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Abstract
Formation of nanostructures inside epoxy thermosets by the inclusion of appro-
priate block copolymers (BCPs) has been emerged as a promising approach to
optimize epoxy thermoset material properties for potential applications. For the
last two decades, tremendous efforts have been made by researchers to create
ordered or disordered nanostructures in epoxy thermosets by the incorporation of
reactive or nonreactive BCPs in an attempt to develop toughened thermosets
suitable for specific applications. This chapter briefly reviews the different mech-
anisms of phase separation in epoxy/BCP systems, such as self-assembly and
reaction-induced microphase separation (RIMPS), and outlines some of the
important features of nanostructured morphologies and their influence on fracture
toughness of fabricated products.
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Introduction

Epoxy resins, probably the most versatile family of structural adhesives, are exten-
sively used as matrices for the fabrication of high-performance polymeric materials for
engineering applications, especially in automobile and aerospace industries (Pascault
and Williams 2010). Their global market size is forecasted to reach ca. US$ 10.55
billion in 2020 from US$ 7.1 billion in 2014, registering an increase of ca. 50% in a
6-year period (www.transparencymarketresearch.com/epoxy-resins-market.html). It is
widely recognized that the intrinsic brittleness, considered as the main limitation
which restricts epoxy thermosets to be used as potential materials for many engineer-
ing applications, can be alleviated by the incorporation of appropriate amount of
judiciously selected functionalized elastomers and engineering thermoplastics but at
the expense of stiffness and/or use temperature. Nowadays, researchers and industri-
alists are more interested in block copolymer (BCP) modified tough thermosetting
systems, which neither compromise with stiffness nor with Tg. In general, amphiphilic
BCPs have at least one of their blocks miscible with epoxy thermoset while reactive
BCPs contain functional groups in one of the blocks to facilitate specific interactions
which enhance chemical compatibility with the matrix.

The pioneering work of Hillmyer et al. (1997) on the self-assembly and polymer-
ization of epoxy resin/BCP system reported that the cross-linking of the epoxy matrix
without macrophase separation of BCP yields optically homogenous materials
containing nanoscopic core/shell-like morphology. In the following year, Hillmyer
and coworkers (Lipic et al. 1998) established that a sequence of morphologies such as
lamellar, cylindrical, cubic, and disordered micelles could be achieved by varying the
composition of epoxy/BCP system without a curing agent, while cured system retains
nanostructure without undergoing macrophase separation. This remarkable discovery
instigates enormous interest among researchers and opens a fundamentally new class
of nanostructured epoxy/BCP systems, using a novel method of templating ordered
structures in thermosetting matrix on a nanometer scale. This fascinating property of
BCP to self-assemble into highly ordered nanostructures in thermosetting matrix make
them suitable candidates for the fabrication of nanoporous materials having many
potential applications including templating, surface patterning, support for catalysts,
and size-selective separation. Figure 1 shows the TEM micrographs of various
nanostructured morphologies generated in epoxy/BCP blends (Dean et al. 2003).
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Eventually, various researchers have attempted several interesting variations to
this protocol and revealed that significant improvements in fracture toughness can be
achieved without compromising the stiffness, modulus, and Tg by incorporation of a
small amount of microphase-separated amphiphilic BCP into epoxy thermoset. In
the succeeding years, researchers were successful to develop another promising
approach to generate nanostructures in thermosetting matrix through a mechanism
called reaction-induced microphase separation (RIMPS). These two approaches,
viz., self-assembly and RIMPS, now regarded as convenient and time-proven
means to create nanostructures in thermosetting matrix, could be employed to
develop epoxy system with remarkably enhanced toughness.

Mechanism of Phase Separation

Self-Assembly

The creation of self-assembly nanostructures discovered by Hillmyer and colleagues
is regarded as one of the most outstanding achievements in this field. In this
approach, precursors of epoxy form a selective solvent for BCPs, which usually
contain “epoxy-philic” and “epoxy-phobic” blocks. Before curing reaction,
depending on the blend composition, BCPs self-assemble into micellar structures so
that the mixture exhibits distinct morphologies with lamellar, bicontinuous, wormlike,

Fig. 1 TEM images showing various nanostructured morphologies generated in epoxy/BCP
blends (Reprinted with permission) (Dean et al. 2003)
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spherical, and other interesting structures. Figure 2 shows the morphologies derived
from the self-assembly of BCP in epoxy thermosets (Ritzenthaler et al. 2002).

In addition to blend composition, other parameters like molecular weights, block
length, and block-block and block-matrix interaction parameters have profound influ-
ence on the type of self-organized structures. These preformed structures are fixed
through the subsequent cross-linking with the introduction of hardeners, when curing
reaction lock in the generated morphology. Note that there may be small changes in the
nanostructures before and after curing reaction. Table 1 displays some of the epoxy/
BCP systems which form nanostructured morphology via self-assembly.

Reaction-Induced Microphase Separation

In contrast to self-assembly approach, the RIMPS technique does not necessitate the
formation of self-organized micellar structures before curing reaction. In this case,
BCP will be miscible with the epoxy precursors before curing reaction, and a part of
BCP gets microphase separated during curing because the polymerization increases
the molecular weight of the epoxy thermoset and thereby reduces the combinatorial
entropy contribution towards the free energy of mixing.

It turned out that the formation of nanostructured morphologies in particular is
affected by the competitive kinetics between polymerization and phase separation
and the confinement of miscible polymer chains of BCP on the phase-separated
sub-chains. Finally, it is worth noting that the difference in block architecture of BCP

Fig. 2 TEM images (a) showing “raspberry-like” morphology for epoxy/SBM cured with
MCDEA (b) the same system cured with DDS showing macrophase separation (Reprinted with
permission) (Ritzenthaler et al. 2002)
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Table 1 Epoxy/BCP systems which form nanostructured morphology via self-assembly

Block copolymer Hardener References

Poly(ethylene oxide)-b-poly
(ethylene-alt-propylene) (PEO-b-
PEP)

4,40-methylenedianiline (MDA) Lipic et al. (1998)

PEO-b-PEP, poly(methyl
methacrylate-ran-glycidyl
methacrylate)-poly(2-ethylhexyl
methacrylate) (P(MMA-ran-
GMA)-PEHMA)

Phenol novolac (PN) Dean et al. (2003)

Polystyrene-b-polybutadiene-b-
poly(methyl methacrylate) (SBM)

4,40-Methylenebis(3-chloro-2,6-
diethylaniline) (MCDEA),
4,40-diaminodiphenyl sulfone
(DDS)

Ritzenthaler et al.
(2002)

SBM MCDEA Ritzenthaler et al.
(2003)

Poly(ethylene glycol-co-propylene
glycol) (PEO-b-PPO), poly
(ethylene glycol)-block-poly-
(propylene glycol)-block-poly
(ethylene glycol) (PEO-b-PPO-b-
PEO)

MDA Mijovic et al.
(2000)

Poly(methyl acrylate-co-glycidyl
methacrylate-b-polyisoprene)

MDA Guo et al. (2003)

Poly(ethylene oxide)-block-poly
(dimethylsiloxane) (PEO–PDMS)

MDA Guo et al. (2006a)

PEO-b-PPO MDA Guo et al. (2006b)

Poly(hexylene oxide)-b-poly
(ethylene oxide) (PHO-PEO)

PN Thio et al. (2006)

Epoxidised styrene-b-butadiene
(SepB)

MCDEA Serrano et al.
(2006)

Poly(ε -caprolactone)-b-
polydimethylsiloxane-b-poly(ε
-caprolactone) (PCL-b-PDMS-b-
PCL)

4,40-Methylene bis(2-chloroaniline)
(MOCA)

Xu and Zheng
(2007a)

Poly(hydroxyether of bisphenol A)-
b-polydimethylsiloxane (PH-alt-
PDMS)

4,40-Diaminodiphenylmethane
(DDM)

Gong et al. (2008)

PEO-b-PEP 1,1,1-tris(4-hydroxyphenyl)ethane
(THPE)

Thompson et al.
(2009) and Liu
et al. (2008, 2010)

Poly(2,2,2-trifluoroethyl acrylate)-
block-poly(ethylene oxide)
(PTFEA-b-PEO)

MOCA Yi et al. (2009)

Polystyrene-block-poly(methyl
methacrylate) (PS-b-PMMA)

DDM Blanco et al.
(2010)

Poly(ε -caprolactone)-block-poly
(ethylene-coethylethylene)-block-
poly(ε -caprolactone) (PCL-b-
PEEE-b-PCL)

MOCA Hu et al. (2010)

(continued)
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leads to quite different RIMPS behavior. Table 2 shows some of the epoxy/BCP
systems, which follow RIMPS for the generation of nanostructured morphology.

Morphology: Formation of Nanostructures

Immense contributions from researchers during the last several years have unequiv-
ocally established that a wide range of morphologies can be generated by self-
assembly or RIMPS approaches. It is worth emphasizing that the shape, size, and
distribution of nanostructures in thermosetting matrix depend on a number of
parameters related to the epoxy precursors, curing agents, and BCPs. As mentioned

Table 1 (continued)

Block copolymer Hardener References

Poly (methyl methacrylate)-b- poly
(n-butyl acrylate) -b- poly (methyl
methacrylate) (PMMA-b-PnBA-b-
PMMA)

DDS, PN, methyl nadic anhydride
(MNA), and 2, 4, 6-tris
(dimethylaminomethyl) phenol
(DMP)

Kishi et al. (2011)

Poly(2,2,2-trifluoroethyl acrylate)-
b-poly(glycidyl methacrylate)
(PTFEA-b-PGMA)

MOCA Yi et al. (2011)

Poly(styrene-b-isoprene-b-styrene)
(SIS)

Ancamine 2500 Garate et al.
(2011)

Block complex of sulfonated
polystyrene-block-poly(ethylene-
ran-butylene)-block-polystyrene
(SSEBS) and a tertiary amine-
terminated poly(ε-caprolactone),
SSEBS-c-PCL

MDA Wu et al. (2012)

Poly(styrene-b-butadiene-b-
styrene) (SBS)

Ancamine 2500 Ramos et al.
(2012)

Poly(ε-caprolactone)-block-
polyethylene-block-poly
(ε-caprolactone) (PCL-b-PE-b-
PCL)

MOCA Zhang et al.
(2013)

SBS MCDEA Ocando et al.
(2013)

Epoxidized poly-(styrene-b-
isoprene-b-styrene) (eSIS-AEP)

Ancamine 2500 Garate et al.
(2014)

PEO-b-PPO-b-PEO m-xylylenediamine (MXDA) Cano et al. (2014)

PEP-b-PEO, polystyrene-b-poly
(ethylene oxide) (PS-b-PEO)

Polyether triamine Redline et al.
(2014)

PS-b-PEO 4,40-methylenebis
(2,6-diethylaniline) (MDEA)

Leonardi et al.
(2015)

Poly-(heptadecafluorodecyl
acrylate)-b-poly(caprolactone)
(PaF-b-PCL)

MCDEA Ocando et al.
(2007)
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earlier, concentration of BCP, block length, block-block interaction, molecular
weights of blocks, the type of matrix, matrix-matrix interactions, the type of curing
agent, cure cycle, etc. are the important factors which influence the nature of final
nanostructured morphology. AFM images given in Fig. 3 show that as the concen-
tration of BCP changes, morphology of epoxy/BCP blends shifts from spherical
nanodomains to interconnected nanoobjects at intermediate concentrations and then

Table 2 Epoxy/BCP systems which form nanostructured morphology via RIMPS

Block copolymer Hardener References

PS-b-PEO MOCA Meng et al. (2006a)

Poly(e-caprolactone)-block-poly-(n-butyl
acrylate) (PCL-b-PBA)

MOCA Xu and Zheng (2007b)

PS-b-PCL, PS-b-PCL-b-PS, and PCL-b-PS-
b-PCL

MOCA Yu et al. (2012)

PCL-b-PS MOCA Meng et al. (2008)

Epoxidized poly(styrene-b-isoprene-b-
styrene) (eSIS)

Ancamine 2500 Garate et al. (2013)

PS-b-PMMA Tertiary amine
(benzyldimethylamine,
BDMA), DDS

Girard-Reydet et al.
(2002)

Polydimethylsiloxane-block-poly(e-
caprolactone)-block-polystyrene (PDMS-b-
PCL-b-PS)

MOCA Fan et al. (2009)a

Polystyrene-block-poly(ε-caprolactone)-
block-poly(n-butyl acrylate) (PS-b-PCL-b-
PBA)

MOCA Fan et al. (2010)

Poly(ethylene oxide)-block-poly
(ε-caprolactone)-block-polystyrene (PEO-b-
PCL-b-PS)

MOCA, DDS Yu and Zheng (2011)

PS-b-PMMA MDEA Romeo et al. (2013)

SBS DDM George et al. (2015)

PEO-b-PCL MOCA, DDS Meng et al. (2006b)

Polyisoprene-b-poly(4-vinyl pyridine) (PI-b-
P4VP)

MDA Guo et al. (2008)

PS-b-PMMA MOCA Fan and Zheng (2008)

Poly(ε-caprolactone)-block-poly(butadiene-
co-acrylonitrile)-blockpoly(ε-caprolactone)
triblock copolymer (PCL-b-PBN-b-PCL)

MOCA Yang et al. (2009)

Poly(ethylene glycol)-b-carboxyl terminated
butadiene-acrylonitrile rubber (PEG-b-
CTBN)

MOCA Heng et al. (2015)

Epoxidized poly(styrene-b-butadiene)
(SepB)

MCDEA Serrano et al. (2009)

PS-alt-PEO MOCA Hu and Zheng (2009)

PEO-b-PPO-b-PEO DDS Parameswaranpillai
et al. (2017)

aBoth self-assembly and RIMPS

28 Introduction to Epoxy/Block-Copolymer Blends 833



to lamellar nanostructures besides the interconnected nanoobjects at higher concen-
trations (Xu and Zheng 2007b).

In addition, the competitive dynamics between the curing reaction, phase sepa-
ration, and thermodynamic factors including hydrogen bonding interactions are
some other important aspects which should be considered to evaluate the develop-
ment of final micro- or nanostructured morphology. The following schematic model
(Fig. 4) illustrates the unique structure and dynamics of thermoset/BCP interphase
and the underlying principle of formation of final-phase structure in epoxy resin/

Fig. 3 AFM images of epoxy/BCP/MOCA blends containing (a) 10, (b) 20, (c) 30, and (d) 40 wt.%
of BCP. Increasing the concentration of the BCP shifted the morphology from spherical domains
to lamellar nanostructures besides the interconnected nanoobjects (Reprinted with permission)
(Xu and Zheng 2007b)
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BCP blends. This model displays two types of interphase structures generated by
self-assembly and RIMPS and provides microlevel information about the morphol-
ogy (He et al. 2014).

Toughening by Nanostructures: Structure-Property Correlation

Since the intrinsic brittleness of epoxy thermosets makes them susceptible to fracture
failure, the extent of improvement in toughness and the related mechanisms in
BCP-modified epoxy systems are of greatest importance in terms of scientific and
technological perspective. The final nanostructured morphology governed by self-
assembly and RIMPS differ in terms of size, shape, and distribution of nanodomains,
and therefore the correlation between nanostructure parameters and fracture tough-
ness will provide an intuitive insight on the structure property correlation in other
toughened thermosets as well.

Researchers have shown that improvement in toughness without compromising
stiffness and modulus of thermoset can be explained in terms of various mecha-
nisms including crack-tip blunting, debonding, crack bridging, shear yielding,
cavitation, etc. Attention should be paid to the fact that the enhancement of
toughness in epoxy thermosets modified with BCP depends on nanodomain
morphology, which in turn depends on the nature and thickness of epoxy/BCP
interphase. Despite the fact that there are still unsettled issues and unresolved
problems in this regard, different nanostructures lead to different levels of tough-
ening improvement (Fig. 5). For example, irrespective of the same basic shape of

Fig. 4 Schematic representation of the model describing two different types of interphase struc-
tures and their underlying formation mechanism in epoxy resin/BCP blends (Reprinted with
permission) (He et al. 2014)
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the spherical micelles and vesicles, larger size of vesicles results in greater fracture
toughness. Similarly, wormlike micelles can produce greater improvement in
fracture toughness compared to spherical micelles, mainly because of the crack-
tip blunting and crack-bridging mechanisms whereas spheres are more effective in
deflecting the progressive crack away from the original crack plane.

Conclusions

Block copolymers (BCPs) are extensively used for enhancing fracture toughness of
brittle epoxies, without compromising modulus, stiffness, and use temperature.
BCPs form wide variety of structures at nanometer scale in thermosetting matrix
via self-assembly and reaction-induced microphase separation mechanisms. The
formation of nanostructured morphology depends on several factors including
blend composition, type of BCP, molecular weights of blocks, block architecture,
matrix-block and block-block interactions, type of curing agent, and curing cycle.
Since the end-use structural applications of epoxy thermosets are assessed in terms
of the toughness of the product by judicial selection BCPs and optimization of curing
conditions, nanostructured morphology could be tuned in such a way that tough
polymeric materials with attractive thermomechanical properties suitable for
demanding applications can be developed.

Fig. 5 Fracture resistance for DER383/DER560/PN containing 5 wt.% BCP; spherical and
wormlike micelles were obtained from PEO-b-PEP-9 and PEO-b-PEP-15 BCPs, respectively,
while vesicles were generated with the P(MMA-ran-GMA)-PEHMA compounds (Reprinted with
permission) (Dean et al. 2003)
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