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    Chapter 2   
 Mesenchymal Stem Cells in Clinical 
Applications                     

     Phuc     Van     Pham    

2.1           Introduction 

 Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate 
into a variety of cell types, e.g., osteoblasts (bone cells), chondrocytes (cartilage 
cells), and adipocytes (fat cells). MSCs were fi rst discovered by Alexander 
Maximow, who identifi ed a cell type within the mesenchyme with potential to 
develop into various types of blood cells. McCulloch and James later revealed the 
clonal nature of marrow cells in 1963 (Becker et al.  1963 ; Siminovitch et al.  1963 ). 
An ex vivo assay for examining the potential of multipotent marrow clonogenic 
cells was reported in the 1970s by Friedenstein and colleagues (Friedenstein et al. 
 1974 ,  1976 ). MSCs were determined based on three common characteristics: ability 
to adhere to culture vessels with a fi broblast-like shape; expression of characteristic 
markers Stro-1, CD133, CD29, CD44, CD90, CD105 (SH2), SH3, SH4 (CD73), 
c-kit, CD71, and CD106; and ability to differentiate into specialized cells, e.g., the 
bone, cartilage, and fat. To easily determine which stem cells are MSCs, in 2006 the 
International Society of Cellular Therapy defi ned MSCs with  som  e minimal criteria 
(Dominici et al.  2006 ), including:

    1.    MSCs must be adherent to plastic under standard tissue culture conditions.   
   2.    MSCs must express some specifi c markers such as CD73, CD90, and CD150 

and lack expression of CD14, CD34, CD45 or CD11b, CD79 alpha or CD19, and 
HLA-DR.   

   3.    MSCs must successfully differentiate into osteoblasts, adipocytes, and chondro-
blasts under in vitro conditions.    
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  The fi rst identifi ed source of MSCs was bone marrow. MSCs are currently 
isolated from many different tissues in the body, such as the adipose tissue, periph-
eral blood, umbilical cord blood, banked umbilical cord blood, umbilical cord, 
umbilical cord membrane, umbilical cord vein, Wharton’s jelly of the umbilical 
cord, placenta, decidua basalis, ligamentum fl avum, amniotic fl uid, amniotic mem-
brane, dental pulp, chorionic villi of the human placenta, fetal membranes, men-
strual blood, breast milk, and urine (Fig.  2.1 , Table  2.1 ).

2.2         How MSCs Can Treat Diseases? 

 Different than other stem cells, MSCs can be used to treat diseases by two different 
mechanisms, including tissue repair and immune modulation.    While tissue repair is 
related to the differentiation of multipotent MSCs,  immune modulation   is a particu-
lar property of MSCs. Over the last decades, MSCs have been considered as a fea-
sible source of stem cells for tissue regeneration. It hopes to open the new era of 

  Fig. 2.1     Sources of MSCs.   MSCs can be derived from several tissues in the adult or infant human body       
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stem cell therapy for degenerative diseases. However, the immune modulation 
capacity of MSCs has been the subject of recent interest over the past several years. 
The fi rst MSC drug, Prochymal produced by Osiris Therapeutics, was approved in 
2012 and is used for immune modulation in  graft-versus-host disease (GVHD) 
treatment   (Fig.  2.2 ).

2.2.1       Tissue Regeneration 

 MSCs were shown to have differentiation potential into mesenchymal cells as well as 
endoderm and ectoderm cells. Based on this capacity, MSCs were considered as a suit-
able cell source for  tissue regeneration   from the bone, cartilage, adipose tissue, heart, 

  Fig. 2.2    Some mechanisms of MSCs  in   therapeutic application. MSCs are multipotent stem cells; 
therefore, they can differentiate into some specifi c cells that can replace some injured cells/dam-
aged adult cells. In another strategy, MSCs can modulate the immune response via some 
cytokines       
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muscle, and skin. Using in vitro assays, MSCs have been successfully differentiated 
into osteoblasts (Castren et al.  2015 ; Glueck et al.  2015 ; Wang et al.  2015 ), chondro-
blasts (Ibrahim et al.  2015 ; Moghadam et al.  2014 ; Pustlauk et al.  2015 ), adipocytes (Li 
et al.  2015b ; Mohammadi et al.  2015 ), neurons (Bagher et al.  2015 ; Kim et al.  2015 ; 
Nan et al.  2015 ), insulin-producing cells (Allahverdi et al.  2015 ; Balici et al.  2016 ; 
Ngoc et al.  2011 ; Van Pham et al.  2014 ), skeletal muscle (Xu et al.  2015 ), endothelial 
progenitor cells (Ikhapoh et al.  2015 ), cardiac progenitor cells (Li et al.  2015a ; Pham 
et al.  2014 ; Yang et al.  2015c ), and hepatocytes (Han et al.  2015 ; Sawitza et al.  2015 ; 
Ye et al.  2015 ). 

 Animal models showed that transplanted MSCs could differentiate in vivo into 
functional cells at injected sites and contribute to recovering tissue functions. In the 
minipig model with injured cartilage, Ha et al. ( 2015 ) showed that injected human 
umbilical cord blood-derived MSCs (UC-MSCs) could differentiate and regenerate the 
cartilage (Ha et al.  2015 ). Similarly, MSCs can also successfully differentiate into func-
tional insulin-producing cells in vivo in diabetic mice (Yang et al.  2015b ), hepatic cells 
(Hu and Li  2015 ; Zhong et al.  2015 ), and neurons (Taran et al.  2014 ). In animal models, 
MSCs from the bone marrow, umbilical cord blood, umbilical cord, and peripheral 
blood have been successfully used to treat several diseases,  s  uch as injured cartilage 
(Punwar and Khan  2011 ; Song et al.  2014 ), osteoarthritis (Ozeki et al.  2015 ; Wolfstadt 
et al.  2015 ; Xia et al.  2015 ), myocardial infarction (MI) (Chen et al.  2015 ), cornea dam-
age (Guo et al.  2006 ; Ma et al.  2006 ), wound healing (Li et al.  2015d ; Pelizzo et al. 
 2015 ), brain and spinal cord injury (Mannoji et al.  2014 ; Wu et al.  2015 ), lung failure 
(Liu et al.  2014a ; Matthay et al.  2010 ), liver cirrhosis (Tang et al.  2015 ; Yang et al. 
 2015a ), bone healing (Dehghan et al.  2015 ; Li et al.  2015c ), and diabetes mellitus 
(DM) (Hao et al.  2013 ; Kong et al.  2014 ; Lian et al.  2014 ; Yaochite et al.  2015 ). 

 Based on these studies, MSCs have been clinically applied in disease treatment, 
especially for tissue injury and degenerative medicine. One popular application of 
MSCs in degenerative disease is in osteoarthritis as well as injured cartilage. Bornes 
et al. ( 2014 ) showed that MSC transplantation shows positive functional outcomes 
at 12–48 months postimplantation (Bornes et al.  2014 ). The fi rst reported use of 
MSCs to repair cartilage damage in humans was conducted by Wakitani et al. in 
1998 (Wakitani et al.  2004 ). To date, approximately 15 publications have reported 
the application of MSCs in cartilage regeneration (Bornes et al.  2014 ). The fi rst 
MSC-based product (allogeneic umbilical cord blood MSC or CARTISTEM) was 
approved to treat injured cartilage in Korea in 2014. MSCs have also been clinically 
used in the treatment  of   wound healing (Falanga et al.  2007 ; Rasulov et al.  2005 ; 
Ravari et al.  2011 ; Vojtassak et al.  2006 ).  

2.2.2     Immune Modulation 

 In comparison to other stem cells, MSCs exhibit a powerful capacity of regulating 
immune responses. Many studies showed that MSCs  could   regulate immune 
responses both in vitro and in vivo. The effects of MSCs on immune cells are sum-
marized in Tables  2.2  and  2.3 . MSCs can affect all kinds of immune cells including 
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   Table 2.2    Immunomodulatory  effec  ts of MSCs on immune cells   

 Immune cell type  MSCs’ effects 

 T lymphocyte  Suppress T-cell proliferation induced by cellular or nonspecifi c mitogenic 
stimuli (Di Nicola et al.  2002 ) 
 Alter the cytokine secretion profi le of naive and effector T cells (Aggarwal 
and Pittenger  2005 ) 
 Promote the expansion and function of Treg cells losh (English et al.  2009 ) 

 B lymphocyte  Inhibit proliferation of B lymphocyte (Augello et al.  2005 ) 
 Affect the chemotactic properties of B cells (Corcione et al.  2006 ) 
 Suppress B-cell terminal differentiation (Asari et al.  2009 ) 

 NK cell  Alter the phenotype of NK cells and suppress proliferation, cytokine 
secretion, and cytotoxicity against HLA class I-expressing targets 
(Sotiropoulou et al.  2006 ; Spaggiari et al.  2006 ) 

 Dendritic cells 
(DCs) 

 Infl uence differentiation, maturation, and function of monocyte-derived 
dendritic cells (Zhang et al.  2004 ) 
 Suppress dendritic cell migration, maturation, and antigen presentation 
(Chen et al.  2007 ) 
 Induce mature DCs into a novel Jagged-2-dependent regulatory DC 
population (Zhang et al.  2009 ) 

   Table 2.3    Important bioactive  m  olecules secreted by MSCs and their functions   

 Bioactive molecules  Functions 

 Prostaglandin E2 (PGE2)  Antiproliferative mediators (Bouffi  et al. 
 2010 ) 
 Anti-infl ammation (Foraker et al.  2011 ) 

 Interleukin-10(IL-10)  Anti-infl ammatory (Nemeth et al.  2009 ) 
 Transforming growth factorβ-1 (TGFβ1), 
hepatocyte growth factor (HGF) 

 Suppress T-lymphocyte proliferation (Di 
Nicola et al.  2002 ) 

 Interleukin-1 receptor antagonist  Anti-infl ammatory (Ortiz et al.  2007 ) 
 Human leukocyte antigen G isoform (HLA-G5)  Antiproliferative for naive T cells 

(Selmani et al.  2008 ) 
 LL-37  Antimicrobial peptide and reduce 

infl ammation (Krasnodembskaya et al. 
 2010 ) 

 Angiopoietin-1  Restore epithelial protein permeability 
(Fang et al.  2010 ) 

 MMP3, MMP9  Mediating neovascularization (Kim et al. 
 2007 ) 

 Keratinocyte growth factor  Alveolar epithelial fl uid transport (Lee 
et al.  2009 ) 

 Endothelial growth factor (VEGF), basic fi broblast 
growth factor (bFGF), placental growth factor 
(PlGF), and monocyte chemoattractant protein-1 
(MCP-1) 

 Enhance proliferation of endothelial cells 
and smooth muscle cells (Kinnaird et al. 
 2004a ,  b ) 
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T lymphocytes (Aggarwal and Pittenger  2005 ; Di Nicola et al.  2002 ; English et al. 
 2009 ), B lymphocytes (Asari et al.  2009 ; Augello et al.  2005 ; Corcione et al.  2006 ), 
natural killer cells (Sotiropoulou et al.  2006 ; Spaggiari et al.  2006 ), and dendritic 
cells (DCs) (Chen et al.  2007 ; Zhang et al.  2004 ). MSCs have thus been successfully 
applied in both preclinical and clinical treatments for some immune disorder-related 
diseases. For example, MSCs have been used to treat GVHD in patients transplanted 
with hematopoietic stem cells (Introna and Rambaldi  2015 ; von Dalowski et al. 
 2016 ; Zhao et al.  2015a ), systemic lupus erythematosus (Gu et al.  2014 ; Wang et al. 
 2014a ; Yan et al.  2013 ), Crohn’s disease (Ciccocioppo et al.  2015 ; Liew et al.  2014 ), 
multiple system atrophy (Lee et al.  2012 ; Sunwoo et al.  2014 ), multiple sclerosis 
(Dulamea  2015 ; Gharibi et al.  2015 ), and amyotrophic lateral sclerosis (Hajivalili 
et al.  2016 ; Lewis and Suzuki  2014 ; Rushkevich et al.  2015 ). An allogeneic MSC-
based product was  ap  proved as drug for GVHD treatment in Canada in 2015 
(Prochymal, which is produced by Osiris Therapeutics). This represents the fi rst 
approved stem cell drug.

2.3          Clinical Applications of MSCs 

2.3.1     Approved MSC-Based Products 

 For the past 5 years, MSCs have been widely used in clinical applications mainly 
through two main approaches: approved MSC-based products and clinical trials. To 
date, approximately nine MSC-based products have been approved by several coun-
tries for the treatment of different diseases such as degenerative arthritis, post-acute 
MI, and GVHD (Table  2.4 , Fig.  2.3 ). These products have been used in autologous 
and allogenous transplantation in several countries and have signifi cantly contrib-
uted to the growth of MSC clinical applications.

     CARTISTEM ®   , a combination of human UC-MSCs and sodium hyaluronate, 
is intended to be used as a single-dose therapeutic agent for cartilage regeneration 
in humans with cartilage defects of the knee as a result of aging, trauma, or degen-
erative diseases. 

  CardioRel ®  is an au  tologous product designed for early or planned intervention 
in patients of MI providing mononuclear and mesenchymal stem cells for cardiac 
regeneration. 

  Trinity ®  Evolution™ is an al  lograft of cancellous bone containing viable adult 
stem cells and osteoprogenitor cells within the matrix and a demineralized bone 
component. Trinity Evolution offers an ideal alternative to autograft and other bone 
grafting options (without their drawbacks). 

  Osteocel ®  Plus is   an allograft cellular bone matrix that retains its native bone- 
forming cells, including MSCs and osteoprogenitors. Osteocel ®  Plus is intended for 
the repair, replacement, and reconstruction of skeletal defects. 

 Hearticellgram ® -AMI are  bone marrow-derived MSCs (BM-MSCs)   used to treat 
acute MI through intracoronary injection. This study assessed the safety and effi -
cacy of  i  ntracoronary autologous transplantation of BM-MSCs in patients with 
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   Table 2.4    Allogeneic mesenchymal stem cell-based products approved by several countries   

 Names of 
products  Components  For diseases 

 Kind of 
transplantation  Company  Country 

 CARTISTEM  MSCs from 
umbilical cord 
blood 

 Degenerative 
arthritis 

 Allo  Medipost  Korea 

 MPC  Mesenchymal 
precursor cells 

 N/A  Allo  Mesoblast  Australia 

 Cupistem  MSC from 
adipose tissue 

 Anal fi stula 
(Crohn’s 
disease) 

 Auto  Anterogen  South 
Korea 

 Prochymal  Mesenchymal 
stem cells 
from bone 
marrow 

 GVHD  Allo  Osiris 
Therapeutics 

 Canada 

 AlloStem  Bone 
matrix+BM- 
MSC 

 Orthopedics  Allo  AlloSource  USA 

 Hearticellgram- 
AMI 

 BM-MSC  Post-acute 
myocardial 
infarction 

 Auto  FCB 
Pharmicell 

 South 
Korea 

 Osteocel Plus  BM-MSC  Orthopedics  Allo  NuVasive  USA 
 Trinity 
Evolution 

 Bone matrix 
with MSC 

 Orthopedics  Allo  Orthofi x  USA 

 CardioRel  BM-MNC/
MSC 

 Post-acute 
myocardial 
infarction 

 Auto  Reliance Life 
Science 

 India 

  Fig. 2.3    Some approved MSC-based products in some countries. ( a ) CARTISTEM; ( b ) Trinity 
Evolution; ( c ) Osteocel; ( d ) Prochymal       
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acute MI. There were no adverse reactions or major cardiac events. There was an 
improvement in left ventricular (LV) ejection fraction, already evident 6 h after 
treatment, in acute myocardial function patients who underwent percutaneous trans-
luminal coronary angiography within 72 h of chest pain onset. 

 AlloStem is partially  de  mineralized allograft bone combined with adipose- 
derived MSCs (AD-MSCs). Suitable for general bone grafting applications, 
AlloStem is similar to autograft bone because it provides the three key properties 
necessary for bone formation: osteoconductive (partially demineralized allograft 
bone, the foundation for the AlloStem tissue, provides a natural scaffold for new 
bone formation), osteoinductive (naturally occurring growth factors present in 
allograft bone have been shown to encourage osteogenic activity), and osteogenic 
(AlloStem contains adult MSCs that naturally adhere to the bone substrate and may 
contribute to the formation of new bone). 

 Prochymal is the  fi rst   stem cell therapy approved for use in Canada. It is also the 
fi rst therapy approved in Canada for acute GVHD. It is an allogeneic stem therapy 
based on MSCs derived from the bone marrow of adult donors. MSCs are purifi ed 
from the marrow and cultured and packaged, with up to 10,000 doses derived from 
a single donor. The doses are stored frozen until needed.  

2.3.2     Clinical Trials of MSC-Based Therapy 

 In addition to approved MSC-based products, MSCs have been used in disease 
treatment through clinical trials. According to clinicaltrials.gov, approximately 542 
registered clinical trials have used MSCs for treatment. The fi rst clinical trial using 
in vitro expanded MSCs was performed in 1995, in which 15 patients were treated 
with autologous stem cells (Lazarus et al.  1995 ). According to clinicaltrials.gov, 
almost all of the current trials are in phase I, phase II, or phase I/II, and some of 
these trials are in phase II or phase II/III (Fig.  2.4 , Table  2.5 ).

2.3.2.1        MSCs for Osteoarthritis 

 MSCs easily differentiate into osteoblasts as well as chondroblasts, and therefore 
they can be rapidly applied in treating  several   diseases related to bone and cartilage 
degeneration. MSCs from various sources have been clinically used in bone and 
cartilage regeneration (Table  2.6 ).

   Autologous MSCs from bone marrow were used in osteoarthritis with good 
results (Orozco et al.  2013 ). Autologous in vitro expanded MSCs were also 
 transplanted in cartilage defects (Wong et al.  2013 ). Allogeneic expanded MSCs 
from bone marrow were used to treat chronic knee. Vega et al. ( 2015 ) showed that 
allogeneic MSC therapy is simple, without requirement for surgery, and signifi cantly 
improves cartilage quality (Vega et al.  2015 ). ADSCs are also used in cartilage 
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regeneration. Autologous ADSCs have been successfully applied in osteoarthritis 
treatment. Stromal vascular fraction as non-expanded ADSCs was injected to 
improve knee osteoarthritis for several years (Bui et al.  2014 ; Koh et al.  2013 ; Pak 
 2011 ). Almost all studies have shown that ADSC transplantation is safe, with no 
treatment-related adverse events. Intra-articular injection of ADSCs into the osteoar-
thritic knee improved function and pain of the knee joint and reduced cartilage 
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  Fig. 2.4    Clinical trials using mesenchymal stem cells       

   Table 2.5    MSC-based clinical trials in a completed status   

 Pathology  Clinical status completed 

 Overall 
 Phase 
I 

 Phase I/
II 

 Phase 
II 

 Phase II/
III 

 Phase 
III 

 Phase 
IV  ND 

 Hematological disease  1  2  1  0  0  0  0 
 GVHD  0  4  2  0  1  0  0 
 Diabetes  1  1  0  0  0  0  1 
 Liver disease  0  3  0  0  0  0  0 
 Kidney disease  0  0  0  0  0  0  1 
 Lung disease  3  0  1  0  0  0  0 
 Cardiovascular disease  2  11  4  1  0  0  1 
 Bone and cartilage disease  12  8  3  1  2  0  3 
 Neurological disease  9  8  2  0  0  0  1 
 Crohn’s disease  0  1  1  1  0  0  1 
 Lupus erythematosus  0  0  0  0  0  0  0 
 Other  3  2  1  0  11  1  2 
 Overall  31  40  15  3  4  1  10 
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   Table 2.6    Clinical trials using  MSC  s for intra-articular injection of cells   

 Study name; clinicaltrials.
gov identifi er 

 Cell type and 
source  Indication  Study phase; design 

 Articular Cartilage 
Resurfacing With 
Mesenchymal Stem Cells 
In Osteoarthritis Of Knee 
Joint; NCT01207661 

 MSC, autologous 
(source unspecifi ed) 

 Knee OA  Phase I; open label 

 Adult Stem Cell Therapy 
for Repairing Articular 
Cartilage in Gonarthrosis; 
NCT01227694 

 MSC, autologous, 
bone marrow 
derived 

 Knee OA  Phase I/II; open label 

 Side Effects of Autologous 
Mesenchymal Stem Cell 
Transplantation in Ankle 
Joint Osteoarthritis; 
NCT01436058 

 MSC, autologous, 
bone marrow 
derived 

 Ankle joint OA  Phase I; open label 

 Stem Cell Transplantation 
for the Treatment of Knee 
Osteoarthritis; 
NCT00550524 

 MSC, autologous, 
bone marrow 
derived 

 Knee OA  Phase I; open label 

 Intra-Articular Autologous 
Bone Marrow 
Mesenchymal Stem Cells 
Transplantation to Treat 
Mild to Moderate 
Osteoarthritis; 
NCT01459640 

 MSC, autologous, 
bone marrow 
derived 

 Mild-to-moderate 
knee OA 

 Phase II; open label, 
active comparator: 
hyaluronic acid 

 Safety and Effi cacy of 
Autologous Bone Marrow 
Stem Cells for Treating 
Osteoarthritis; 
NCT01152125 

 MSC, autologous, 
bone marrow 
derived 

 OA, KLG III–IV  Phase I/II; open label 

 Treatment of Knee 
Osteoarthritis With 
Autologous Mesenchymal 
Stem Cells (KDD&MSV); 
NCT01183728 

 MSC, autologous, 
bone marrow 
derived 

 Knee OA, KLG 
II–IV 

 Phase I/II; open label 

 Mesenchymal Stem Cell 
Transplantation in 
Osteoarthritis of Hip Joint; 
NCT01499056 

 MSC, autologous, 
bone marrow 
derived 

 Hip OA  Phase I; open label 

 The Effects of Intra- 
articular Injection of 
Mesenchymal Stem Cells 
in Knee Joint 
Osteoarthritis; 
NCT01504464 

 MSC, autologous, 
bone marrow 
derived 

 Knee OA  Phase II; double- 
blind RCT 

 Allogeneic Mesenchymal 
Stem Cells in 
Osteoarthritis; 
NCT01453738 

 MSC, allogeneic, 
source unspecifi ed 

 Knee OA  Phase II; double- 
blind RCT 

(continued)
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Table 2.6 (continued)

 Study name; clinicaltrials.
gov identifi er 

 Cell type and 
source  Indication  Study phase; design 

 Allogeneic Mesenchymal 
Stem Cells for 
Osteoarthritis; 
NCT01448434 

 MSC, allogeneic, 
source unspecifi ed 

 Knee OA  Phase II; double- 
blind RCT 

 Treatment of Knee 
Osteoarthritis With 
Allogenic Mesenchymal 
Stem Cells (MSV_allo); 
NCT01586312 

 MSC, allogeneic, 
bone marrow 
derived 

 Knee OA  Phase II; double- 
blind RCT, active 
comparator: 
hyaluronic acid 

 A Phase I/II Study of 
Chondrogen Delivered by 
Intra-Articular Injection 
Following Meniscectomy; 
NCT00225095 

 MSC, allogeneic, 
source unspecifi ed 

 Meniscectomy  Phase I/II; double- 
blind; randomized 

 Follow-up Study of 
Chondrogen ®  Delivered by 
Intra-Articular Injection 
Following Meniscectomy; 
NCT00702741 

 MSC, allogeneic, 
source unspecifi ed 

 Partial medial 
meniscectomy 

 Phase II; double- 
blind RCT 

 Safety and Effi cacy Study 
of MSB-CAR001 in 
Subjects 6 Weeks Post an 
Anterior Cruciate 
Ligament Reconstruction; 
NCT01088191 

 MSC, allogeneic, 
source unspecifi ed 

 ACL 
reconstruction 

 Phase I/II; double- 
blind RCT, active 
control: hyaluronan 

 Autologous Adipose Tissue 
Derived Mesenchymal 
Stem Cells Transplantation 
in Patients With 
Degenerative Arthritis; 
NCT01300598 

 MSC, autologous, 
adipose tissue 
derived 

 Knee OA  Phase I/II; open label 

 ADIPOA - Clinical Study; 
NCT01585857 

 MSC, autologous, 
adipose tissue 
derived 

 Knee OA, 
moderate or severe 

 Phase I; open label 

 Autologous Adipose- 
Derived Stromal Cells 
Delivered Intra-articularly 
in Patients With 
Osteoarthritis; 
NCT01739504 

 MSC, autologous, 
adipose tissue 
derived 

 OA  Phase I/II; open label 

 Outcomes Data of Bone 
Marrow Stem Cells to 
Treat Hip and Knee 
Osteoarthritis; 
NCT01601951 

 Bone marrow 
concentrate, 
autologous 

 Hip and knee OA  Phase unspecifi ed; 
prospective, 
observational 

 Peripheral Blood-derived 
Stem Cell Trial on 
Damaged Knee Cartilage 
(PBSC); NCT01076673 

 Peripheral blood 
stem cells (identity 
unspecifi ed) 

 Damaged articular 
cartilage 

 Phase unspecifi ed; 
open label 

(continued)

2 Mesenchymal Stem Cells in Clinical Applications



50

Table 2.6 (continued)

 Study name; clinicaltrials.
gov identifi er 

 Cell type and 
source  Indication  Study phase; design 

 Allogeneic Mesenchymal 
Stem Cells in 
Osteoarthritis; 
NCT01453738 

 MSC, source 
unspecifi ed, 
allogeneic 

 Knee OA, KLG 
II–III 

 Phase II; double 
blind 

 Autologous Adipose Tissue 
Derived Mesenchymal 
Progenitor Cells Therapy 
for Patients With Knee 
Osteoarthritis; 
NCT01809769 

 Mesenchymal 
progenitor cells, 
autologous, adipose 
tissue derived 

 Knee OA  Phase I/II; double 
blind 

 Autologous Bone Marrow 
Mesenchymal Stem Cells 
Transplantation for 
Articular Cartilage Defects 
Repair; NCT01895413 

 MSC, bone marrow, 
autologous 

 Knee OA  Phase I/II; open label 

 Transplantation of Bone 
Marrow Derived 
mesenchymal Stem Cells 
in Affected Knee 
Osteoarthritis by 
Rheumatoid Arthritis ( sic ); 
NCT01873625 

 MSC, bone marrow, 
not stated whether 
autologous or 
allogeneic 

 Knee OA  Phase II/III; 
randomized, open 
label 

 Safety and Effi cacy Study 
of MSB-CAR001 in 
Subjects 6 Weeks Post an 
Anterior Cruciate 
Ligament Reconstruction; 
NCT01088191 

 MSC, source 
unspecifi ed 

 Knee, ACL injury  Phase I/II; double- 
blind RCT 

 Autologous Adipose Stem 
Cells and Platelet Rich 
Plasma Therapy for 
Patients With Knee 
Osteoarthritis; 
NCT02142842 

 SVFs (from 
autologous adipose 
tissue) 

 Knee, OA  Phase I/II; 
randomized, open 
label 

 Clinical Study of 
Umbilical Cord Tissue 
Mesenchymal Stem Cells 
(UC-MSC) for Treatment 
of Osteoarthritis; 
NCT02237846 

 MSCs from 
umbilical cord 
(allogenic) 

 Knee, OA  Phase I/II 

defects by regeneration of hyaline-like articular cartilage (Jo et al.  2014 ). Intra- 
articular autologous activated  p  eripheral blood stem cells also improved quality of 
life and regenerated articular cartilage in early osteoarthritic knee disease (Saw et al. 
 2011 ,  2013 ; Turajane et al.  2013 ).  
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2.3.2.2     Cardiovascular Diseases 

 Today, more than 40 clinical trials are  l  isted with a majority of bone marrow, 
Wharton’s jelly, and adipose stem cells (Chen et al.  2004 ; Gee et al.  2010 ; Hare 
et al.  2009 ; Trachtenberg et al.  2011 ). Both autologous and allogeneic MSCs have 
been used to treat MI. In 2012, Hare et al. ( 2012 ) compared allogeneic vs. autolo-
gous BM-MSCs delivered by transendocardial injection in patients with ischemic 
cardiomyopathy. The authors showed that there was no difference between alloge-
neic and autologous BM-MSC injection, and MSC injection favorably affected 
patient functional capacity, quality of life, and ventricular remodeling (Hare et al. 
 2012 ). Effi ciency of MSCs or mononuclear cells (MNCs) derived from bone mar-
row was also compared in a recent study (Heldman et al.  2014 ). Although both 
MSCs and MNCs from bone marrow were safe by transendocardial injection in 
ischemic cardiomyopathy patients, improvements such as the 6-min walk distance 
score, infarct size as a percentage of LV mass, and regional myocardial function as 
peak Eulerian circumferential strain at the site of injection were only improved in 
MSC-injected patients (Heldman et al.  2014 ). Gao et al. ( 2015 ) intracoronary 
infused Wharton’s jelly-derived MSCs (WJMSCs) to treat acute MI. After 18 
months of follow-up, the absolute decreases in LV end-systolic volumes and end- 
diastolic volumes at 18 months in the WJMSC group were signifi cantly  greater   than 
those in the placebo group (Gao et al.  2015 ). In another randomized placebo- 
controlled clinical trial, Musialek et al. ( 2015 ) showed that allogeneic transplanta-
tion of WJMSCs is safe and effective in MI patients (Musialek et al.  2015 ). However, 
the effi ciency of treatment based on MSCs differs based on the age of patients. By 
transendocardial injection of expanded MSCs, Golpanian et al. ( 2015 ) showed that 
MSC injection improved the 6-min walk distance and quality of life using the 
Minnesota Living with Heart Failure Questionnaire score and reduces MI size in 
younger patients (younger than 60 years old); in older patients, these scores were 
not improved (Golpanian et al.  2015 ). 

 Other diseases related to cardiovascular diseases, especially hind limb ischemia, 
were studied for treatment with MSC injection. ADSCs were collected and expanded 
ex vivo to treat non-revascularizable critical limb ischemia (Bura et al.  2014 ). 
ADSCs were intramuscularly injected into the ischemic leg of patients; no compli-
cations were observed, transcutaneous oxygen pressure tended to increase in most 
patients, and ulcer evolution and wound healing were improved (Bura et al.  2014 ). 
Allogeneic MSCs also can improve critical limb ischemia (Gupta et al.  2013 ). 
However, different than MSCs, BM-MNCs injection was insuffi cient  to   treat critical 
lower limb ischemia (Moazzami et al.  2014 ).  

2.3.2.3     MSCs for Chronic Infl ammatory and Autoimmune Diseases 

 MSCs have a strong capacity  of      immune modulation that affects all kinds of immune 
cells. Several clinical studies have examined MSCs in refractory and severe systemic 
lupus erythematosus treatment. Some results showed that MSC transplantation 
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resulted in the induction of clinical remission and improvements in serological 
markers of organ dysfunction (Liang et al.  2010 ; Sun et al.  2009 ; Wang et al.  2013a ). 
MSCs have also been used in treatment of Crohn’s disease, which is a chronic infl am-
matory disorder of the gastrointestinal tract.  Crohn’s disease   is currently treated by 
steroids, immunosuppressive agents, or anti-TNF therapy; however, the effi ciency of 
these therapies is low. MSCs from various sources, such as the bone marrow, adipose 
tissue, and umbilical cord of both autologous and allogeneic forms, were tested to 
treat Crohn’s disease. Autologous BM-MSCs were safe and benefi cial in refractory 
fi stulizing Crohn’s disease (Ciccocioppo et al.  2011 ; Duijvestein et al.  2010 ). 
Molendijk et al. ( 2015 ) showed that local administration of allogeneic BM-MSCs was 
not associated with severe adverse events in patients with perianal fi stulizing Crohn’s 
disease and promoted healing of perianal fi stulas (Molendijk et al.  2015 ). These 
results were consistent with the study by Forbes et al., in which administration of 
allogeneic MSCs reduced CDAI  and      CDEIS scores in patients (Forbes et al.  2014 ).  

2.3.2.4     MSCs for Liver, Lung, and Kidney Disease 

 The numbers of MSC-based treatments for liver, lung, and kidney diseases have 
increased over the past several years. The lungs  are   susceptible to edema and endo-
thelial permeability caused by traumatic injury and represent good targets for MSC- 
based cell therapy. Three kinds of pulmonary diseases are clinically treated by 
MSCs, including  idiopathic pulmonary fi brosis (IPF),    chronic obstructive pulmo-
nary disease (COPD)  , and severe acute respiratory distress syndrome (ARDS). 
Recent clinical trials have clearly assessed the safety and feasibility of MSCs for the 
treatment of IPF patients. Both MSCs from the placenta (Chambers et al.  2014 ) and 
adipose tissue (Tzouvelekis et al.  2013 ) were used to treat IPF. The fi rst clinical 
study of MSC transplantation for COPD was performed in 2013 (Weiss et al.  2013 ). 
In this report, Weiss et al. ( 2013 ) used in vitro expanded allogeneic MSCs from 
bone marrow with good results, showing a signifi cant decrease in levels of circulat-
ing C-reactive protein in patients treated with MSCs (Weiss et al.  2013 ). Both 
BM-MSCs and AD-MSCs were transplanted into ARDS patients. While the clinical 
results showed that this is a safe method, the disease did not signifi cantly improve 
after treatment (Simonson et al.  2015 ; Zheng et al.  2014 ). 

 MSC transplantation also shows  grea  t promise for the treatment of impaired liv-
ers, especially advanced fi brosis. Several clinical studies have examined liver fi bro-
sis treatment by MSC transplantation. Almost all these clinical studies (over ten 
studies) used BM-MSCs, while four studies used allogeneic MSCs, with three stud-
ies using UC-MSCs and one study using BM-MSCs (Shi et al.  2012 ; Wang et al. 
 2014b ,  2013b ; Zhang et al.  2012 ). Interestingly, allogeneic MSC infusion is clini-
cally safe, without side effects, and improved liver function. Zhang et al. examined 
the safety and effi cacy of UC-MSCs in patients affected by liver cirrhosis. The 
results showed signifi cantly improved liver function in transplanted patients without 
side effects or complications (Zhang et al.  2012 ). UC-MSCs were also used to treat 
acute chronic liver failure patients. The results showed that UC-MSC transfusions 

P.V. Pham



53

signifi cantly increased the survival rates in acute chronic liver failure patients (Shi 
et al.  2012 ). In summary, these data demonstrated that MSC transfusions are safe 
and may serve as a novel therapeutic  appro  ach for liver diseases. 

 MSC transplantation is also considered as a promising therapy for kidney failure 
based on several results in animal models. To date, three phase I/II clinical trials 
have examined the use of MSCs for kidney failure treatment (Gaspari et al.  2010 ; 
Gooch et al.  2008 ; Togel and Westenfelder  2010 ). Some initial results showed that 
MSC infusion could prevent and treat acute renal failure patients (Togel and 
Westenfelder  2010 ). Preliminary data indicate that MSC infusion is safe and feasi-
ble and that it reduced the length of hospital stay and readmission rates by 40 % 
(Gooch et al.  2008 ; Togel and Westenfelder  2010 ). Gooch et al. indicated that the 
infusion of allogeneic MSCs seemed to prevent all complications in patients with 
post-cardiopulmonary bypass-induced acute kidney injury and  p  romote kidney 
recovery (Gooch et al.  2008 ).  

2.3.2.5     Diabetes Mellitus (DM) 

  Several      clinical trials have examined the application of MSCs in T1DM patients. 
The fi rst clinical trial was performed by Haller et al. ( 2008 ) to assess the safety and 
effi cacy of using MSC-containing autologous cord blood infusion for DM in chil-
dren (Haller et al.  2008 ). This study suggested that cord blood infusion was feasible 
and safe; there was an increase of peripheral regulatory T-cell level and reduced 
insulin requirement 6 months after cord blood infusion (Haller et al.  2008 ). 
Nevertheless, after 2 years, the therapeutic effect disappeared (Haller et al.  2011 ). 

 In another study, Hu et al. evaluated the long-term effects of injecting WJMSCs 
for new-onset T1DM patients (Hu et al.  2013 ). Treated T1DM patients had better 
glycemic control and increased C-peptide levels after 2 years of follow-up (Hu et al. 
 2013 ). Ten other clinical trials using MSCs for DM were registered in clinicaltrials.
gov. In addition to autologous MSCs, some clinical trials used allogeneic and 
expanded MSCs for treatment. Prochymal was also evaluated for DM treatment. 
Some improvements were recorded in treated patients such as glycemic control in 
newly diagnosed T1DM patients (NCT00690066). Four kinds of MSCs have been 
used in the clinic, including MSCs from the umbilical cord blood, umbilical cord, 
adipose tissue, and bone marrow. 

 MSCs have also been used to treat T2DM. Although, the mechanism of MSCs in 
T2DM treatment is not yet clear, some clinical trials showed that MSC transplanta-
tion is promising. Kong et al. ( 2014 ) showed that UC-MSC transfusion was safe and 
well tolerated, effectively alleviated blood glucose, and increased the generation of 
C-peptide levels and Tregs in a subgroup  of      T2DM patients (Kong et al.  2014 ). This 
result was similar to another study (Liu et al.  2014b ). Placenta-derived MSCs also 
showed huge potential for T2DM treatment. Transplanted T2DM patients had no 
fever, chills, liver damage, or other side effects. More importantly, renal function 
and cardiac function were improved after infusion (Jiang et al.  2011 ).  
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2.3.2.6     MSCs in Acute Brain Injury: Stroke 

 In recent years, clinical trials  usin  g MSC in stroke have increased dramatically. 
Since 2009,  th  ere were 22 clinical trials in phase I/II (Bang et al.  2005 ; De Keyser 
 2005 ; Smith and Gavins  2012 ). Bang et al .  performed the fi rst phase I study to 
assess safety of intravenous administration of 10 8  autologous MSCs in patients with 
severe neurological defi cits due to subacute ischemic stroke. The results showed 
that intravenous cell infusion appeared safe and feasible. In 2010, Lee et al. trans-
planted MSCs in 16 patients with stroke. Some neurological recovery scores were 
improved in the MSC group compared with the placebo group (Lee et al.  2010 ). 
Both autologous and allogeneic MSCs have been used to treat stroke. All clinical 
studies showed that MSC transplantation for stroke is safe, with improvement of 
functional recovery such as neurological scores and size of infarct. These results 
suggest the potential therapeutic use for MSC in  s  troke  management  .    

2.4     Safety of MSCs in Clinical Applications 

 Although the number of  c  linical applications of MSCs has increased over recent 
years, the safety of MSCs is still a focus for scientists and medical doctors. The 
highest risk for MSC transplantation is tumorigenesis in vivo after transplantation. 
Some hypothesis demonstrated tumorigenesis related to MSC characteristics and 
some modifi cations in MSCs during the in vitro expansion. Some studies showed 
that MSCs without in vitro expansion were safe in both preclinical and clinical 
applications. For this reason, in 2014, the FDA clarifi ed minimal manipulation of 
cell/tissue products to be used in the clinic. 

 In regard to in vitro expanded MSC transplantation, some concerns about the 
genetic alterations of expanded MSCs were addressed with recent in vitro studies as 
well as several clinical trials using expanded MSCs. In vitro assays showed that 
three commonly used MSC types, including BM-MSCs, ADSCs, and UC-MSCs, 
maintained phenotype and genotype after extended culture. For example, Bernardo 
et al. showed that BM-MSCs can be cultured long-term in vitro without losing their 
morphologic, phenotypical, and functional characteristics. These cells can maintain 
normal karyotype after 44 weeks of culture (Bernardo et al.  2007 ). ADSCs also did 
not bypass senescence after 2 months of culture, with no evidence of transformation 
in vitro (Meza-Zepeda et al.  2008 ). Chen et al. reported that human UC-MSCs 
maintained their biological characteristics and function after long-term in vitro cul-
turing and were not susceptible to malignant transformation (Chen et al.  2014 ). In 
this study, MSCs could be expanded up to the 25th passage without chromosomal 
changes by G-band (Chen et al.  2014 ). 

 The key obstacle of stem cell therapy is related to whether stem cells may undergo 
malignant transformation. Some previous studies have described spontaneous trans-
formation of MSCs in vitro (Pan et al.  2014 ; Ren et al.  2011 ). However, almost all 
of these studies have been retracted owing to cross-contamination with cancer cells 
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(de la Fuente et al.  2010 ; Garcia et al.  2010 ; Rubio et al.  2005 ; Torsvik et al.  2010 ). 
Roemeling-van Rhijn et al. ( 2013 ) showed that ADSCs can form aneuploid cells 
during in vitro culture. However, they also confi rmed that aneuploidy was not a 
predecessor of  transfo  rmation or tumor formation (Roemeling-van Rhijn et al. 
 2013 ). In preclinical trials, all studies on NOD mice, NOD/SCID mice, guinea 
pigs, rabbits, and monkey models showed that upon the use of UC-MSCs from 
the master MSC bank (passage 2, P2) and culturing for an additional fi ve passages 
(P7) or 11 passages (P13) with a dose of 1 × 10 7 /mouse or 2.10 6  or 1.10 7  cells/
kg body weight for monkeys, no tumor formation was observed after 2 months 
(Wang et al.  2012a ,  b ). 

 Based on these results, in vitro or ex vivo expanded MSCs were accepted for 
use in clinical trials in various diseases (Table  2.7 ). Almost all trials were in phase 
II, and some were in phase II. All trials showed that expanded MSC transplanta-
tion was safe and exhibited good effects for disease improvement. Using both 
methods of delivery of MSCs, including intravenous infusion and local injection, 
MSC transplantation was shown to be safe. Performed a meta-analysis of clinical 
trials examining the safety of MSC transplantation, and the results confi rmed the 
safety of MSC transplantation. A total of 2347 citations and 36 studies were 
reviewed, which included a total of 1012 participants with diseases such as isch-
emic stroke, Crohn’s disease, cardiomyopathy, MI, GVHD, and healthy volun-
teers. The authors showed that there was no association between acute infusional 
toxicity,  org  an system complications, infection, death, and malignancy. These 
authors also showed that there was no difference in safety between autologous 
MSC and allogeneic MSCs, between matched allogeneic MSCs and unmatched 
 allogeneic MSCs, between non-expanded MSCs and in vitro expanded MSCs, 
and between fresh MSCs and cryopreserved MSCs. However, there was a signifi -
cant association between MSC  tr  ansplantation and transient fever.

2.5        Conclusions 

 MSCs have become the most frequently applied stem cell type in the clinic. To 
date, multiple degenerative diseases and several immune-related diseases have 
been clinically treated by MSC transplantation. Several sources of MSCs include 
MSCs from the bone marrow, adipose tissue, umbilical cord blood, umbilical 
cord, and placenta, both with and without in vitro expansion. With useful charac-
teristics about immune modulation, MSCs not only autologously injected into 
patients but allogeneic graft also was used. After over 10 years of MSC-based 
treatments, all reports have shown that MSC transplantation is safe. Many reports 
demonstrate some improvements in disease treatment using MSCs, and several 
MSC-based products have been approved as stem cell drugs for diseases such as 
GVHD and osteoarthritis. Together this demonstrates that MSC transplantation is 
a safe and promising therapy for disease treatment.     
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