Design Patterns for Human-Cognitive Agent
Teaming

Axel Schulte'™, Diana Donath’, and Douglas S. Lange”

! Universitit der Bundeswehr Miinchen, Neubiberg, Germany
{axel. schulte,diana. donath}@unibw. de
2 Space and Naval Warfare Systems Center Pacific, San Diego, CA, USA
doug. lange@navy.mil

Abstract. The aim of this article is to provide a common, easy to use
nomenclature to describe highly automated human-machine systems in the
realm of vehicle guidance and foster the identification of established design
patterns for human-autonomy teaming. With this effort, we intend to facilitate
the discussion and exchange of approaches to the integration of humans with
cognitive agents amongst researchers and system designers. By use of this
nomenclature, we identify most important top-level design patterns, such as
delegation and associate systems, as well as hybrid structures of humans
working with cognitive agents.

Keywords: Assistant system -+ Autonomous system -+ Cognitive agent -
Cooperative control - Delegation - Design patterns + Teaming - Supervisory
control - Systems engineering - Unmanned vehicles - Vehicle guidance - Work
system

1 Introduction

Today, higher cognitive functions (e.g., perception, planning, and decision-making)
that are traditionally exclusively owned by the human, are becoming an integral part of
automated functions. In the last one or two decades the term “autonomous system” has
widely been used to describe complex automated systems working largely independent
from a human operator. However, the more capable the automation has become, the
more essential the challenging issue of human-system functional allocation and inte-
gration has turned out to be [1]. We share the concern of Bradshaw et al. [2] that an
undifferentiated use of the term of “autonomy” and the proliferation of automation can
lead to unfruitful discussions and oddly defined development programs. We see the
need for a conceptual framework unifying the nomenclature and description of systems
in which human beings interact with complex automation. Therefore, in this article, we
attempt to identify and formally describe common grounds among researchers in this
field. Despite our concerns, we want to adhere to the term of “Human-Autonomy
Teaming (HAT)” to describe systems in which humans work with highly automated
agents. Where those agents carry attributes like “autonomous” or “intelligent”, we will
assign the unified term cognitive agent in this nomenclature. We establish a procedure
and a common language to describe concepts of HAT. Our goal is to contribute to a

© Springer International Publishing Switzerland 2016
D. Harris (Ed.): EPCE 2016, LNAI 9736, pp. 231-243, 2016.
DOI: 10.1007/978-3-319-40030-3_24

232 A. Schulte et al.

more objective debate, to facilitate the effective communication between researchers,
and to provide guidance to practitioners. Our approach, in general, is twofold. Firstly,
we suggest a common symbolic language, as well as a procedure to follow to describe
systems, system requirements, and top-level system designs. Both have a stronger
focus on human-automation work share and integration aspects than traditional systems
engineering practices and tools (e.g., Unified Modelling Language, UML). We borrow
the notion of design patterns from the domain of systems and software engineering and
adapt it for use in human factors engineering of highly automated dynamic systems.
Secondly, we encourage the analysis of current HAT research and development
approaches in order to identify solutions and best practices from empirical studies. This
article shall also provide advice for designers of HAT systems how to approach the
design process in a strictly top-down manner.

1.1 Design Patterns in Engineering

Christopher Alexander proposed that every building and town is composed of
patterns [3]. The patterns are a result of forces and processes that combine such that
towns or buildings develop in particular ways. By developing a language of these
patterns, Alexander et al. were able to describe the forces that produced patterns as well
as the consequences of those patterns [4]. Pattern descriptions also specified their
relationships to other patterns so that one could create a network of patterns to describe
a project. Finally, Alexander et al. set out processes by which the patterns could be
used. They envisioned the descriptions of forces and consequences as useful in making
arguments to decision making bodies. They also described how one could specify a
project from top-down using patterns to make decisions about the ultimate design.
Design patterns and pattern languages became a popular tool for software engi-
neering in the 1990s. This is usually traced to Gamma et al. in 1995 [5]. That patterns
describe a repeated problem and the core of a solution to that problem class is their
fundamental value. Gamma et al. tried to be more explicit than Alexander concerning
the components of a pattern. Four critical elements were listed: the pattern name, the
description of the problem, the description of the solution, and the consequences.
A more detailed template was created, and their book [5], like the second volume of
Alexander’s work [4] provided a catalog of some discovered patterns, each entry
describing a suitable problem space, the solution template, positive and negative
consequences, and providing implementation advice. The popularity of software pat-
terns led to further efforts to catalog patterns for software analysis [6] and design [7],
and data models [7]. Discussions of negative patterns often found in systems or
organizations were described as anti-patterns [8] with discussions of how to correct the
problems. Conferences were held to capture the experience of practitioners in program
design as a counterweight to scientific activities that focused on new approaches [9].
Ultimately, a pattern literature for HAT will accomplish the same goals that
Alexander initially set out in the domain of architecture and land-use. Patterns serve to
communicate generalized solutions to problems faced by engineers. Alexander
believed that one could look through a catalog of patterns, identify the key features and
forces of a project, and select the appropriate starting points. Then using the linkages

Design Patterns for Human-Cognitive Agent Teaming 233

provided among the patterns in his catalog one could bring in other appropriate patterns
until one had a description of the solution in the form of a language of patterns. Our
forces will include human performance issues, limitations of autonomy, communica-
tion issues, and many other critical factors. If our patterns can describe forces, features,
consequences, and linkages to other patterns, pattern languages as solution descriptions
may be possible within this domain.

1.2 Design Patterns in Human Factors, Ergonomics, and HAT

In the field of human factors and ergonomics, the description of design patterns also
became fashionable recently. Borchers [10] is one of the first who described the linkage
between human-computer interaction and design patterns. Kruschitz and Hitz [11] also
provide a good overview. Kahn et al. [12] looked at design patterns for sociality in
human-robot interaction.

Sheridan’s well-known Levels-of-Automation (LoA) scale (e.g. [13]) is one of the
early design patterns in human-automation interaction. System designers very suc-
cessfully use this scale or one of its derivatives (e.g. [14, 15]) in many different
application fields, sometimes even without knowing. In that sense, we see these kinds of
Management-by-Consent/Management-by-Exception-based LoA-scales as a collection
of often-found design patterns. They apply for supervisory control relationships [13]
between human and machine. In this use case, LoA-scales provide an excellent source
for deciding how to design the interaction for certain specific functions. Scales of
levels-of-autonomy (e.g. [16, 17]) refer more to design options for the scope of a full
system. Their focus is predominantly on the description of the independence of the
system from human intervention.

Juziuk [18] provides a comprehensive listing and overview of efforts to document
design patterns in multi-agent systems. This gets us closer to what we need for HAT, in
that cognitive agents and their relationships to each other are considered.

In the following chapters, we want to create a generalized framework and
methodology for describing a wider variety of configurations in different scopes. We
will present an approach to derive system requirements and to describe top-level
system designs for systems involving HAT based on design patterns.

2 Basic Concepts

The traditional systems engineering view is solely on the formulation of requirements
and the design of the technical functions of a system. The human operator only appears
as an actor, usually located outside the system boundary. This approach is reasonable
when automation is relatively simple, in the sense that it can perform specific clear-cut
part-tasks. There, one can well describe the relationship between the (technical) system
and the human user through use cases calling for a certain user-system interaction.
In this article, in contrast, we want to take account for the following trends: (1) the
automation in HAT will become much more capable, (2) the work share and interaction
between the user and the system will be much less stable (e.g. adaptive automation [19]),

234 A. Schulte et al.

and (3) the task performance of human and automation will be highly dependent on a
cognitive level. Hollnagel and Woods [20] speak of joint cognitive systems in this con-
text. Consequently, our approach focuses on two aspects, (a) the description of the
purpose we want to design a HAT system for before the actual design, and (b) the
incorporation of the human user within the process and system boundary.

2.1 The Work Process

The process of meaningful, goal-oriented co-action of humans (e.g., operators) and
machines (e.g., unmanned vehicles (UVs) with automation), including artificial cog-
nitive agents, shall be called a Work Process (WProc) (see Fig. 1a). A Work Objective
(WOb3j), i.e., the mission or the purpose of work, defines and initiates the WProc. The
WOb3j usually comes as an instruction, order, or command (e.g., a UV mission
assignment). The proper definition of the WOb3j is of high priority and most critical for
the definition of the system boundaries and the design. The WProc is embedded into a
Work Environment (WEnv). WEnv inputs to the WProc are the physical Environment
(Env) (e.g., atmosphere, threats), material and energy Supplies (Sup) (e.g., fuel,
weapons), and Information (Inf) (e.g., ATC clearances, airspace regulations). Finally,
the WProc generates certain physical or conceptual effects to the environment, i.e. the
Work Process Output (WPOut) (e.g., target photo/video, destruction of target, provi-
sion of information to other WProc).

Env § § m
sup | | T
Inf | l { J |]

(b) (©)

: superior subordinate :
D — ' —| ' —i | roc
WOb3j WPOut | Wobj A| WPTOC [yony g WProc ! Wobj B

Fig. 1. (a) Work process; (b) hierarchical work processes; (c) networked work processes

The WProc itself imposes meaningful actions upon a particular Work Object (WO)
(e.g., target to be destroyed, materials to be transported, premises to be secured) being
part of the WEnv. The WEnv may also host other WProcs. In case one WProc
interacts with other WProcs, this can be organized as a hierarchical structure, i.e. a
superior WProc generates the WObj for one or many sub-ordinate WProcs and
monitors their results, thereby forming supervisory loops (see Fig. 1b). Alternatively,
the WProcs might be organized as a networked structure, i.e., parallel WProcs
depend on each other in a way that their WPOuts cause environmental changes rel-
evant to other WProcs, or provide supplies or information to other WProcs, thereby
forming a more or less tight mesh of interdependent WProcs, each following indi-
vidual WObjs (see Fig. 1c).

A proper work process design should be the starting point for each development of
a system involving HAT. At this stage, “it is more important to understand what the
[... system] does [...], than to explain how it does it” [20]. However, defining the

Design Patterns for Human-Cognitive Agent Teaming 235

WODbJ, the system boundary, and the interfaces of the WProc you want to design for is
a hard task to do. The result will heavily influence the system design. From our
experience in engineering HAT systems, we suggest a list of guidelines as in Table 1.

Table 1. Guidelines for Work Process design

1. Identify the Work Objective (WOb3j) you want to design a system for.

— Therefore, describe the purpose your customer wants to achieve.

— Since we want to design a human-machine system, it is always a good idea to start with describing
the job of that human (team).

— If the human team members are working with very different or locally distributed workstations, con-
sider defining multiple separate WOb3j s for hierarchical or networked WProcs.

2. Identify other relevant Work Processes (WProcs) your WProc is networked with.

— Therefore, consider agencies actively providing orders or commands to your WProc.
— Consider agencies actively providing relevant information or supplies to your WProc.
— Furthermore, consider agencies that receive the WPOut you are providing.

3. Draw a network of all relevant Work Processes (WProcs) including your WProc.

— Clearly denote the individual WProcs.

— Clearly mark the most important information flow through the network. Properly distinguish be-
tween WObj s, WEnv inputs, and WPOuts.

— This exercise will provide a good starting point for defining the inputs and outputs of your WProc
(i.e., the WProc you want to design a system for) as a black box. In this context, it might be helpful
also to consider the introduction of a Work Object (WO).

Figure 2 shows an example of a common WProc design taken from civil aviation.
The example consists of three individual WProcs, including WProc: Airline
Flight, which is the process we want to design a system for. This process changes
the WEnv by transporting passengers (WO: PAX). It is in a hierarchical subordinate
relationship to WProc: Airline Dispatching that provides WObj: Flight
and supplementary information, and to which flight and aircraft status information is
fed back. With WProc: Air Traffic Control, a network is established, in which
radar surveillance takes place, and requests and clearances are exchanged.

Each WProc has a certain life cycle and can be broken down into a potentially
large number of subsequent and/or concurrent sub-processes. During the life cycle of a
WProc, it may be exposed to many use cases. For system design, it is important to
collect and describe these use cases and sub-processes that finally result in tasks to be
performed either by a human, a cognitive agent, or by conventional automation.
Without going deeply into well-established methods of systems engineering and
cognitive task analysis (e.g. [21]) in this article, Table 2 provides some guidelines from
our experience in the consequential top-down design of HAT systems.

236 A. Schulte et al.

* Clearances
r-=-=-=-=-- 1 B i
 WProc: 1 FYObtjlt WProc: Radar Surveillance, Requests
T -k:': Airline : = Airline Transport
WOB3: | psptch ! Flight P} S PR R
A:Lrl:.ne,___p____l g WO: J‘IWP : 1|
Dsptch Suppl. Info } PA).{ - ET-E: :Tocc)
Flight & A/C Status ool !

Fig. 2. Example for a common Work Process design with hierarchical and networked structures

Table 2. Guidelines for Work Process Use Case Analysis

1. Identify the relevant Use Cases you want to design a system for.

— Therefore, analyze all relevant loops and meshes, in which your WProc is involved and interacts
with other WProcs, the WEnv, and the WO.
— Identify all possible specifications of the WOb3J, the Env, the Sup, the Inf, and the WPout.
— Make sure not to drift into design discussions on how your WProc shall be implemented now.
2. Collect all inputs and outputs of your WProc from the various use cases.

— This will be rather straightforward, given the use cases have been well described.

— However, this process may cause you to rethink some of the use cases.

— As aresult, you will get a good user requirements specification for the system you want to design.
3. Describe the life cycle phases your WProc is supposed to go through.

— Describe the dynamics of your WProc by the most important or frequent use cases as subsequent,
parallel, and/or nested sub-processes (e.g., “take off”, “transit”, “operation”).

— Determine necessary subsequent and/or parallel tasks to be performed (e.g., “hold flight altitude”,
“shoot photo”, “get clearance”) for each of the found sub-processes. Caution, do not pre-determine
any human-automation functional allocation or any design yet!

— Again, this can provide lengthy debates. Postpone those discussions for when you have more time

and money to spend.

2.2 The Work System

Now we are ready to open the black box. From now on, we look at the physical system
that runs the WProc described so far (i.e., the system we want to design). We will
name this a Work System (WSys), which is our first design pattern. It is important to
note that the WSys inherits the complete definition of the corresponding WProc we
described before. Within the box, in principle, there are two essential roles to be taken
to run the WProc: the Worker and the Tools. Consequently, the WSys is composed
of two components, each taking one of the roles (see Fig. 3).

The main characteristic of a Worker is to know, understand, and pursue the
WOb3j by own initiative. Without this initiative, the WProc would not be carried out.
Therefore, a WSys cannot exist without a human Worker, by definition. Otherwise,
we would not speak of a WSys, but rather of a mere technical artifact, i.e. a Tool.
Only Tools would not make a WSys, nor perform a WProc, due to the lack of
purpose. The Worker is the only instance and responsible for breaking down the

Design Patterns for Human-Cognitive Agent Teaming 237

‘Env ,Sup,Inf

Worker Tools

'’y
Wob3 ""’@F()ut»

Fig. 3. Design pattern WSys as physical instance of the corresponding WProc comprising the
roles of the Worker and the Tools being in a Hierarchical Relationship (HiR, green arrow)
(Color figure online)

WODb7 into relevant tasks. The Tools, on the other hand, will receive tasks from the
Worker and will only perform them when told to do so. Hence, the Worker and the
Tools are always in a Hierarchical Relationship (HiR, green arrow in Fig. 3) that may
be characterized by more detailed design patterns.

We would like to mention that in an earlier article [22], we defined “autonomy” by
use of the WSys as the authorization of the Worker to self-define the WOb3j. Only the
human Worker shall exercise this authority, for ethical and other reasons.

Table 3. Guidelines for initial Work System Design

1. Transition from WProc view to WSy s view.

— The starting point is the WProc or network of WProcs you designed according to Table 1. Each
WProc will become a WSys keeping exactly the same specifications and periphery.

— Open only the black box of your WSys, i.c. the WSys you want to design.

— Keep all other WProcs (and also WOs, if needed) as black boxes. If you feel the urge to also open
one of them, consider a re-design of the network of WProcs.

2. Initial WSys design.

— Populate the WSys with the necessary physical entities (e.g., humans, vehicles, control stations).

— Start with the Auman Worker and the conventional Tools (i.e., machines and automation not
necessarily carrying attributes like “intelligent” or “autonomous”) to develop a first product vision.

— Take advantage of any available market solutions.

3. Human-Agent/Automation Task Allocation.

— Now allocate the tasks you found in your task analysis to the human Worker and/or automated
functions. Some, unfortunately only very few, allocations are quite obvious due to their physical
(e.g., aircraft flies) or legal/ethical (e.g., human decides on weapon deployment) requirements.
However, many others are not!

— Ifatask is undoable (by humans or system/automation), consider further breakdown of that task into
sub-tasks.

— The cognitive tasks, which turn out to be allocated to humans and automation (by sharing or trading)

are the most interesting ones. They might require a cognitive agent (cf. chapter 3).

Traditionally, only a human or a human team represents the Worker. Machinery
and automation would constitute the Tools. Thereby, a conventional human-machine
system is created, involving manual control, and in presence of automation, also human

238 A. Schulte et al.

supervisory control [13]. However, the notion of the WSys provides, additional
information concerning the WOb3j, i.e., the purpose of work, and the system boundary,
including the definition of the interfaces to the environment. Finally, the Tools shall
never contain a full WSys, or humans. From our experience, nested WSys are not an
option. As an alternative, we recommend modeling the structure as a hierarchy of
individual WProcs. Table 3 provides some guidelines from our experience for an
initial WSy's design.

3 Introduction of the Cognitive Agent into the Work System

With the advent of more advanced methods to provide higher cognitive capabilities on
behalf of automated functions, the introduction of Cognitive Agents (Coga, little
‘R2D2’ in Fig. 4) into the WSys becomes an option. In the past, the focus in this field
was predominantly on the provision of suitable information processing methods and
algorithms (e.g., artificial intelligence, computer vision, soft computing; cf. e.g. [23]).
Two trends have been followed in the past two decades concerning the role such an
agent could potentially take in system design. Firstly, so-called autonomous systems,
i.e. systems that aimed at performing user-given tasks, as much as possible independent
from human intervention; and secondly, decision support, assistant, or associate sys-
tems, acknowledging that a human predominantly performs the work, while supported
by a machine agent [24].

(a) ‘ Env,Sup, Inf i (b) ‘ Env,Sup, Inf
Worker E Tools i Worker i Tools
A o 1 :
G 5 Sy —%
WObj ' /‘\ WPOut | WObj o | WPOut
i x : i
i D/ | =

Fig. 4. (a) Design pattern WSys with CogA as Tool in HiR; (b) Design pattern WSys with
CogA as Worker in HeR (Color figure online)

We want to acknowledge these trends by introducing two new elementary design
patterns. Figure 4(a) shows a design pattern, where there exists a HiR (green arrow)
between the Worker and the Coga being part of the Tools. Within the Tools, a
HiR (green arrow) between the CogA and other automated Tools exist. Figure 4(b)
shows a design pattern, where in addition to the HiR between the human Worker and
the Tools (cf. Fig. 3), there exists a Heterarchical Relationship (HeR, blue connector)
between the human Worker and the CogA being part of the Worker in this case.
Concerning this HeR, we would like to introduce one restriction, i.e. the CogA shall not
be given the authority to define or even question the WObj. The human Worker shall
always have the final authority do decide.

Figure 5 shows some examples of existing setups we constructed using the ele-
ments human Worker, Tools, CogA, HiR, and HeR. Figure 5(a) depicts a regular

Design Patterns for Human-Cognitive Agent Teaming 239

non-HAT system, in which two human operators cooperate while using technical
equipment (e.g., a two-pilot flight-deck crew operating an aircraft). Figure 5(b) might
be useful to either reduce the crew size (e.g., single pilot operations [25]), or to increase
the span of control (e.g., larger “autonomy” of UVs [16]; single agent operation of
multiple UVs [26]). In this case, the Coga is delegated certain tasks which otherwise a
human crewmember would execute. In both examples, the effect could be mostly
attributed to a reduction of the taskload of the human Worker. Elements of adaptive
functional allocation might also be involved [27]. Figure 5(c) is an extension to
(b) where there is more than one agent tasked by a human operator, each controlling its
individual system (e.g., task-based guidance of multiple UVs [28]). Again, the chal-
lenge here is the increase of the span of control by means of spreading the taskload.
Figure 5(d) goes even further down that road. Here, the human user controls a coop-
erating team of multiple agents, each of which operating its own equipment (e.g., pilot
controlling a cooperating team of multiple UVs [29]; multi-agent system controlling
multiple UVs [30]).

@) f () { ©___4

(*.el - iJg"D»

(N ©

o 6% <1;\,\. i

Fig. 5. Examples for WSys setups constructed from the elements human Worker, Tools,
CogA, HiR, and HeR

However, an increase of automation complexity and span of control, as exercised in
(b)—(d), may also result in automation-induced shortcomings. These effects have been
reported by many researchers (e.g., [31] for a classical source). To counteract suchlike
problems, a number of scientists suggested approaches as in Fig. 5(e). Here, the agent
works in cooperation with the human operator being an element of the Worker
(e.g., pilot assistance or associate systems [32]). Core elements here are the agent’s
initiative in achieving the WOb3j, and the ability of the agent to decode the human’s
mental states as a basis for cooperation. Means of assistance can be attention allocation,
mixed-initiative operation, and adaptive automation techniques [19]. Finally, Fig. 5(f)
shows a setup, in which a human is controlling a system via agent delegation, while at
the same time being assisted by an agent being part of the Worker (e.g., assisted
guidance of a single UV operator [33]; assisted multi-UV mission management [34]).
In the two latter cases (e) and (f), where a CogA is part of the Worker, the Coga
inherits the required attributes of the role of a Worker as claimed in Sect. 2.2, i.e., to
know, understand and pursue the WObJj by its own initiative [22, 24].

240 A. Schulte et al.

At this stage, it is obvious that there can be constructed many more configurations,
especially when we look at distributed multi-user, multi-agent systems with complex
HiR/HeR structures.

4 Actor-Relationship-Actor Tuples

As became clear during the discussion of Fig. 5 in the previous chapter, there are
possible very many WSy's configurations only by combining one or few of the symbols
provided (i.e., human Worker, CogA, Tools, HiR, and HeR). Thereby, researchers
and practitioners can depict their individual solutions described in literature, and hence,
make them comparable. In this chapter, we now want to look at the possible
{Actor-Relationship-Actor}-tuples, which can occur in all possible WSys.
Figure 6 gives an annotated overview of all possible tuples.

ay ar:

M | punan-Human
i

'y o
 § IS]
Human-Human | Agent-Human

A
‘ HeR HeR"

i(b)1

>3
>[5

o Human-Agent | Agent-Agent o Human-Agent | Agent-Agent
lal HiR HiR : lal HeR" HeR
f-\ Human-Tools | Agent-Tools [Tools-Tools E f\ Tools-Tools
& HiR HiR HiR : & HeR

Fig. 6. (a) Hierarchical, (b) heterarchical{ Actor-Relationship-Actor }-tuples; (shaded:
human involved; *: equal configurations; cross: invalid option)

A hierarchy of an agent or a tool over a human, or a tool over an agent we do not
want further to consider. The same applies to a heterarchy of a tool with either a human
or an agent, for obvious reasons. Tuples, which do not involve humans, may not
directly be interesting for HAT systems. However, they certainly can influence the
behavior of the automation “under the hood”, and therefore, be worthwhile to look at,
at least from a pure engineering stance. Also, the pure human-human relationships,
either hierarchical or heterarchical, may not directly be relevant for HAT systems,
except of course for WSys with more than one human. Apart from that, they may serve
as valuable source for design metaphors. Finally, we do not want to allow a
Human-Agent HeR, where the agent is part of the Tools, since per definition there
is always a HiR between Worker and Tools.

Within the scope of the modeled WSys, the {Actor-Relationship-Actor}-
tuples describe the binary relationships between two entities. The possible combina-
tions include tuples with well-established design patterns.

The tuple {Human-HiR-Tools} describes the basic setting of human supervi-
sory control [13]. By the time when Sheridan established his LoA-scale, automation
used to be mostly rather clear-cut control automation following relatively simple rules
or algorithms. In most of these systems, the human exclusively owned higher cognitive

Design Patterns for Human-Cognitive Agent Teaming 241

capabilities. It was acknowledged in later works [14] that automation could also take
over higher cognitive tasks. New scales for LoA have been developed (e.g. [14, 15]),
which, to a certain degree, reflect the situation that automation became capable of
assuming functions of information acquisition and analysis. These scales are applicable
to the tuple {Human-HiR-Agent}. Since then, many works have been conducted,
supporting the relevance of this tuple and provide valuable design patterns
7(e.g., [26, 28, 35]). Van Breda and coauthors also provide a good overview [36].

Finally, the {Human-HeR-Agent}-tuple has become particularly interesting
in situations where automation-induced human erroneous action should be prevented.
We already mentioned a few citations in this context [22, 24, 32-34]. Also further
international approaches to adaptive associate systems should be mentioned that are
representative to many others [37, 38].

5 Conclusions

In this article, we describe a method for documenting human-autonomy teaming
(HAT) design patterns. Therefore, we followed a strict top-down procedure, inspired by
systems engineering and cognitive ergonomics. Coming from a general human-systems
view, we ended up at the level of frequently recurring actor-relationship-actor-tuples,
which may serve as containers for similar or competing design patterns to be found,
described, and discussed. However, the benefit of this approach heavily depends on the
researchers’ and practitioners’ efforts to describe their solutions to HAT problems using
the offered method. In doing so, we could avail of a great opportunity for rational
discussions on future highly automated systems.

References

1. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for
making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 6, 91—
95 (2004)

2. Bradshaw, J.M., Hoffman, R.R., Woods, D.D., Johnson, M.: The seven deadly myths of

“Autonomous Systems”. IEEE Intell. Syst. 3, 54-61 (2013)

Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)

4. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction, Oxford University Press, New York (1977)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

6. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Menlo Park
(1996)

7. Pree, W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley,
Reading (1994)

8. Brown, W., Malveau, R., McCormick, H., Mowbray, T.: Anti Patterns: Refactoring
Software, Architectures, and Projects in Crisis. Wiley, New York (1998)

hed

242

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

33.

A. Schulte et al.

. Coplien, J.O.: Pattern Languages of Program Design. Addison-Wesley Professional,

Reading (1995)

Borchers, J.O.: A pattern approach to interaction design. Al Soc. 15(4), 359-376 (2001)
Kruschitz, C., Hitz, M.: Human-computer interaction design patterns: structure, methods,
and tools. Int. J. Adv. Softw. 3(1&2) (2010)

Kahn, P.H., et al.: Design patterns for sociality in human-robot interaction. In: 3rd
ACM/IEEE International Conference on Human Robot Interaction (2008)

Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. MIT,
Cambridge (1992)

Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human
interaction with automation. IEEE SMC Trans. 30(3), 286-297 (2000)

Miller, C.A., Parasuraman, R.: Beyond levels of automation: an architecture for more
flexible human-automation collaboration. HFES 47(1), 182-186 (2003)

Clough, B.T.: Unmanned aerial vehicles: autonomous control challenges, a researcher’s
perspective. In: Murphey, R., Pardalos, P.M. (eds.) Cooperative Control and Optimization,
pp- 35-52. Springer, New York (2002)

Huang, H.M.: Autonomy levels for unmanned systems (ALFUS) framework. Volume I:
Terminology, version 2.0. NIST special publication, pp. 1-47 (2008)

Juziuk, J.: Design Patterns for Multi-agent Systems. Linnaeus University, Sweden (2012)
Scerbo, M.: Adaptive automation. Neuroergonomics, pp. 239-252. Oxford University Press,
New York (2006)

Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive Systems
Engineering. CRC Press (2005)

Roth, E.M., Woods, D.D.: Cognitive task analysis: an approach to knowledge acquisition for
intelligent system design. In: Topics in Expert System Design, pp. 233-264 (1989)
Schulte, A., Meitinger, C., Onken, R.: Human factors in the guidance of uninhabited
vehicles: oxymoron or tautology? Cogn. Technol. Work 11(1), 71-86 (2009)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs (1995)

Onken, R., Schulte, A.: System-Ergonomic Design of Cognitive Automation. Studies in
Computational Intelligence, vol. 235. Springer, Heidelberg (2010)

Shively, R.J., Brandt, S.L., Lachter, J.: Application of Human Automation Teaming
(HAT) patterns to Reduced Crew Operations (RCO). In: HCII Conference (2016)

Miller, C.A., Funk, H.B., Dorneich, M., Whitlow, S.D.: A playbook interface for mixed
initiative control of multiple unmanned vehicle teams. In: IEEE DASC (2002)

Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and
automation: delegation interfaces for supervisory control. Hum. Factors 49(1), 57-75 (2007)
Uhrmann, J., Schulte, A.: Concept, design and evaluation of cognitive task-based UAV
guidance. Int. J. Adv. Intell. Syst. (2012)

Schulte, A., Meitinger, C.: Introducing cognitive and co-operative automation into UAV
guidance work systems. In: Human-Robot Interaction in Future Military Operations.
Ashgate. Series Human Factors in Defence, pp. 145-170 (2010)

Baxter, J.W., Horn, G.S., Leivers, D.P.: Fly-by-agent: controlling a pool of UAVs via a
multi-agent system. Knowl. Based Syst. 21(3), 232-237 (2008)

Bainbridge, L.: Ironies of automation. Automatica 19(6), 775-779 (1983)

Onken, R., Walsdorf, A.: Assistant systems for aircraft guidance: cognitive man-machine
cooperation. Aerosp. Sci. Technol. 5(8), 511-520 (2001)

TheiBing, N., Schulte, A.: Designing a support system to mitigate pilot error while
minimizing out-of-the-loop-effects. In: HCII Conference (2016)

34.

35.

36.

37.

38.

Design Patterns for Human-Cognitive Agent Teaming 243

Strenzke, R., Uhrmann, J., Benzler, A., Maiwald, F., Rauschert, A., Schulte, A.: Managing
cockpit crew excess task load in military manned-unmanned teaming missions by dual-mode
cognitive automation approaches. In: AIAA GNC Conference (2011)

Lange, D.S., Gutzwiller, R.S.: Human-autonomy teaming patterns in the command and
control of teams of autonomous systems. In: HCII Conference (2016)

Van Breda, L., et al.: Supervisory control of multiple uninhabited systems: methodologies
and enabling human-robot interface technologies. NATO RTO HFM-170 Report (2012)
Taylor, R.M., Howells, H., Watson, D.: The cognitive cockpit: operational requirement and
technical challenge. contemporary ergonomics, pp. 55-59 (2000)

Miller, C.A., Hannen, M.D.: The Rotorcraft Pilot’s Associate: design and evaluation of an
intelligent user interface for cockpit information management. Knowl. Based Syst. 12(8),
443-456 (1999)

	Design Patterns for Human-Cognitive Agent Teaming
	Abstract
	1 Introduction
	1.1 Design Patterns in Engineering
	1.2 Design Patterns in Human Factors, Ergonomics, and HAT

	2 Basic Concepts
	2.1 The Work Process
	2.2 The Work System

	3 Introduction of the Cognitive Agent into the Work System
	4 Actor-Relationship-Actor Tuples
	5 Conclusions
	References

