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Basics and Advances 
of Quantitative PET Imaging

Magdy M. Khalil

Abstract

Positron emission tomography (PET) has 
been enjoying outstanding quantitative fea-
tures since its inception in diagnostic clinical 
imaging. These capabilities have served the 
evolution and diagnostic performance of PET 
in many circumstances including research 
and development as well as clinical routines. 
However, this has been made with extensive 
efforts exerted on technical, physical, and 
instrumental levels. Quantitative PET can be 
very simple but also sometimes need to be 
very complicated and cumbersome. This 
depends heavily on the purpose of the imag-
ing task. Static and dynamic PET are the two 
different modes of data acquisition from 
which the relevant type of information is 
extracted and physiologically interpreted. 
The most commonly used form of data quan-
titation in PET is the standardized uptake 
value (SUV) that may take several forms. 
This later quantitative index, despite being 
simple to calculate showing effectiveness in a 
number of malignancies, is prone to many 
technical and biological errors if not properly 
adjusted. All of the above have been reviewed 
in this chapter along with other new emerging 
volumetric and disease burden quantitative 
metrics.
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13.1	 �Introduction

Positron emission tomography (PET) is a well-
established and standard diagnostic imaging modal-
ity in clinical practice. The major role has become 
very evident in oncology with useful diagnostic 
capabilities in other areas of medicine that include 
neurology, cardiology, infection, and inflammation. 
In 2007, the Society of Nuclear Medicine and 
Molecular Imaging defined molecular imaging as 
“the visualization, characterization, and measure-
ment of biological processes at the molecular and 
cellular levels in humans and other living systems.” 
PET imaging using F18-flurodeoxyglucose has a 
high sensitivity in detecting glucose avid malignant 
tumors. This phenomenon was originally initiated 
by Warburg in 1930s [1, 2]. In contrast to normal 
differentiated cells, which rely primarily on mito-
chondrial oxidative phosphorylation to generate the 
energy needed for cellular processes, most cancer 
cells instead rely on the non-efficient aerobic gly-
colysis [3]. During this process, glucose uptake is 
enhanced by upregulation of glucose transporters 
(GLUT), increased levels of hexokinase, and 
decreased levels of glucose-6-phosphatase [4].

PET imaging has a unique molecular sensitiv-
ity as it can use very small amount of radiotracer 
in the range of nano- to picomolar concentration 
in detection of functional disorders within human 
body without disturbing the normal biochemistry 
or pharmacokinetics of the target tissue. This 
detection capability is a central point in charac-
terizing PET systems over other imaging modali-
ties. Therefore, there is a continuous interest to 
improve overall system performance in terms of 
spatial resolution, sensitivity, count rate perfor-
mance, timing, and energy resolution in connec-
tion to developing new advanced correction and 
reconstruction algorithms. These developments 
have several consequences on image quality and 
quantitative accuracy of PET examinations.

PET is a multidisciplinary functional and 
molecular diagnostic tool with enhanced mor-
phological features when combined with struc-
tural imaging modalities such as x-ray computed 
tomography (CT) and magnetic resonance imag-
ing (MRI). These relatively new hybrid imaging 
modalities bring to reading physicians a signifi-

cant amount of information not only on qualita-
tive (i.e., visual assessment) level but also have a 
substantial influence on quantitative and semi-
quantitative measurements.

PET/CT has gained a wide acceptance among 
nuclear medicine practitioners and scientific com-
munity owing to the fact of improved diagnostic 
performance and guiding clinicians toward better 
patient management. Applications of PET/CT in 
oncology are of particular importance and include 
initial diagnosis, staging, restaging, recurrence 
detection, monitoring response to treatment, as 
well as patient stratification and prognostication.

The multimodality hybrid imaging approach 
has proved its clinical significance in more than 
one aspect. Together with time reduction, speed 
of diagnosis, incremental diagnostic information, 
and advising on proper treatment strategy, hybrid 
imaging will play a very essential tool in future 
of modern medicine or more specifically on prac-
tice of what is recently called personalized or 
precision medicine [5].

13.2	 �PET Quantitation

Despite the fact that visual interpretation is the con-
ventional method of reading PET imaging data, it 
has been shown that quantitative analysis allows an 
objective complement in supporting diagnostic and 
decision-making process [6]. The term “quantita-
tion” has several interpretations among PET imag-
ing practitioners, and range from simple detection 
and determination of tracer concentrations may be 
in units of kBq/ml, μCi/ml to more sophisticated 
mathematical algorithms that indicate rate of tracer 
transportation or exchange among different bio-
chemical species or tissue space [7, 8]. What deter-
mines the level of complexity of quantitation is the 
target biological question and objective of the PET 
study which might be a development of new PET 
radiopharmaceutical and examining tracer biodis-
tribution, diagnostic workup and staging, response 
to treatment, or investigating efficacy of new thera-
peutic drugs as can be seen and performed in clini-
cal trials [9].

We may classify quantitative approaches in 
PET imaging into three major types, namely, qual-
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itative methods using visual assessment, semi-
quantitative methods using standardized uptake 
value (SUV) and its variants, and absolute mea-
surements of tracer pharmacokinetics using kinetic 
modeling analysis. Two major types of data acqui-
sition are available in PET that permits one to per-
form the required type of image quantitation; these 
are static and dynamic imaging. Static images are 
normally acquired when the tracer is injected and 
an adequate time is given for tracer clearance from 
plasma and accumulation into the tissue to improve 
target-to-nontarget ratio. However, dynamic imag-
ing as the name implies does capture the metabolic 
information on a real time fashion enabling  one to 
derive valuable physiologic quantitative parame-
ters as will be discussed later.

13.2.1	 �Spectrum of PET Quantitation

Interpretations of FDG PET scan depend in large 
part on well understanding of the normal physi-
ologic uptake and associated normal variants in 
addition to imaging pitfalls. This supports the 
reading physician to come up with clear idea 
about abnormal finding whether it is a true 
pathology or normal physiologic uptake. 
However, this process is subject to a significant 
inter-reader variability and less quantitative base.

A reliable and reproducible measure of tracer 
uptake within different pathologic lesions of cancer 
as well as other disease pathologies has several 
advantages and benefits. Elimination of inter-
reader variability is the first outcome of these quan-
titative or semiquantitative metrics in PET image 
interpretation. Another aim of having this type of 
measurement is the possibility of comparison 
among different patient studies typically in moni-
toring and assessment of response to treatment. A 
robust, reliable, and distinctive cutoff value of the 
response is ideally desirable to support the deci-
sion-making process for a given treatment line 
[10]. It would also be very helpful in predicting the 
success of a chosen therapy over others especially 
at early cycles of selected therapeutic regimen. On 
the other side, such a metric could provide a more 
insight into the spectrum and biological heteroge-
neity of a specific disease and particularly in inter-

patient comparisons. The development of novel 
targeted tracers imposes the use of a suitable or 
optimal quantitative method as conventional quan-
titative metrics may not always be adapted for 
extracting relevant information [11].

A standardized imaging protocol and quantifi-
cation strategy would also permit an easy com-
parison among different PET clinics to build up a 
knowledge base with minimal observer variabil-
ity and methodological preferences. This can 
take place if the method is well defined and 
sources of technical errors and imaging pitfalls 
are recognized and eliminated [12]. Therefore, 
standardized quantification facilitates multicenter 
trials, allows comparison among different PET 
clinics, and supports the way toward personal-
ized therapy [13]. These properties are not lim-
ited only to oncology applications, but there is a 
growing interest to use PET quantitative indices 
in infection and inflammatory disorders in addi-
tion to the existing interest in neurology and car-
diology [14].

13.2.2	 �Static PET Imaging

After the advent of PET/CT more than a decade 
ago, there was a paradigm shift in the practice of 
PET imaging in terms of its impact on manage-
ment of cancer patients and hence on clinical 
oncology [15]. The standard PET/CT imaging 
protocol in oncology is normally a whole-body 
scanning procedure that extends from skull base 
to mid-thigh. Most imaging procedures start 
around 60 min post-activity administration, and 
patient is allowed to relax in a room of moderate 
light intensity after intravenous injection. Patients 
should fast for 4–6  h to minimize the effect of 
endogenous glucose and avoid its competition 
with the injected glucose analogue F18-FDG 
during the uptake period. The CT examination 
often starts before the multiple bed positions 
used for acquiring the PET.  The former is 
launched by acquiring a scout view that is then 
used by the user to delimit the whole-body seg-
ment required for CT and PET scan length. 
Contrast-enhanced CT might be performed after 
PET acquisition to avoid the possibility of image 
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artifacts due to contrast deposition in some 
regions of the body [16, 17].

Image reconstruction using iterative tech-
niques (reviewed in Chap. 11) has become widely 
available due to many reasons including improved 
noise characteristics, contrast and spatial resolu-
tion, and ultimately quantitative accuracy and 
image quality. As mentioned, the PET data are 
acquired using sequential multiple bed scanning 
approach applying 2–5 min for each bed position. 
This heavily depends on the adopted imaging pro-
tocol that is affected by PET system performance 
and the employed F18-FDG dosing and uptake 
period. The most common form of image quanti-
tation is the use of the standardized uptake value 
(SUV) as an adjunct in image interpretation.

13.2.3	 �Dynamic PET Imaging

Apart from static whole-body PET examinations, 
dynamic imaging reveals several important phys-
iologic and metabolic information of tracer phar-
macokinetic behavior in tissues and has been 
extensively used in a number of potential appli-
cations in neurology, cardiology, and oncology 
[11, 18, 19]. It can be acquired with predeter-
mined number of frames and the duration of each 
or group of frame(s). List mode data acquisition, 
however, is one tool that can be used to record 
events based on their specific attributes such as 
time and energy but at the cost of high storage 
demands. This type of acquisition provides 

opportunity to reframe acquired data at any arbi-
trary time frame.

Dynamic PET provides the possibility of 
absolute data quantitation based on compartmen-
tal or non-compartmental methods and quantita-
tive estimation of tracer kinetics relying on region 
or voxel of interest analysis. The approach of 
using individual voxel as separate input to the 
pharmacokinetic model is termed parametric data 
analysis and provides more insights into spatial 
distribution of the radiotracer kinetics. However, 
it suffers from image noise and requires more 
computational resources [20]. Kinetic modeling 
does assist in deriving biologically relevant 
parameters, such as vascular transport and cellu-
lar metabolism, and asks for determination of the 
blood activity concentration of the native tracer 
over time as an input function to the model [21]. 
A compartment model of glucose metabolism is 
illustrated in Fig.  13.1. Mathematical bases of 
kinetic modeling are reviewed in Chap. 14.

In PET cardiac imaging, determination of 
myocardial blood flow and flow reserve can be 
measured using dynamic scanning of the heart 
region using some radiotracers such as O15-
water, ammonia (N13), Rubidium-82 (Rb82), 
and other tracers that exhibit blood flow charac-
teristics. Quantitation of myocardial blood flow 
using dynamic PET is reviewed in Chap. 19.

In neurology, dynamic PET has been a very 
useful tool in determination of important 
physiologic measures that reflect tracer receptor 
density, distribution volume, drug occupancy, and 

Fig. 13.1  The figure shows the structure of three-
compartment model to quantitatively assess the transpor-
tation rate constants related to FDG metabolism, where 
Cp, C1, and C2 are the compartments for plasma, free, and 
metabolized tracer, respectively. CPET represents what the 
scanner measures in a voxel or in a region of interest 
(ROI). The rate constants K1–k4 regulate the tracer trans-
portation through the different compartments which could 

be a transfer from chemical species to another or from 
physical space to another physical space. Note that K1 is 
the perfusion and has units in ml/g/min, while k2–k4 have 
units in 1/min. The measured PET signal is contaminated 
by a fraction of tracer concentration in plasma, and this 
question is addressed by including a portion of the input 
function in the kinetic model equation (Adapted from 
Bentourkia [7])
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very instrumental tool in drug development [22]. 
In oncology, pharmacokinetic modeling provides 
valuable opportunities for measurements of recep-
tor density of potential therapeutic targeting, 
determination of tumor blood flow, as well as 
measuring the efficacy of anticancer drugs [23].

Dynamic PET imaging-derived kinetic param-
eters, particularly transport (flow) and overall met-
abolic rate, have provided imaging endpoints for 
clinical trials at single-center institutions for years. 
However, dynamic imaging poses many chal-
lenges for multicenter clinical trial implementations 
from cross-center calibration to the inadequacy  
of a common informatics infrastructure [21]. 
Figure  13.2 illustrates the imaging workflow of 
static and dynamic PET image acquisition and 
data analysis. One recent study revealed that the 
influx rate constant Ki determined by Patlak graph-

ical method in simulation and patient data has bet-
ter contrast-to-noise ratio (a measure related to 
more reliable tumor detection), and this has 
remarkable advantage in lesions of high uptake 
surrounded by elevated but constant background 
levels such as liver lesions. Meanwhile, SUV per-
formance was relatively poor [24]. Another study 
have used different methods for quantification of 
tumor activity (in a group of 40 patients with colon 
cancer metastatic to the liver) including SUV, 
Patlak graphical analysis, simplified kinetic model, 
and metabolic rate of glycolysis (MRGlu). Overall, 
Patlak was the best predictor of outcome and best 
discriminator between normal tissue and tumor 
results [25].

Several attempts have been devised to corre-
late the kinetically derived tracer influx rate con-
stant Ki to SUV measurements by either making 

Fig. 13.2  Dynamic PET is used to determine valuable 
metabolic and functional parameters. The standard proto-
col relies on delineating regions of interest (ROIs) on a 
summed PET image reconstructed using the system 
model or a co-registered anatomical image. Time-activity 
curves (TACs) from the ROIs with collected information 

about tracer concentration in plasma (i.e., input unction, 
IF) are used in the kinetic model to derive the physiologic 
tracer parameters. The other way around is to calculate 
rate parameters directly from sinogram data with less 
noisy estimates (Modified from Muzi et al. [21])
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strong assumptions that could be violated in 
practice or still function of the imaging time 
point [26, 27]. The measuring time point is very 
crucial in estimating the metabolic activity, and 
wide variation could be found in different malig-
nancies and in individual patients; therefore, 
quantitative image interpretation should be cau-
tiously undertaken. Benign and inflammatory 
lesion uptake time could be within 30–60  min, 
while malignant tissues exhibit wide variation 
across patients that may reach plateau after 4 h 
[28]. Thus, recommendations are often taken to 
be within 50–70 min and not much longer to min-
imize the effect of tracer decay [29–31].

For example, dynamic F18-FDG PET imag-
ing was found to accurately differentiate malig-
nant from benign pulmonary lesions in patients 
with suspected malignant pulmonary lesions. 
SUV and visual assessment were outperformed 
by dynamic imaging data analysis in differentiat-
ing benign and malignant lesions [32]. However, 
whole-body dynamic PET imaging is not feasible 

at the moment due to limited axial field of view 
of most commercial PET scanners.

In a recent work, researchers proposed a new 
solution where dynamic whole-body imaging can 
be made feasible using the current PET/CT gen-
eration systems [24, 33]. It consists of a 6 min 
initial scan over the heart to extract the input 
function through image-based method to get rid 
of the cumbersome work associated with arterial 
catheterization. This action is followed by six 
passes of dynamic whole-body scanning includ-
ing subsequent passes over the heart. Standard 
Patlak linear graphical analysis modeling is then 
applied at the voxel level to derive parametric 
images of Ki that reflects net tracer uptake [33]. 
The method looks interesting and combines 
between feasibility and advantages of dynamic 
quantitative features, but further work is needed 
to explore its potential in routine practice of 
patient diagnosis and therapeutic applications.

In Fig. 13.3 and in the SUV image, the patient 
was scanned with arms in the up position, 

SUV image (60min post injection)

Parametric K, image (first 4 passes)

Parametric K, image (all 6 passes)

6 dynam
ic w

hole-body passes

Fig. 13.3  Patlak analysis using six sequential whole-body 
PET scans. The last six whole-body dynamic frames are 
shown on the left side. On the right side: the SUV image, 
the Ki parametric image derived from all six last frames, 

and the Ki image after omitting the last two frames 
(Reprinted with permission from Karakatsanis et al. [24] 
and thanks to Dr Nicolas Karakatsanis for providing some 
clarification on the figure)
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according to the conventional whole-body PET 
protocol recommendations to limit the attenua-
tion from the arms. However, for the whole-body 
dynamic protocol, the patient had to be scanned 
for approximately 45 min with arms down due to 
the lengthy period of the scan. It was observed 
that the additional attenuation that may be caused 
because of that position does not affect the qual-
ity of the data [24].

13.2.4	 �Static Versus Dynamic PET

As described, the net FDG influx rate constant Ki 
(mL blood/mL tissue/min) is a valuable quantita-
tive measure that reflects the hexokinase and 
enzymatic capacity of the tumor cells. This mea-
sure was found to correlate with SUV measure-
ments taking two conditions into account as 
outlined by Kotasidis et al. [26]:

	1.	 The time integral of plasma FDG concentra-
tion is proportional to the injected dose 
divided by body weight (BW), lean body mass 
(LBM), or body surface area (BSA) as defined 
in the SUV formula. However, this assump-
tion is not always valid due to, for example, 
treatment intervention that might interfere or 
influence dynamics of FDG in plasma, and a 
simple correlation with injected dose and BW, 
BSA, or LBM would not be effective.

	2.	 Non-phosphorylated FDG that includes 
vascular and extravascular FDG should be 
negligible when compared to the phosphory-
lated FDG. This assumption can also be vio-
lated in FDG non-avid tumors where the 
vascular concentration and/or intracellular 
non-phosphorylated FDG are increased and 
the standard imaging time wouldn’t be appro-
priate. In post-therapy conditions, there is also 
a chance to find an elevated background activ-
ity that impacts the SUV uptake profile taken 
over time [26].

From the above described points, one should 
be very careful in using the SUV in assessing 
response to treatment or using the SUV as a 
surrogate biomarker in clinical trials. The 

assumption that SUV is correlated with the 
metabolic rate of glycolysis (MRglu) and thus 
can be used as surrogate biomarker specially in 
clinical trials requires validation studies as some 
new drugs modify the FDG differential uptake 
due to, for example, increased inflammatory pro-
cesses in other areas away from the tumor site(s) 
[27]. In some situations, it has been reported that 
up to 40 % of FDG uptake occurs in non-tumor 
tissue in post-therapeutic evaluation [34].

Dual or multiple time point SUV measurement 
is an intermediate approach between static-based 
acquisitions and dynamic imaging. It considers the 
tumor uptake in timely spaced points instead of 
recording tumor uptake over a certain acquisition 
period while static because it doesn’t look at tracer 
kinetics during data acquisition. It provides a good 
means for characterizing a given pathology 
whether inflammatory (or benign lesion) versus 
malignant lesions as the former generally shows a 
pattern of constant or tracer washout, while the 
malignant tissue often has a persistent or even 
accumulating uptake pattern (see Fig. 13.4).

Dual time point can serve to improve test sen-
sitivity by improving lesion contrast and test 
specificity by excluding patients with abnormal 
or suspected findings. Its utility has been 
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Fig. 13.4  General pattern of F18-FDG uptake in inflam-
matory and malignant lesions. Inflammatory cells exhibit 
a sort of transient retention and tracer washout, while can-
cer cells show a continuous tracer uptake over time (From 
Hess et  al. [13] with permission from Springer 
Science + Business Media)
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demonstrated in a number of malignancies 
including bone, head and neck, lung, breast, and 
colorectal cancers and infection or inflammatory 
disorders [35–38]. However, further efforts need 
to be exercised along with elaborate guidelines 
emphasizing the specifics of dual or multiple 
time points in routine clinical practice [39].

13.3	 �Standardized Uptake Value 
(SUV)

SUV is the most commonly used quantitative 
index in clinical PET imaging. SUV formula is 
very simple and this form is widely acceptable.

	

SUV
ActivityConcentration Voxelor VOI
Normalized injected Act

=
( )
iivity bw lbm or bsa, ,( ) 	

Activity concentration is a quantity derived from 
a region of interest or voxel taken at a certain 
single region where the metabolic activity is of 
considerable clinical value. It can be kBq/ml or 
μCi/ml or any other equivalent unit.

Normalized injected activity is the adminis-
tered PET tracer (i.e., injected dose) normalized 
to patient body weight (BW), body surface area 
(BSA), or lean body mass (LBM), and decay cor-
rected to the PET acquisition start time. Note that 
the injected activity (e.g., MBq or mCi) should 
have the same unit like the one measured from the 
image 2D ROI, voxel or volume of interest (VOI).

Advantages of SUV are more than onefold. It 
is easy to calculate, available, and implemented as 
a built-in tool in viewing or processing worksta-
tions of all modern PET/CT scanners. It doesn’t 
also require arterial blood sampling like other 
methods that rely on dynamic imaging and kinetic 
modeling as outlined earlier. It can principally be 
calculated at any single time point after tracer 
administration. There are several approaches 
devised to look for what is the most appropriate or 
representative voxel or group of voxels that accu-
rately and reliably express metabolic activity 
within a given pathology. Therefore, there are a 
number of SUV variants that have been proposed 
in practice and will be discussed later.

Lesion contouring methods are also broad 
and range from very simple manual delineation 
to very sophisticated high-order automatic 
lesion segmentation. There are, however, some 
variables that need to be highlighted when 
attempts are made to work on PET data such as 
image noise, spatial resolution, image filtering, 
voxel size, degree of heterogeneity in the tumor, 
and uptake gradient within and outside the 
tumor relative to the background level [40]. 
Methods that can model or account for these 
variables while able to provide accurate and 
reproducible lesion segmentation can be the 
most preferable one for clinical adoption and 
standardization.

Substantial efforts have been carried out to 
address the problem of manual delineation that is 
prone to inter-subject and intra-subject variabil-
ity. Several methods were developed for lesion 
segmentation task with different statistical or 
mathematical principles that may include thresh-
olding; edge detection; watersheds; region grow-
ing; classifiers; clustering; gradient-based, fuzzy 
C-means or fuzzy locally adaptive Bayesian, 
Markov random field models; artificial neutral 
networks; deformable models; atlas-based meth-
ods; and others [41, 42]. Some studies were also 
conducted to address inherent differences and 
highlight the relative accuracies of those 
approaches [43]. However, there is no single 
optimal solution or consensus acceptable for all 
clinical problems in terms of accuracy, precision, 
and efficiency. This is particularly important in 
multicenter oncology studies where uniform 
delineation methods are required [44].

Investigators recognize that there is a substan-
tial growing interest in applying fully automatic 
approaches that are clinically more feasible on 
efficiency and user-input levels [41]. Image seg-
mentation in research could vary significantly 
based on the intended application and the adopted 
method together with the textural or morphologi-
cal appearance of the oncologic lesions. 
Therefore, producing a benchmark database for 
validation and comparison of methods will be 
very beneficial for PET imaging detection tasks 
and image processing applications [41].
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13.3.1	 �Drawbacks of SUV

Although the SUV has several quantitative and 
clinical implications, it has some potential draw-
backs. It is simply a temporal and spatial over-
simplification of the metabolic and biochemical 
process in question and doesn’t provide a detailed 
description of tracer kinetics within different tis-
sue compartments [28, 45]. The injected tracer 
undergoes a number of biochemical interactions 
that are not accounted for using SUV measure-
ments and through which it may be converted 
from one chemical species to another or from 
vascular space to interstitial space or vice versa. 
Meanwhile, the SUV picks up only the total sig-
nal coming from the area of interest where all or 
some of these processes are taking place [46]. 
The biodistribution of tracer in a given lesion 
might include delivery, uptake, retention, and 
clearance, and these processes can’t be separated 
by a single SUV metric. It is also impossible to 
separate the various components that contribute 
to the total signal such as specific binding, non-
specific binding, and free tracer in tissue [27].

Another quantitative shortcoming of SUV 
comes when using different radiotracers of tumor 
uptake that is not significantly different from 
healthy tissues. This situation stimulated 
researchers to look for alternative quantitative 
measures that potentially able to discriminate 
between pathologic lesion kinetics and other type 
of non-pathologic processes as demonstrated in 
3′-[18  F]fluoro-3′-deoxythymidine (18  F-FLT) 
PET studies [11, 21].

13.3.2	 �SUV Variants

Quantitative PET and SUV metric has several 
levels of measurements based on the complexity 
of computation and the employed analytical 
methods [40]. The most commonly used SUV 
metrics are SUVmean, SUVmax, and SUVpeak. The 
former is defined using the abovementioned for-
mula for SUV calculations where the numerator 
is taken as the mean FDG or PET tracer concen-
tration within the region or volume of interest. 

Measurements of SUVmax consider the maximal 
pixel concentration within the selected lesion. 
The SUVmean is operator dependant and underes-
timates the true value especially in small lesions 
due to partial volume effect. On the other side, 
SUVmax is sensitive to noise as it increases posi-
tive bias as noise increases and a subject of debate 
in response to treatment monitoring [47, 48]. It 
has also some wrong implications and less repre-
sentation in heterogenous tumor mass as more 
than SUVmax may exist within the same volume.

One study reported that the variability of 
SUVmax that can be attributed to image noise 
accounts for half of the overall variability [47]. 
They also reported that percentage change in 
SUVmax < 30 % is still within the uncertainty of 
repeated measurement, and a positive bias of 
SUVmax can be as high as 30 % for short acquisi-
tion time (high noise level), evaluated as 1 min 
per bed position [47]. SUVmean is much more 
variable due to operator-dependent factors 
including size and shape of mask delineation and 
location within or around a lesion, as well as the 
presence of tumor heterogeneity and variable 
level of background 18 F-FDG activity.

SUVpeak is the average SUV within a small, 
fixed-size region of interest (ROI peak) centered 
on a high-uptake part of the tumor. PET Response 
Criteria in Solid Tumors (PERCISTs) recom-
mend SUVpeak taken for the lean body mass (i.e., 
SUL) as an index for tumor response [49]. It has 
several technical definitions as what are the most 
relevant ROI shape, size, and dimension. The 
shape can be square or cuboidal of side length of 
7–15 mm. In terms of ROI geometries, it can be 
cylindrical, spherical, or even circular in diameters 
ranging from 9 to 17 mm [50]. For a given lesion, 
there might be more than one SUVpeak.

In a recent work, a number of 24 SUVpeak were 
used to look for the most appropriate variant in 
quantification of different tumor response using 
FLT as biomarker. ROI size was the most influen-
tial factor in SUVpeak variation when compared to 
ROI shape or location. In addition and generally, 
the intra-tumor SUVpeak tended to decrease, but 
its variation tended to increase as the size of 
ROIpeak increased [50]. Therefore, the SUVpeak 
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ROI candidate should be optimally chosen based 
on well-defined specific criterion in favor of 
accurate assessment of patient response for indi-
vidual tumor. One report revealed that SUVpeak 
was the most robust method when using varying 
reconstruction methods, especially in small 
lesions when compared to SUVmean and SUVmax 
[51]. In the same report, the latter two showed an 
increased variability in small lesions <5 ml, while 
SUVpeak remained more stable.

A robust and reliable estimate of SUV should 
be carried out based on standardized protocol and 
long-term observation on patient outcome. SUV 
measures are still “surrogate” biomarker and the 
accurate determinant, and reference gold stan-
dard is patient survival-based treatment response 
strategy [52]. In most cases, a number of lesion 
samples are taken to be quantified with less inter-
est to cover all lesions and their metabolic vol-
ume or global metabolic activity leading to a 
relative sampling and assessment error based on 
the particular region selected. Nevertheless, a 
growing interest is currently being taken toward 
evaluating patients based on overall disease bur-
den as follows in the next section.

13.4	 �Total Disease Burden

Total lesion glycolysis (TLG) is another metric 
that is used in quantifying total tumor burden. It 
is simply calculated by multiplying the SUVmean 
by the lesion volume. This is for a single lesion, 
but when considering the whole-body tumor bur-
den, then the values of all lesions TLG are 
summed up. Total metabolic tumor volume 
(TMTV) on the other hand reflects the total vol-
ume of all lesions within the whole body. These 
measures look at the overall or gross metabolic 
activity of cancer cells and eventually could be a 
potential measure of disease status and better 
candidates for monitoring response to treatment 
in comparison to uptake measures such as SUV 
and its variants [53–55].

It was first proposed in patients with Alzheimer 
to assess disease burden in an age-matched com-
parison along with partial volume correction 
[56]. The MR segmented brain structures were 

multiplied with the mean cerebral glycolytic 
activity, and end results showed that partial 
volume-corrected metabolic rates per unit weight 
of the brain were not significantly different in 
these cohorts, but that total brain metabolism was 
significantly lower in patients with Alzheimer. In 
addition, their efficacy and predictive power in 
correlation with recurrence-free survival or over-
all survival have then been investigated in the 
field of oncology. In cardiology, combining the 
FDG PET data and CT morphologic imaging of 
the chest covering the aortic region was proposed 
in calculating the atherosclerotic burden for each 
segment of the aorta by multiplying SUV with 
wall volume [57]. The arterial wall volume was 
calculated with the help of the CT contrast data 
delineating the inner and outer area of the aortic 
segment that appeared on each axial CT slice 
then subtracting to get the net volume.

In small-cell lung cancer, high TMTV and 
TLG were associated with poor survival out-
comes, and both were reported to be significant 
independent prognostic factor, whereas SVmean 
and SUVmax were poor measures and showed non-
statistical significance in survival [58]. This was 
true especially in patients with limited disease 
rather than extended disease. However, finding a 
proper and reliable but may be combined prog-
nostic indices could help physicians in taking 
risk-adapted therapeutic decision and better fol-
low-up treatment strategy. For instance, SUVmax 
and MTV measured on pretreatment 18F-FDG 
PET/CT in patients with oropharyngeal squamous 
cell carcinoma have shown to be independent 
variables in predicting clinical outcomes such as 
overall survival and disease-free survival [59].

In the context of head and neck cancer in 
response to chemoradiotherapy, multivariate anal-
ysis showed that high MTV (defined as tumor vol-
ume with SUV over 2.5) >25.0 mL and high TLG 
>144.8 g remained as independent significant pre-
dictors of incomplete response compared with 
low MTV and low TLG, respectively. However, 
predictive efficacy of pretreatment F18-FDG 
PET/CT varies with different primary sites and 
chosen parameters. Local response of laryngohy-
popharyngeal cancer was highly predictable by 
PET-/CT-based volume measurements [60].
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Abgral et  al. showed that the retention index 
(measured as percentage variation of SUVmax) and 
MTV measured for a cohort of head and neck 
squamous cell carcinoma patients using dual-
phase (early-delay) technique were independently 
correlated with recurrence-free survival [61]. 
Global disease assessment will likely have great 
importance for improved pretreatment planning, 
patient selection for clinical trials, patient stratifi-
cation, prediction of treatment response, and 
response assessment. Nevertheless, it was pointed 
out that the use of a whole-body metric involving 
TLG could be highly dependent on the severity of 
partial volume effect, and ignoring this pitfall in 
small lesions can greatly underestimate the total 
TLG compromising its potential prognostic value. 
However, this needs to be evaluated more thor-
oughly on an individual tumor basis [62].

Combining metabolic information and struc-
tural changes from PET and CT, respectively, 
was also an approach taken to monitor disease 
response to treatment. While a reduction in tumor 
volume using multi-detector row CT during che-
motherapy for esophageal cancer was found a 
good predictor of histopathologic response [63], 
Larson et al. combined anatomic and functional 
information and monitoring changes using TLG 
derived from multiplying the tumor volume on 
CT with the FDG uptake on PET [64].

It should be noted that the new era of molecular-
anatomical imaging has witnessed an emergence 
and advances not only from image co-registration 
and extracting invaluable diagnostic information but 
also on the way the data are quantified. Similarly, 
combining the powerful multiparametric concept in 
patient diagnosis to interrogate characteristic infor-
mation of tumor biology within individual patients, 
despite expensive and technically demanding, can 
provide a wealth of information that guide physician 
to more accurate diagnosis and proper treatment.

13.5	 �Factors Affecting 
Quantitative Measurements

The quantitative approach implemented in SUV 
measurements has several sources of error and 
may lead to great under- or overestimation of the 

net results. It is not only related to biological fac-
tors or physiological conditions but also associ-
ated with quite large number of methodological 
and technical variables [65–67]. There are also 
some points that need to be addressed that influ-
ence SUV during patient preparation and radio-
activity injection. Infiltrated or extravasated 
radioactivity during patient injection serves to 
underestimate the injected dose described in the 
SUV formula and hence compromise the SUV 
measurements [68].

Physical and technical or instrumental factors 
are also important variables and extend to include 
image acquisition and data reconstruction, uptake 
time, count density, reconstruction algorithm, 
examination time, scanner cross calibration with 
dose calibrator, and other corrections that include 
data normalization, dead time, random correc-
tions, scatter and attenuation correction, and par-
tial volume effect (PVE) (details can be found in 
Chap. 15). Reconstruction algorithm and selec-
tion of reconstruction parameters play an impor-
tant role in the speed and rate of convergence and 
also to the final spatial resolution of the recon-
structed image and might result in increased par-
tial volume effects by making SUV more 
dependent on surrounding activity distributions 
[39, 51]. Other factors such as size, shape, and 
location of ROI/VOI used together with patient 
weight normalization factor are interplaying to 
determine the accuracy and reproducibility of 
SUV. In addition, application of contrast agents 
and the presence of metallic artifacts in CT 
images overestimate the attenuation factors and 
cause a significant elevation of SUV [69]. Patient 
stress and uncomfortable long waiting or expo-
sure to cold conditions can cause increased 
uptake in muscle and brown fat affecting SUV 
measurements [70, 71].

Motion artifact is also one of the major issues in 
thoracic and abdominal PET imaging due to the 
blurring effect caused by organ motion during data 
acquisition. This is particularly important as it can 
reduce signal-to-noise ratio compromising delin-
eation of lesion borders and corrupting SUV mea-
surements together with less confidence  
in image interpretation. Several and extensive 
research works have been carried out to address 
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this potential artifact and rectify the results of the 
SUV measurements. This topic was discussed in 
details in Chap. 16. Consequently, SUV should be 
carefully interpreted in body regions where motion 
exists, and thus special emphasis should be placed 
on longitudinal and follow-up studies [72].

13.5.1	 �Biological Factors

Accumulation and uptake of FDG within cells 
and tissues vary considerably, and a better under-
standing of the time activity profile of the tracer 
in a region of interest has important implications 
in data quantification. In the definition of SUV, 
the tracer concentration is the only variable for a 
given patient, and injected dose and hence an 
appropriate time point must be carefully selected 
to reflect clinically relevant information. This is 
also particularly important if the tracer accumu-
lation and clearance occur at a relatively fast rate.

A number of studies have been conducted to 
look at the F18-FDG concentration over time to 
understand its kinetic parameters and biodistribu-
tion profile over body organs. This can poten-
tially provide a baseline information to be used as 
guidelines for multiple point imaging sessions, 
using particular regions as reference for other 
pathologic lesions, or in delayed imaging proto-
col [73]. While FDG is taking up avidly by tumor 
cells of high glycolytic activity, its uptake value 
is less in some other types of tumor cells such as 
well-differentiated prostate adenocarcinoma and 
renal cell carcinoma [74, 75]. Furthermore, in 
poorly differentiated hepatocellular tumors, the 
degree of FDG uptake is relatively high when 
compared to well-differentiated tumors. An 
increased level of background activity can also be 
seen as concentration of dephosphorylating enzy-
matic activity (i.e., phosphatases) increases lead-
ing to FDG un-trapping and reuptake by normal 
liver cells. On the therapeutic level, high uptake 
by infiltrating immune cells can mask the 
decreased uptake by the dying tumor cells [76]. 
All the above scenarios have a confounding influ-
ence on the quantitative accuracy of PET data 
and should be placed into proper technical and 
clinical perspectives.

13.5.2	 �Blood Glucose Level

As mentioned earlier, the FDG molecule is taken 
avidly by tumor cells of high glycolytic activity. 
This interferes with the endogenous glucose to the 
extent that it may suppress the FDG uptake in the 
tumor or target cells especially at increased levels 
of blood glucose levels (e.g., diabetes). However, 
this was shown to have little effect in inflamma-
tory cells [77]. FDG is a glucose analogue and 
competes with the plasma glucose through the 
transmembrane transporters (GLUTs) and intra-
cellular enzymatic activity to enter into the cellu-
lar domain. Therefore, increased levels of blood 
glucose, as in hyperglycemia, play an important 
role in altering the relative uptake of FDG within 
different healthy tissues and unhealthy tumor 
cells. It can significantly reduce the retention of 
FDG in tumor cells underestimating the SUV 
measurements. Because of these shortcomings, 
guidelines have some recommendations of glu-
cose levels for those referred for FDG PET scan-
ning. The European Association of Nuclear 
Medicine (EANM) recommends that scanning be 
avoided above 11.1 mmol/L (about 200 mg/dL as 
an upper threshold limit), and for research the rec-
ommended upper plasma glucose levels may 
range between 7 and 8.3  mmol/L (126 and 
150  mg/dL). Similarly, the Society of Nuclear 
Medicine and Molecular Imaging (SNMMI) 
recommends rescheduling the patient if the blood 
glucose level is greater than 150–200 mg/dL [78].

The use of insulin intervention to reduce glu-
cose to normal levels has some characteristics 
that need to be understood. Insulin regulates glu-
cose uptake into cells by recruiting membrane 
vesicles containing the GLUT glucose transport-
ers from the interior of cells to the cell surface, 
where it allows glucose to enter cells by faculta-
tive diffusion. Increased levels of insulin in the 
blood therefore play a molecular role in eliciting 
the translocation of the GLUT protein trans-
porter, and this phenomenon is significantly 
apparent in skeletal and cardiac muscles as well 
as adipose tissues [79].

While some recent optimized protocols for 
intravenous injection of insulin in diabetic 
patients were shown to lessen or avoid any 
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abnormal FDG distribution, there are some other 
reports that show insulin may lead to unaccept-
able distribution of 25 % of diabetic cancer 
patients manifested by increased muscle uptake 
and decreased liver uptake [80]. It appears that 
insulin injection has some critical precautions 
that need to be placed into proper perspectives. 
The method of injection, the dose of insulin, the 
time between injection and imaging procedure, 
and the degree of hyperglycemia versus patient 
tolerance and response all seems to play a relative 
role in proper management of diabetic cancer 
patients [81].

In this context, it is important to mention that 
some drugs do alter the FDG uptake and significant 
change in SUV measurements can be observed. It 
has been shown that metformin, for example, sig-
nificantly increases F18-FDG uptake in the colon 
and, to a lesser extent, in the small intestine, but 
lesion quantification might need further evaluation 
[82]. Stopping metformin has therefore been rec-
ommended so that lesion obliteration can be pre-
vented [83]. For a review, see [84].

Attempts made to correct the SUV measure-
ments for blood glucose level were reported to 
increase variability in test-retest studies when 
evaluating reproducibility in cancer-free popula-
tion [85]. In obese patients, the fat contribution to 
the body composition is relatively large, and the 
FDG uptake is significantly low. This factor plays 
a role to overestimate the SUV measurements. 
This phenomenon is mitigated by using lean 
body mass or body surface area in SUV calcula-
tions [86, 87].

13.6	 �Response to Therapy

Evaluating patients after or during treatment of 
cancer represents one of the major challenges 
that physicians encounter in patient management. 
PET imaging continues to be a valuable tool to 
assess and manage cancer patients. A notable 
advantage of using FDG PET/CT in response 
monitoring is that metabolic changes often pre-
cede anatomical alterations [88]. Furthermore, 
newly developed targeted therapies may not even 
result in tumor shrinkage despite having a 

beneficial effect on patient outcome. FDG PET/
CT has also been shown to have the potential to 
change in diagnosis and/or staging and/or treat-
ment plan in more than one-third of patients with 
suspected or known malignant disease [89]. In 
addition, it has been demonstrated that it can 
detect therapeutic changes that permit physicians 
to revise or modify treatment protocol at early 
stages of therapeutic regimen. This has several 
implications in patient prognosis and survival 
rates.

The lack of metabolic response on FDG PET 
indicates primary resistance to the drug and may 
help identify patients who would benefit from 
another therapy, while re-emergence of metabolic 
activity within tumor sites following a period of 
therapeutic response indicates secondary resis-
tance to the drug [90]. The importance of quanti-
tative PET lies in inter-scan evaluation by 
providing valuable information about treatment 
efficacy as well as serving as objective measure of 
the clinical outcome. FDG uptake during treat-
ment is different from uptake after treatment com-
pletion, and hence quantification comes into play 
[88]. It is not only F18-FDG which is used in drug 
evaluation and assessment of response to therapy, 
but also there are some other tracers such as F18-
FLT that has been utilized in looking at prolifera-
tive capacity of the tumor cells. It has some early 
response capabilities in treatment monitoring and 
insensitivity to inflammatory lesions especially 
after radiotherapy and hence better characteriza-
tion than FDG in this respect [91].

Some malignancies such as lymphoma can be 
qualitatively assessed for treatment response, 
whereas other tumors with less response success 
rate need a proper quantitative evaluation versus 
a particular therapy line. This is important to 
address partial metabolic response versus stable 
response or disease with further metabolic pro-
gression. Another valuable feature is obtained 
when successive measurements of treatment 
response would provide more insight into down-
stream outcomes such as survival [92].

A number of different treatment response  
criteria have been conducted to provide an objec-
tive and standardized assessment of therapy out-
come and patient monitoring. Traditionally, the  
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anatomically based tumor response criteria used 
were World Health Organization (WHO) and 
Response Evaluation Criteria in Solid Tumors 
(RECIST 1.0 and RECIST 1.1) which was intro-
duced by the National Cancer Institute (NCI) 
[93–95]. The former defines the response as a 
decrease in the product of two perpendicular 
diameters of the tumor by 50 %, while RECIST 
defines partial response as a 30 % decrease in the 
sum of the diameters of target lesions [95].

In 1981, the WHO first published tumor 
response criteria, mainly for the use in trials 
where tumor response was the primary endpoint 
[96]. The criteria introduced the concept of an 
overall assessment of tumor burden by summing 
the products of the two longest perpendicular 
diameters of the measurable lesions and deter-
mined response to therapy by evaluation of 
change from baseline while on treatment. It is 
based on 2D lesion measurements, no specific 
requirements on the number of lesions or the 
smallest measurable lesion size, and therefore 
tends to be more subjective and time consuming.

On the other hand, key features of the original 
RECIST included definitions of minimum size of 
measurable lesions, instructions on how many 
lesions to follow (up to ten, a maximum five per 
organ site), and the use of one-dimensional rather 
than bidimensional measures for overall evalua-
tion of tumor burden. These criteria have subse-
quently been widely adopted by several academic 
and nonacademic institutions as well as industry 
for trials where the primary endpoints are objec-
tive response or progression. There was also an 
interest from regulatory authorities in accepting 
RECIST as an appropriate guideline for these 
assessments [94].

There are two common criteria proposed when 
using metabolic imaging to evaluate tumor treat-
ment response, namely, the European Organization 
for Research and Treatment of Cancer (EORTC) 
and PET Response Criteria in Solid Tumors 
(PERCISTs), and both have quite different 
approaches in lesion selection, ROI definition, 
body habitus normalization (body surface area 
versus lean body mass), and objective rank of dis-
ease status that includes progression or regression 
[49, 97]. Patients are then classified into different 

response categories based on the relative change 
in SUV. These categories include complete meta-
bolic response, partial metabolic response, stable 
metabolic disease, and progressive metabolic 
disease.

The EORTC criteria were first published in 
1999 and are based on baseline-chosen, lesion-
specific regions of interest (ROIs) that are fol-
lowed on each subsequent scan. The chosen 
lesions should be the most FDG avid. For SUV 
calculations, EORTC recommends that SUV 
should be normalized to body surface area [97]. 
However, the number of lesions to be measured 
and minimum measurable metabolic lesion was 
not specified leading to an increased inter-reader 
variability.

PERCIST was published in 2009, and some of 
the above shortcomings were circumvented such 
as determination of number of lesions, the mini-
mum measurable lesion activity and background 
level, and the features that must exist in compar-
ing between two scanning procedures [49]. This 
can improve interobserver variability and provide 
more reproducible data results. The target lesion 
is defined as the hottest single tumor lesion (SUL) 
of “maximal 1.2-cm diameter volume ROI in 
tumor” or SUL peak. PERCIST only evaluates 
the SUL peak of the hottest tumor. This is a 
possible limitation of the approach, and further 
work is warranted to determine how many lesions 
are needed for assessment [49].

This region is also selected on the basis of 
cancer stem cell theory regarded as an indicator 
of the patient’s disease status at the given time 
point and no need to be located in the same lesion 
at every instance of evaluation. Conditions 
applied are such that the SUL peak is at least 1.5-
fold greater than liver SUL mean + 2 SDs (in 
3-cm spherical ROI in normal right lobe of the 
liver). If the liver is abnormal, primary tumor 
should have uptake greater than 2.0 x SUL mean 
of blood pool in 1-cm diameter ROI in descend-
ing thoracic aorta extended over 2-cm z-axis [49].

EORTC criteria was the first to provide a clas-
sification scheme based on patient treatment 
response: progressive or stable metabolic disease 
and partial or complete metabolic response that 
could be compared to traditional clinical trial 
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endpoints such as overall survival. Its limitation 
might be ascribed to that fact that estimation 
parameters are outlined more as guidelines with 
options rather than clear definitions. This implies 
that the observer defines what the ROI size is, 
whether maximum or mean values should be 
chosen, how many and which target lesions 
should be registered, whether the SUVs should 
be summed or response should be calculated per 
tumor, and whether there should be a minimum 
SUV limit that a tumor should exceed in order to 
qualify as a target lesion [98]. Nevertheless, the 
EORTC criteria cover quantification of both 
metabolism and size of the tumor burden, 
whereas in PERCIST, disease status is deter-
mined by the most metabolically active portion 
of the tumor region.

13.7	 �Tumor Texture Analysis

Tumor heterogeneity is one of characteristics that 
can explain the underlying interplaying molecular 
and genetic factors for a given malignancy and 
possibly a given stage of disease development. At 
the time of clinical diagnosis, the majority of 
human tumors display remarkable heterogeneity 
in many morphological and physiological fea-
tures, such as expression of cell surface receptors, 
and proliferative and angiogenic potential. This 
heterogeneity might be attributed substantially to 
morphological and epigenetic plasticity, but there 
is also strong evidence for the coexistence of 
genetically divergent tumor cell clones within 
tumors [99]. It is not generally easy to address this 
issue by just observing the different color or gray 
levels during image interpretation, and more 
objective descriptor can be a surrogate tool provid-
ing numerical evidence of tumor heterogeneity.

The process of identification, characterization, 
understanding, and possibly treatment of tumor 
heterogeneity is key challenges in oncology and 
can be an important aid in designing effective can-
cer therapeutics and monitoring strategies [100]. 
PET imaging is a promising candidate for deter-
mination of tumor heterogeneity within a given 
tumor mass due to its inherent molecular targeting 
and capabilities of image quantitation. Other 

methods have also been reported and of relative 
strength and weaknesses such as MRI, CT, ultra-
sonography, and also the use of pathological spec-
imens in lesion characterization [101].

A standard image acquisition, reconstruction, 
and segmentation protocols are not only prereq-
uisites for uniform data analysis among patients 
but also for other potential tasks such as estab-
lishing a criterion for tumor response assessment 
as well as in drug development process and clini-
cal trials. Standards are needed to ensure that 
prospective studies that incorporate textural fea-
tures are properly designed to measure true 
effects that may impact clinical outcomes as 
demonstrated by some investigators [102]. They 
also found complex trends in variability as a 
function of textural feature, lesion size, patient 
size, and reconstruction parameters. The sensitiv-
ity of PET textural features to normal stochastic 
image variation and imaging parameters was 
found large and is feature dependent.

To investigate the utility of texture analysis in 
real practice, several studies have been designed to 
address its clinical value in a number of malignan-
cies. In patients presented with esophageal cancer 
and treated with combined radiochemotherapy, 
receiver-operating characteristic (ROC) curve 
analysis showed that tumor textural analysis was 
able to identify nonresponder, partial-responder, 
and complete-responder patients with higher sen-
sitivity (76–92 %) than any SUV measurement 
providing a stratification mechanism of esopha-
geal carcinoma patients in the context of therapy-
response prediction [103].

Pyka et al. and others demonstrated that evi-
dences are growing to indicate that tumor hetero-
geneity as described by FDG PET texture is 
associated with response to radiation therapy in 
non-small cell lung cancer [104]. The results may 
be helpful into identifying patients who might 
profit from an intensified treatment regime. In 
another study from the same group, determina-
tion of tumor heterogeneity in pre-therapeutic 
18  F-fluoroethyl-L-tyrosine (FET)-PET using 
textural features was beneficial for the subgrad-
ing of high-grade glioma as well as prediction of 
tumor progression and patient survival. It also 
showed improved performance compared to 
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standard parameters such as tumor-background 
ratio and tumor volume [105]. Those two studies 
need further verification in a prospective patient 
cohort before being incorporated into routine 
clinical practice [104, 105].

Another report has shown that each subtype of 
non-small cell lung cancer, namely, adenocarci-
noma and squamous cell carcinoma, has different 
metabolic heterogeneity supporting the use of 
textural parameters in FDG PET as an imaging 
biomarker [106]. There were 15 texture features 
that had significant different values between the 
two different tumor subtypes, and there was no 
high correlation between SUVmax and texture 
parameters (|r| ≤ 0.62). Cheng et al. reported that 
uniformity extracted from the normalized gray-
level co-occurrence matrix represents an inde-
pendent prognostic predictor in patients with 
advanced T-stage oropharyngeal squamous cell 
carcinoma [107].

As described earlier, MTV is one of the poten-
tial prognostic indices, and correlation with 
tumor heterogeneity could provide complemen-
tary information in the same context. Volume and 
heterogeneity were found independent prognos-
tic factors (P = 0.0053 and 0.0093, respectively) 
along with stage (P = 0.002) in non-small cell 
lung cancer, but in the esophageal tumors, vol-
ume and heterogeneity had less complementary 
value because of smaller overall volumes [108].

�Conclusion

Image quantitation in PET examinations is 
one of the features that place PET in a unique 
position in morphological and molecular 
imaging matrix. Static imaging and dynamic 
imaging are the two common mode of data 
acquisition that can be used to derive the 
required sort of information. The former is the 
conventional type that used routinely in 
whole-body PET/CT during clinical practice, 
whereas dynamic imaging is limited to 
research activities but able to address “abso-
lute” physiologic information of tracer phar-
macokinetics. Due to technical limitation of 
current designs of PET systems, whole-body 
dynamic imaging can’t be realized, but some 
trials are being done to overcome such 

limitation that could make it feasible in the 
clinic using modified acquisition protocols.

It has become evident that SUV measure-
ments and its intrinsic characteristics of nor-
malization to body weight, lean body mass, or 
surface body area could have an important 
implication on the accuracy and reproducibil-
ity of tracer quantitation. SUV measurements 
have several sources of error that could sub-
stantially impact its reliability, and thus care-
ful measures need to be undertaken for 
successful adoption in the clinic.
Quantitative parameters derived from PET 

imaging data have valuable but differential diag-
nostic and predictive power in patient prognosis. 
Several challenges are facing nuclear medicine 
practitioners to standardize image acquisition, 
reconstruction, and data analysis so that any 
interinstitutional variability and systematic errors 
can be eliminated. This would help in correlating 
values among different clinics, building up large-
scale database and providing more statistical 
power in data analysis. Now there are many 
quantitative measures that can be used in patient 
stratification, prognosis, and predicting tumor 
response to therapy; however, a universal guid-
ance or general consensus from international 
societies should be in place to support and opti-
mize the efforts toward finding the best approach 
for each malignancy.
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