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Image Processing and Analysis 
of PET and Hybrid PET Imaging

Issam El Naqa

Abstract

PET imaging is a main diagnostic modality 
of different diseases including cancer. In the 
particular case of cancer, PET is widely 
used for staging of disease progression, 
identification of the treatment gross tumor 
volume, monitoring of disease, as well as 
prediction of outcomes and personalization 
of treatment regimens. Among the arsenal 
of different functional imaging modalities, 
PET has benefited from early adoption of 
quantitative image analysis starting from 
simple standard uptake value (SUV) nor-
malization to more advanced extraction of 
complex imaging uptake patterns, thanks 
chiefly to the application of sophisticated 
image processing algorithms. In this chap-
ter, we discuss the application of image pro-
cessing techniques to PET imaging with 
special focus on the oncological radiother-
apy domain starting from basic feature 
extraction to application in target definition 
using image segmentation/registration and 
more recent image-based outcome modeling 
in the radiomics field. We further extend the 
discussion into hybrid anatomical func-
tional combinations of PET/CT and PET/
MR multimodalities.
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12.1	 �Introduction

Recent years have witnessed exponential growth 
in the use of imaging for diagnostic and therapeu-
tic radiological purposes. In particular, positron 
emission tomography (PET) has been widely 
used in oncology for the purposes of diagnosis, 
grading, staging, and assessment of response. For 
instance, PET imaging with 18F-FDG (fluoro-2-
deoxy-d-glucose), a glucose metabolism analog, 
has been applied for diagnosis, staging, and treat-
ment planning of lung cancer [1–10], head and 
neck cancer [11, 12], prostate cancer [13], cervi-
cal cancer [14, 15], colorectal cancer [16], lym-
phoma [17, 18], melanoma [19], and breast 
cancer [20–22]. Moreover, accumulating evi-
dence supports that pretreatment or posttreatment 
FDG-PET uptake could be used as a prognostic 
factor for predicting outcomes [23–27]. For a 
review, see Chaps. 13 and 19.

Besides FDG-PET, other PET tracers have 
been also shown to be useful in interrogating 
tumor properties such as hypoxia by FMISO or 
Cu-ATSM and DNA synthesis and cell prolifera-
tion by FLT [28]. Interestingly, Denecke et  al. 
compared CT, MRI, and FDG-PET in the predic-
tion of outcomes to neoadjuvant radiochemother-
apy in patients with locally advanced primary 
rectal cancer, demonstrating sensitivities of 100 % 
for FDG-PET, 54 % for CT, and 71 % for MRI and 
specificities of 60 % for FDG-PET, 80 % for CT, 
and 67 % for MRI [29]. Benz et al. showed that 
combined assessment of metabolic and volumet-
ric changes predicts tumor response in patients 
with soft tissue sarcoma [30]. Similarly, Yang 
et al. showed that the combined evaluation of con-
trast-enhanced CT and FDG-PET/CT predicts the 
clinical outcomes in patients with aggressive non-
Hodgkin’s lymphoma [31]. Indeed, quantitative 
information from hybrid imaging modalities 
could be related to biological and clinical end-
points, a new emerging field referred to as 
“radiomics” [32, 33]. We were among the leading 
groups to demonstrate the potential of this new 
field to monitor and predict response to radiother-
apy in head and neck [34], cervix [34, 35], and 
lung [36] cancers, in turn allowing for adapting 
and individualizing treatment regimens.

In this chapter, we discuss the application of 
advanced image processing techniques in PET 
imaging with specific focus on two major areas 
of better tumor target definition and image-based 
prediction of treatment outcomes.

12.2	 �Image Features from PET

A necessary prerequisite of image processing 
application in PET is the robust extraction of rel-
evant imaging features, which could be used in 
varying applications. The features extracted from 
PET images could be divided into static (time-
invariant) and dynamic (time-variant) features 
according to the acquisition protocol at the time 
of scanning and into pre- or intra-treatment fea-
tures according to the scanning time point [37].

12.2.1	 �Static PET Features

	(a)	 Standard uptake value (SUV) descriptors: 
SUV is a standard method in PET image 
quantitative analysis [38]. In this case, raw 
intensity values are converted into SUVs, 
and statistical descriptors such as maximum, 
minimum, mean, standard deviation (SD), 
and coefficient of variation (CV) are 
extracted.

	(b)	 Total lesion glycolysis (TLG): This is defined 
as the product of volume and mean SUV [5, 
30, 39].

	(c)	 Intensity-volume histogram (IVH): This is 
analogous to the dose-volume histogram 
widely used in radiotherapy treatment plan-
ning in reducing complicated 3D data into a 
single easier to interpret curve. Each point on 
the IVH defines the absolute or relative vol-
ume of the structure that exceeds a variable 
intensity threshold as a percentage of the 
maximum intensity [34]. This method would 
allow for extracting several metrics from 
PET images for outcome analysis such as Ix 
(minimum intensity to x% highest intensity 
volume), Vx (percentage volume having at 
least x% intensity value), and descriptive sta-
tistics (mean, minimum, maximum, standard 
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deviation, etc.). We have reported the use of 
the IVH for predicting local control in lung 
cancer [36], where a combined metric from 
PET and CT image-based model provided a 
superior prediction power compared to com-
monly used dosimetric-based models of local 
treatment response.

	(d)	 Morphological features: These are generally 
geometrical shape attributes such as eccen-
tricity (a measure of non-circularity), which 
is useful for describing tumor growth direc-
tionality, and Euler number (the number of 
connected objects in a region minus the total 
number of holes in the objects) the solidity 
(this is a measurement of convexity), which 
may be a characteristic of benign lesions [40, 
41]. An interesting demonstration of this 
principle is that a shape-based metric based 
on the deviation from an idealized ellipsoid 
structure (i.e., eccentricity) was found to 
have strong association with survival in 
patients with sarcoma [41, 42].

	(e)	 Texture features: Texture in imaging refers 
to the relative distribution of intensity values 
within a given neighborhood. It integrates 
intensity with spatial information resulting 
in higher-order histograms when compared 
to common first-order intensity histograms. 
It should be emphasized that texture metrics 
are independent of tumor position, orienta-
tion, size, and brightness and take into account 
the local intensity spatial distribution [43, 
44]. This is a crucial advantage over direct 
(first-order) histogram metrics (e.g., mean 
and standard deviation), which only measures 
intensity variability independent of the spatial 
distribution in the tumor microenvironment. 
Texture methods are broadly divided into three 
categories: statistical methods (e.g., high-order 
statistics, co-occurrence matrices, moment 
invariants), model-based methods (e.g., 
Markov random fields, Gabor filter, wavelet 
transform), and structural methods (e.g., topo-
logical descriptors, fractals) [45, 46]. Among 
these methods, statistical approaches based 
on the co-occurrence matrix and its variants 
such as the gray-level co-occurrence matrix 
(GLCM), neighborhood gray-tone difference 

matrix (NGTDM), run-length matrix (RLM), 
and gray-level size zone matrix (GLSZM) 
have been widely applied for characterizing 
FDG-PET heterogeneity [47].

Four commonly used features from the GLCM 
include energy, entropy, contrast, and homogene-
ity [44]. The NGTDM is thought to provide more 
humanlike perception of texture such as coarse-
ness, contrast, busyness, and complexity. RLM 
and GLSZM emphasize regional effects. Textural 
map examples from multiple PET tracers are 
shown in Fig. 12.1.

These features were shown to predict response 
in cancers of the cervix [34], esophagus [48], head 
and neck [49], and lung cancer [50]. MaZda is a 
dedicated software for image feature analysis [51]. 
An example of PET different feature extraction 
from head and neck cancer is shown in Fig. 12.2.

12.2.2	 �Dynamic PET Features

These features are based on kinetic analysis using 
tissue compartment models and parameters 
related to transport and binding rates [52]. In the 
case of FDG, a three-compartment model could 
be used to depict the trapping of FDG-6-
phosphate (FDG6P) in tumor [53, 54]. Using 
estimates from compartmental modeling, glucose 
metabolic uptake rate could be evaluated. The 
uptake rate and other compartment estimates 
themselves could form “parameter map” images, 
which previously described static features, and 
could be derived from as well (see Chap. 14).

Glucose metabolic rate was correlated with 
pathologic tumor control probability in lung can-
cer [55]. Thorwarth et  al. published interesting 
data on the scatter of voxel-based measures of 
local perfusion and hypoxia in head and neck 
cancer [56, 57]. Tumors showing a wide spread 
in both showed less reoxygenation during a 
course of radiotherapy and had lower local con-
trol. A rather interesting approach to improve the 
robustness of such features is the use of advanced 
4D iterative techniques; an example is given in 
Fig. 12.3. Further improvement could be achieved 
by utilizing multi-resolution transformations 
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(e.g., wavelet transform) to stabilize kinetic 
parameter estimates spatially [58].

12.3	 �Extension to PET/CT 
and PET/MR

Combining information from multiple modalities 
allows for better utilization of complementary fea-
tures from different images. For instance, several 
studies have indicated that inter- and intra-observer 
variability of defining the tumor extent could be 
reduced by using PET/CT or PET/MR. Researchers 
in lung cancer reported reduced variability when 
using CT with PET for target definition [3, 10]. 
Furthermore, a study of fractionated stereotactic 
radiotherapy for meningioma patients demon-
strated improved target definition by combining 
physiological information from PET, anatomical 
structure from CT, and soft tissue contrasts from 
MRI, resulting in alterations of the original con-
tour definitions in 73 % of the cases [59]. However, 
this visual approach for integrating multimodality 
imaging information is prone to observer subjec-
tivity and variations as contrasted to single image 
analysis as discussed later.

The PET imaging features presented as static 
metrics in Sect. 12.2.1 could be applied equally 
to PET/CT or PET/MR, where instead of SUV, 
Hounsfield units are used in the case of CT, and 
T1w or T2w images, for instance, could be used 
in the case of MRI, for instance, using its 
weighted relaxation times or proton density pixel 
intensities. In the case of dynamic MRI acquisi-
tions, the corresponding pharmacokinetic models 
would be applied to extract the parametric maps 
such as extended Tofts model [60], which is also 
a three-compartment model, and extracted 
parameters include the transfer constant (Ktrans), 
the extravascular-extracellular volume fraction 
(ve), and the blood volume (bv).

However, among the most challenging 
issues in multimodality imaging is the fusion 
of multiple imaging data from different scan-
ners. This is typically carried out through a 
geometric transformation, i.e., image registra-
tion. This could be solved greatly using inte-
grated hardware systems such as PET/CT 
scanners or PET/MRI scanners; otherwise, 
software solutions need to be deployed. These 
software solutions could be divided into rigid 
or deformable registration techniques [61]. In 
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Fig. 12.1  The two rows, referring to an individual patient with primary cervical cancer, show texture maps for FDG 
(metabolic marker) and Cu-ATSM (hypoxia marker) alone and overlapping texture maps of the two markers [37]
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our previous work, we have developed several 
tools for this purpose such as MIASYS [62] 
and DIRART [63]. https://sites.google.com/a/
umich.edu/ielnaqa/home/software-tools.

MIASYS is a dedicated open-source software 
tool developed in MATLAB for multimodality 

image analysis. The software tool aims to pro-
vide a comprehensive solution for 3D image 
segmentation by integrating automatic algo-
rithms, manual contouring methods, image pre-
processing filters, post-processing procedures, 
user-interactive features, and evaluation metrics.  
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(green) were outlined by the physician. (b) An IVH plot, 
where Ix and Vx parameters are derived. (c) A texture map 
plot of the GTV heterogeneity through intensity spatial 
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Fig. 12.3  An abdominal dynamic FDG-PET/CT kinetic 
analysis. The figure shows the three-compartment param-
eter map (K1, k2, k3) model assuming irreversible kinetics 
(k4 = 0), blood volume component (bv = K1/k2), and KFDG 

net influx rate constant (Ki). In this case, the parameters 
were obtained using a 4D iterative technique (compared 
with simple differential methods) by estimation directly 
from the sinogram domain
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The implemented methods include multiple 
image thresholding, clustering based on K-means 
and fuzzy C-means (FCM), and active contours 
based on snakes and level sets. Image registra-
tion is achieved via manual and automated rigid 
methods [62].

DIRART is also an open-source software 
implemented in MATLAB to support deformable 
image registration (DIR) for adaptive radiother-
apy applications. Image registration in this regard 
computes voxel mapping between two image sets 
and is formulated as an optimization problem in 
which the solution is found by maximizing a sim-
ilarity metric between the two images (e.g., 
mutual information). DIRART contains 20+ 
deformable image registration (DIR) algorithms 
including 12 different optical flow algorithms, 
different demon algorithms, and four level set 
algorithms. It also supports interface to ITK so 
that ITK DIR algorithms can be called from 
within DIRART.  Currently five ITK DIR algo-
rithms are supported, including demon algo-
rithms and B-spline algorithms. In addition, the 
newer inverse consistency algorithms to provide 
consistent displacement vector field (DVF) in 
both forward and backward directions are imple-
mented [63].

12.4	 �Application of PET 
in Radiotherapy

In the following, we discuss the application of 
PET to radiotherapy with focus on two cases, 
contouring of tumor/organs at risk in treatment 
planning and outcome prediction for clinical 
decision-making using radiomics.

12.4.1	 �Biological Target Definition 
Using PET

Medical image segmentation is a process to sepa-
rate structures of interest in an image from its 
background or other neighboring structures. It is a 
necessary prerequisite step for many medical 
imaging applications in radiology and radiation 
therapy. These applications may include automatic 

organ delineation, quantitative tissue classifica-
tion, surface extraction, visualization and image 
registration, etc. [64, 65]. For instance, Pham and 
coworkers divided segmentation algorithms into 
eight different categories: thresholding, region 
growing, classifiers, clustering, Markov random 
field models, artificial neural networks, deform-
able models, and atlas-guided approaches. In our 
work on PET-guided treatment planning in radio-
therapy, we presented a comparative survey of the 
current methods applied for tumor segmentation 
[66, 67]; an example in head and neck cancer 
using different segmentation algorithms is pre-
sented in Fig. 12.4.

There are several commercial and academic 
software tools that support different segmenta-
tion algorithms. In general, commercial software 
packages have better implementations with a 
user-friendly interface for manual and semiauto-
matic segmentation methods, but often lag behind 
the latest development in the field. In contrast, 
academic software packages, such as ITK [68], 
BioImage Suite [69], MIPAV [70], ImageJ [71], 
and 3D slicer [72], may tend to be oriented 
toward single-modality applications and less 
friendly in handling multimodality images as 
proposed here.

Most automatic algorithms attempt to utilize 
image intensity variations or image gradient 
information. However, for low-contrast images, 
many of these algorithms tend to provide subop-
timal solutions that are not clinically acceptable. 
For such cases, it has been demonstrated that if 
multiple images are available for the same object 
(the same image modality or different image 
modalities), all the available complementary 
information can be fed into the segmentation 
algorithms to define the so-called biophysical tar-
get [73]. Thus, the segmentation algorithms 
would benefit from the complementary informa-
tion from different images, and consequently the 
accuracy of the final segmentation results could 
be improved. Similar approaches have been 
applied for detecting blood-wall interface of 
heart ventricles from CT, MRI, and ultrasound 
images using a snake deformable model [74], for 
classifying coronary artery plaque composition 
from multiple contrast MR images using K-means 
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clustering algorithm [75], and for defining tumor 
target volumes using PET/CT/MR images for 
radiotherapy treatment planning by using a mul-
tivalued deformable level set approach as in our 
previous work. Mathematically, such an approach 
is a framework that could be thought of as a map-
ping from the imaging space to the “perception” 
space as identified by the radiologists [73]:

	 Biophysical target CT, PET, MRI, = …( )f , l 	 (12.1)

where f ×( )  is the mapping function from the dif-
ferent imaging modalities to the target space 
parameterized by λ, which represents users’ 
defined set of parameters representing the prior 
knowledge. This framework is highlighted in 
Fig. 12.5.

The robust image segmentations methods are 
based on deformable models, which are geometric 
representations of curves or surfaces that are 
defined explicitly or implicitly in the imaging 

domain. These models move under the influence 
of internal forces (contour curvature) and external 
forces (image boundary constraints) [76, 77]. The 
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Fig. 12.4  Example of different PET segmentation meth-
ods of head and neck cancer. The methods include 40 % of 
SUVmax (SUVmax40) and the methods of Nestle, Black, 
Biehl, and Schaefer. This is in addition to the level set 
technique (active contour), the stochastic EM approach 

(EM), the FCM algorithm (FCM), and the FCM-SW vari-
ant of the FCM algorithm (FCM-SW). The 3D contour 
defined on the macroscopic tumor specimen is used as the 
reference for assessing the performance of the different 
segmentation techniques (From Zaidi et al. [66])

Fig. 12.5  Biophysical target as generated from multimo-
dality imaging by combining anatomical and functional 
information

I. El Naqa



293

level set is a state-of-the-art variational method for 
shape recovery [76, 78–80]. They were originally 
developed in curve evolution theory to overcome 
the limitations encountered in parametric deform-
able models (e.g., snakes [81]) such as initializa-
tion requirement, generalization to 3D, and 
topological adaptation such as splitting or merging 
of model parts. Our generalization to multimodal-
ity imaging is based on redefining the concept of a 
boundary as a logical or “best” combination of 
multiple images by learning and incorporating 
expert’s knowledge on subregional or even voxel 
levels. An example showing combination of PET/
CT in lung cancer is shown in Fig. 12.6 using a 
multivalued level set algorithm [73].

In another example the PET/CT images were 
taken from patients with cervix cancer. The PET 
image was sharpened using a deconvolution 
approach [82]. The 40 % maximum SUV (stan-
dard uptake value) thresholding is adopted in 
many institutes to estimate gross tumor volume 
for cervix cancer patients due to the high target 
to background ratio of these tumors in PET and 
the difficulty to distinguish their boundary in 
CT. In Fig. 12.7, the active contour algorithm is 
initialized with a circle (in white) of 15.9 mm 
diameter around the PET lesion. The evolved 
contour took ten iterations (in blue) and the final 
estimated contours (in thick black) are shown. 
The algorithm converged in just 30 iterations. 
This fast convergence could be attributed in part 
to the almost spherical shape of the tumor and 
the sharpness of the gradient. It is noticed that 
the results of the algorithm match the PET 
ground truth (99 %) as delineated by an experi-
enced nuclear medicine radiologist. Hence, the 
delineation results were explained mainly by 
PET in this case, although information from CT 
could still be used to steer the algorithm, if 
desired.

12.4.2	 �PET Radiomics

The extraction of quantitative information 
from imaging modalities and relating informa-
tion to biological and clinical endpoints is a 

new emerging field referred to as “radiomics” 
[32, 33]. Traditionally, quantitative analysis of 
FDG-PET or other PET tracer uptake is con-
ducted based on observed changes in the stan-
dard uptake value (SUV). For instance, 
decrease in SUV postirradiation has been asso-
ciated with better outcomes in lung cancer 
[83, 84]. However, SUV measurements them-
selves are potentially pruned to errors due to 
the initial FDG uptake kinetics and radiotracer 
distribution, which are dependent on the initial 
dose and the elapsing time between injection 
and image acquisition. In addition, some com-
monly reported SUV measurements might be 
sensitive to changes in tumor volume definition 
(e.g., mean SUV). These factors and others 
might make such approach subject to signifi-
cant intra- and inter-observer variability [25, 
26, 34].

Radiomics consist of two main steps, extrac-
tion of static and dynamic features as discussed 
in Sect. 17.3 and outcome modeling as presented 
in the following. Outcomes in oncology and par-
ticularly in radiation oncology are characterized 
by tumor control probability (TCP) and the sur-
rounding normal tissue complication probability 
(NTCP) [85, 86]. A detailed review of outcome 
modeling in radiotherapy is presented in our pre-
vious work [87]. DREES is a dedicated software 
tool for modeling of radiotherapy response [88]. 
In the context of image-based treatment outcome 
modeling, the observed outcome (e.g., TCP or 
NTCP) is considered to be adequately captured 
by extracted image features [34, 89]. We will 
highlight this approach using classical logistic 
regression.

Logistic modeling is a common tool for multi-
metric modeling. In our previous work [90, 91], a 
logit transformation was used:

	
f

e

e
i ni

g

g

i

i
x

x

x( ) =
+

= ¼
( )

( )1
1, , , ,

	
(12.2)

where n is the number of cases (patients) and xi 
is a vector of the input variable values (i.e., image 
features) used to predict f(xi) for outcome yi (i.e., 
TCP or NTCP) of the ith patient
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(12.3)

where d is the number of model variables and the 
βs are the set of model coefficients determined by 
maximizing the probability that the data gave rise 
to the observations. Resampling methods such as 
cross validation and bootstrapping methods could 
be used to determine optimal model order and 
parameter selection as shown in Fig.  12.8 for 
PET/CT modeling of lung cancer [36]. 
Interestingly, a model of two parameters from 
PET and CT based on intensity-volume histo-
grams provided the best fit to local control.

12.5	 �Current Issues and Future 
Directions

12.5.1	 �PET Image Characteristics

Generally speaking, PET images have lower reso-
lution than CT or MRI in the order of 3–5 mm, 
which is further worsened under cardiac or respi-
ratory motion conditions due to longer acquisition 
periods. Moreover, PET images are susceptible to 
limited photon count noise. Advances in hardware 
such as crystal detector technologies [92] and 
software such as image reconstruction techniques 
[93] are poised to improve PET image quality and 
their subsequent use. See Chaps. 8 and 11.

GTV-CT

GTV-CT
GTV-PET
GTV-PET/CT

GTV-PET

MVLS

GTV-PET/CT
Initialization

a

b c d

Fig. 12.6  Joint estimation of lung PET/CT target/disease 
volume. (a) A fused PET/CT displayed in CERR with 
manual contouring shown of the subject’s right gross 
tumor volume. The contouring was performed separately 
for CT (in orange), PET (in green), and fused PET/CT (in 
red) images. (b) The MVLS algorithm was initialized 
with a circle (in white) of 9.8 mm diameter, an evolved 
contour in steps of ten iterations (in black), and the final 

estimated contour (in thick red). The algorithm converged 
in 120 iterations in few seconds. The PET/CT ratio 
weighting was selected as 1:1.65. (c) MVLS results are 
shown along with manual contour results on the fused 
PET/CT. Note the agreement of the fused PET/CT manual 
contour and MVLS (dice = 0.87). (d) MVLS contour 
superimposed on CT (top) and PET (bottom) separately
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12.5.2	 �Robustness and Stability 
of Extracted Image Features

It is well recognized that image acquisition pro-
tocols may impact the reproducibility of extracted 
features from PET images, which may conse-
quently impact the robustness and stability of 
these features for image analysis. This includes 
static features such as SUV descriptors [94–96] 

and texture features [97, 98]. Interestingly, 
texture-based features were shown to have a 
reproducibility similar to or better than that of 
simple SUV descriptors [99]. Moreover, textural 
features from the GLCM seemed to exhibit lower 
variations than NGTDM features [97]. Other fac-
tors that may impact the stability of these features 
may include signal-to-noise ratio (SNR), partial 
volume effect, motion artifacts, parameter  

Iteration: 30

Fig. 12.7  A 3D generalization of multivalued level set 
(MVLS) algorithm in the case of PET/CT cervix. The 
MVLS algorithm is initialized with a sphere (in white) of 
15.9 mm diameter, a curve evolution in steps of ten itera-

tions (in magenta), and the final estimated contour (in 
thick blue). The algorithm converged in 30 iterations. 
MVLS estimated contour superimposed on CT.  MVLS 
estimated contour superimposed on PET
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settings, resampling size, and image quantization 
[34, 98]. Denoising methods for mitigation of 
noise in PET imaging follow their limited photon 
effects using traditional denoising filtering meth-
ods [66, 100] or more advanced methods based 
on combining wavelet and curvelet transform 
characteristics [101].

12.5.3	 �Improved PET-Based 
Outcome Models

In addition to using appropriate candidate image 
features for PET-based outcome modeling, 
“radiomics,” a main weakness in using classical 
logistic regression formalism is that the model’s 
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Fig. 12.8  Multi-metric modeling of local failure from 
PET/CT features. (a) Model-order selection using leave-
one-out cross validation. (b) Most frequent model selec-
tion using bootstrap analysis where the y-axis represents 
the model selection frequency on resampled bootstrapped 

samples. (c) Plot of local failure probability as a function 
of patients binned into equal-size groups showing the 
model prediction of treatment failure risk and the original 
data (Reproduced with permission from Vaidya et al. [36])
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capacity to follow details of the data trends is 
limited. In addition, Eq. (12.3) requires the user’s 
feedback to determine whether interaction terms 
or higher-order terms should be added, making it 
a trial-and-error process. A solution to ameliorate 
this problem is offered by applying machine 
learning methods [102].

A class of machine learning methods that is 
particularly powerful, and which we propose to 
use for image-based outcome prediction, 
includes so-called kernel-based methods and 
their most prominent subtype, support vector 
machines (SVMs). These methods have been 
applied successfully in many diverse areas 
including outcome prediction [103–107]. 
Learning is defined in this context as estimating 
dependencies from data [108]. In the example of 
outcome prediction (i.e., discrimination between 
patients who are at low risk versus patients who 
are at high risk of local failure), the main func-
tion of the kernel-based technique would be to 
separate these two classes with “hyperplanes” 
that maximize the margin (separation) between 
the classes in the nonlinear feature space. The 
objective here is to minimize the bounds on the 
generalization error of a model on unseen data 
before rather than minimizing the mean-square 
error over the training dataset itself (data fitting). 
Note that the kernel in these cases acts as a simi-
larity function between sample points in the fea-
ture space. Moreover, kernels enjoy closure 
properties, i.e., one can create admissible com-
posite kernels by weighted addition and multi-
plication of elementary kernels. This flexibility 
allows for the construction of a neural network 
by using a combination of sigmoidal kernels. 
Alternatively, one could choose a logistic regres-
sion equivalent kernel by proper choice of the 
objective function itself.

Evaluation of radiomics in clinical trials is 
still in its infancy. According to the website clin-
icaltrials.gov, a registered trial for “Radiomics: 
A Study of Outcome in Lung Cancer” between 
the Maastro Clinic in the Netherlands, Moffitt 
Cancer Center and Research Institute from 
Florida, USA, and Gemelli Hospital from Rome, 
Italy, is reported. Another trial on “Radiomics 
Prediction of Long Term Survival and Local 

Failure After Stereotactic Radiotherapy for 
Brain Metastases” by the Maastro Clinic has 
been recently opened.

�Conclusions

Image processing constitutes an indispensible 
set of tools for analyzing and extracting valuable 
information from PET images. We presented in 
this chapter an overview of different features that 
could be extracted from PET images for differ-
ent applications including contouring and 
response prediction. We have shown that incor-
poration of different anatomical information 
from CT and MRI into PET is feasible and could 
yield better results. However, there are chal-
lenges still in the use of PET, some are related to 
inherited image quality, and others are related to 
standardization of image acquisition protocols 
and reconstruction algorithms. Nevertheless, 
advances in hardware and software technologies 
will further facilitate wider application of 
advanced image processing techniques to PET 
and hybrid imaging to achieve better clinical 
results. In particular, the synergy between image 
analysis and machine learning could provide 
powerful tools to strengthen and further the utili-
zation of PET in clinical practice.
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