
Chapter 1

Fundamentals of Fluidics

Chandra K. Dixit

1 Introduction

Microfluidics has had tremendous impact on miniaturization of biological experiments

by reducing the reagent volumes, shortening the reaction times, and enabling

multiplexed parallel operations by integrating an entire laboratory protocol onto a

single chip (i.e., lab-on-a-chip or LOC). Best examples of microfluidic tools in

biology are Gene chips, Capillary electrophoresis, CD-based inertial cell separa-

tion devices, integrated transcriptome analysis systems, and others. Along with

miniaturization comes a tremendous opening at the microscale where slight

manipulation in physics can provide unprecedented number of applications for

each design. An understanding of the physical processes at microscale and their

dynamics can allow biologists to leverage those for performing experiments that

are practically not feasible at macroscale. Since microfluidics can allow new

processes and experimental paradigms to emerge therefore, here we will focus

on fundamentals that predominantly govern the processes at microscales and how

we can manipulate those to address problems in the field of biology.

2 Microfluidic Physics

Dimension is the key in understanding the magnitude of a physical event taking

place. Prior to discussing physics of microfluidic processes we must first understand

that on what we are working. Few important symbols representing physical quan-

tities and the microfluidic scales that are mainly relevant to biologists are men-

tioned in Tables 1.1 and 1.2, respectively.
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These are few illustrative sample matrices and sample types that are routinely

employed in biological analysis. Given the sizes, our focus should be on the

phenomenon that can be used to manipulate micron and sub-micron entities.

Reagent mixing, reagent delivery, cell capture, and shear-free conditions for bio-

logical analysis are few typical applications that are sought by biologists. We will

understand physical entities in this chapter with respect to these applications that

will allow developing an understanding of microfluidics.

2.1 Hierarchy of Dimensions

Before advancing to the complex physics dominating the micron regimen, we must

first review the basic concepts and their respective dimensions. Table 1.3 summarizes

few of the most basic scaling entities.

Entity Dimension

Size [l]

Surface l½ �2
Volume l½ �3
Van der Waals d½ ��3 to �7

Various Forces [l]1 to 3

l is size of an object,

d is distance between two objects

Table 1.1 Common symbols

for physical parameters
Greek letter symbols

α alpha λ lambda

β beta μ mu

γ gamma ν nu

Δ delta Π pi

ε epsilon ρ rho

ζ zeta σ sigma

η eta τ tau

Θ theta ω omega

κ kappa

Table 1.2 Length scales for common biological moieties

Sample matrix Approximate scales

Distance between molecules in a liquid 0.1 nm

Distance between molecules in a gas 3 nm

Mean free path between collision in a gas, air at ambient pressure (λ) 61 nm

Sample

Protein, lipid molecule of the membrane 1 nm

Virus 10 nm

Cells 1–20 μm
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With our previous knowledge of physical processes, we can realize that size,

shape, and volume have tremendous impact on the forces acting upon/between

bodies. For example, let us consider the force exerted upon a body by earth. This

force is called gravitational pull and is represented as the ratio of the product of

masses of earth and ours to the squared distance between us. As we realize this force

has dimensional dependence on the distance between the two bodies, which is [l]2.
Similarly, a body flowing through a water stream will experience some force

exerted upon it by the flow. This is dependent on the size and surface of the body

and is somewhat close to how biomolecules and cells will feel in the microfluidic

channels. Therefore, we must now look few years back in high school physics,

which is actually the foundation to our advanced understanding of microfluidics.

2.2 Non-dimensionalization and Dimensionless Numbers

This section is intended to introduce the concept and importance of

non-dimensionalization because you will now know terms that will be commonly

used throughout the text; if it is hard to understand at this point then these can be

revisited once all the basics are learnt. Dimensions are critical in physical analysis

as they draw boundaries around a physical quantity by defining them in dimensions.

Their importance becomes predominant when we are working at structures in

micrometer range where surface area increases drastically relative to volume.

This characteristic dependence of physical processes on dimensions must be

addressed in such a way that the process can be explained as a function of the

intrinsic properties of the fluid rather than the dimensions of those properties. In

other words, we must make equations governing these processes without any

resultant dimensions. This can be achieved by carefully replacing quantities in

Table 1.3 Scaling laws:

variation at changing length

scales

Quantity Scaling law

Time [l]0

Length [l]1

Area [l]2

Volume [l]3

Velocity [l]1

Acceleration [l]1

Density l½ ��3

Viscosity l½ ��2

Diffusion time [l]2

Reynolds number [l]2

Peclet number [l]2

Hydraulic resistance l½ ��4

1 Fundamentals of Fluidics 3



those equations with others, such that their dimensions cancel out each and have no

net dimensional dependence. These quantities may be constants and can be

employed for understanding the relative importance of entities within the process

itself. Thus, non-dimensionalization is known as removal of units from the math-

ematical expression of a phenomenon by substituting with appropriate variables.

This is also termed as scaling.
Scaling reduces the dependence of the process on several variables and signif-

icantly contributes to understand the relative importance of the physical quantities

in the process and to realize the variation in their dimensions. This certainly helps in

neglecting the smaller terms from the equation, which simplifies the associated

physics. Therefore, it allows understanding physics at smaller scales and thus, is

very important in microfluidics.

We will not deal scaling in great detail as it is a complex method but generally

non-dimensionalization can be achieved via following steps:

(a) Identify the unit for which scaling is required; developing a scaling law

(b) Identify all the variables dependent and independent to that unit

(c) Identify a set of physically-relevant dimensionless groups and plug them in

(d) Determine the scaling exponent for each one, and

(e) Rewrite the equations in terms of new dimensionless quantities.

Such dimensionless numbers are crucial for exploring fundamentals of the

physics governing microfluidics. The essential fluid physics of a system is dictated

by a competition between various phenomena. This competition is expressed via a

series of dimensionless numbers capturing their relative importance. These dimen-

sionless numbers (Tables 1.4 and 1.5) form a sort of ‘parameter space’ for

microfluidic physics.

2.3 Hydrostatics: Physics of the Stagnant

Fluids, liquids and gases, are defined as a material which will continue to deform

with the application of a shear force. These are governed by certain basic rules of

physics. Fluids have a special property to mention, they flow but only under the

influence of external forces; these are mainly governed by pressure, field gradi-

ents, surface tension, and gravity. Since we will be mainly dealing with liquids

therefore, our main focus is on the concepts of hydrostatic and hydrodynamic

fluidics. As the name suggests hydrostatics and hydrodynamics are processes

related to static and flowing liquids, respectively. Both these processes are con-

trolled by associated physical parameters that we will discuss in this section.
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Table 1.4 Dimensionless numbers in fluid mechanics

Dimensionless

number Details Formula

Reynolds Number Inertial force/Viscous force

convective momentum/viscous

momentum

Forced Convection

Re ¼ ρUL=η ¼ UL=ν

Prandtl Number

(heat)

Prandtl-Schmidt

Number (mass)

Momentum/Species diffusivity

Used to determine fluid or heat or

mass transfer boundary layer

thickness

Prheat ¼ ν=α ¼ ηCP=K
Prmass ¼ Sc ¼ ν=D ¼ η=ρD

Péclet Number

(heat)

Péclet Number

(mass)

Convection transport rate/Diffusion

transportation rate

Peheat ¼ RePr ¼ UL=α
α ¼ k=ρCP

PeMass ¼ RePr ¼ UL=D

Nusselt Number

(heat)

Nusselt-Sherwood

Number (mass)

Length scale/Diffusion boundary

layer thickness

Used to determine the heat (h) or

mass (hD) transfer coefficient

Nu ¼ fεRe Prð Þ1=3
h i

=2

Nuheat ¼ hL=kfluid
NuMass ¼ hDL=Dfluid

L ¼ As=Pm

Grashof Number

(heat)

Grashof Number

(mass)

Natural convection buoyancy force/

Viscous force

Used to calculate Re for buoyant

flow

Controls the lengthscale to natural

convection boundary layer thick-

ness

Natural Convection

Grheat ¼ gβ Ts � Tbð ÞL3=ν2

GrMass ¼ gβC Cas � Caað ÞL3=ν2

β ¼ � ∂ρ=∂Cαð ÞT,P
h i

=ρ

Rayleigh Number

(heat)

Rayleigh Number

(mass)

Natural convection/Diffusive heat

or mass transport

Used to determine the transition to

turbulence

Raheat ¼ GrPr ¼ gβ ΔTð ÞL3=να
Ramass ¼ GrPr ¼ gβC ΔCð ÞL3=νD

Knudsen Number

(to analyze extent

of continuum)

Slip length/Macroscopic length Kn ¼ β=L

Richardson

Number

Buoyancy/Flow gradient Ri ¼ g Δρð Þ=ρU2

E€otv€os (Eo) or
Bond Number

(Bo)

Body forces/Surface tension

Used together with Morton Number

to determine shape of drops or bub-

bles in surrounding fluid or contin-

uous phase

Eo ¼ Bo ¼ Δρð ÞgL3
� �

=σ

Capillary Number Viscous forces/Interfacial forces Ca ¼ ηU=σ
Elasticity Number Elastic effects/Inertial effects El ¼ θη=ρR2 ¼ Wi=Re

Weissenberg

Number

Viscous forces/Elastic forces Wi ¼ γ’:ts

Deborah Number Stress relaxation time/Time of

observation

ts/to
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Pascal’s Law

• Pressure applied anywhere to a fluid transmits the force equally in all

directions

• Change in pressure disperses equally throughout the fluid

• Force acts at right angles to any surface in contact with the fluid

• Hydraulic press is the representative example

Table 1.5 Common physical entities in fluid mechanics

Physical

entity Unit Dimension

U Characteristic velocity m/s LT�1

L Characteristic length m L

T Temperature K Θ

Ts Surface temperature K Θ

Tb Temperature of the bulk K Θ

D Mass diffusivity m2/s L2T

Cp Specific heat J/Kg.K L2T� 2Θ� 1

Cas Concentration of species a at surface Kg/m3
ML�3

Caa Concentration of species a in ambient

medium

Kg/m3
ML�3

As Surface area of the pipe m2 L2

Pm Perimeter m L

η Dynamic viscosity Pa:s ¼ Ns=m2 ¼ Kg=ms ML�1T�1

ν Kinematic viscosity m2/s L2t�1

σ Surface/interfacial tension Kg=s2 ¼ N=m MT�2

ρ Density Kg/m3
ML�3

β Coefficient of thermal expansion 1/K Θ�1

α Thermal diffusivity m2/s L2T�1

k Thermal conductivity W/mK MLT�3Θ�1

h Convective heat transfer coefficient W/m2K MT�3Θ�1

hD Convection mass transfer coefficient m/s LT�1

λ Mean free path m L

γ Specific weight N/m3
ML�2T�2

R Radius of the pipe m L

Θ Stress evolution

ts Stress relaxation time for the fluid s T

to Time of observation of event s T

γ0 Sheer rate 1/s T�1
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Hydrostatics is the physics of pressure confined within the definitions of

Pascal’s law and Archimedes principle constitute hydrostatics

2.3.1 Pressure and Pumping

Consider a cuboidal bottle filled with water to a height of one meter with length and

width of the bottle at 5 cm each. The liquid in bottle is not continuous, instead a

stack of several individual layers of water molecules, such that each layer is parallel

to each other and continuously interacting with each other.

Now, PRESSURE is how much force is exerted on a given area and is expressed

as

P ¼ F=A ð1:1Þ

where,

P is pressure, F is force exerted, and A is the surface area on which force is

exerted.

SI unit of pressure is atmosphere (atm) and is equivalent to 105 Pascals, another

unit for pressure and have dimension Nm�2.

By the virtue of the definition of pressure, the top layer of the water molecules

must exert a force on the layers beneath it over the surface area of the layer.

Similarly, the top layer will do so on the last layer at the bottom. It is crucial to

understand that for fluids under gravity, based on (1.1), pressure exerted by an

upper layer on the one underneath is directly dependent on the distance between

those layers expressed as height. From Fig. 1.1a, the pressure exerted by the liquid

on the bottom of the container should be calculated as

P´

P

P´ = P

5 
m

P1 1 m P2

P1 > P2

a b

Pr
es

su
re

H
ea

d

Fig. 1.1 Illustration of Pascal’s law. (a) Pressure exerted at any point on a continuous fluid is

dissipated equally in all directions on that fluid. This concept makes the basis of hydraulic press

and brakes. (b) An extension of Pascal’s law is pressure head driven flows where the height of the

liquid exerts a pressure on the lower layers. This concept of height-dependent pressure is used in

pumping in microfluidics. As depicted, 5 m head will exert more pressure than 1 m head
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F ¼ mg ð1:2Þ

where,

m is mass of the liquid, and g is gravity constant.

Since,

m ¼ ρV ð1:3Þ

where,

V is volume of container, and ρ is mass density of the liquid.

Therefore, replacing (1.3) in (1.2) will give us

F ¼ V ρgð Þ ¼ hA ρgð Þ ð1:4Þ

such that volume¼ height of the liquid (h) * area of the surface (A¼ length *

width)

Similarly, replacing (1.4) in (1.1) will give us the relation of height to the

pressure

P ¼ hAρg=A ¼ hρg ð1:5Þ

Continuing with the case that we were discussing, in Fig. 1.1b pressure exerted

by a layer on the other separated by certain height within the liquid will be

P2 � Pl ¼ ΔP ¼ ðh� hlÞρg ¼ Δh:ρg ð1:6Þ

Equation (1.6) constitutes the basic of hydrostatic pressure-based pumping in

microfluidic systems. ‘ΔP’ is known as pressure head.

2.3.2 Buoyancy and the Problem of Microfluidic Mixing

Buoyancy is the apparent loss of weight of a body when submerged in liquid and

this is mainly known as Archimedes Principle. This loss is attributed to the

resistance offered by the liquid to the body. Buoyancy from Fig. 1.2 can be

mathematically expressed as

Fnet ¼ FB buoyant forceð Þ � Fg weightð Þ ð1:7Þ
¼ ρfVf � ρoVoð Þ g ð1:8Þ
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For static liquid, Fnet ¼ 0; therefore, it can be deduced as

Fgρo ¼ FBρf ð1:9Þ

Where, ‘o’ and ‘f’ denote ‘object’ and ‘fluid’, respectively.
Now, based on (1.9) If,

ρo > ρf, the object will submerge and settle down to the bottom of the fluid.

However, an object will float but submerged with ρo ¼ ρf, and will float on the

surface with a ρo < ρf.
This knowledge becomes the basis of buoyancy-dependent mixing in certain

microfluidic set-ups. The best example is introduction of air bubbles from under-

neath of the static layer of liquid. The air bubbles have lower density than liquid and

will move towards the top of the channel thus causing disruption in the solvent

layers and introducing mixing Fig. 1.3. We will discuss other details later in this

chapter.

2.4 Hydrodynamics: Physics of the Flows

Fluids at motion are governed by a set of variables and these are crucial in

understanding the phenomena taking place within confined boundaries in

microfluidics. There are few properties we will first acquaint with before looking

into other aspects.

Fig. 1.2 An illustration of Archimedes principle of buoyancy on a body of density ‘ρo’ dipped in a
fluid of density ‘ρf’. The body of mass mo experiences two opposite forces on it, gravity acting

downwards and buoyancy or thrust acting upwards. Denser the body will be with respect to the

fluid, the greater the gravity force will be on it. Thus the body will drown. On the contrary, if it is

lighter than fluid, then it will float on the surface
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2.4.1 Concept of Continuum

Typically matter is made up of atomic and sub-atomic particles. Thus, when

analyzing those at micron level, matter becomes discontinuous in space with

inter-atomic separation. However, when considering fluids as a continuummaterial,

assumptions have to be made where we have to neglect that atoms are the smallest

unit. And, the matter/fluid must be defined in terms of continuous fields, such as

density and force density (defined as per unit volume), rather than discrete physical

quantities, such as mass and force. The continuum can be confirmed for fluids by

first reducing the sample volume to a very small magnitude and then measuring

intrinsic properties, like density, at several points in liquid space. The density

should be equal to approve the consideration of fluid continuum.

2.4.2 Important Intrinsic Properties

• Mass density (ρ; Kg/m3): It is the mass distribution over a unit volume,

• Specific volume (V; m3/Kg): It is the volume occupied by a unit mass,

• Weight density or Specific weight (γ; N/m3): It is the force due to gravity on the

mass in a unit volume and is expressed as

γ ¼ gρ ð1:10Þ

• Specific gravity or Relative density (δ): it is the ratio of density of the fluid to the
density of water,

• Viscosity: It is the resistance offered by the fluid to gradual deformation by

neighboring fluid layers under an external force, namely shear stress or tensile

stress. It is also known as thickness of the fluids. This parameter also represents

Fig. 1.3 Buoyancy-driven mixing in liquids with various types of bubble flows. Each type of

bubble flow introduces mixing which could be diffusive or turbulent
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the interaction of parallel moving fluid plates with each other and with surround-

ings. Inter-plate collisions in a moving fluid create friction which opposes the

motion of the fluid. Therefore, to move a fluid certain external stimulus, such as

pressure gradient, is required. A fluid that doesn’t offer any intrinsic resistance to
shear force is known as an ideal or inviscid fluid while those offering resistance

are called viscous or viscid.

Momentum of molecules in each respective layer is considered to be homoge-

neous. Additionally, due to mixing the molecules from one layers move to the other.

In this case, a molecule diffusing to a fast moving layer needs to be accelerated and

deaccelerated when travelling to a slow moving layer. During this these molecules

carry their respective momentum with them. This is the main reason for introduc-

tion of the shear into the layers.

Dynamic/Shear viscosity (η; Poiseuille (Pl); Pa.s; N. s/m2; Kg/ms):

It is the resistance offered by a fluid layer to adjacent layers where all the layers are

moving parallel to each other but at different speeds. Thus, is also called shear

viscosity. The simplest understanding can be developed with the explanation of

illustration in Fig. 1.4. In panel a, suppose there are three parallel layers moving in

same direction, with lowest layer being at rest and top most layer moving at a

constant speed ‘U’, while layers should have no other gradient fields, such as

concentration or temperature. For simplifying the condition, we must also assume

that the plates (interface of fluid and surface) to be large enough; and the reason is

that we want to omit boundary or edge effects where fluids are in contact with the

surface. However, boundary or edge effects will have to be incorporated in theory
in microfluidics.

Therefore, when top layer is moving slow, then ideally all the layer will be

parallel to each other and speed of layers will be ‘zero’ in the bottom layer and

maximum in the top layer. Here, each layer will oppose the forward motion of the

layer above it and make the layer beneath it to move forward. In such conditions, an

Fluid

U, VelocityMoving
Liquid plate

Stationary
Liquid plate

τ, Shear stress

δU/δy,
gradient

y

Fig. 1.4 Viscous force opposes the motion of the fluid layer moving faster than it and pushes the

layer moving slower than it in its direction of motion. This introduces a resistance in fluids, which

tends to exert a net opposite force resisting the fluid motion. This resistance is known as shear

stress and is depicted as a function of change in velocity profile of the fluid layers moving from a

static layer towards the fastest moving layer
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external force will be required to overcome the fluid viscosity and keep it in motion.

This force is Newton’s viscous/shear force and is given by

F ¼ η:A:U=y ð1:11Þ

where,

F is external force required to overcome viscosity, A is the area of each fluid

layer plate, U is the velocity of each layer plate, and y is the separation

between them.

U/y is rate of shear deformation of layers or shear velocity along the perpendic-

ular to the fluid motion.

Shear stress (τ) can be written from (1.11) as

τ ¼ F=A ¼ η:∂U=∂y ¼ η:γ’ ð1:12Þ
or, η ¼ τ=γ’ ð1:13Þ

Kinematic viscosity (ν; m2/s): It is the ratio of dynamic viscosity to the density of

fluid

ν ¼ η=ρ ð1:14Þ

2.4.3 Types of Fluids Based on Intrinsic Properties

An in-depth knowledge of physical properties of fluids is crucial and it is the

foremost thing one must know to design an efficient fluidics. Pumping is an

integrated part in microfluidics. And, to effectively design the integrated pumping

mechanism, knowledge of viscosity, fluid type, and fluidity becomes important. For

example, a viscous fluid like honey will not flow easily through micron wide

channels, but if the temperature inside channels is high then its viscosity will

change making it less viscous and easy to flow. Else, an external pump will be

required to force honey through channels. I first case temperature changed the

fluid’s viscosity while in second pressure has pushed it without affecting its

viscosity. If we know this beforehand then we can design the tool to compensate

these effects. We will focus in this section the type of fluids and their properties.

Newtonian vs. Non-newtonian: Case of Whole Blood Analysis

in Microfluidics

According to Newton’s law of viscosity, the fluid viscosity has proportionality with

shear stress and shear rate, as depicted in (1.11) and (1.12). Based on this relation of

viscosity (1.13), fluids can be categorized into two broad groups. The first group
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that has a constant viscosity for relation (1.13), and second that has changing

viscosity with either of the two variables.

Fluids that has a constant η, in other words has a constant ratio of shear stress and
shear rate. Such fluids are called Newtonian fluids. Water, honey, organic solvents

are few examples of this type of fluids. Their viscosity only changes with

temperature.

However, majority of the fluids in nature do not follow Newtonian fluid concept,

thus called non-Newtonian. Their viscosity changes with the change in shearing

stress and shearing rate. This is why the viscosity plays crucial role in fluid

properties. Now we qualify to classify fluids as Newtonian and non-Newtonian.

Let us consider the case of whole blood. Prior proceeding we must ponder to

decide what type of fluid whole blood would be. Considering the composition of

whole blood with ~40% cellular material it can be classified as non-Newtonian.

The reason is that if we shear the whole blood by increasing pressure the cell-

fraction will not aggregate; thus, will change the blood viscosity making it less

viscous. This is what we observe in systolic and diastolic blood where systolic

blood is under high pressure flowing at high speed which makes it thin while

diastolic blood under decreased pressure is thick where cells tend to come closer

to each other and increase viscosity of the blood. On the other hand serum and

plasma are Newtonian fluids and their viscosity in independent of the shear, where

serum are plasma are essentially cell-free but serum is also free of clotting factors.

This knowledge of whole blood being non-Newtonian can be employed to make

several kinds of microfluidic devices ranging from separating plasma to clustering

cells.

Compressible and Incompressible Fluids

As the name indicates, the fluids that can be compressed into a smaller volume

under an external pressure are called compressible fluids. Typically, all the fluids

are compressible where gases are highly compressible while liquids are slightly

compressible. The fluid compressibility (βC) is a measure of the relative change in

volume due to a pressure change, and is expressed as

βC ¼ �1=V ∂V=∂Pð Þ ¼ �1=ρ ∂ρ=∂Pð Þ ð1:15Þ

where, ∂V=∂P and ∂ρ=∂P are change in the volume and density, respectively. V is

the initial volume and ρ is the initial density.

On the contrary, if the fluid volume does not change under an external pressure,

then it is considered to be incompressible. There are literally no such examples of

incompressibility. Incompressibility is used for the convenience of calculation

purposes in fluid dynamics where an assumption is made that fluids with small or

negligible compressibility are incompressible. It is important in microfluidics to

assume so because then the density can be considered constant which significantly

simplifies the calculation (see text box).
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If the microfluidic channel is too long, there might be a huge pressure drop
along the length, say 20%. Then the density of the fluid at the inlet and outlet
will be very different. This difference in density will affect the experimental
composition and mathematical modelling of the experiments.

By now, we are able to understand several common terminologies that have been

used while describing microfluidic systems. We will now discuss the primary laws

that bind these concepts and terms together to create tools for understanding

fluidics.

2.4.4 Other Important Properties

• Surface tension (σ; N/m; Kg/s2): It is primarily a property of an interface, either

liquid-air, or liquid–solid. It is the elasticity of a fluid surface to acquire

minimum possible surface area. The plausible reason for surface tension is

attributed to the unequal distribution of cohesion on the surface molecules due

to which they continuously feels an inward pull toward the center of mass

(Fig. 1.5).

The amount of surface tension (σ) is given by the force ‘F’ required to oppose the

net inward cohesive force experienced by the top layer of length ‘L’, such that the

top layer stop to sink toward bottom (Fig. 1.5a)

σ ¼ F=2L ð1:16Þ

where,½ is introduced in the eq. to equate the force that is acting only on one side of

the surface.

Capillarity is an effect of surface tension at a solid–liquid interface, such that the

liquid tends to rise in a tube with small radius (small Bond number) due to

interplay between cohesion and adhesion between liquid molecules at liquid-air and

liquid–solid interface.

The height to which a liquid will go up is expressed as

Fnet

Air
Liquid

Surface Fnet: Inward pull
: Liquid molecules
: Missing Liquid molecules
: Cohesive force
: Missing cohesive force

Fig. 1.5 Illustration of the tension on the surface of a liquid. On the surface layer, cohesion of

liquid molecules causes a net inward pull due to which the surface behaves as a continuous film.

Contrary to the surface, cohesion is cancelled by the neighboring molecules
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h ¼ 2σCosΘ=ρgr ð1:17Þ

where, Θ is the contact angle, σ is surface tension, ρ is density of the liquid, and r is
the radius of the tube. This forms the basis of capillary pumping.

Importance of Surface Tension in Microfluidics

• Capillary pumping

• Droplet formation from a stream

• Contact angle determination

• Bubble generation for mixing

Capillary pumping: Capillary effect is employed regularly in microfluidics for

removing physical pumps to minimize the bulky features. Capillary-driven pumps

operate under Young-Laplace law defining the relation of difference in pressure at

the interface of two fluids due to surface tension to the curvature in the surface of

the liquid. This partial differential equation of Young-Laplace is expressed as

ΔP ¼ σ 1=r1 þ 1=r2½ � ¼ 2σ=r if r1 ¼ r2ð Þ ð1:18Þ

where, ΔP is capillary pressure in a tube, σ is surface tension, r1 and r2 are the

principle radii of curvature for internal and external surfaces at the interface/

meniscus, and r is the radius of curvature. If r1 and r2 are equal then the equation

reads as on extreme right.

Now, the actual radius of the tube is related to the meniscus radius by a cosine

relation, such that r ¼ RCosΘ then the (1.18) will read as

ΔP ¼ 2σ=RCosΘ ð1:19Þ

Critical Thinking

Ignore the surface wettability for an instance. A single microfluidic channel

opened at both the ends. Two drops of water were placed on both ends, such

that one drop is smaller than the other drop. What should be the direction of

flow?

: σ (tension) for both the liquids given the interface is same. Since r is

smaller for small drop therefore, from (1.19) the capillary pressure will be

more. Thus, water will move from small drop towards big drop.

In order to compensate for this pressure difference the liquid will move a

distance thus giving rise to capillary pumping. The capillary pressure is crucial in
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designing an efficient pump because it requires a precise knowledge of the surface

wettability, wetting phase and non-wetting phase. This relation is

Pc ¼ Pnon�wetting phase � Pwetting phase ð1:20Þ

Such that non-wetting phase in a typical experiment is air while water or buffer

serves as a wetting phase. This is only true when surface is water-wettable, viz.
hydrophilic. For hydrophobic surfaces, hydrophobic solvents serve as the wetting

phase.

More regarding capillary pumping in paper microfluidics will be discussed in

Chap. 2.

2.4.5 Laws Governing Dynamics

Basic Law

To understand the concept, we must first understand it intuitively what the

governing principle to this branch of science is. In a general sense, laws governing

fluid mechanics can be stated as the absence of relativistic effects for the conser-
vation of mass, energy, and momentum. In this process we must first (1) identify a

system, (2) identify boundary of that system, (3) identify surroundings of the

system, and (4) identify how it interacts with the surroundings. As described in

Fig. 1.6, if ‘A’ depicts mass, momentum or energy then the influx of any of these

entities in the system should be equated with the efflux of equal amount of that

respective entity.

This indicates that the total of any of these entities for the system will be a

constant and can be written as

System
Xin

Xout

Xcreated

Xdestroyed

System = Xin + Xcreated + Xdestroyed + Xout

Fig. 1.6 Fundamental to understand fluid mechanics is conservation of fundamental physical

components that are mass, momentum, and energy. As a general rule, system has its own mass,

energy, and momentum and it has a tendency to conserve that. Any external force exerted to that

body then the body should bring change in some form to conserve its mass, energy, and

momentum. This is illustrated as system is equal to the total sum of the quantity of all the physical

entities applied to it, applied by it, created by it and destroyed by it
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Ain � Aout ¼ Asystem ð1:21Þ

Expression (1.21) stands true only if the extensive properties participating in

conservation laws are considered, such as mass, volume, length etc. but not for

intensive properties, which include pressure or temperature. The extensive proper-

ties are those which changes with the change in the amount of fluid; while intensive

properties are those that do not change when an amount of fluid changes in the

system.

Equations of Motion

A fluid in motion experience following forces

• Fg—gravity force

• Fp—pressure force

• Fv—Force due to viscosity

• Ft—Force due to turbulence

• Fc—Force due to compressibility

Therefore, according to the Newton’s 2nd law, the net force (Fx) on a fluid with
mass ‘m’ and acceleration ‘a’ in x-direction can be expressed as

Fx ¼ Fg þ Fp þ Fv þ Ft þ Fc ð1:22Þ

Recalling the previous assumptions we discussed in fluid compressibility, the

liquids with limited compressibility are considered incompressible and Fc becomes

negligible.

Rewriting (1.22) with Fc ¼ 0

Fx ¼ Fg þ Fp þ Fv þ Ft ð1:23Þ

Equation (1.23) is called Reynold’s equation of motion.
If the system is not turbulent then Ft is negligible and the resultant eq is known as

Navier–Stokes equation of motion and is expressed as

Fx ¼ Fg þ Fp þ Fv þ Fc ð1:24Þ

And can be written as,

P ∂U=∂tþ U: ¼ ΔUð Þ ¼ Δ:σ ¼ � ΔPþ ηΔ2Uþ f ð1:25Þ

For real fluids with negligible viscosity, Fv is 0, the eq. is known as Euler’s
equation of motion and is expressed as
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Fx ¼ Fg þ Fp þ Ft þ Fc ð1:26Þ
Conservation of Mass

It can be summarized as a time-dependent mass change over a defined fluid

boundary such that mass within that boundary is constant

Final mass ¼ Original massþMass added�Mass removed ð1:27Þ

or

Final mass� Original mass ¼ Mass added�Mass removed ð1:28Þ

Equation (1.28) forms the basis of mass conservation of fluids in microfluidic

systems, and can mathematically be written as

Rate of change of mass ¼ Net mass influx ð1:29Þ

or

ΔM=Δt ¼ � ΔIm mass fluxð Þ ð1:30Þ

Left part of (1.30) can be written in terms of extensive intrinsic properties, such
as density and volume (refer back to the types of fluid section to know why intrinsic

properties are used and basic conservation law to know why extensive properties

are employed)

ΔM=Δt ¼ ∂ Mð Þ=∂t ¼ ∂ ρ∂Vð Þ=∂t ¼ ∂=∂t
ð
V

ρ:∂V
� �

ð1:31Þ

where,ΔM is the change in mass,Δt is time interval of the mass change, differential

∂ Mð Þ=∂t is rate of change of mass, ρ∂V is the mass change in terms of changing

volume

Similarly, right part of (1.30) can be written as

Im ¼ Δm:ΔA ð1:32Þ

where, Δm is mass flowing normal to an area ΔA.
Equation (1.32) can further be expressed in terms of extensive intrinsic proper-

ties as

Δm:ΔA ¼
ð
s

ρ:U:∂S ð1:33Þ

where, U is mass flow velocity S is the surface area of the boundary region.
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Now, by replacing (1.31) and (1.33) in (1.30), we will have the mass conserva-

tion equation for fluids

∂=∂t
ð
v

ρ:∂V
� �

¼ �
ð
s

ρ:U:∂S ð1:34Þ

Conservation of Linear Momentum/Inertia

It can be defined as the net momentum in a given volume at a given time is constant.

Newton’s second law describes the relation of force and momentum with the

expression

F ¼ m:a ¼ m: ∂U=∂t ¼ ∂ mUð Þ=∂t ¼ ∂p=∂t ¼ U: ∂m=∂t ð1:35Þ

where, m is mass of the fluid in a given area, p is momentum, U is the flow velocity,

a is acceleration, ∂U=∂t is velocity rate, ∂m=∂t is mass flow rate. U. ∂m=∂t is
known as momentum flow.

Momentum flow can be written in terms of extensive properties

∂p=∂t ¼ U: ∂m=∂t ¼ U:Im ¼ U: mAð Þ ¼ U: ρVAð Þ ð1:36Þ

Now, for momentum on this given mass of fluid to be constant,

External forcesðFÞ ¼ Momentum flow rateþMomentum out�Momentum in

ð1:37Þ

The external forces acting on the fluid in a defined boundary are body force

(force due to gravity) and surface forces (pressure, viscosity)

Thus conservation (1.37) will become

Fgþ Fvþ Fp ¼ Momentum flow rateþMomentum out�Momentum in

ð1:38Þ

Substituting respective values will give us the conservation of momentum

equation

ρgþ Fvþ ∂P=∂L ¼ ρU:∂V=∂tþ ∂ ρUð Þ=∂t ð1:39Þ

Conservation of Energy

It is stated as energy within a system remains constant such that energy acting upon

the body is continuously changed to other form, such as work. For fluids it is a very

complicated equation that considers several forms of energy acting and dissipating

out of a defined body. In its simplest form the law can be written as
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ΔE ¼ constant ð1:40Þ

The simplest example of energy conservation is Bernoulli’s equation where fluid
flowing through a pipe having different radius as depicted in Fig. 1.7.

Bernoulli’s equation for per unit volume for a given area is written as

Pressure energyþ kinetic energyþ potential energy ¼ constant ð1:41Þ
Pþ mU2

� �
=2þmgh ¼ Pþ ρU2

� �
=2þ ρgh ¼ constant ð1:42Þ

Now, from Fig. 1.7, at two different points with different cross-section areas,

Equation (1.42) can be written as

P1 þ ρU2
1

� �
=2þ ρgh1 ¼ P2 þ ρU2

2

� �
=2 þ ρgh2 ð1:43Þ

Important Concepts

• Stokes law: Friction and Drag on spherical particles

Frictional force due to viscosity, which is also known as Stokes drag is given by

Fd ¼ 6ΠηrU ð1:44Þ

where,

Fd is stokes drag, η is dynamic viscosity, r is hydrodynamic radius of the

spherical particle, U is the flow velocity around the particle. 6Πηr is together is

called drag coefficient ζ.

A1> A2, r1 > r2, P1 < P2 , U1 < U2

Q (Volumetric flow rate) = U.A; Q1 = Q2

A2, r2, h2, P2,U2

A1, r1, h1, P1,U1

Q1

Q2

Fig. 1.7 According to

conservation law,

volumetric flow rate in the

pipe sections depicted as

red circles must remain

same. However, channel

diameters, cross-section

areas, and flow velocities of

the highlighted sections

different. Thus, to satisfy

Q1 ¼ Q2, flow velocity of

the smaller diameter > the

flow velocity of higher

diameter
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Applications of Stokes Law

• Hydrodynamic separation of cells

• Viscous force calculation

• Calculating shear on cells

This is important because mostly biomolecules and cells are approximately

spherical. Thus Stokes law can be employed with approximation.

The viscous force experienced by each spherical particle is given by

FvZ ¼ 3ηU=2r ð1:45Þ

The gravitational force experienced by a spherical particle falling in a liquid

Fg ¼ 4½ðρs � ρfÞgΠr3�=3 ð1:46Þ

where, ρs is particle density, ρf is fluid density, g is gravity constant, r is radius of

particle

Terminal velocity of a spherical particle falling in a liquid under gravity

Uter ¼ 2½ðρs�ρfÞgr2�=9η ð1:47Þ

Stokes-Einstein law relates kinetics to Stokes law for understanding Diffusion

D ¼ kBT=6Πηr ð1:48Þ

where, D is diffusion constant, kB is Boltzmann constant, T is temperature of the

system

Drag force on a particle completely enclosed in fluid is expressed as

FD ¼ ρU2CDA=2 ð1:49Þ

where, FD is drag force, CD is drag coefficient, A is the area of reference, U is flow

velocity, and ρ is fluid density.

Equation (1.49) can be rewritten as

FD ¼ ρU2CAf Reð Þ=2 ð1:50Þ

where, f(Re) is function operator for Reynolds number

• Poiseuille principle: Volumetric flow rate and pressure drop

It describes the relation of pressure drop in a moving fluid enclosed within a tube

with the flow resistance and flow rate (Table 1.6). It is also known as Hagen-

Poiseuille law (Fig. 1.8).
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For circular channels the relation is expressed as

R ¼ ðP1 � P2Þ=Q ¼ ΔP=Q ¼ 8ηl=Πr4 ð1:51Þ

The (1.51) can be written as

ΔP ¼ RQ ¼ 8ηlQ=Πr4 ¼ 32ηlU=r2 ð1:52Þ

where, ΔP is pressure drop, R is the fluidic resistance, and Q is the volumetric flow

rate through a cross-section area ‘A’ (Q ¼ U:A)
For rectangular channels the relation in (1.51) is modified to

Rhd ¼ Cncηl=A2 ð1:53Þ

where, Cnc is numerical coefficient and is given as

Cnc ¼ 8 Aþ 1ð Þ2=A ð1:54Þ

where, A is aspect ratio¼ height of the channel (h)/width of the channel (w)

Replacing (1.53) and (1.54) in (1.52)

ΔP ¼ RhdQ ¼ CncηlQ=A2 ¼ 8 Aþ 1ð Þ2=A
h i

ηlQ=A2 ð1:55Þ

Table 1.6 Volumetric flow rates for common geometries

Shape of cross-section Volumetric flow rate (Q) Fabrication approach

Cylindrical Πr4ΔP/8ηL Isotropic wet etching, Ball-end milling

Rectangular ΔPw=½8ðAþ 1Þ2=A� η Photolithogrgaphy

Triangular ΔP(3a4)1/2/320ηl Anisotropic wet etching

Pressure drop along L = P2 − P1

L

P2

r

R
Flow Resistance 

P1

Fig. 1.8 Illustration of the

pressure drop ‘ΔP’ along
the channel length ‘L’ due
to the flow resistance

offered by the fluid to its

motion from point 1 to point

2
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Volumetric flow rate can be expressed in terms of mass flow rate with the
relation

Q ¼ Im=ρ ð1:56Þ

Replacing (1.56) in (1.55) gives

ΔP ¼ RhdIm=ρ ¼ CncηlIm=A2:ρ ¼ η=ρð Þ: CnclIm=A
2

� � ¼ ν: Cncl Im=A
2 ð1:57Þ

where, Im is mass flow rate, ν is kinematic viscosity

For circular pipes, (1.57) can be written as

ΔP ¼ RQ ¼ 8νl=Πr4 ð1:58Þ

An extension to Hagen-Poiseuille law is Darcy–Weisbach equation

Darcy–Weisbach equation relates head loss or pressure loss due to friction

along a given circular channel and is expressed as

Pressure loss form:

ΔP pressure lossð Þ ¼ fDlρV
2=2D ð1:59Þ

Head loss form:

Replacing (1.6) in (1.59)

ρgΔh ¼ fDlρV
2=2D ð1:60Þ

Δh head lossð Þ ¼ fDlV
2=2gD ð1:61Þ

where, fD is Darcy friction factor from channel wall which is

fD ¼ 64=Re ð1:62Þ

Fanning equation relates the ratio of local shear stress to the local fluid kinetic

energy and is expressed as

f ¼ τ=Kinetic Energy ¼ 2τ=ρU2 ¼ 16=Re ð1:63Þ

where,

f is fanning friction factor, τ is shear stress, Re is Reynolds number.
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Pressure loss form:

ΔP ¼ τA=A’ ð1:64Þ

where, A is wall area ¼ 2Π rlð Þ and A’ is cross-sectional flow area ¼ Πr2ð Þ, r is
radius of the pipe, l is flow length.

Replacing (1.63) in (1.64)

ΔP ¼ fρU2A=2A’ ¼ fρU2: 2Π rl=2Πr2
� � ¼ fρU2: l=rð Þ ð1:65Þ

Head loss form:

Replacing (1.6) in (1.63)

Δh ¼ fρU2: l=rgρð Þ ¼ f U2l=rg ð1:66Þ

• Coriolis effect: Inertial frame and particle motion

It is inertial force acting upon bodies relative to a rotating reference frame. For

example, if a particle rolls on a static disc as illustrated in Fig. 1.9, by the virtue of

inertia, it appears to move in a straight line to the observer in the same frame of

reference. When the disc starts to rotate then the particle is still moving in the

straight line if observed by someone standing in an inertial frame of reference

outside of the rotating disc. However, if the observer is standing on the rotating disc

in the non-inertial reference frame, then the particle will look like following a

curved path, such that the particle is resisting in the change of its final destination by

the virtue of inertia. Thus we can say that the Coriolis effect is in contrast to the
normal inertia which resists the change in body’s motion, whereas in this effect
body resists the change in displacement. It is crucial in inertial microfluidics where

plasma can be separated from whole blood and cells of different sizes can be

separated from each other. The direction of fluids in specific channels in centrifugal

microfluidics as a function of inertial forces and Coriolis effect can also be

achieved.

The Coriolis effect can be expressed

Fc ¼ m:ac ð1:67Þ

where,

Fc is Coriolis force, m is mass of the fluidic plug or particle, ac is angular

acceleration.

Since,

ac ¼ �2Uω ð1:68Þ

where,
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U is linear velocity of the liquid plug in the channel/particle (velocity relative to

the rotation speed), and ω is angular velocity,

Hence,

Fc ¼ �2mUω ¼ �2ðρVÞUω ð1:69Þ

where,

ρ is density and V is volume of the particle.

The force is also expressed as force density, as expressed below

fc ¼ Fc=V ¼ �2ρUω ð1:70Þ

In centrifugal microfluidics the velocity of the liquid plug or particle (U) in the

channel depends on angular velocity (ω), radial location of the fluid reservoir,

Fig. 1.9 Explanation of the Coriolis effect. (a) In an inertial frame of reference the observer is out

of the rotating disk. The stationary observer will see the rolled ball following a straight path. (b)
However, when observer stands on the same rotating disk on which the ball was rolled then to this

rotating observer ball will seem to follow a curved path outwards. This perspective of curving of

the path of ball is Coriolis effect. (c) This effect is used in rotating microfluidics for separating

particles in a fluid plug of length ‘l’. In this plug, the particle will experience an outward

centrifugal force normal to the rotation axis and an outward force normal but opposite to the

direction of the rotation, as depicted in ‘(c)’. Due to this effect particles will move to the wall of the

channel continuously pulled the disk boundary
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channel geometry, and fluid properties, such as dynamic viscosity (η) and density

(ρ). This linear velocity component is given as

U ¼ D2
hω

2ρrΔr=32ηlc ð1:71Þ

where, Dh is hydraulic diameter of the microchannel, r is average distance of the

liquid from the center of rotation, Δr is radial extent of the liquid plug (how much it

has moved from its initial position), and lc is the plug length in the channel.

Replacing (1.71) in (1.69),

Fc ¼ �2ðρVÞωðD2
hω

2ρrΔr=32ηlcÞ ¼ �D2
hω

3ρ2rΔrV=16ηlc ð1:72Þ

The (1.70) can now be written as,

fc ¼ �D2
hω

3ρ2rΔr=16ηlc ð1:73Þ

Centrifugal and Coriolis forces are related to each other in a sense that they

operate together but normally (perpendicular) to each other as depicted in Fig. 1.9.

Centrifugal force is given by

Fω ¼ �mω2r ¼ �ðρVÞω2r ð1:74Þ

Where, r is radius of rotation.

The centrifugal force density is given by

fω ¼ Fω=V ¼ �ρω2r ð1:75Þ

Now, finding ration of (1.69) and (1.71) will give us relative effect of both the

forces acting upon the particle in rotatory frame.

Fc=Fω ¼ 2U=ωr ð1:76Þ

Inertia circle is the path that moving body in a rotating reference frame will

follow. The radius of this circle (rc) and the time required to travel the edge of the

frame (tc) is given by

rc ¼ U=2ω, and tc ¼ Π=ω ð1:77Þ

Rossby Number—length scales and Coriolis effect: It is the ratio of inertial

and Coriolis forces. We can determine the effect of length scale on the efficiency of

rotation in achieving Coriolis effects. The relation is expressed as

Ro ¼ U=fcL ¼ D2
hω

2ρrΔr=32η fcLlc ð1:78Þ
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where,

Ro is Rossby number, U is the relative velocity of the particle, fc is Coriolis

factor, and L is the length scale of the motion. Coriolis factor, fc is expressed as

fc ¼ 2ωSinΘ ð1:79Þ

where, Θ is the angle of the body to the plane of the reference surface. In case of

particles in centrifugal microfluidics, Θ will be 90� thus changing the Coriolis

factor to 2ω.

• Dean number: Flows in curved pipes

It is defined as the product of Reynolds number and the square root of the

curvature ratio.

De ¼ Re: d=2rð Þ1=2 ¼ ρVd=μð Þ: d=2rð Þ1=2 ð1:80Þ

where,

De is Deans number, Re is Reynolds number, r is curvature radius of the channel/

tube, d is travelled length of the liquid, and V is axial velocity.

2.5 Key Dimensionless Numbers Explained

2.5.1 Reynolds Number: Inertial Focusing to Separate Plasma from

Whole Blood

The Reynolds number is one of the most crucial dimensionless numbers in fluid

mechanics. However, when we discuss it with reference to microfluidics, its

relevance is practically limited. The reason is that the fluids employed in

microfluidics-related applications have small values for their respective Reynolds

numbers that make the inertial effects irrelevant.

Still, importance of the Reynolds number can’t be undermined. One best exam-

ple to explain the importance of inertia in microfluidics is separation of plasma from

whole blood. A straight channel, as illustrated in Fig. 1.10, is curved at one end. The

liquid flowing through this channel will feel a sudden curve on its path. At the

corner, liquid still tends to go straight due to which in the process of changing path,

it loses momentum at the corner. In this case,

Time taken for this liquid to turn around the corner is expressed as

ti � w=U0 ð1:81Þ

where, ti is turn time, w is width of the curve, U0 is velocity of the fluid before

turning.
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Now, the liquid during this time from (1.81) will lose a fraction of its linear

momentum density, which can be given as

pi � ρU0 ð1:82Þ

The lost fraction of momentum (pd) in (1.82) will be transferred as a force,

named inertial/centrifugal force, which is directed outwards in the same direction

the liquid was initially flowing prior entering the curve. This inertial force density

can be calculated as

fi � pi=ti ð1:83Þ

By replacing (1.81) and (1.82) in (1.83) for pd and Ti we will get

fi � ρU0=ti � ρU2
0=w ð1:84Þ

These three equations form the basis of particle separation in non-circulating

fluidic chips.

2.5.2 Pẻclet Number: Diffusivities Across Channel Width

and No-Membrane Dynamic Filtering

In day-to-day life turbulent fluid mixing is crucial. To elaborate the time scale vs

length scale in the absence of this mixing, let us consider that we are holding a cup

pi
z = ρU

ρU

0

w

pi
x = 0

~ w

fi

pf
z = 0

pf
x = 0

Fig. 1.10 Inertial separation of the particles moving with a velocity U0 and following a curved

path approximately equal to the width of the channel. Due to the conservation of momentum,

particle will experience an outward push known as inertial centrifugal force with a density fi as
described in (1.84). Pi is inertial flow pressure where x represents in x direction and z represents in

z direction. Initially, prior to the curve, along x axis, the momentum is 0 while all the momentum is

focused along z axis. At the curve particle will lose z momentum that will translate to the

x-momentum. During this transition, the particle will experience fi normally outwards towards

the putter wall of the microchannel
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of coffee; in this case we will not be able to smell the aroma of coffee held in our

hands for next several days. If real world fluids were low Reynolds number then due

to laminarity in flow, diffusion will be the only means of mixing, as we have already

seen the relation between time and length scales. On the contrary, in microfluidics,

due to low-Reynolds number regimen, mixing is predominantly by diffusion; this

could be lengthy on a time scale. The common diffusivities for few biological

moieties are enlisted in Table 1.7. Now, there are several applications requiring

rapid mixing, and this is where Pẻclet number helps us understanding the extent of

mixing in our micro-devices.

Let us discuss the case of the ‘H’ filter. It is named so due to its geometrical

appearance (Fig. 1.11). Left T-junction is used as inlets keeping those at pressure

P0 þ ΔP; while T-junction on the right is used as outlet keeping it at pressure P0.

The arm of the ‘H’ is the central channel where diffusion takes place. The H-filter

works on the basis of diffusion, which is the only mean of transverse movement of

particles between two parallel moving fluid layers.

According to the mass transport and Fick’s law,

Table 1.7 Diffusivities of common biological elements

Biological element Solute Proteins Virus Bacterium Mammalian Cell

Size 0.1 nm 5 nm 100 nm 1 μm 10 μm
Diffusivity (μm2/s) 2000 40 2 0.2 0.02

P0 + ∆P P0

L

w

U0

P0 + ∆P P0
U0

Fig. 1.11 Illustration of the working mechanism of a membrane-less dynamic particle separator.

The working principle depends on the different diffusivities of different particles and the time and

length scale required for diffusion in transverse direction according to their respective diffusiv-

ities. Two liquids enter through a T-junction and are left to diffuse over a length L in the arm of the

H-filter. However, the liquids will never mix due to laminar regimen. A solution with different

particles is injected through one channel. During the flow in the arm section, where both the fluids

stay in contact, smaller particles with higher diffusivity and lower Pẻclet number will move to the

other layer and thus separate from the rest of the initial solution
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D diffusion coefficientð Þ ¼ w2 width to diffuseð Þ=2tdiff time to diffuseð Þ ð1:85Þ

The time to diffuse is dependent on the particle velocity in the fluid (U0) and the

length (L) it will travel before diffusing completely to the adjacent stream. Thus,

eq. (1.85) can be written as

D ¼ w2U0=2L ð1:86Þ

However, the particle has to diffuse through only half of the total width of the

H-connecting arm because the other half is filled with different liquid. Due to this

w becomes w/2 and eq. (1.86) will be

D ¼ w2U0=4L ð1:87Þ

Also, particles in liquid flow experience convection along with the diffusion.

The time of particle convection become important as referred in Table 1.8. Thus the

particle diffusivity becomes crucial as well. Typical diffusivities for common

biological moieties are mentioned in Table 1.7.

As mentioned in Table 1.8, for particle to diffuse into the other half across the

channel width filled with different liquid, then the prerequisite must be the diffu-

sivity of the particle should be high; the aspect ratio of channel length to its width

should be smaller along with flow velocity. This all will result in low Pẻclet number

and smaller diffusion time. The opposite will be true for a particle not to diffuse into

the adjacent fluid across its width.

3 Conclusion

This chapter provides basic information, such as basic principles and related theory,

for developing a fundamental background to understand the so-looking complex

physics of microfluidics. On the contrary, the foundation of fluid mechanics starts

Table 1.8 Conditions for particle separation in no-membrane H-filter

tconv
(time of particle

convection)

tdiff
(time of particle

diffusion)

PeMass

(Pẻclet number)

L/U0 w2/4D RePr¼U0L/D

For

diffusion

tconv � tdiff Low Pe,

For no

diffusion

tconv >> tdiff High Pe

Either longer channel length or slower flow

velocity or both are required to achieve

diffusion
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dating back to high school physics. In this chapter, we have brushed all those

concepts we studied back then and added some advanced theoretical knowledge

built upon that. In principle, this chapter covers everything that one should get

acquainted to for understanding microfluidics. This will allow non-physicists and

engineers to interface with microfluidic engineers and thus, can improve commu-

nication, which is the biggest challenge when non-physical scientists and doctors

interact with engineers.
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