of researches 
are initiated to explore the distinctive use of biochar for continuing C sequestration 
[ 14 ]. Biochar which is porous and has high C content is prepared by pyrolysis of 
organic waste [ 14 ]. Carter et al. [ 15 ] defi ned biochar as follows: “it is a porous car-
bonaceous solid material manufactured by the process of thermo-chemical decom-
position under little supply of oxygen appropriate for the benign and continuing 
storage of carbon.” The  International Biochar Initiative (IBI  ) described biochar as a 
charcoal which is used as a tool for agricultural and environmental management [ 9 ]. 

 Biochar has proved to be a very effective tool for treatment of contaminated soils 
due to these reasons: it effectively adsorbs heavy metals and decreases bioavailabil-
ity and toxin-induced stress to plants and microorganisms [ 13 ,  16 ]. Biochar com-
pounds are a good source of organic material and mineral nutrients for microbes. It 
promotes the benefi cial microbes that promote remediation and protect them from 
predators [ 17 ]. Biochar improves the soil fertility and plant growth by improving 
physical and chemical properties of soil and also increases the availability of useful 
nutrients [ 14 ]. In soils the use of biochar has proved to raise the stable C pool and 
minimize the increasing concentration of atmospheric CO 2  [ 18 ].  

14.2     Biochar Production and Properties 

14.2.1      Biomass Pyrolysis      

 Biochar is a fi ne-grained porous and carbonaceous solid material synthesized from 
waste biomass residues under limited oxygen condition and low to medium tempera-
tures (450–650 °C) by the slow pyrolysis [ 19 ,  20 ]. Biochar is manufactured from 
renewable resources such as green waste and chicken manure [ 21 ]. With recent 
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advancements, biochar can be produced by thermal decomposition of various kinds of 
organic feedstocks such as crop biomass, wood, agricultural residues (cereal straw, 
hazelnut and peanut shell, wheat straw, etc.), and industrial organic waste (sewage 
sludge and de-inking paper sludge [ 1 ]. Forest-remain biochar has low metal content, 
so the frequent use of this biochar has no negative effect on the agricultural soils [ 22 ].  

14.2.2      Properties   of Biochar 

 Biochar, a carbon-rich material, is now well known because of its agronomic ben-
efi ts and ability to moderate climate change by carbon sequestration potential [ 23 –
 25 ]. The biochar proved to have an effective role as a soil conditioner and fertilizer 
[ 26 ]. The properties of biochar include highly porous structure, high surface area, 
pH, cation exchange capacity (CEC), adsorptive capacity, carbon content, organic 
matter content, and high water-holding capacity. It reduces CO 2  emission, retains 
nutrients and, pesticide [ 3 ,  12 ,  26 ,  27 ], making it a perfect soil amendment to reme-
diate heavy metals and to recover the fertility. Activation of biochar is very effective 
to improve the adsorption capacity of biochar. The nutrient retention and uptake by 
plants are enhanced due to activation of biochar as compared to non-activated bio-
char [ 28 ]. Therefore, steam activation is an exciting opportunity for prospective 
biochar applications because it revealed to almost double the constructive effects of 
biochars in all illustrations.  

14.2.3      Factors   Affecting Biomass Properties 

 The properties of biochar are dependent upon the type of feedstock and the produc-
tion procedure. Depending upon these two main parameters, the composition of 
organic and inorganic contaminants in the biochar also changed, and application of 
this biochar may cause adulteration in the soil [ 22 ]. The source material of biochar 
may affect the carbon sequestration and conditioning capacity of soil [ 20 ]. Other 
factors such as the type of soil, the type of metal, the nature of biomass, the thermal 
decomposition conditions (pyrolysis), and the quantity of biochar used [ 13 ] may 
also have prominent effect on properties of biochars.   

14.3     Heavy Metal-Contaminated  Soils   

 Mostly the heavy metals such as Cu(II), Cd(II), and Ni(II) are found together in 
contaminated soils. Oxidation-reduction and acid-base properties of heavy metal 
ions affect the mobility of these heavy metals. Zn(II) and Pb(II) retain in soil, while 
Cr(II), Cu(II), and Cd(II) move through soil pore water. Cd(II) and Cu(II) form a 
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complex with available natural organic material in the soil [ 26 ]. Mobility and bio-
availability of Cu and Pb are a worldwide matter of concern especially in polluted 
soils of mining, shooting, and industrialized areas [ 29 ]. The frequent use of sewage, 
municipal composts, manure, mining wastes, and copper-containing fungicides is 
the main cause of Cu contamination in soil [ 30 ]. Higher concentration of Cu has 
detrimental effect on soil and reduces the population of bacteria, fungi, earthworms, 
and plant organic content in soil. It also disrupts the nutrient cycle and activity of 
enzymes such as arylsulfatase, phosphatase, dehydrogenase, and β-glucosidase 
[ 16 ]. Higher concentrations of Cu in fruits and vegetables cause gastrointestinal 
cancer [ 31 ]. In areas rich in Pb and Zn rocks, Cd is obtained from lithogenic sources. 
Recently, the increased level of Cd in contaminated soils is due to the frequent 
application of fertilizers and sewage sludge on agricultural soils. 

 However, plants have high tolerance level for Cd as compared to animals and 
humans due to this reason: Cd is only toxic to plants at signifi cantly higher concentra-
tions. Disease itai-itai caused by high ingestion of Cd may also cause cancer and dam-
age the kidney [ 2 ]. Municipal waste incineration; coal combustion; Pb, Cu, or Zn 
smelter; electroplating; nickel–cadmium batteries; and pigment production are the 
major anthropogenic sources of Cd in the environment (World Health Organization, 
  http://www.euro.who.int/en/home    ). Consequently, Cd content is increased due to the 
usage of phosphatic fertilizers and sewage sludge [ 32 ]. Smelting processes are the 
main cause of Zn production. Among other sources, cosmetics, galvanized products, 
television, coating of metals, rubber and tire industries, and Zn alloys are prominent. 
However, as compared to Cd, Zn is less toxic. The presence of Zn in soil is affected 
by pH, organic content, and structure and nature of parent material. Zn is a transition 
metal and is an essential micronutrient for many biological processes, but it is toxic at 
higher concentrations; Zn is the most abundant trace heavy metal existing in agroeco-
systems [ 33 ]. Zn is also entering in the environment from sources such as municipal 
waste treatment plants and burning of coal and waste. 

  Municipal waste treatment   plants and burning of coal and waste are also sources 
of zinc. The bioavailability of zinc in alkaline soil increases due to its solubility. 
Zn(II) also has the mobility in acidic soils [ 34 ]. The adverse effects of Zn on plant 
physiology are widely reported [ 35 ]. The solubility and bioavailability of Pb 
increase in soil due to weather and oxidation processes which modify the metallic 
Pb in soil. After its bioavailability, Pb promptly adsorbed on the sediment and soil 
particles, and it also tends to accumulate in plants and animal bodies [ 29 ]. Arsenic 
(As)-contaminated soils deteriorate the water quality because it leaches down from 
the soil and contaminated water sources such as the rivers and canals. The process 
of oxidative phosphorylation and synthesis of ATP in cells is also disturbed from 
high concentration of arsenic [ 3 ]. 

  Arsenic   also has detrimental effect on the activity of microbial population, soil 
biota, and nutrient cycles [ 36 ]. Ni originated in the environment both from the natu-
ral and anthropogenic process. The weathering of rocks and human activities such 
as smelting, plating, and mining are the main sources of Ni contamination of soil. 
For agricultural soils, application of organic waste material such as sewage sludge 
and fertilizer application are the main causes of contamination [ 1 ]. Chromium exists 
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in the contaminated soil as Cr(III) and Cr (VI) ions. Chromium oxidation states are 
responsible for toxicity toward plants and animals, such as Cr(III) which is an 
essential nutrient and has less solubility in acidic and alkaline soils, whereas Cr(VI) 
is highly soluble in acidic and alkaline soils considered as carcinogen. Cr(VI) has a 
harmful effect and disturbs the biological activity of the soil. The soil properties 
play the main role in the availability of heavy metals to plants for uptake [ 10 ,  37 ]. 
In soil, the various enzymatic activities of bacteria are disrupted due to modifi cation 
of soil environment by chromium (Cr). 

14.3.1     Heavy Metal  Remediation   by Biochar 

 Namgay et al. [ 38 ] documented a decrease in the accessibility of heavy metals after 
the contaminated soil was amended with biochar, due to which plant absorption of 
the heavy metals is reduced. Unlike many other biological amendments, biochar 
having the ability to increase soil pH [ 39 ] might have improved sorption of these 
metals, consequently decreasing their bioavailability for plant uptake.  

14.3.2     Heavy Metals Found in Soil 

 Generally Cu, Zn, As, Cr, Co, Ni, Sb, Hg, Th, Pb, Se, Si, and Cd are heavy metals 
that originate in soil which may be extremely harmful to human and plant life by 
contamination of soil and water. Heavy metals do not have the ability to biodegrade, 
so they can persist in polluted soils for a longer time [ 40 ]. There is a prerequisite to 
remove these metals, and the best convenient way is by environmental friendly tech-
niques, i.e., biochar. From a long period, biochar is being applied to overcome the 
problem of heavy metal contamination and to improve soil fertility. Depending on 
the soil type, diverse types of biochar are used for different types of heavy metals, 
as demonstrated in Table  14.1 .

   Biochar has high pH and organic carbon content; higher concentrations of phos-
phorous, calcium, and magnesium; and low particular surface area than activated 
carbon [ 41 ]. That’s why the addition of biochar brought a notable proliferation in 
soil cation exchange capability [ 42 ]. Biochar is considerably more active in restrain-
ing soil Pb than AC [ 41 ]. Biochar has excellent adsorption capacity due to its asym-
metrical plates and porous structure (Fig.  14.1 ) [ 42 ].

   The biochar produced from different sources showed similar results [ 43 ]. The 
maximum falloff of transferable Pb was achieved at 10 % application rate of bio-
chars with steady reduction of 68 and 30 % for sugar cane biogases and orange peel, 
respectively [ 3 ]. Biochar is prosperous in nutrients, i.e., nitrogen, calcium, magne-
sium, and phosphorous in addition to carbon. Concentration of carbon and nitrogen 
are reduced with the increase in temperature, although Mg, Ca, and P were aug-
mented by rise in temperature [ 43 ]. 93 % of lead was absorbed by biochar at 100, 
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while at 200 and 350, approximately the entire lead was removed from the soil 
solution [ 43 ]. The pH is the main parameter for disturbing adsorption and/or desorp-
tion of heavy metals in acidic soils. The amplifi ed system pH by application of 
biochar increases the adsorption of Pb(II) in the soils. Biochar results in pH increase 
that fl ourishes the negative surface charges in the soil and enhanced the attraction 
for cations [ 44 ].pH rise is benefi cial for heavy metal control in bulk soils. The 
increasing amount of biochar reduced the acid soluble Pb(II) and Cu(II) by 18.8–
77.0 % and 19.7–100.0 %, respectively [ 42 ]. The uses of biochar, mussel shell, and 
cow bone reduced the lead phyto-availability by 55.50 %, 71.22 %, and 70.47 %, 
respectively, in army fi ring soil [ 45 ]. 

   Table 14.1    Heavy  metal   removal by different types of biochar   

 Contaminants  Biochar type  Matrix  Effects  References 

 As and Cu  Hardwood  Soil  Mobilization due to enhanced pH 
and DOC 

 Beesley et al. 
[ 67 ] 

 As, Cr, Cd, Cu, 
Ni, Pb, and Zn 

 Sewage 
sludge 
(500–
550 °C) 

 Soil  Immobilization of As, Cr, Ni, and 
Pb due to rise in soil 
pH. Mobilization of Cu, Zn, and 
Cd due to highly available 
concentrations in biochar 

 Khan et al. 
[ 68 ] 

 Cd and Zn  Hardwood  Soil  Immobilization due to enhanced 
pH 

 Beesley et al. 
[ 67 ] 

 Cd, Cu, and Pb  Chicken 
manure and 
green waste 
(550 °C) 

 Soil  Immobilization due to 
partitioning of metals from 
exchangeable phase to less 
bioavailable organic-bond 
fraction 

 Park et al. 
[ 20 ] 

 Cu  Broiler litter 
(700 °C) 

 Soil  Cation exchange; electrostatic 
interaction; sorption on mineral 
ash content; complexation by 
surface functional groups 

 Uchimiya 
et al. [ 69 ] 

 Cu and Pb  Oakwood  Soil  Complexation with phosphorus 
and organic matter 

 Karami et al. 
[ 70 ] 

 Pb  Dairy 
manure 
(450 °C) 

 Soil  Immobilization by 
hydroxypyromorphite formation 

 Cao et al. [ 41 ] 

 Pb  Oakwood 
(400 °C) 

 Soil  Immobilization by rise in soil pH 
and adsorption on biochar 

 Ahmad et al. 
[ 29 ] 

 Pb  Rice straw  Soil  Nonelectrostatic adsorption  Jiang et al. 
[ 42 ] 

 Pb, Cu and Zn  Broiler litter 
(300 and 
600 °C) 

 Soil  Stabilization of Pd and Cu  Uchimiya 
et al. [ 48 ] 

 Ni, Cu, Pb, and 
Cd 

 Cottonseed 
hulls 
(200–
800 °C) 

 Soil  Surface functional groups of 
biochar-controlled metal 
sequestration 

 Uchimiya 
et al. [ 71 ] 
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 When the application rate of biochar produced from cow manure increased, the 
nutrient uptake, maize production, and photochemical properties of a dry land sandy 
soil considerably improved [ 46 ]. Sewage sludge-derived biochar successfully erad-
icates Pb 2+  from acidic soil at early pH 5, 4, 3, and 2with the  capabilities of 30.88, 
24.80, 20.11, and 16.11 mg g -1 , respectively [ 47 ]. Biochar with phosphorus-rich 
manure serves as a fertilizer and is also used to remove heavy metal, specifi cally 
lead [ 48 ]. Historically, phosphorus in the biochar encouraged modifi cation of less 
constant PbCO 3  to more stable Pb 5 (PO 4 ) 3 OH, liable for soil Pb restriction [ 41 ]. The 
application of biochar produced from cotton sticks put a positive impact on the 
cadmium-stressed soils by increasing the plant growth. It is due to the unique capacity 
of biochar that the metal ion is separated and the cadmium ion movement to the 
aerial tissue of plants is controlled [ 49 ]. 

 The biochar synthesized from swine manure at 450 °C could contribute as a pos-
sible amendment for the control of heavy metals (Cd 2+ ) in sandy soil [ 9 ]. Biochar 
produced from green waste restrained lead, copper, and cadmium by 36.8 %, 22.9 %, 

  Fig. 14.1    SEM photographs of rice straw biochar at different magnifi cations: ( a ) ×800, ( b ) 
×50,000, and ( c ) TEM photograph of the biochar       
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and 30.3 %, respectively, for pointed soil and by 72.9, 0.901, and 42.7 % for naturally 
polluted soils [ 20 ]. Bamboo-derived biochar can adsorb nickel, chromium, copper, 
and mercury, from both water and soils, and cadmium from polluted soils [ 40 ]. 

 Table  14.2  shows the effect of biochar application on the mobility of heavy met-
als in soils.

   In basic soils, carbonaceous tools, irrespective of biomass and pyrolysis, 
improved the Cu(II) restriction than Ni(II) [ 26 ] while the Cu(II) adsorption ampli-
fi ed with pH rise (3.5–6.0). Cu(II) has an adsorption capability in the following 
order: canola straw char < soybean straw char < peanut straw char [ 50 ]. Organic seg-
ments of biochars and natural organic matter can stimulate Cu(II) extraction by 
basic soil because of more carboxyl contents [ 26 ]. The unsaturated biochar detached 
about 70 % of Cr(III) at equilibrium time, although only 30 % of As(V) in batch 
kinetic trials, suggesting that biochar is highly effective in eliminating cations than 
anions [ 51 ]. Biochar derived from chicken manure is more active in controlling 
metals as well as plant growth than biochar derived from green waste. So, biochar 
derived from chicken manure can be used to improve phyto-stabilization of metal 
tainted soils [ 20 ]. 

 Jiang et al. [ 42 ] explored that biochar derived from rice straw infl uences the bio-
availability and mobility of Pb(II), Cu(II), and Cd(II) in an Ultisol. When the amend-
ment dosage of biochar increased, the acid removable Pb(II) and Cu(II) reduced by 
18.8e77.0 % and 19.7e100 %, respectively. With the addition of 5 mmol kg −1  of these 
heavy metals, for treatments with 3 and 5 % biochar, the reducible Pb(II) was 2.0 and 
3.0 times greater than the samples deprived of biochar. Pore structure of the biochars 
produced from crop straws (i.e., rice, corn, wheat, and cotton) is more developed as 
compared to wood char because wood char has greater lignin content. Biochars with 

   Table 14.2    Effect of biochar application on the mobility of heavy metals in soils   

 Feedstock 

 Production 
temperature 
(°C)  Contaminants  Effects  References 

 Bamboo  Not available  Cd  Combined effect of 
electrokinetics, removal of 
extractable Cd by 76.9 % 
within 12 days 

 Ma et al. [ 72 ] 

 Hardwood  450  As, Cu, Cd, and 
Zn 

 Reduction in Cd in soil 
pore water by tenfolds; Zn 
concentrations reduced 
300- and 45-folds, 
respectively, in column 
leaching test 

 Beesley et al. 
[ 67 ]; Beesley 
and Marmiroli 
[ 73 ] 

 Hardwood  450  As, Cd, Cu, Pb, 
and Zn 

 Biochar surface mulch 
enhanced As and Cu 
mobility in the soil profi le; 
little effect on Pb and Cd 

 Beesley and 
Dickinson [ 74 ] 

 Wood  200 and 400  Cd and Zn  Reduction in Cd and Zn 
leaching loss by >90 % 

 Debela et al. 
[ 75 ] 
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lower lignin content have larger surface areas and more developed pore volumes. In 
case of Cd the order of corn straw > cotton straw > wheat straw > rice straw > poplar 
shaving is for the sorption capacity of biochar that was not stringently reliable to the 
surface area of biochars [ 52 ]. Uchimiya et al. [ 53 ] reported that a biochar adsorbs Cd, 
Cu, Pb, and Ni and perceived that the tendency of the elimination order was 
Ni < Cd < Cu < Pb. The affi nity for metal immobilization upsurges in the following 
order: Pb(II) > Cu(II) > Zn(II) > Cd(II) [ 26 ]. 

 Table  14.3  shows the effect of biochar application on the bioavailability of heavy 
metals in soils.

   Table 14.3    Effect of biochar  application   on the bioavailability of heavy metals in soils   

 Feedstock 

 Production 
temperature 
(°C)  Contaminant  Effects  References 

 Cotton stacks  450  Cd  Reduction of the bioavailability 
of Cd in soil by adsorption or 
Co precipitation 

 Zhou et al. 
[ 76 ] 

 Hardwood- 
derived 
biochar 

 450  As  Signifi cant reduction of As in 
the foliage of  Miscanthus  

 Hartley et al. 
[ 77 ] 

 Eucalyptus  550  As, Cd, Cu, 
Pb, and Zn 

 Decrease in As, Cd, Cu, and Pb 
in maize shoots 

 Namgay et al. 
[ 38 ] 

 Orchard prune 
residue 

 500  Cd, Cr, Cu, 
Ni, Pb, and 
Zn 

 Signifi cant reduction of the 
bioavailable Cd, Pb, and Zn 
with Cd showing the greatest 
reduction; an increase in the 
pH, CEC, and water-holding 
capacity 

 Fellet et al. 
[ 78 ] 

 Chicken 
manure and 
green waste 

 550  Cd, Cu, and 
Pb 

 Signifi cant reduction of Cd, Cu, 
and Pb accumulation by Indian 
mustard 

 Park et al. 
[ 20 ] 

 Chicken 
manure 

 550  Cr  Enhanced soil Cr(VI) reduction 
to Cr(III) 

 Choppala 
et al. [ 79 ] 

 Sewage sludge  500  Cu, Ni, Zn, 
Cd, Pb 

 Signifi cant reduction in plant 
availability of the metals 
studied 

 Méndez et al. 
[ 80 ] 

 Rice straw  Not clear  Cd, Cu, and 
Pb 

 Signifi cant reduction in 
concentrations of free Cu, Pb, 
and Cd in contaminated soils 

 Jiang et al. 
[ 42 ] 

 Identifi cation of functional 
groups on biochar with high 
adsorption affi nity to Cu 

 Quail litter  500  Cd  Reduction of the concentration 
of Cd in physic nut; greater 
reduction with the higher 
application rates 

 Suppadit 
et al. [ 81 ] 

 Oakwood  400  Pb  Bioavailability reduction by 
75.8 %; bioaccessibility 
reduction by 12.5 % 

 Ahmad et al. 
[ 29 ] 
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14.4          Effects   of Biochar on Soil 

 The increasing population of human and their activities put huge pressure on agri-
culture land to fulfi ll need of food. This overburden on cultivated land raised the 
problems of soil erosion and degradation and depletion of organic matter and vital 
nutrients from the soil. To overcome these problems, biochar can be used as an 
effective tool [ 54 ]. Biochar can be utilized to get agricultural, environmental, and 
economic benefi ts although the nature of these benefi ts can vary by type of biochar 
and nature of soil [ 55 ]. 

14.4.1      Agricultural Benefi ts   

 Application of biochar in soil results in the following positive impacts on the soil of 
agriculture lands. 

14.4.1.1     Soil Fertility 

 The extreme use of fertilizers exacerbates the leaching of macronutrients from the 
agriculture lands leading to decrease in soil fertility, amplifi cation of acidity, and 
increased requirements of fertilizers that resulted in ultimate low crop yield [ 56 ]. 
Biochar fulfi lls the nutrient requirement of the soil and improves the soil fertility 
and productivity that resulted in optimum yield of crops [ 57 ].  

14.4.1.2     Crop Productivity 

 Biochar offers large surface area for soil microbes resulting in increase in microbial 
growth. It improves the degradation of organic matter and improves retention time 
of microbes in soil and increases availability of nutrients which are favorable for 
soil growth for better crop production [ 27 ,  49 ,  54 ]. The productivity of soil also 
increases due to the addition of biochar in soil because it increases the availability 
of C compound and minimizes the requirement of artifi cial fertilizers [ 58 ].  

14.4.1.3     Water Holding Capacity 

 Biochar enhances the water-holding capacity of soil by improving the soil quality in 
terms of physical, biological, and chemical fertility and better plant root density [ 59 ].  

14.4.1.4     Cation Exchange Capacity 

 The application of biochar causes the stabilization of heavy metal, increases CEC, 
and increases the availability of higher mineral essential for plant growth [ 48 ,  60 ].  
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14.4.1.5     pH of soil 

 The specifi c pH properties of biochar make the soil acidic for evaporation of metal 
ion in soil. The soils with low pH and CEC will also have the low adsorption caption 
for metals [ 61 ].  

14.4.1.6     Uptake of Heavy Metals 

 The addition of biochar reduces the heavy metal uptake by plant roots and mini-
mizes the chance of low productivity due to toxicity in plant body [ 59 ].  

14.4.1.7     Waste Reduction 

 The production of biochar is also an innovative technique to make benefi cial reuse 
of waste and to minimize the waste volume [ 41 ].  

14.4.1.8     Moisture Holding Capacity 

 The moisture holding capacity is improved due to application of biochar due to 
retention of pollution for shorter or longer time duration [ 62 ].  

14.4.1.9     Adsorbent Capacity 

 Biochar has high adsorbent capacity for adsorption of heavy metals and minerals in 
soil. Due to its high competency to adsorb organic contaminants for purifi cation of 
soil from contaminants, it improves the soil fertility [ 63 ,  64 ].  

14.4.1.10     Soil Respiration Rate 

 The respiration of soil improves by decomposition of biochar with the help of 
microbes (bacterias) resulting in C production which is used by microbes for micro-
bial activity in soil [ 1 ].  

14.4.1.11     Residing Capacity of Soil-Living Organisms 

 Biochar also improves the resistance capacity of living organisms residing in soil, 
i.e., earthworms (nematodes), insects, fungus, etc. [ 58 ].  
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14.4.1.12     Nutrient Availability 

 High concentration of ash in biochar increases the availability of nutrients which 
satisfi es the need of soil for nutrients. In case of low ash concentration in biochar, 
compost or manure can be added to maintain the ratio of nutrients [ 65 ].  

14.4.1.13     Rate of Germination 

 The rate of seed germination increased due to direct interaction of biochar with soil [ 58 ].   

14.4.2     Environmental Benefi ts 

 Interaction of soil with biochar results in subsequent effects on environment: 

14.4.2.1     Carbon Sequestration 

 Biochar has great resistance for biotic and biotic degradation in soil which empha-
sizes its importance in carbon cycle as carbon sink [ 66 ]. Carbon sequestration 
resulting in reduction of CO 2  in the atmosphere is due to the long-term availability 
of biochar in soil. It also has the ability to minimize the effect of climate change, 
decrease in GHG (greenhouse gas), and NO  x   emissions by causing decline in C 
emission as output from burning fossil fuels. Methane and nitrous oxide produced 
from carbon cycle and nitrifi cation/denitrifi cation process, respectively, can be 
reduced by application of biochar, and thus biochar can play an important role to 
solve issues of global warming [ 54 ,  56 ,  57 ,  62 ].   

14.4.3      Economic Benefi ts   

 Application of biochar is also benefi cial for the economy. 

14.4.3.1     Economically Benefi cial 

 Biochar is desirable nowadays because of its low energy demand, ease of use, low 
cost, and no pretreatment for use in soil.  
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14.4.3.2     Environment Friendly 

 The eco-friendly nature of biochar made it desirable, and nowadays it is being 
widely used in various applications because it (1) can be reuseable, (2) can recycle 
the organic waste, and (3) can reduce waste quantity [ 64 ].    

14.5     Conclusion 

 Global industrialization leads pollutants to the environment. Among these pollut-
ants, heavy metals have the profound effect on fertility of soils. Biochar amend-
ments remediate heavy metal toxicity in agricultural soils through different 
processes. Biochar is an effective tool for contaminated soil due to these different 
processes: (1) adsorption of heavy metals; (2) highly porous structure and high sur-
face area; (3) CEC; (4) reduced CO2 emission; (5) high water-holding capacity; (6) 
retention of pesticides, PAHs, and PSBs; (7) reduction of bioavailability and toxin-
induced stress to microorganisms and plants; (8) C-rich material having high chemi-
cal stability in the contaminated soils and mineral nutrients for microbes; (9) 
reduction of the mobility in soil; (10) protection of microbes from predators and 
introduction of benefi cial microbes that promote remediation; and (11) improve-
ment of soil fertility and plant growth by improving physical and biological proper-
ties of soil by provision and maintenance of nutrients. 

 However, these processes vary with biochar type, nature of soil, type of plants, 
type of metal toxicity, conditions of thermal decomposition (pyrolysis), and the 
quantity of biochar used. Therefore, we should use biochar according to soil con-
tamination. However, the various facts of opinions founded on comprehensive point 
of views should not be snubbed. Variant consequences recommend that recent bio-
char application to soil is not a standard example, as an alternative extensive con-
cern of the properties related to each specifi c biochar material and how those 
properties could cure a particular soil scarcity are mandatory [ 55 ]. Biochar use in 
soil has been suggested to increase the stable C pool and limit the growing concen-
tration of atmospheric CO 2 . In conclusion much more investigations are required to 
check the long-term environmental and economic feasibility of biochar application 
to remediate heavy metal-contaminated soils.     
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