
Development of an Integrated
Framework for Minimal Cut Set
Enumeration in Constraint-Based Models

Vítor Vieira, Paulo Maia, Isabel Rocha and Miguel Rocha

Abstract Under the realm of in silico Metabolic Engineering, pathway analysis
approaches to strain optimization have shown a large potential as tools capable of
providing an unbiased view over metabolic models. Most of these methods were
difficult or impossible to use due to their heavy computational needs, since they are
based in the calculation of elementary modes/minimal cut sets in large networks.
However, a recent method (MCSEnumerator) has enabled the application of these
approaches to genome-scale metabolic models. This work proposes a new software
tool where this method is implemented in a novel Java library, that provides support
for a plugin for the OptFlux metabolic engineering platform. Together, these tools
implement the routines necessary for the calculation of minimal cut sets and their
use to provide strain optimization methods. The aim is to provide an open-source
software tool that includes an intuitive graphical user interface, thus facilitating its
use by the community.

Keywords Metabolic pathway analysis ·Constraint-basedmodel · Strain optimiza-
tion · Minimal cut sets · Metabolic engineering

1 Introduction

In recent years, genome-scale metabolic models (GSMMs) encompassing annotated
whole genomes of living organisms have proved useful in predicting cell phenotypes
through in silicomethods. A particularly interesting application of GSMMs concerns
the field of metabolic engineering (ME) which aims to design enhanced cell factories
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for products with added value in industrial biotechnology. The use of metabolic mod-
els allows for a rational design process, integrating vast amounts of data instead of
trial-and-error methodologies [1, 2]. Most methods based on the use of GSMMs fol-
low a constraint-based (CB) approach, considering various assumptions regarding
cell metabolite balancing and discarding enzyme kinetics, as this information is only
partially available. Various phenotype prediction, analysis and strain optimization
methods have been developed using this approach [3]. Phenotype prediction meth-
ods are based on mathematical formulations that assume cell metabolism is driven
towards certain goals. The methods developed so far include variants for wild-type
strains, the most popular being Flux Balance Analysis (FBA) [4], and for mutant
strains such as Minimization of Metabolic Adjustment (MOMA) [5] and Regulatory
On/Off Minimization (ROOM) [6].

Computational strain optimization methods (CSOMs), with the purpose of find-
ing genetic manipulation strategies able to overproduce selected compounds, have
also been developed following the CB approach [7]. In this work, only optimization
methods involving reaction deletions will be approached. These can be divided in
two broad categories: bi-level constraint-based methods and pathway analysis (PA)
methods. Bi-level approaches are nested optimization problems attempting to find
engineering strategies that increase product yields or titers, as well as optimizing
cellular objectives, through phenotype prediction methods, mostly FBA and related
methods as MOMA or ROOM. While such assumptions allow faster computational
time, assuming an objectivemay lead to biaswhich can result in less robust strategies.
Some of these methods use deterministic methods, such as OptKnock [8], while oth-
ers employ stochastic meta-heuristics, as Evolutionary Computation (e.g. OptGene
[9]).

Pathway analysis approaches only consider the metabolite balance assumption,
decreasing bias.Most are based on elementarymodes (EMs), a concept representative
of basic cell functions contained in amodel. Complete enumeration of all EMs, and in
some cases the related Minimal Cut Sets (MCSs), in a network is necessary for most
PA methods, but incurs in heavy computational demands. However, EMs and MCSs
[10] are important assets in strain optimization. Also, recent methods have allowed
to extend the computation of EMs and MCSs to metabolic models at a genome-wide
scale, through the MCSEnumerator framework [11].

In this scenario, given the potential of MCSs to guarantee robust production, re-
gardless of the phenotype predictionmethod used, thiswork pursues the development
of an open-source software tool capable of handling relevant tasks associated with
their enumeration and applying those to strain optimization. Therefore, the main
scientific/technological objectives of this work are:

– to implement a library containing the necessary routines for enumeration ofMCSs
in metabolic networks;

– to integrate MCS enumeration tasks in the OptFlux metabolic engineering plat-
form, providing novel tools for strain optimization;

– to provide a simple and intuitive user-interface for the implemented routines.
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2 Methods

2.1 Constraint-Based Models and Pathway Analysis

Constraint-based models of metabolism comprise m intracellular metabolites and n
reactions acting upon them. These reactions also include sinks for external metabo-
lites, representing their uptake and/or production. The system is represented by a
m × n matrix S, containing stoichiometric coefficients. In CB methods, metabo-
lite concentrations are assumed to be time invariant, leading to a system of linear
equations:

S · vT = 0 (1)

with v as the column vector of fluxes (or rates) for each individual reaction. Ad-
ditionally, thermodynamics assumptions and/or rate limits are added as additional
constraints in the form:

α ≤ v ≤ β (2)

with α and β being respectively the vectors containing lower and upper limits for
each element (flux) in v. Any irreversible reaction j must have a lower limit α j = 0.
The system defined by Equations 1 and 2 can also be represented in space as a convex
polyhedron hereby referred to as P , containing all feasible solutions to this system.

Considering this modeling framework, an elementary mode (EM) represents the
smallest functional unitwithin it.Anyelementarymode e equates to afluxdistribution
obeying three key properties [12]:

1. A flux distribution in e must comply with Equation 1;
2. Irreversible reactions must carry flux only through a single direction in any EM.

These are specified in Equation 2;
3. Considering supp(e) as the reactions carrying flux in e, no subset of supp(e)

can yield a flux distribution obeying Equations 1 and 2.

Any point contained within P can be defined as a linear combination of EMs. It is
possible to find desirable solutions to themetabolicmodel by finding points described
by non-null combinations of EMs contained within a desired set of flux vectors D.
Conversely, any set of undesired flux vectors T can be blocked by disabling EMs
contained within that space. A set of reactions blocking all vectors in T is a cut set
of T . If no reaction can be removed from the cut set without rendering it unable to
block the vectors in T , it is considered a minimal cut set (MCS). However, MCSs
do not necessarily guarantee the set of desired vectors D will not be blocked as well.
AnMCSM is considered a constrainedminimal cut set (cMCS) [13] if it blocks all
EMs describing the space in T , as well as ensuring points in D are feasible solutions
to the system.
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2.2 Enumerating Minimal Cut Sets

Most methods for the enumeration of MCSs involve prior knowledge of the full set
of EMs in the network and are usually based on combinatorial algorithms. However,
these are unsuitable for GSMMs due to the heavy computational demand of this task.
Problem complexity and the number of total EMs rise exponentially with the size of
the model, rendering it virtually impossible.

However, a recent approach, MCSEnumerator, has been proposed which is ca-
pable of enumerating MCSs and cMCSs in GSMMs, in some cases up to seven
knockouts [11]. This algorithm involves a mixed-integer linear programming prob-
lem (MILP) that allows partial enumeration ofMCSswith good time-efficiency. This
formulation derives from a finding documented in [14] and describing the formula-
tion of a dual system in which EMs correspond to MCSs in the original metabolic
model. This is currently the most suitable approach for enumeration of MCSs in
GSMMs, which prompted its use in this work.

A generic pipeline based on the original publication was assembled, covering all
required steps for the enumeration task, as shown in the left panel of Figure 1. The
model compression step in the pre-processing phase and subsequent MCS decom-
pression in the enumeration phase are optional, but speed up computation times. The
MILP framework developed in [11] as well as a basic algorithm for MCS enumer-
ation are represented on the right side of the same figure. These constraints, along
with the dual system, result in an EM enumeration problem (using the k-shortest
EFM algorithm [15]) where EMs represent MCSs in the original network.

3 Development

This work has two main outcomes regarding the developed software. The first is a
Java library implementing an entire pipeline for MCS enumeration using the algo-
rithm in [11] and their use for strain optimization. The second outcome is a plugin
developed for the OptFlux platform, providing a user interface for the library.

3.1 Enumeration Library

MCSEnumerator is currently only available as a part of theCellNetAnalyzer platform
for MATLAB. One of the aims of this work was to build an independent library
containing the necessary routines and algorithms for MCS enumeration using the
MCSEnumerator [11] approach. This library was built using the Java programming
language, allowing greater portability, as well as enabling the use of more advanced
tools for the development of a graphical user interface (GUI). Currently, it requires
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Fig. 1 Left: Representation of the pipeline used in this work. Step (1) concerns model setup which
consists mainly on determining reaction reversibility and pseudo-reactions that will not be a part
of any solution; Step (2) aims at reducing the size of the problem, mostly through removal of
blocked reactions and network compression by lumping correlated reactions. Step (3) assembles
the enumeration problem and validates it, so that in Step (4) the proper formulation is built and
solved. MCSs that are not feasible in the desired space are discarded, leaving only cMCSs. Right:
Brief overview of the MILP formulation. S′ and v′ are derived from the dual model formulation in
[14] which already includes the undesired phenotypes.

the usage of the IBM ILOG CPLEX Optimization Studio1 for solving the MILP
problem described in [11].

This library contains three newly developed packages:

1. Enumeration: Contains methods needed to implement the MCSEnumerator
MILP formulation, given a suitable problem.

2. Metabolic: Provides a framework upon which constraint-based metabolic mod-
els can be defined, aswell as constraints for typical linear programming problems
such as yield or capacity constraints on the reactions.

3. Utilities: Includes methods that execute the entire pipeline given a set of param-
eters for the optimization. Functions to run the algorithms in a command-line
environment are also provided, capable of reading parameters contained within
text files.

The libraries provide routines capable of executing these tasks in a command-line
environment using only a metabolic model in Systems Biology Markup Language
(SBML) format and a file containing the parameters of the MCS enumeration prob-
lem, which may include undesired or desired limits for fluxes or yields, exclusion of
target reactions, among other constraints.

1 http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
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3.2 OptFlux Plugin

This work also aimed at providing a simple and clear user interface (GUI) as a
plugin within OptFlux [16]. Currently, this framework includes important tools used
in CB approaches, including phenotype simulation, analysis methods, and strain
optimization algorithms developed in-house (OptGene[9] and derivatives [17]).

As far as this work is concerned, OptFlux provides the necessary methods to read
and write metabolic models, serving as inputs for our algorithms. The developed
plugin provides a simple GUI, shown in Figure 2 for the MCSEnumerator approach
requiring minimal user input and providing a useful abstraction for the concepts
discussed in the previous section. The user is only required to specify the maximum
number of knockouts, which reactions correspond to biomass, product synthesis
and substrate uptake, the desired thresholds for production and growth, and whether
the production threshold is a yield or a rate constraint. Additionally, environmental
conditions can be added, and knockout targets can be discarded from the search either
by supplying a list of critical reactions or a gene ID corresponding to spontaneous
reactions, should the model represent those as being associated with a placeholder
pseudo-gene. The solutions are displayed using OptFlux’s GUIs, using the format of
previously available optimization algorithms. So, these solutions can be processed
and simulated afterwards using other tools fromOptFlux. FromOptFlux 3.3 onwards,
this plugin is available in the software’s plugin repository.

4 Results

4.1 Library Validation

The set of case studies was defined with the aim of ensuring that the outputs pro-
vided by the developed software match the ones from MCSEnumerator’s original
implementation. As such, the iAF1260 Escherichia coli GSMM [18] was used with
different enumeration problems for which the cMCSs were previously determined
in the original publication [11]. The results from all case studies were accurately
replicated and are highlighted in the Table 1.

4.2 Plugin Operation

This section shows in more detail the plugin’s mode of operation using one of the
case studies described above (anaerobic ethanol production in Escherichia coli using
glucose as carbon source). To run this case study:
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Table 1 Overview of the validation case studies. Y represents product/substrate yield and Glc
represents glucose uptake (mmol · gDW−1 · h−1). Note that aerobic conditions were allowed only
for fumarate and serine production. Computation times were determined in a single run using 12
cores (from two Intel� Xeon� E5-2650 CPUs) and 30GB of RAM.

Objective Scenario #MCS/#cMCS Computation time (h) Maximum size
Synthetic lethals - 1018 / - 17 4

Anaerobic ethanol production

Glc ≤ 10
Y ≥ 1.4

185302 / 8342 7.5 7

Glc ≤ 10
Y ≥ 1.8

153338 / 1987 9.1 7

Glc ≤ 18.5
Y ≥ 1.4

156477 / 8819 12.7 7

Glc ≤ 18.5
Y ≥ 1.8

138675 / 4618 2 7

Fumarate production Y ≥ 0.5
Glc ≤ 20

17338 / 30 12.4 7
Serine production 18449 / 140 1 6

Fig. 2 Graphical interface provided by the plugin to formulate an enumeration problem.

1. Start a new OptFlux project using the New project wizard option, click on
OptFlux model repository and select the iAF1260 Escherichia coli model.
Assume default options in the process.

2. Create an environmental condition using the New... menu, option Create... and
then click Environmental condition. Add a constraint for reaction R_EX_glc_e
with lower bound as -20 and upper bound as 999999 (definition of glucose uptake
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rate), and another for R_EX_o2_e_ with 0 as lower bound and 999999 as upper
bound (definition of anaerobic conditions).

3. Access the Optimization tab, and click on Minimal cut sets.

a. Select the environmental condition that was created in the previous step.
b. Allow at most 3 modifications and set the spontaneous ID for s0001.
c. Configure the objectives as follows: Biomass as R_Ec_biomass_core_

59p81M, substrate as R_EX_glc_e_ and product as R_EX_etoh_e_.
d. Set the biomass value to 0.1, choose yield and set the minimum product

value to 0.2.

This example allows determination of up to 3 knockouts guaranteeing a production
yield of at least 0.2 with a growth rate of 0.1h−1. The results can be browsed and
sorted and also saved to disk as a text file. Specific solutions (deletion sets) can be
saved to the clipboard, and simulated or analyzed through other OptFlux tools.

5 Conclusions and Further Work

The availability of PA-based strain design methods is scarce when considering
GSMMs. The new library proposed in this work presents a useful resource for the
metabolic engineering community, allowing for the enumeration of MCSs, in a way
that is standardized fit for most problems with generic CB models, while also al-
lowing flexibility regarding problem setup. The proposed OptFlux plugin facilitates
an abstraction from complex concepts surrounding cMCS enumeration, improving
ease of use and extending the already wide variety of optimization algorithms within
OptFlux, maintaining a coherent overall computational interface. Also, the provided
software is all made available to the community as open source allowing for third
party contributions in the future. Despite all efforts, the library is still dependent on
a commercial solver, but this provides a free academic license.

Computation times for larger sets of deletions, even when using a state-of-the-
art optimizer, can be time consuming for some enumeration problems, and others
still remain out of reach. Heuristic methods or alternative formulations may help in
achieving solutions for larger sizes and this will be a line of future work.
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