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PET Image Reconstruction: 
Methodology and Quantitative 
Accuracy

Bing Bai and Evren Asma

Abstract

This chapter reviews the techniques devel-
oped for positron emission tomography 
(PET) image reconstruction and image prop-
erty analysis. Both mathematical theory and 
practical considerations are introduced. We 
focus on the commonly used methods on 
commercial PET scanners, in particular 
model-based statistical reconstruction meth-
ods. We also briefly describe data corrections 
necessary for PET image reconstruction, 
which are important for reducing artifacts 
and improving quantitative accuracy. Finally 
some recent developments are described, 
including the reconstruction of time-of-flight 
(TOF) PET data and direct parametric image 
reconstruction.

11.1  Introduction

The theory of image reconstruction from projec-
tions has been developed since the early twenti-
eth century [1] and flourished after the 
introduction of x-ray computed tomography (CT) 
[2]. Many methods have been proposed and 
implemented successfully for various imaging 
techniques including CT, positron emission 
tomography (PET), single-photon emission com-
puted tomography (SPECT), and magnetic reso-
nance imaging (MRI).
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Image reconstruction techniques can be 
broadly grouped into two categories: analytic 
and statistical methods. Analytic image recon-
struction methods model the PET data as line 
integrals through the image. An exact or 
approximate formula is sought to invert the 
x-ray transform [3]. Despite the fact that the 
line integral model is only a very rough approx-
imation to the underlying physics in PET and 
the fact that the statistical nature of measured 
data is ignored, analytic image reconstruction 
methods have been used extensively in clinical 
practice due to their speed. In the last 10 years, 
the rapid increase of computational power has 
also made model-based statistical reconstruc-
tion methods feasible for routine clinical stud-
ies. These methods employ system models to 
describe the scanner geometry and the data 
acquisition physics and statistical noise models 
to account for noise in the data. They use itera-
tive numerical optimization algorithms to max-
imize a chosen cost function to obtain the final 
reconstructed image. As a result of these physi-
cal and statistical models, images reconstructed 
using model-based statistical methods have less 
noise and higher resolution compared to ana-
lytic reconstruction methods. All recent com-
mercial PET scanners have model-based 
statistical reconstruction packages, and many 
clinics have switched to them for their routine 
clinical applications.

PET data acquisition involves counting of 
photon pairs as the radioactive isotope decays, 
which is a complex random process, and the data 
is usually very noisy. The spatial resolution of the 
data is limited due to the finite size of the detec-
tors and other physical factors including positron 
range and noncollinearity of the photon pair. In 
general it is not possible to achieve the best image 
resolution and minimize noise at the same time. 
Thus one important goal of image reconstruction 
is to optimize the tradeoff between image noise 
and resolution.

This chapter reviews the techniques devel-
oped for PET image reconstruction and image 
property analysis. We introduce both mathe-
matical theory and practical considerations, 

focusing on the methods commonly used on 
commercial PET scanners. We also briefly 
describe data corrections necessary for PET 
image reconstruction, which are important for 
reducing the artifacts and improving quantita-
tive accuracy. The details of these corrections 
can be found in other chapters. Finally some 
recent developments are given, including the 
reconstruction of time-of-flight (TOF) PET 
data and direct parametric image 
reconstruction.

11.2  Analytic Image 
Reconstruction

11.2.1  PET Data Formation 
and Storage

In order to understand the theory of PET image 
reconstruction, let us first describe briefly how 
PET data is acquired and stored.

PET scanners are typically composed of mul-
tiple detector rings. Historically PET data was 
acquired in 2D mode with lead or tungsten septa 
inserted between detector rings to only allow for 
coincidences within the same or neighboring 
rings to be recorded and to reduce the number of 
scattered events. Figure 11.1 shows one ring of a 
typical PET gantry. When two photons are 
detected in the scanner, they are processed 
through electronics to check for various criteria 
such as whether each photon has the right amount 
of energy (typically between 350 and 650 keV) 
or whether the photons have arrived almost 
simultaneously (within 5–6 ns or less of each 
other). If all criteria are satisfied, then the two 
photons are recorded as a coincidence event. 
Each coincidence event can be stored separately 
as is the case with “list-mode” data, or alterna-
tively, the total number of events detected at each 
detector pair can be stored. Usually such data is 
stored in a two-dimensional array for 2D PET 
indexed by radial element and view angle coordi-
nates and is called a sinogram because 
 measurements from a point source are concen-
trated on a sinusoid curve.
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In modern PET scanners, the septa were 
removed for 3D data acquisition to improve the 
system sensitivity. For 3D PET, the data can be 
stored either as projections indexed by (xr, yr, θ, 
ϕ) or equivalently as stacks of sinograms indexed 
by (s, ϕ , z, θ), as shown in Fig. 11.2. Data on 3D 
PET scanners are typically stored in the stacked 
sinogram format and sometimes compressed by 
adding the neighboring angles or sinograms 
together.

11.2.2  Filtered Backprojection

11.2.2.1  Line Integral Model 
and Central Slice Theorem

A simple model for PET data assumes that the 
number of events detected at each detector pair is 
proportional to the integral of the radioactivity 
along the line connecting the centers of the two 
detectors. This is the basis upon which analytic 
image reconstruction algorithms are developed. 
Here we illustrate the line integral model for the 
2D case.

Mathematically, the spatial distribution of the 
tracer is represented by a 2D continuous function 
f(x,y). Measured projection data can then be 
approximated by the discrete samples of the 
x-ray transform of f(x,y), which is defined by

 
p s f s t s t dt,f f f f f( ) = − +( )

−∞

∞

∫ cos sin , sin cos
  

(11.1)

where s is the distance of the projection line to 
the center and ϕ is the projection angle, as shown 
in Fig. 11.2b.

An important result that underlies analytic 
image reconstruction is the central slice theorem. 
In 2D, the central slice theorem relates the 2D 
Fourier transform of the image to the 1D Fourier 
transform of its x-ray transform p(s, ϕ), as illus-
trated in Fig. 11.3:
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where the 1D and 2D Fourier transforms are 
defined by
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This relationship shows in 2D that the Radon 
transform uniquely describes any Fourier trans-
formable image and that the image can be recon-
structed by forming its 2D Fourier transform 
according to (Eq. 11.2) and taking an inverse 2D 
Fourier transform. Although this is a straightfor-
ward way of reconstructing 2D images, it 
requires the interpolation of the image’s 2D 
Fourier transform onto a rectangular grid, and 
reconstructed image quality depends on the 
accuracy of the interpolation. As a result, direct 
Fourier reconstruction methods are not com-
monly used.

11.2.2.2  Backprojection Filtering
An image can be formed by integrating all the 
projections passing through a point and assigning 
the value of the integral to the point. This linear 
operation is called backprojection and can be 
expressed mathematically as:
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(11.4)

Fig. 11.1 One ring of a typical PET scanner and data 
processing
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Fig. 11.2 3D PET data 
stored in (a) projection and 
(b) sinogram format
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It can be shown that this backprojected image 
corresponds to the original image smoothed by 
the “1/r” blurring in Fourier transform domain:

 
B Fx y x y x yw w w w w w, ,( ) = ( ) +/ 2 2

 
(11.5)

In order to recover the original image f(x), we 
can filter this backprojected image, and the over-
all approach is known as backprojection filtering 
(BPF). A common approach is to switch the order 
of the linear backprojection and filtering opera-
tions and to apply filtering to the 1D projection 
data (usually by convolution with the filter func-
tion in projection space) before backprojection, 
thus called filtered backprojection or FBP [4]. As 
shown in (Eq. 11.5), the reconstruction filter has 
a frequency response of |ω|. This so-called ramp 
filter amplifies high-frequency noise; therefore, 
in practice, a windowed ramp filter is used in 
FBP reconstruction and frequency components 
above a threshold (cutoff frequency) are set to 
zero. Frequently used window functions in 2D 
FBP include Shepp–Logan, Butterworth, and 
Hann windows [5, 6]. Figure 11.4 shows FBP 
images of a simulated NCAT phantom using dif-
ferent window functions.

11.2.3  Reconstruction of 3D PET Data

The 2D central slice theorem can be extended to 
3D PET, resulting in the derivation of 3D FBP 
[7]. However, due to the limited axial coverage of 
PET scanners, not all oblique projections are 
recorded, and therefore some oblique projections 
through the imaging volume are missing. As a 
result, a typical 3D PET scanner corresponds to a 
shift–variant system where FBP cannot be 
directly applied to reconstruct the data. 
Figure 11.5 shows a direct line of response (LOR) 
which is acquired in 2D PET, an oblique LOR 
acquired in 3D PET and a missing oblique LOR 
in 3D PET that is not measured because the LOR 
does not intersect the detector surface.

One solution to the missing data problem is to 
estimate the truncated projections before apply-
ing 3D FBP. The 3D reprojection (3DRP) algo-
rithm was proposed to estimate the missing data 

and has been a standard analytic reconstruction 
algorithm for 3D PET [8]. In 3DRP, unmeasured 
data is estimated by calculating the line integrals 
along the LORs through an initial image estimate 
obtained by applying 2D FBP to the non-oblique 
sinograms.

We note that 3DRP is based on the fact that 2D 
data is sufficient for reconstruction (e.g., 2D 
images reconstructed from line integrals on par-
allel planes can be stacked to form the final 3D 
image), and the goal of using additional 3D data 
is to improve the statistical properties of recon-
structed images. While 2D and 3D reconstruc-
tions would be identical for reconstructions from 
noiseless data, at typical clinical data noise lev-
els, by including the events detected by two 
detectors on different rings, 3D reconstructions 
significantly improve the signal-to-noise ratio 
(SNR) of the image.

Another way to reconstruct 3D PET data is to 
explore the redundancy in the data and to reduce 
it to a 2D dataset. Such a process is called rebin-
ning. Since the computational cost of rebinning is 
negligible compared to the computational cost of 
image reconstruction, the resulting reconstruc-
tion speed is almost the same as that of 2D 
reconstructions.

A simple way to rebin 3D PET data is through 
the process called single slice rebinning (SSRB) 
[9] where a stack of 2D sinograms are created by 
placing detected events on the plane perpendicu-
lar to the scanner axis (z) and lying in the middle 
of the line connecting the two detectors that 
detected the event. Mathematically we have
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(11.6)

where s and ϕ are the coordinates of the line of 
response projected onto the x–y plane and z1 and 
z2 are the location of the two detector rings (z1 
may equal to z2).

SSRB is only accurate when the activity is 
concentrated near the axis of the scanner. In cases 
of extended activity distributions, such as whole- 
body FDG scans, SSRB will become less accu-
rate and introduce distortions. A more accurate 
rebinning method called Fourier rebinning 

11 PET Image Reconstruction: Methodology and Quantitative Accuracy



264

(FORE) has been developed based on the 
 relationship between the Fourier transforms of 
the 2D data and oblique data [10].

Following SSRB or FORE, a 2D reconstruc-
tion algorithm is applied to reconstruct each 
slice separately. The advantage of FORE is that 
it allows fast 2D reconstructions while retaining 
the SNR benefits from 3D data. Figure 11.6 
shows a brain FDG scan data reconstructed using 
3DRP and FORE + FBP. The image quality is 

comparable while the speed of FORE + FBP is 
more than ten times faster than 3DRP.

Although FORE has been widely used for 
clinical 3D PET image reconstruction, it is still 
based on the line integral geometric model and 
cannot model all the physical effects in PET data 
acquisition. In addition, FORE requires all the 
data corrections to be applied directly to the data 
(instead of being part of the system model), and 
therefore changes data noise properties which 
become difficult to model when a 2D iterative 
algorithm is used to reconstruct the rebinned 
dataset. As a result, fully 3D statistical recon-
struction methods are preferable over FORE 
rebinning followed by 2D reconstruction 
methods.

11.3  Model-Based Statistical 
Reconstruction

Analytic image reconstruction methods inher-
ently assume that noiseless line integrals of the 
image are available. In reality, data acquired in 
typical PET scanners are not exact line integrals, 
and there is significant statistical noise in almost 
all clinical datasets. Model-based statistical image 

a b

Fig. 11.4 Images reconstructed from simulated NCAT 
phantom (a) noiseless and (b) noisy data. Top 4 rows were 
reconstructed using Butterworth window with orders 2, 4, 8, 

and 32, respectively. Bottom row used Hann window. Left to 
right: cutoff frequencies of 0.1, 0.2, 0.3, 0.4, and 0.5 cycle/
pixel, respectively (Reproduced from Tsui and Frey [6])
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3

Fig. 11.5 Cross section of a PET scanner: events along 
LOR1 is acquired in 2D PET, LOR2 is acquired in 3D 
PET, while LOR3 is missing from the 3D PET data
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reconstruction approaches are preferable due to 
their ability to model the physics and statistics of 
the imaging process and have become widely 
available in all commercial scanners. In this sec-
tion, we first introduce statistical noise models for 
PET data and physical system models which 
describe the complex physics of data acquisition. 
We then review the methodology of maximum 
likelihood (ML) and maximum-a- posteriori 
(MAP) estimation and numerical optimization 
algorithms used to generate PET images. Due to 
the nonlinear, shift-varying and high- dimensional 
nature of statistical reconstruction algorithms, 
image resolution and noise analyses are compli-
cated and are still an active research area. We will 
give a brief review on this topic in the end.

11.3.1  Noise Model

PET data is inherently noisy, and this fact has sig-
nificant effects on reconstructed image quality. 
Statistical reconstruction algorithms model the 
noise in PET data explicitly and use iterative 
numerical optimization algorithms to solve the 
associated optimization problem. Over the last 
four decades, many model-based statistical image 
reconstruction algorithms have been proposed. 
Although the formulae of these methods are quite 
different, they are all designed to solve the fol-
lowing problem:

 
y y x= ( ) + noise  

(11.7)

where y is the measured data, y  denotes the 
mean of the data, and x is the image of the 
unknown activity distribution. The number of 
events detected at a detector within a given time 
due to the radioactive decay inside the object can 
be accurately modeled by the Poisson 
distribution:
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where n is the number of decays and λ is the 
mean, which is equal to the variance.

If system dead time and detector pileup effects 
are ignored, then measured data can be modeled 
as independent Poisson random variables with 
joint distribution:
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where yi is the number of events detected in the 
ith LOR, yi  is the mean number of events in the 
ith LOR that can be calculated using the system 
model described in the next section, and M is the 
number of LORs.

While a Gaussian noise model may be used 
for low-noise data with acceptable accuracy, 
resulting in the weighted least square (WLS) 
approach for image reconstruction [11], most sta-
tistical approaches use the Poisson model.

a b

Fig. 11.6 A central transaxial slice of an FDG brain scan reconstructed using (a) 3DRP and (b) FORE + FBP [10]
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In PET, a common practice is to subtract an 
estimate of the random events (e.g., using delayed 
window method) online to reduce the bandwidth 
needed for data transfer and storage space [12]. 
In that case, measured data at the ith LOR is 
given by

 y p ri i i= -  (11.10)

where pi is the number of prompts and ri is the 
number of delayed events for the ith 
LOR. While both pi and ri are independent 
Poisson random variables, the difference 
between the two is no longer Poisson. The dis-
tribution of yi has a numerically intractable 
form. One can use Gaussian distribution as an 
approximation to the true distribution of the 
precorrected data. Yavuz and Fessler noticed 
that a simple but good approximation is to add 
2ri  to the data [13], where ri  is the mean of 
the delayed events estimated from the data and 
to model the resulting random variable as 
Poisson with mean and variance equal to 
y ri i+ 2 .

As we discussed previously, Fourier rebinning 
is commonly used to reduce the size of the data-
set and reconstruction time. It has been shown 
that FORE rebinned data is no longer Poisson 
[14]. Similar to the approach for random precor-
rected data, Liu et al. used a simple scaling to 
match the mean and variance of the rebinned data 
[15]. Then a reconstruction algorithm based on 
the Poisson noise model can be used to recon-
struct the resulting data.

11.3.2  System Model

The spatial resolution of PET is limited by sev-
eral factors such as positron range, photon non-
collinearity, and penetration and scattering of the 
photon in the detector. One critical limitation of 
analytic reconstruction methods is that these fac-
tors are neglected in the simple line integral 
model. With model-based statistical reconstruc-
tion, we use a system model to account for these 
resolution-deteriorating effects. Other factors 
may also be included in the system model such 
as the attenuation of the photons in the body, 

nonuniform efficiencies of the detectors, and 
random and scattered events.

In the absence of noise, we can model the data 
as a linear function of the image:

 
y p x ri

j

N

ij j i= +
=
å

1  
(11.11)

or in matrix format y Px r= +
where r  is the sum of mean of random and 

scattered events and P is the system matrix, 
which relates the image to the noiseless data, and 
can be expressed in factored form as [16]:

 
P P P P P P= norm blur attn geom range  

(11.12)

where Prange models the blurring due to positron 
range in image space [17, 18]; Pgeom is the geo-
metric projection matrix containing the geomet-
ric detection probabilities for each voxel and 
detector pair combination; Pattn is a diagonal 
matrix with attenuation factors; Pblur models the 
blurring in sinogram space due to photon pair 
noncollinearity, intercrystal penetration, and 
scattering; and Pnorm is a diagonal matrix with 
normalization factors.

Matrix–vector multiplications with P and PT 
(called forward and backprojection operations) 
are typically the most computationally intensive 
components of statistical reconstructions. Over 
the last decade, considerable amount of research 
has been done to speed up statistical reconstruc-
tion by reducing the time of forward and back-
projections. Many algorithms have been 
developed that explore the symmetry of the scan-
ner geometry [19] or use fast processors such as 
graphic processing units (GPUs) to achieve high 
performance at low cost [20].

It has been shown that the modeling of sino-
gram blurring is important for resolution recov-
ery [16]. The central component of resolution 
recovery is the estimation of detector point spread 
functions (PSF). Such PSFs can be calculated 
analytically [21], estimated from Monte Carlo 
simulations [16], or measured from point source 
data [22, 23]. PSF kernels can either be estimated 
and stored nonparametrically [23], or the PSF 
measurements can be fit to a given model, such as 
asymmetric Gaussian functions [22], and the 
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resulting model parameters can be stored. It has 
also been shown that for Fourier rebinned data, 
PSF kernels can be estimated from point source 
data [23, 24].

Another recent trend is to use an image-space 
PSF model to account for all resolution degrad-
ing effects in the imaging process:

 
P P P P P= norm attn geom psf  

(11.13)

The image-space PSF Ppsf can be estimated 
from an initial reconstruction of point sources 
without any resolution recovery and is easy to 
implement as an image-space blurring operation. 
Recently shift–variant PSFs have been designed 
to model the degradation of image resolution 
toward the edge of the field of view (FOV) [25].

Figure 11.7 shows a Hoffman brain phantom 
data reconstructed with and without PSF model-
ing. The PSF image shows better resolution and 
contrast.

One caveat of PSF modeling is that it can 
result in edge artifacts that have been shown to 
overestimate activity by up to 40 % in phantom 
studies [26]. Methods to mitigate edge artifacts 
include filtering [27] and under-modeling the 
PSF kernels [28]; however these approaches 
come at the expense of reduced resolution 
recovery.

11.3.3  Maximum Likelihood 
Estimation Methods

Once we have the noise model and system model, 
statistical methods can be used to estimate the 
image. Maximum likelihood (ML) is a widely 
used statistical estimation method and has been 
applied to PET image reconstruction.

The likelihood function of the data is the prob-
ability of observing the data given the image. 
Usually the logarithm of the likelihood function 
is used for easier calculation because the loga-
rithm is a one-to-one monotonic function:

 
L x y x( ) = ( )( )log |Prob

 
(11.14)

ML estimation seeks the image that maxi-
mizes the log-likelihood function:

 
x L xML x
� = ( )

³
argmax

0  
(11.15)

The nonnegativity constraint is due to the fact 
that the concentration of radioactivity is not 
negative.

The log-likelihood function under the Poisson 
noise model is given by (omitting the yi! term 
which does not depend on x)

 
L x y y x y x

i

M

i i i( ) = ( ) - ( )
=
å

1

log
 

(11.16)

ML estimation is a classic optimization prob-
lem, where the cost function (or objective func-
tion) is the log-likelihood function (Eq. 11.16). 
There are many numerical algorithms that can be 
used to find the ML estimate of the image, such as 
coordinate ascent or gradient-based methods. One 
of the earliest approaches used for ML PET image 
reconstruction is the expectation–maximization 
(EM) algorithm [29]. EM is a general framework 
to compute the ML solution through the use of 
“complete” but unobservable data and is com-
posed of two steps. The first step, called the 
E-step, involves the calculation of the conditional 
expectation of the complete data, and the second 
step, called the M-step, maximizes this condi-
tional expectation with respect to the image. In 
PET, a very common choice for complete data is 
the number of events detected by the ith LOR that 
are emitted from the jth voxel. Shepp and Vardi 
first applied EM to emission image reconstruction 
[30], and Lange and Carson extended the work to 
transmission image reconstruction [31].

The update equation of EM algorithm for 
emission image reconstruction is given by

 

x
x

xP
P

y

P
j

k j

k

i
i j i

ij
i

j
ij j

k
�

�

�

+

¢
¢

¢
¢ ¢

=
å å

å
1

 

(11.17)

where yi is the number of events acquired in the 
ith LOR, Pij is the element in the system matrix P 
described in the previous section, and x j

k
�  is the 

estimate of the jth image voxel at the kth 
iteration.

The EM algorithm is usually initialized using 
a uniform image. A new image is then calculated 
using Eq. 11.17. This process is repeated until a 
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certain number of iterations are reached. 
Typically a smoothing filter is applied afterward 
to reduce image noise.

It is interesting to note that the EM update 
equation can be derived in several ways. One 
approach is based on using the concavity of the 
Poisson log-likelihood function and Jensen’s 
inequality [32]. In another work, Qi and Leahy 
showed that that EM algorithm is a functional sub-
stitution (FS) method [33]. FS is based on design-
ing a surrogate function at each iteration which is 
easier to maximize than the original function. 
Under suitable conditions (equal function value 
and gradient with current estimated image, surro-
gate function always higher than the original func-
tion), it can be proven that the FS method converges 
to the maxima of the original function [34–36].

It has been shown that EM converges mono-
tonically to the global maximum of the log- 
likelihood function and the image is guaranteed 
to be nonnegative if initialized with a nonnega-
tive image [37]. These nice properties made EM 

a popular algorithm but unfortunately EM con-
verges very slowly. Hundreds or thousands of 
iterations are usually necessary to ensure the con-
vergence of EM. Hudson and Larkin observed 
that the convergence of EM algorithm could be 
significantly speeded up by dividing the projec-
tion data into nonoverlapping blocks, or subsets, 
and applying EM to each subset of the data [38] 
and named this method ordered subsets EM 
(OSEM).

OSEM can speed up the reconstruction almost 
linearly as a function of number of subsets in 
early iterations. As a result, it has been widely 
used in clinical PET and SPECT. The speedup of 
OSEM can be explained in part by viewing EM 
as a preconditioned gradient-ascent method:

 
x x D x L xk k k k+ = + ( )Ñ ( )1

 
(11.18)

where D(xk) is a diagonal matrix with 

D x pjj j
k

i
ij= å/  

and
 
Ñ ( )L xk

 

Fig. 11.7 Hoffman brain phantom reconstructions for various numbers of iterations. Upper images are transaxial 
views, and the lower images are sagittal views. PB parallel-beam, non-PSF [22]
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denotes the gradient of the log-likelihood calcu-
lated at the kth iteration image. When the image 
is far away from the solution, the gradient com-
puted from a subset of the data provides a satis-
factory direction for increasing the log-likelihood 
function value [39].

Although OSEM is fast in the beginning, it is 
not guaranteed to converge to the ML solution, 
and the convergence depends on the selection of 
the subsets. In the original OSEM paper, subsets 
are chosen such that the detection probability of 
each voxel is equal for each subset, which is 
called subset balance. It has been proven that 
with consistent data and under the condition of 
subset balance, OSEM converges to the ML solu-
tion [38]. In practice subset balance is difficult to 
achieve due to differences in sensitivity and 
attenuation. A common practice is to choose the 
projections in each subset with maximum angu-
lar separation to avoid directional artifacts. 
Another OSEM algorithm convergent with con-
sistent data is rescaled block-iterative EM 
(RBI-EM), in which the OSEM equation is writ-
ten in gradient-ascent form and a voxel- 
independent scaling factor is used to avoid the 
requirement of subset balance [40].

In general PET data is not consistent due to 
noise, in which case OSEM usually enters a limit 
cycle [39]. One way to make OSEM converge 
with noisy data is to reduce the number of sub-
sets: however convergence is then slowed down. 
Alternatively, we can use OSEM in the earlier 
iterations and switch to a convergent algorithm in 
later iterations [41].

Among other ML estimation approaches, 
Browne and De Pierro proposed a row-action 
maximum likelihood algorithm (RAMLA) [42], 
where the stepsize ηk at the kth iteration satisfies 
the following conditions:
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RAMLA converges to ML solution if the log- 
likelihood function is strictly concave [42]. 
However the convergence rate can be very slow.

Another way to achieve convergence is 
through the use of an augmented cost function 

[39], and an example of this method is the con-
vergent OSEM algorithm (COSEM) [43].

Despite its convergence issues, OSEM is still 
by far the most popularly used iterative recon-
struction algorithm in clinical nuclear medicine. 
Figure 11.8 shows OSEM images from a monkey 
brain phantom reconstructed using different 
numbers of iterations. It shows that image noise 
increases quickly as number of iterations is 
increased. As a result, clinical OSEM images are 
usually reconstructed using less than five itera-
tions, and a smoothing filter is applied post- 
OSEM to reduce image noise.

In Fig. 11.8 we also show an image recon-
structed using the maximum-a-posteriori (MAP) 
method. In MAP reconstruction regularization is 
used to ensure a stable solution is reached, as 
demonstrated by the MAP image after 25 itera-
tions, which shows fine structures and low noise. 
We will introduce MAP reconstruction methods 
in the next section.

11.3.4  Maximum-a-Posteriori 
Estimation Methods

11.3.4.1  Prior Functions
It has been observed that with ML estimators such 
as EM or OSEM, iterating beyond a certain point 
will dramatically increase noise and decrease 
image quality [44]. The reason is the inherent ill-
posedness of the PET inverse problem. The sys-
tem matrix is ill-conditioned so that small 
differences in the data (which naturally occur due 
to photon counting noise) produce large changes 
in the ML solution. It can be shown that the vari-
ance of the estimator increases as voxel sizes are 
reduced [33]. The noise in the OSEM image can 
be controlled by stopping the algorithm before 
convergence [45] or post- smoothing the image 
after many iterations [46]. An alternative approach 
to dealing with the instability of the ML problem 
is to use regularization in image reconstruction. 
Here we take the Bayesian formulation and view 
the regularization function as the log of the prior 
function. Thus we have the following maximum-
a-posteriori (MAP) estimator:

11 PET Image Reconstruction: Methodology and Quantitative Accuracy
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where L(y|x) is the log-likelihood function and 
p(x) is the log-prior (or penalty) function.

MAP estimation allows us to use other infor-
mation about the image such as smoothness or 
anatomical information in the form of the prior 
function to improve image quality. The effect of 
the prior distribution is to choose among those 
images that have similar likelihood values the 
one that is most probable with respect to the 
prior.

There are many ways of designing the prior 
function for the image. One simple method is to 
ignore the statistical dependence of the pixels and 
treat each one separately. Independent Gaussian 
[21] and Gamma models [47] have been pro-
posed. For these models, we need to estimate the 
mean image, which can be difficult and intro-
duces significant bias. Several methods have 
been developed to estimate the mean image [48, 
49]. The attraction of this model is that closed 
form update equations can be found in the gener-
alized EM framework.

Independent voxel models are of limited value 
since the information we typically seek to cap-
ture in the prior is some degree of piecewise 
smoothness in the image. In order to model the 
local smoothness of the image, we can use 
Markov random field (MRF) models or Gibbs 
distributions [50]. The general form of a Gibbs 
distribution is given by
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where Z is a normalization factor and U(x) is the 
Gibbs energy function which is the sum of poten-
tials. Each potential is defined on a subset of vox-
els called a “clique.” The cliques are composed of 
neighboring voxels that are mutual neighbors 
[51]. β is a hyperparameter which controls the 
image smoothness.

The Gibbs distribution allows us to specify a 
prior in terms of local interactions since all 
MRFs have the property that the conditional 
probability of any voxel in the image depends 
only on the values of the voxels in a local neigh-
borhood of that voxel. This not only allows us to 
model the desired local properties but also leads 

OSEM 5 iterations OSEM 10 iterations OSEM 15 iterations

OSEM 20 iterations OSEM 25 iterations MAP 25 iterations

Fig. 11.8 Monkey brain phantom images reconstructed using OSEM with different number of iterations and MAP with 
25 iterations
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to computationally tractable MAP reconstruc-
tion algorithms.

To define a MRF prior, we need to specify the 
form of statistical interaction (or conditioning) 
between neighboring voxels. In image recon-
struction, the potential functions are usually 
defined on pairwise voxels:
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with the constraint that ϕ(xj−xk) ≥ 0 and that the 
function is monotonically nondecreasing in 

x xj k− .

The function ϕ(xi−xj) determines the proper-
ties of the prior. The simplest one is the quadratic 
penalty: ϕ(xi−xj) = (xi−xj)2. When the image has 
the same value at each voxel, the potential func-
tions and hence the energy function U(x) are 
zero, and the probability density function 
P(x) = 1/Z exp(−βU(x)) is at its maximum value. 
As the difference between voxels increases, so 
does U(x), with P(x) decreasing correspondingly, 
indicating less likely images. The advantage of 
this weighting is that it tends to produce the most 
natural-looking images. However, quadratic prior 
functions are limited in their abilities to identify 
sharp changes in intensity. A large number of 
alternative functions have been explored that 
reduce the penalty for larger differences such as 
the generalized p-Gaussian model [52] and the 
Huber prior [16].

Recently total variation (TV) regularization 
has become increasingly popular in medical 
imaging, especially CT image reconstruction 
[53], but it can also be applied to PET and SPECT 
image reconstruction [54–56]. The TV prior is 
equivalent to the TV norm that is now commonly 
used in the context of sparse imaging [57].

11.3.4.2  Non-convex and Anatomical 
Priors

The above prior functions are convex. In order to 
further encourage sharp edges, non-convex func-
tions have also been proposed [58]. Recently a 
relative distance prior has been proposed and 
used in clinical PET image reconstruction  

[59, 60]. The general goal of these functions is to 
assign lower probability to images that are not 
locally smooth but without over-penalizing 
occasional large changes that might correspond, 
for example, to organ boundaries.

When high-resolution anatomical information 
is available from co-registered MR or CT images, 
it is also possible to incorporate it into the prior 
function [61]. While anatomical and functional 
images clearly give very different views on the 
human body, it is also true that functional images, 
whether they represent metabolism, blood vol-
ume, or receptor binding, will exhibit a spatial 
morphology that reflects the underlying anatomy. 
It is reasonable to assume that most tracers exhibit 
distinct changes in activity across tissue boundar-
ies, while inside each region the distribution is 
smooth, unless there is evidence to the contrary in 
the functional data itself. The important thing is 
that we do not force the abrupt change of activity 
across the boundaries but rather model changes in 
these locations as more likely. There are two main 
approaches to using anatomical information: In 
the first approach, edge or region information is 
used to penalize activity changes near the bound-
aries to a lesser degree. The other approach maxi-
mizes an information- based similarity measure 
between the anatomical and reconstructed func-
tional image, such as the Kullback–Leibler (KL) 
distance, joint entropy (JE), or mutual informa-
tion (MI) [61].

Figure 11.9 shows brain PET images recon-
structed using FBP, MLEM, and MAP with JE 
prior. The MAP image has better resolution 
which clearly shows the fine structures in the 
brain.

Although there is improvement in quantitation 
and detection performance when the anatomical 
prior provides accurate information about the 
location of boundaries of lesions, these advan-
tages are largely lost when the quality of the ana-
tomical image deteriorates or when there is a 
mismatch between anatomical and functional 
boundaries. In addition, the resolution of images 
reconstructed using anatomical priors is anisotro-
pic and spatially variant, making them more chal-
lenging to interpret. Anatomical priors have not 
been widely applied to clinical PET studies.
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11.3.4.3  MAP Reconstruction 
Algorithms

Most of the optimization algorithms used for 
ML can be extended to MAP estimation. When 
EM is applied to MAP, the M-step has a closed 
form solution only when the prior function is 
spatially independent. For spatially coupled pri-
ors, an iterative method such as gradient or 
coordinate ascent can be applied in the M-step 
[63]. Green proposed the “one-step-late” (OSL) 
approach where the partial derivatives of the 
prior function are evaluated using the current 
estimate [64]. However the OSL method does 
not in general converge to the MAP solution, 
and the estimated image is not guaranteed to be 
nonnegative.

Another approach is to apply the FS method-
ology and design separable surrogate functions 
for the prior function [65]. In that case, a closed 
form solution can be found for the M-step.

Standard gradient-based methods can also be 
applied to the MAP estimation problem. For 
example, the preconditioned conjugate gradient 
algorithm has been used for PET image recon-
struction [66]. The preconditioner is critical for 
the convergence of the algorithm. A simple diag-
onal preconditioner derived from the EM algo-
rithm has been shown to be very effective [67]. 
Several methods have been proposed to approxi-
mate the ideal preconditioner (the inverse of the 
Hessian matrix), including using the inverse of 

the diagonal of the Hessian matrix [68], Fourier- 
based preconditioners [69], and matrix factoriza-
tion [70].

Unlike the EM algorithm, the nonnegativity 
constraint in gradient-based methods needs to be 
handled explicitly. This can be achieved by sev-
eral strategies, including restricting the step size 
[71], bent-line search followed by a second-line 
search [72], or using the active set [66]. Penalty 
functions [67] and interior point methods [68] 
have also been used.

MAP estimation problem is better condi-
tioned than ML; thus reconstructed images are 
less noisy compared to ML. The convergence 
rate is also much faster, and good quality 
images can be reconstructed with tens of itera-
tions instead of hundreds or thousands of itera-
tions as in ML-EM. Another advantage of MAP 
estimators is that image quality can be con-
trolled through carefully designed prior func-
tions [33, 73]. We note that when the prior 
function contains data- dependent terms, the 
estimator is no longer truly a MAP estimator 
(these are typically referred to as penalized 
likelihood estimators since the second term is 
no longer a prior but a penalty that penalizes 
image roughness).

Figure 11.10 compares FBP with model-based 
statistical reconstruction of a monkey brain phan-
tom data. The superior image quality resulting 
from the statistical algorithm is clear.

Fig. 11.9 Sagittal and coronal slices of MRI images and PET reconstruction with FBP, ML, and MAP (using JE prior) [62]
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11.3.5  Analysis of Image Properties

11.3.5.1  Image Resolution
Image properties of ML and MAP estimators are 
more difficult to analyze compared to analytic 
methods, because these methods are nonlinear 
and have large image and sinogram dimensions. 
For statistical image reconstruction, the system 
response is shift variant, especially for 3D sys-
tems. One way to quantify image resolution is by 
using the local impulse response (LIR) [75, 76]:
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where μ(x) is the mean of the estimated image 
when the true image is x. ej denotes the unit vec-
tor where the jth voxel is 1 and all other voxels 
are 0. A good approximation to the mean of the 
estimated image can be obtained from the esti-
mation of the noiseless data [76]. Analytic 

approximations of the LIR function for MAP 
estimators can also be derived [76]. The compu-
tation of the LIR involves the inversion of a large 
matrix composed of the Fisher information 
matrix (FIM) and the Hessian matrix of the prior 
function, an operation that is impractical for real 
data. Several Fourier transform-based approxi-
mations to the FIM have been proposed to make 
the inversion practical [77–79].

Interestingly, it has been shown that image 
resolution gets worse in regions with higher 
activity [76]. One can take the resolution analysis 
one step further and design spatially-variant 
weightings for the prior function to achieve 
desired image resolution, for example, to make 
the contrast recovery coefficient (CRC, defined 
as the peak of the LIR) spatially uniform [76, 77].

Not only is the resolution spatially variant for 
MAP, it is also non-isotropic. This results in dis-
tortion of the activity shape. Stayman and 
Fessler proposed to estimate the coefficients in 

a b c

d e f

Fig. 11.10 Monkey brain phantom image from 60 scans. (a–c) FBP and (d–f) MAP. (a) Reconstructed from summed 
data. (b) From 1 scan. (c) Variance image [74]
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the prior function to match a predefined target 
response function in shift-invariant imaging 
systems [73]. Later the method was generalized 
to more realistic, shift–variant PET and SPECT 
systems [80].

The above methods require iterative computa-
tion of the coefficients in the prior function. A 
simple, non-iterative method has been used in 
PET image reconstruction to achieve count- 
independent resolution [81]. The resulting image 
resolution is roughly data-independent, thus can 
be pre-calculated for different values of the 
hyperparameter β using phantom measurements 
or simulated data. In real patient or animal scans, 
the hyperparameter β can be selected for desired 
resolution [81]. Figure 11.11 shows the calibra-
tion result and measured resolution from a vali-
dation phantom scan. It shows that the predicted 
(ED) resolution is very close to the actual mea-
sured resolution. The slight mismatch is caused 
by the line-source location differences in calibra-
tion and validation scans.

11.3.5.2  Image Noise
Analytic expressions of image noise for MLEM 
have been derived and shown to be accurate for 

low-noise data [82]. Similar analyses have also 
been performed for MAP reconstructions [77, 
83]. These methods can be used to characterize 
the reconstructed image and optimize imaging 
systems and reconstruction algorithms. In gen-
eral, images with higher resolution also have 
higher noise; thus the image reconstruction 
approach needs to balance resolution and noise in 
order to achieve optimal image quality.

11.3.5.3  Image Property Measurements
In practice, phantom scans are frequently used to 
measure image resolution, contrast, and noise. 
For resolution measurements a point source or 
line source is typically scanned, and the full 
width at half maximum (FWHM) is measured 
from the reconstructed image profile through the 
source. However, when evaluating statistical 
reconstruction algorithms, the point source or 
line source needs to be surrounded by a warm 
background to avoid potential biases caused by 
the nonnegativity constraint. Figure 11.12 shows 
the resolution vs. noise plots measured from an 
8.3 cm diameter cylindrical phantom on a 
microPET Focus220 scanner. Five needles were 
inserted into the phantom along a line with 
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0.8 cm spacing in radial direction. One needle 
was placed at the center of the cylinder. The outer 
and inner diameters of the needles were 0.76 mm 
and 0.28 mm, respectively. The phantom was 
filled with a 69.8 MBq 18F solution. The ratio 
between the concentrations of the activity in the 
needles and the background was 300:1. The 
phantom was placed at the center of the field of 
view and scanned for 15 min. Data were recon-
structed using several algorithms including FBP, 
3DRP, OSEM, and MAP with all the corrections. 
A large 3D region of interest (ROI) was selected 
in the background. The noise of the image is 
defined as the standard deviation of the 3D ROI 
normalized by the mean of the same ROI. Radial 
resolutions were calculated by selecting a small 
region around the line source 3 cm from the cen-
ter in each image plane and fitting the profile 
through the peak to a Gaussian model. The 
FWHM of the 10 image planes at the axial center 
was averaged as the resolution of the image. For 
MAP reconstruction, four different smoothing 
parameters were used to achieve different resolu-
tion. System model using block and non-block 
blurring kernels was used for MAP reconstruc-
tions. The block blurring kernels model the PET 
scanner geometry more accurately. For OSEM a 
variety of number of iterations, ranging from 4 to 

20, were used. FBP and 3DRP images were 
reconstructed with a ramp filter, followed by 
smoothing using Gaussian filters with different 
FWHM. The result shows that MAP with the 
block blurring kernels has the highest spatial res-
olution (smallest FWHM) at a given noise level, 
compared to other methods.

11.4  PET Image Quantitation

PET is a highly sensitive, quantitative molecular 
imaging technology, which is frequently used to 
measure the spatial and occasionally the tempo-
ral distribution of the radiotracers injected into 
the human or animal body. Accuracy of the PET 
measurement depends on many factors including 
patient physiology, scanner technology, and 
reconstruction method. Here we briefly describe 
the PET quantitation issues related to image 
reconstruction.

11.4.1  PET Data Corrections

The raw PET data is not only noisy but also dis-
torted and corrupted during the acquisition pro-
cess. Several corrections need to be applied in 
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Fig. 11.12 Image resolution and noise measured using 
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order to obtain quantitatively accurate and 
artifact- free PET images.

11.4.1.1  Normalization
In PET, the detector response varies due to the 
intrinsic properties of the detectors, geometry 
and changing count-rate [84]. Normalization is 
used to compensate for these variations. Accurate 
normalization is essential for reducing artifacts 
and for accurate quantitation in PET. Modern 
PET and PET/CT scanners usually use 
component- based approaches, where the normal-
ization factors are decomposed into several fac-
tors, for example, detector efficiencies, geometric 
factors, and dead time factors [84–86]. To mea-
sure the components, a known source of activity 
is scanned, and then the normalization factors are 
estimated by comparing the ideal numbers of 
coincidences and those actually measured. 
Rotating rod sources, uniform plane sources, and 
uniform cylindrical sources have been used for 
normalization.

The normalization factors can be estimated 
sequentially. For example, the detector effi-
ciencies can be estimated first, and then the 
data can be corrected using these estimated 
detector efficiencies before estimating the geo-
metric factors [86]. Alternatively we can jointly 
estimate the count-rate-independent factors 
using statistical estimation methods, where the 
statistical noise can also be taken into account 
to significantly reduce the number of events 
needed for normalization scans [85]. Further 
discussion on detector normalization can be 
found in Chap. 10.

11.4.1.2  Attenuation Correction
Due to the interactions between photons and 
body tissues through Compton scattering and 
photoelectric absorption, a substantial fraction of 
the 511 keV photons resulting from positron–
electron annihilation is attenuated in the body, 
and the number of counts along the directions in 
which the photons originally travel is reduced. It 
has been estimated that as much as 80 % of the 
photon pairs emitted from the center of the 
human brain are lost due to attenuation [87] and 
the number is even higher for body imaging.

On dedicated PET scanners, the attenuation cor-
rection factors are usually measured using an exter-
nal source. Two scans are needed for this purpose: 
a blank scan in which the FOV is empty and a 
transmission scan, which is taken with the subject 
in the scanner. Correction factors can be computed 
as the ratio of blank to transmission data. The blank 
scan can be acquired for a long time to reduce the 
noise; however the transmission scan is usually 
short and the resulting data is therefore noisy. As a 
result, the calculated attenuation correction factors 
are quite noisy. To address this problem, the recon-
struction–reprojection method has been proposed. 
In this method, an image of attenuation coefficients 
is computed, and attenuation correction factors are 
calculated from the projection of this image [88].

With the development of combined PET/CT 
and PET/MR scanners, it is possible to use the 
coregistered CT or MR image to calculate the 
attenuation correction factors. For CT it is rela-
tively straightforward since the CT image is a 
measurement of the attenuation coefficient of the 
body, although with a lower, poly-energetic spec-
trum. It has been shown that a piecewise linear 
transform can be used to convert the CT 
Hounsfield units (HU) to the attenuation coeffi-
cients of 511 keV photons [89]. For MR the con-
version is more difficult because of the lack of 
signal from the bone [90]. PET attenuation cor-
rection using MR image is still a very active 
research area. See Chap. 9.

11.4.1.3  Scattered and Random 
Events

The dominant interaction between 511 keV pho-
tons and the surrounding atoms is Compton scat-
tering [91]. In 3D PET the portion of scattered 
coincidences in all detected events can be as high 
as 30–50 % compared to 10–15 % in the 2D case 
[92]. Scattered events are mispositioned in the 
recorded data, which introduce a smooth back-
ground in the reconstructed PET image.

The scatter distribution depends on the emis-
sion source distribution, the scattering medium, 
and the detector geometry. Deterministic algo-
rithms for calculating scatter distributions have 
been proposed [93, 94]. With the computational 
power available today, it is also possible to  

B. Bai and E. Asma

http://dx.doi.org/10.1007/978-3-319-40070-9_10
http://dx.doi.org/10.1007/978-3-319-40070-9_9


277

estimate the scatter distribution using Monte Carlo 
simulations [95]. Since the distribution of scat-
tered events is smooth, deterministic methods give 
reasonable results in most cases and are widely 
used, especially in commercial PET scanners [94].

A random event is recorded when two pho-
tons unrelated to each other are detected within 
the coincidence timing window. The fraction of 
random events depends on the amount of activity 
in the body and can be significant for studies 
using large amounts of radioactivity. Usually a 
“delayed window” method is used to estimate 
the amount of random events [12]. The measured 
“delayed events” are usually very noisy, and an 
iterative method has been proposed to estimate 
its mean [67].

Figure 11.13 shows a typical sequence of 
corrections applied to the data before it is input 
to a reconstruction algorithm. For analytic 
reconstruction methods, these corrections are 
applied to the data before the reconstruction. 
With statistical reconstruction methods, pre-
correction changes noise properties of the data, 
and the exact distribution of the corrected data 
is no longer Poisson and difficult to calculate. 
A better approach for statistical reconstruction 
methods is to incorporate the corrections in the 
system model, as previously presented.

11.4.2  PET Image Calibration

Value in the PET image represents the concentra-
tion of the radioisotope, usually in the units of 

Bq/ml or nCi/cc. For clinical PET/CT, a cross 
calibration procedure is usually performed. 
During cross calibration, a source (typically 
cylindrical 18F or 68Ge/68Ga source) with known 
activity concentration is scanned in the scanner. 
A large ROI is drawn in the reconstructed image, 
and the mean of this ROI is measured to calculate 
the scaling factor that converts PET image values 
to standard units.

The decay of the radioactive nucleus and 
branching fraction also need to be considered 
when quantifying the PET image. PET scanner 
calibration and quality control procedures are 
reviewed in Chap. 10.

11.5  Recent Developments

11.5.1  Time of Flight PET

In time-of-flight (TOF) PET, the arrival times of 
the two 511 keV photons are measured. By calcu-
lating the difference between the arrival times, 
we can narrow down the location of the source to 
a portion of the LOR.

As with non-TOF-PET, both analytic and 
model-based statistical methods can be used to 
reconstruct TOF-PET data, with similar advan-
tages and limitations. The additional TOF infor-
mation can be used to improve image quality, 
especially for large patients.

All the model-based statistical reconstruction 
algorithms described in Section 3 can be extended 
directly to TOF data. The only changes are the 
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following: (1) there is one more dimension of the 
data to represent TOF; (2) the system matrix 
needs to be modified to include TOF. For analytic 
reconstruction algorithms, TOF changes the 
reconstruction formula. The following discussion 
focuses on 2D case, and similar methods can also 
be derived for 3D TOF-PET.

2D TOF-PET data can be expressed as:

 

p s t f s l s

l h t l dl

, ,f f f f

f

( ) » - +

+ -( )
-¥

¥

ò ( sin cos , cos

sin )   
(11.24)

where t is the TOF variable. h(τ) is the TOF ker-
nel, which is usually assumed to be a Gaussian 
function with FWHM determined by the system 
hardware and software.

It can be shown that the 2D Fourier transform 
of the 2D TOF sinogram in one projection is the 
FT of the image weighted by the 1D FT of the 
TOF kernel. FBP-type algorithms can be derived 
for TOF data. A general form of these methods in 
frequency domain is [96]
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where F(v) is the 2D FT of the image, P(ϕ,v) is 
the 2D FT of the TOF projection at angle ϕ, 
W(û, v) is a filter, which represents a weighting 
scheme of the projection data in frequency 
domain, u� = -( )sin ,cosf f  is the unit vector in 
the projection direction, and H(ω) is the 1D FT of 
the TOF kernel. Apparently the algorithm 
depends on the choice of the filter W(û, v), which 
must satisfy the condition that
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Due to the redundancy of the TOF data, FBP 
algorithm does not have a unique formula. In 
case of noiseless data, they give the same results. 
However, due to the noise of the data, the perfor-
mance of the algorithms using different filters is 
not the same. A widely used method is confi-

dence weighting, where the chosen filter is 
W v H vu u� �,( ) = ×( ) .

Given the current timing resolution of TOF- 
PET scanners (~500 pico-seconds, or 7.5 cm 
FWHM), the spatial resolution of TOF-PET 
images is essentially the same as non-TOF- 
PET. On the other hand, using the TOF informa-
tion can improve the SNR of the image [96–98]. 
The improvement of SNR is approximately pro-
portional to D/h, where D is the diameter of the 
object and h is the TOF spatial resolution. 
However TOF reconstruction is much slower due 
to the large dataset. Recently Cho et al. devel-
oped a generalized projection slice theorem and 
proposed a unified framework for mapping 
between different datasets, allowing us to explore 
and optimize the use of TOF and 3D PET infor-
mation [99, 100]. Figure 11.14 displays the map-
pings between PET datasets.

Two Fourier rebinning algorithms of time-of-
flight data (FORET) have been developed [100]. 
The 3D TOF data can be rebinned into 3D non-
TOF data using FORET3D (or 2D non-TOF data 
using FORET2D), which is a weighted average 
of the TOF data in Fourier transform domain. 
The SNR of the data depends on the weighting 
scheme. Under reasonable assumptions, it can be 
proven that the best linear unbiased estimator of 
the 3D non-TOF data is achieved when using 
FORET3D to rebin 3D TOF data and the weight-

3D TOF
Data

3D non TOF
Data

2D TOF
Data

2D non TOF
Data

A

C

E

DB

Fig. 11.14 Possible mappings between different PET 
data [100]
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ing factors equal to the square of the Fourier 
transform of the TOF kernel [97]. The SNR gain 
is approximately a constant in this case. For 
FORET2D, which rebins 3D TOF data into 2D 
non-TOF data, it can be shown that the SNR gain 
is roughly constant for each 2D sinogram, which 
can be calculated very accurately [24]. 
Figure 11.15 shows a patient data reconstructed 
from non-TOF, FORET2D, FORET3D, and 
TOF data using a statistical algorithm. Table 11.1 
shows the noise in the images measured from an 
ROI in the liver of the patient image in Fig. 11.15. 
The smoothing parameters were selected such 
that all the images have the same resolution 
(6 mm FWHM). These results show that the 
quality of FORET3D image is similar to TOF 
image, while FORET2D image is noisier than 
FORET3D, but still better than the non-TOF 
image. Since FORET uses FFT, the computation 
is very fast. The reconstruction speed of 
FORET3D is similar to non-TOF reconstruction, 
which is about five times faster than 3D TOF 

reconstruction. FORET2D can further increase 
the speed by a factor of 5, at the expense of more 
noise in the image.

11.5.2  Parametric Image 
Reconstruction

We focus on the reconstruction of static data in this 
chapter. PET is a dynamic modality where data can 
be acquired continuously for a period of time and 
useful kinetic parameters can be calculated from it 
[101]. A straightforward approach is to divide the 
data into many frames, reconstruct each frame, and 
then calculate the kinetic parameters (either voxel-
wise or ROI-wise) from the time–activity curves 
extracted from these images. Another class of 
image reconstruction methods are designed to 
reconstruct kinetic parameters from the measure-
ments directly [102–104]. Figure 11.16 shows a 
whole-body FDG patient study. The patient was 
stepped through the scanner twice and Patlak 
image calculated from the list-mode data. Static 
PET images were also calculated from the two 
passes. We note that although the visual difference 
between Patlak image and static images is subtle, 
the Patlak image is a voxel-wise quantitative image 
and the values are more informative. These direct 
and indirect parametric reconstruction methods 
require the estimation of the arterial input function 
which can either be measured during the scan by 

Fig. 11.15 FDG patient images. Left to right: non-TOF MAP, FORET2D + MAP, FORET3D + MAP, TOF MAP [24]

Table 11.1 Mean and noise measurements from the 
patient image in Fig. 11.15 [24]

Method Mean SD %SD

TOF 0.577 0.109 18.9

FORET-3D 0.569 0.110 19.3

FORET-2D 0.617 0.151 24.5

Non-TOF 0.568 0.155 27.3

11 PET Image Reconstruction: Methodology and Quantitative Accuracy
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arterial blood sampling or from reconstructed mul-
tiframe images. In Fig. 11.16, the arterial input 
function was estimated using a hybrid approach 
which combines a population- based approach with 
a simplified exponential model [104].

 Conclusions

The last two decades have seen tremendous 
progress in PET image reconstruction. Once 
considered slow and only used for research 
studies, model-based statistical reconstruction 
methods are now applied in nuclear medicine 
clinics every day for tumor detection and stag-
ing, assessment of therapy response, and other 
applications. By combining an appropriate 
noise model with an accurate system model, 
we are able to improve image resolution and 
noise properties, which increase the sensitiv-
ity and specificity of clinical studies. There 

has also been a lot of work in regularized 
reconstruction algorithms where we can effec-
tively control image properties and optimize 
them for different tasks by designing appro-
priate regularization functions that might also 
include anatomical information. This is in 
contrast to the analytic methods, where the 
only control options are the ramp filter cutoff 
frequencies and any post-filters applied to the 
images. As a result, optimal results can be 
obtained for different imaging applications.

Coupled with the development of PET 
instrumentation, including the new detector 
material and data correction techniques, PET 
image  quality and quantitative accuracy have 
improved significantly. Statistical PET image 
reconstruction is still an active research field, 
especially in TOF- PET, MR-PET, and para-
metric imaging.

Fig. 11.16 Whole-body FDG patient images. From left to right: first frame, second frame, Patlak slope, %DSUV [102]
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