
Chapter 8
Syntactic Pattern Analysis

In syntactic pattern analysis, also called syntactic pattern recognition [97, 104], rea-
soning is performed on the basis of structural representations which describe things
and phenomena belonging to the world. A set of such structural representations,
called (structural) patterns, constitutes the database of an AI system. This set is not
represented in the database explicitly, but with the help of a formal system, which
generates all its patterns. A generative grammar, introduced in Chap.1 and Sect. 2.5
during a discussion of the main ideas of Chomsky’s theory, is the most popular for-
mal system used for this purpose. The grammar generates structural patterns by the
application of string rewriting rules,1 which are called productions. Thus, a (string)
generative grammar constitutes a specific type of Abstract Rewriting System, ARS,
introduced in Sect. 6.5, which is called a String Rewriting System, SRS. Therefore,
reasoning by syntactic pattern analysis can be treated as reasoning by symbolic com-
putation, which has been discussed in Sect. 6.5.

Generating structural patterns with the help of a generative grammar is introduced
in the first section of this chapter. In Sects. 8.2 and 8.3 the analysis and the interpre-
tation of structural patterns are discussed, respectively. The problem of automatic
construction of a grammar on the basis of sample patterns is considered in the fourth
section. In the last section graph grammars are introduced. Formal definitions of
notions introduced in this chapter are contained in Appendix E.

1Such structural patterns can be of the form of strings or graphs. Therefore, two types of generative
grammars are considered: string grammars and graph grammars. In syntactic pattern recognition
tree grammars, which generate tree structures, are also defined. Since a tree is a particular case of a
graph, we do not introduce tree grammars in the monograph. The reader is referred, e.g., to [104].

© Springer International Publishing Switzerland 2016
M. Flasiński, Introduction to Artificial Intelligence,
DOI 10.1007/978-3-319-40022-8_8

103

http://dx.doi.org/10.1007/978-3-319-40022-8_1
http://dx.doi.org/10.1007/978-3-319-40022-8_2
http://dx.doi.org/10.1007/978-3-319-40022-8_6
http://dx.doi.org/10.1007/978-3-319-40022-8_6

104 8 Syntactic Pattern Analysis

8.1 Generation of Structural Patterns

We begin our definition of a generative grammar in the Chomsky model [47] by
introducing a set of terminal symbols. Terminal symbols are expressions which are
used for constructing sentences belonging to a language generated by a grammar.2

Let us assume that we construct a grammar for a subset of the English language
consisting of sentences which contain four subjects (male names): Hector, Victor,
Hyacinthus, Pacificus, two predicates: accepts, rejects, and four objects: glob-
alism, conservatism, anarchism, pacifism. For example, the sentences Hector
accepts globalism andHyacinthus rejects conservatismbelong to the language.3

Let us denote this language by L1. Then, a set of terminal symbols T1 is defined as
follows:

T1 = {Hector, Victor, Hyacinthus, Pacificus, accepts, rejects, globalism,
conservatism, anarchism, pacifism}.

As we have mentioned above, sentences are generated with rewriting rules called
productions.4 Let us consider an application of a production with the following
example. Let there be given a phrase:

Hector accepts B , (8.1)

where B is an auxiliary symbol, called a nonterminal symbol,5 which denotes an
object in a sentence. Let there be given a production of the form:

B → globalism . (8.2)

An expression placed on the left-hand side of an arrow is called the left-hand side of
a production and an expression placed on the right-hand side of an arrow is called
the right-hand side of a production. An application of the production to the phrase,
denoted by=⇒, consists of replacing an expression of the phrase which is equivalent
to the left-hand side of the production (in our case it is the symbol B) by the right-
hand side of the production. Thus, an application of the production is denoted in the

2Let us remember that the notions of word and sentence are treated symbolically in formal language
theory. For example, if we define a grammar which generates single words of the English language,
then letters are terminal symbols. Then, Englishwordswhich consist of these letters are calledwords
(sentences) of a formal language. However, if we define a grammar which generates sentences of
the English language, then English words can be treated as terminal symbols. Then sentences of
the English language are called words (sentences) of a formal language. As we see later on, words
(sentences) of a formal language generated by a grammar can represent any string structures, e.g.,
stock charts, charts in medicine (ECG, EEG), etc. Since in this section we use examples from a
natural language, strings consisting of symbols are called sentences.
3We omit the terminal symbol of a full stop in all examples in order to simplify our considerations.
Of course, if we use generative grammars for Natural Language Processing (NLP), we should use
a full stop symbol.
4We call them productions, because they are used for generating—“producing”—sentences of a
language.
5Nonterminal symbols are usually denoted by capital letters.

8.1 Generation of Structural Patterns 105

following way:

Hector accepts B =⇒ Hector accepts globalism . (8.3)

Now,we define a set of all productionswhich generate our language. Let us denote
this set by P1:

(1) S → Hector A
(2) S → Victor A
(3) S → Hyacinthus A
(4) S → Pacificus A
(5) A → accepts B
(6) A → rejects B
(7) B → globalism
(8) B → conservatism
(9) B → anarchism
(10) B → pacifism .

For example, the sentence Pacificus rejects globalism is generated as follows:

S
4=⇒ Pacificus A

6=⇒ Pacificus rejects B
7=⇒ Pacificus rejects globalism .

(8.4)

Indices of the productions applied are placed above double arrows. A sequence of
production applications used for generating a sentence is called a derivation of this
sentence. If we are not interested in presenting the sequence of derivational steps,
then we can simply write:

S
∗=⇒ Pacificus rejects globalism , (8.5)

which means that we can generate (derive) a sentence Pacificus rejects globalism
with the help of grammar productions starting with a symbol S.

As we can see our set of nonterminal symbols, which we denote by N1, consists
of three auxiliary symbols S, A, B, which are responsible for generating a subject,
a predicate, and an object, i.e.,

N1 = {S, A, B}.
In a generative grammar a nonterminal symbol which is used for starting any

derivation is called the start symbol (axiom) and it is denoted by S. Thus, our grammar
G1 can be defined as a quadruple G1 = (T1, N1, P1, S). A language generated by a
grammar G1 is denoted L(G1). The language L(G1) is the set of all the sentences
which can be derived with the help of productions of the grammar G1. It can be
proved that for our language L1, which has been introduced in an informal way at
the beginning of this section, the following holds: L(G1) = L1.

A generative grammar has an interesting property: it is a finite “object” (it consists
of finite sets of terminal and nonterminal symbols and a finite set of productions),
however it can generate an infinite language, i.e., a language which consists of an

106 8 Syntactic Pattern Analysis

infinite number of sentences. Before we consider this property, let us introduce the
following denotations. Let a be a symbol. By an we denote an expression which
consists of an n-element sequence of symbols a, i.e.,

an = aaa . . . aaa
︸ ︷︷ ︸

n times

, (8.6)

where n ≥ 0. If n = 0, then it is a 0-element sequence of symbols a, called the empty
word and denoted by λ. Thus: a0 = λ, a1 = a, a2 = aa, a3 = aaa, etc.

For example, let us define a language L2 in the following way:

L2 = {an , n ≥ 1} . (8.7)

The language L2 is infinite and consists of n-element sequences of symbols a, where
additionally a has to occur at least once. (The empty word does not belong to L2.) It
can be generated by the following simple grammar G2:

G2 = (T2, N2, P2, S) ,

where T2 = {a}, N2 = {S}, and the set of productions P2 contains the following
productions:

(1) S → aS
(2) S → a .

A derivation of a sentence of a given length r ≥ 2 (i.e., n = r) in G2 is performed
according to the following scheme:

S
1=⇒ aS

1=⇒ aaS
1=⇒ . . .

1=⇒ ar−1S
2=⇒ ar , (8.8)

i.e., firstly the first production is applied (r − 1) times, then the second production
is applied once at the end. If we want to generate a sentence of a length n = 1, i.e.,
the sentence a, the we apply the second production once.

Let us notice that defining a language L2 as an infinite set is possible due to the
first production. This production is of an interesting form: S → aS, which means
that it refers to itself (a symbol S occurs on the left- and right-hand sides of the
production). Such a form is called recursive, from Latin recurrere—“running back”.
This “running back” of the symbol S during a derivation each time after applying
the first production, makes the language L2 infinite.

Now, we discuss a very important issue concerning generative grammars. There
are a lot of classes (types) of generative grammars. These classes can be arranged
in a hierarchy according to the criterion of their generative power. We introduce
this criterion with the help of the following example. Let us define the next formal
language as follows:

L3 = {anbm , n ≥ 1 , m ≥ 2} . (8.9)

8.1 Generation of Structural Patterns 107

The language L3 consists of the subsequence of symbols a and the subsequence of
symbols b. Additionally, the symbol a has to occur at least once, and the symbol b has
to occur at least twice. For example, the sentences abb, aabb, aabbb, aabbbb, ... ,
aaabb, etc. belong to this language. It can be generated by the following grammar:

G3 = (T3, N3, P3, S) ,

where T3 = {a , b}, N3 = {S , A , B}, and the set of productions P3 contains the
following productions:

(1) S → a A
(2) A → a A
(3) A → bB
(4) B → bB
(5) B → b .

The first production is used for generating the first symbol a. The second production
generates successive symbolsa in a recursiveway.Wegenerate thefirst symbolbwith
the help of the third production. The fourth production generates successive symbols
b in a recursive way (analogously to the second production). The fifth production is
used for generating the last symbol b of the sentence. For example, a derivation of
the sentence a3b4 is performed as follows:

S
1=⇒ a A

2=⇒ aa A
2=⇒ aaa A

3=⇒ aaabB
4=⇒

4=⇒ aaabbB
4=⇒ aaabbbB

5=⇒ aaabbbb . (8.10)

Now, let us define a language L4 which is a modification of the language L3, in
the following way:

L4 = {ambm , m ≥ 1} . (8.11)

The language L4 differs from the language L3 in demanding an equal number of
symbols a and b. The language L4 cannot be generated with the help of grammars
having productions of the form of grammar G3, since such productions do not ensure
the condition of an equal number of symbols. It results from the fact that in such
a grammar we firstly generate a certain number of symbols a and then we start to
generate symbols b, but the grammar “does not remember"how many symbols a
have been generated. We say that a grammar having productions in the a form of the
productions of G3 has too weak generative power to generate the language L4. Now,
we introduce a grammar G4 which is able to generate the language L4:

G4 = (T4, N4, P4, S) ,

where T4 = {a , b}, N4 = {S}, and the set of productions P4 contains the following
productions:

108 8 Syntactic Pattern Analysis

(1) S → aSb
(2) S → ab .

For example, a derivation of the sentence a4b4 is performed in the following way:

S
1=⇒ aSb

1=⇒ aaSbb
1=⇒ aaaSbbb

2=⇒ aaaabbbb . (8.12)

As we can see a solution to the problem of an equal number of symbols a and b is
obtained by generating the same number of both symbols in each derivational step.

Thus, the grammar G4 has sufficient generative power to generate the language
L4. The generative power of classes of formal grammars results from the form of
their productions. Let us notice that the productions of grammars G1, G2, G3 are of
the following two forms:

<nonterminal symbol> → <terminal symbol><nonterminal symbol>
or <nonterminal symbol> → <terminal symbol> .

Using productions of such forms, we can only “stick” a symbol onto the end of
the phrase which has been derived till now. Grammars having only productions of
such a form are called regular grammars.6 In the Chomsky hierarchy such grammars
have the weakest generative power.

For grammars such as the grammar G4, we do not demand any specific form of the
right-hand side of productions. We require only a single nonterminal symbol at the
left-hand side of a production. Such grammars are called context-free grammars.7

They have greater generative power than regular grammars. However, we have to
pay a certain price for increasing the generative power of grammars. We discuss this
issue in the next section.

8.2 Analysis of Structural Patterns

Grammars are used for generating languages. However, in Artificial Intelligence we
are interested more in the languages’ analysis. For this analysis formal automata
are applied. Various types of automata differ from one another in their construction
(structure), depending on the corresponding classes of grammars. Let us begin by
defining an automaton of the simplest type, i.e., a finite-state automaton. This class

6In fact, such grammars are right regular grammars. In left regular grammars a nonterminal symbol
occurs (if it occurs) before a terminal symbol.
7There are also grammarswhich have a stronger generative power in theChomsky hierarchy, namely
context-sensitive grammars and unrestricted (type-0) grammars. Their definitions are contained in
Appendix E.

8.2 Analysis of Structural Patterns 109

Hector

BAS FT

FN

Victor

Hyacinthus
Pacificus

accepts

rejects

globalism
conservatism

anarchism
pacifism

other

otherother

(a)

(b)

A b B

b

A

(c)

Fig. 8.1 a The finite-state automaton A1, b-c basic constructs for defining a finite-state automaton

was introduced by Claude Elwood Shannon8 in [272]9 in 1948, and formalized by
Stephen C. Kleene in [160] in 1956 and Michael Oser Rabin10 and Dana Stewart
Scott11 in [234] (nondeterministic automata) in 1959.Afinite-state automaton is used
for analysis of languages generated by regular grammars, called regular languages.12

Let us start by defining the automaton A1 shown in Fig. 8.1a, which is constructed
for the language L1 (the grammar G1) introduced in the previous section. Each node
of the graph is labeled with a symbol (S, A, B, FT , FN) and represents a possible
state of the automaton. The state in which the automaton starts working is called the
initial state S and is marked with a small black triangle in Fig. 8.1a. States in which
the automaton finishes working (FT and FN in Fig. 8.1a) are called final states and
they are marked with a double border. Directed edges of the graph define transitions
between states. A transition from one state to another takes place if the automaton

8Claude Elwood Shannon—a professor of the Massachusetts Institute of Technology, a mathemati-
cian and electronic engineer, the “father” of information theory and computer science.
9The idea of a finite-state automaton is based on the model of Markov chain which is introduced in
Appendix B for genetic algorithms.
10Michael Oser Rabin—a professor of Harvard University and the HebrewUniversity of Jerusalem,
a Ph.D. student of Alonzo Church. His outstanding achievements concern automata theory, compu-
tational complexity theory, cryptography (Miller-Rabin test), and pattern recognition (Rabin-Karp
algorithm). In 1976 he was awarded the Turing Award (together with Dana Scott).
11Dana Stewart Scott—a professor of computer science, philosophy, and mathematics at Carnegie
Mellon University and Oxford University, a Ph.D. student of Alonzo Church. His excellent work
concerns automata theory, semantics of programming languages, modal logic, and model theory
(a proof of the independence of the continuum hypothesis). In 1976 he was awarded the Turing
Award.
12The languages L1, L2, and L3 introduced in the previous section are regular languages.

110 8 Syntactic Pattern Analysis

reads from its input13 an element determining this transition. For example, let us
assume that the automaton is in the state S. If the automaton reads from the input
one of the elements Hector, Victor, Hyacinthus, or Pacificus, then it goes to the
state A. Otherwise, it goes according to the transition other14 to the final state FN ,
which means that the input expression is rejected as not belonging to the language
L1. If the automaton is in the state A, then it goes to the state B in case there is
one of the predicates accepts or rejects at the input. This is consistent with the
definition of the language L1, in which the predicate should occur after one of the
four subjects. If the automaton is in the state B, in turn, it expects one of four objects:
globalism, conservatism, anarchism, or pacifism. After reading such an object
the automaton goes to the final state FT , which means that the input expression is
accepted as belonging to the language L1.

Formally, a finite-state automaton A constructed for a language L generated by a
regular grammar G = (T, N , P, S) is defined as a quintuple: G = (Q, T, δ, q0, F).
T is the set of terminal symbols which are used by the grammar G for generating
the language L . Q is the set of states. (In our example shown in Fig. 8.1a it is the set
{S, A, B, FT , FN }.) q0 is the initial state, F is the set of final states. (In our example
q0 = S, F consists of states FT and FN .) δ is the state-transition function,15 which
determines transitions in the automaton (in Fig. 8.1a transitions are represented by
directed edges of the graph). A pair (the state of the automaton, the terminal symbol
at the input) is an argument of the function. The function computes the state the
automaton should go into. For example, δ(S,Hyacinthus) = A, δ(A,accepts) = B
(cf. Fig. 8.1a).

A method for a generation (synthesis) of a finite-state automaton on the basis of a
corresponding regular grammar has been developed. States of the automaton relate
to nonterminal symbols of the grammar (the initial state relates to the start symbol,
additionally we can define final states). Each production of the form A → bB is
represented by a transition δ(A, b) = B (cf. Fig. 8.1b). Each recursive production
of the form A → bA is represented by a recursive transition δ(A, b) = A (cf.
Fig. 8.1c). Each production finishing a derivation (there is a single terminal symbol
on the right-hand side of the production) corresponds to a transition to the final
acceptance state. The reader can easily see that the automaton A1 shown in Fig. 8.1a
has been constructed on the basis of the grammar G1 according to these rules. In the
previous section we have said that generative grammars are arranged in a hierarchy
according to their generative power.The sameapplies to automata.What ismore, each
class of grammar relates to some type of automaton. Automata which correspond to
weaker grammars (in the sense of generative power) are not able to analyze languages
generated by stronger classes of grammars. For example, a finite-state automaton is

13The input of the automaton is the place where the expression to be analyzed is placed. If there
is some expression at the input, then the automaton reads the expression one element (a terminal
symbol) at a time and it performs the proper transitions.
14The other transition means that the automaton has read an element which is different from those
denoting transitions coming out from the current state.
15The state-transition function is not necessarily a function in the mathematical sense of this notion.

8.2 Analysis of Structural Patterns 111

too weak to analyze the context-free language L4 = {ambm , m ≥ 1} introduced in
the previous section.

A (deterministic) pushdown automaton16 is strong enough to analyze languages
such as L4. This automaton uses an additional working memory, called a stack.17

The transition function δ of such an automaton is defined in a different way from the
finite-state automaton. A pair (the top of the stack, the sequence of symbols at the
input18) is its argument. As a result, the function can “generate” various actions of
the automaton. In the case of our automaton the following actions are allowed:

• accept (the automaton has analyzed the complete expression at the input and it
has decided that the expression belongs to the language),

• reject (the automaton has decided, during its working, that the expression does
not belong to the language),

• remove_symbol (the automaton removes a terminal symbol from the input and
a symbol occurring at the top of the stack),

• apply_production_on_stack(i) (the automaton takes the left-hand side of a pro-
duction i from the top of the stack and it adds the right-hand side of the production
i to the top of the stack).

Before we consider the working of an automaton A4 constructed for the language
L4 = {ambm , m ≥ 1}, let us define its transition function in the following way:

δ(S, aa) = apply_production_on_stack(1), (8.13)

δ(S, ab) = apply_production_on_stack(2), (8.14)

δ(a, a) = remove_symbol, (8.15)

δ(b, b) = remove_symbol, (8.16)

δ(λ,λ) = accept, λ − the emptyword, (8.17)

δ(v,w) = reject, otherwise. (8.18)

The automaton A4 tries to reconstruct a derivation of the expression which is at
its input. It does this by analyzing a sequence consisting of two symbols19 of the
expression, because this is sufficient to decide which production of the grammar G4

(the first or the second) is to be used at the moment of generating this sequence.

16In order to simplify our considerationswe introduce here a specific case of a pushdown automaton,
i.e. anLL(k) automaton, which analyzes languages generated byLL(k) context-free grammars. These
grammars are defined formally in Appendix E.
17In computer science a stack is a specific structure of a data memory with certain operations, which
works in the following way. Data elements can be added only to the top of the stack and they can
be taken off only from the top. A stack of books put one on another is a good example of a stack.
If we want to add a new book to the stack, we have to put it on the top of a stack. If we want to get
some book, then we have to take off all books which are above the book we are interested in.
18This sequence of symbols has a fixed length. The length of the sequence is a parameter of the
automaton. In the case of LL(k) automata, k is the length of the sequence, which is analyzed in a
single working step of the automaton.
19The automaton A4 is an LL(2) automaton.

112 8 Syntactic Pattern Analysis

S aaabbb

a
S
b aaabbb

S
b aabbb

a
S
b
b aabbb

S
b
b abbb

a
b
b
b abbb

b
b
b bbb

(a)

(S,aa)

(e)

(b)

(a,a) (S,aa)

(S,ab)

(d)

(f)

(c)

(a,a)

(a,a)

(a,a) 3 times (b,b)

(g) (h)

Fig. 8.2 Analysis of the sentence aaabbb by the automaton A4

To be convinced that this is a proper analysis method, let us return to the derivation
(8.12) in a previous section. If we want to decide howmany times the first production
has been applied for the generation of the sentence aaaabbbb, then it is enough to
check two symbols forward. If we scan a sentence from left to right, then as long as
we have a two-element sequence aa we know that production (1) has been applied,
which corresponds to transition (8.13). If we meet a sequence ab (in the middle of
the sentence), then it means that production (2) has been applied, which corresponds
to transition (8.14). Now, let us analyze the sentence aaabbb. The automaton starts
working having the start symbol S on the stack and the sentence aaabbb at the
input as shown in Fig. 8.2a. The underlined part of the sentence means the sequence
which is analyzed in a given step. Arrows mean transitions and are labeled with the
transition function used in a given step. So, there is S at the top of the stack and aa are
the first two symbols of the input. Thus, the first step is performed by the automaton
according to transition (8.13). This means that the left-hand side of production (1),
i.e., S, is taken off the stack and the right-hand side of this production, i.e., aSb, is
put on the top of the stack20 as shown in Fig. 8.2b. Now, a is at the top of the stack
and a is at the input. Thus, the next step is performed according to transition (8.15),
i.e., the symbol a is removed from the top of the stack and from the input. This is
denoted by crossing out both symbols. We obtain the situation shown in Fig. 8.2c.
This situation is analogous to the one before the first step. (S is at the top of the stack,
aa is at the input.) Thus, we perform a transition according to (8.13) once more, i.e.,
S is taken off the stack and the right-hand side of this production, aSb, is put on
the top of the stack. This results in the situation shown in Fig. 8.2d. Again a is at

20The right-hand side of the production, aSb, is put on the stack “from back to front”, i.e., firstly
(at the bottom of the stack) symbol b is put, then symbol S, then finally (at the top of the stack)
symbol a.

8.2 Analysis of Structural Patterns 113

the top of the stack and a is at the input. So, we perform the transition according to
(8.15) and we get the configuration shown in Fig. 8.2e. Since S is on the top of the
stack and ab are the first two symbols at the input, we should apply (8.14), which
corresponds to production (2) of the grammar G4. The automaton replaces S on
the stack by the right-hand side of the second production, i.e., ab (cf. Fig. 8.2f). As
we can see, the next steps consist of removing symbols from the stack according
to formula (8.15) and three times formula (8.16). At the end both the stack and the
input are empty, as shown in Fig. 8.2h. This corresponds to a transition according
to (8.17), which means acceptance of the sentence as belonging to the language L4.
Any other final configuration of the stack and the input would result in rejecting the
sentence according to formula (8.18).

One can easily notice that the working of a pushdown automaton is more complex
than that of a finite-state automaton. In fact, the bigger the generative power of a
generative grammar is, the bigger the computational complexity of the corresponding
automaton. The analysis of regular languages is more efficient than the analysis of
context-free languages. Therefore, subclasses of context-free grammarswith efficient
corresponding automata have been defined. The most popular efficient subclasses
include: LL(k) grammars introduced by Philip M. Lewis21 and Richard E. Stearns22

in [180] in 1968, LR(k) grammars defined by Donald E. Knuth23 in [163] in 1965,
and operator precedence grammars defined by Robert W. Floyd24 in [98] in 1963.
For these types of grammars corresponding efficient automata have been defined.

The problem of syntax analysis (analyzing by automaton) becomes much more
difficult if context-free grammars have too weak generative power for a certain appli-
cation. Aswe havementioned above, in the Chomsky hierarchy there are two remain-
ing classes of grammars, namely context-sensitive grammars and unrestricted (type-
0) grammars. A linear bounded automaton and the Turing machine are two types of

21PhilipM.Lewis—aprofessor of electronic engineering and computer science at theMassachusetts
Institute ofTechnology and theStateUniversity ofNewYork, a scientist atGeneral ElectricResearch
and Development Center. His work concerns automata theory, concurrency theory, distributed sys-
tems, and compiler design.
22Richard Edwin Stearns—a professor of mathematics and computer science at the State University
of New York, a scientist at General Electric. He was awarded the Turing Award in 1993. He has
contributed to the foundations of computational complexity theory (with Juris Hartmanis). His
achievements concern the theory of algorithms, automata theory, and game theory.
23Donald Ervin Knuth—a professor of computer science at Stanford University. The “father” of
the analysis of algorithms. He is known as the author of the best-seller “The Art of Computer
Programming” and the designer of the Tex computer typesetting system. Professor D. Knuth is also
known for his good sense of humor (e.g., his famous statement: “Beware of bugs in the above code;
I have only proved it correct, not tried it.”). He was awarded the Turing Award in 1974.
24Robert W. Floyd—a computer scientist, physicist, and BA in liberal arts. He was 33 when he
became a full professor at StanfordUniversity (without a Ph.D. degree). Hiswork concerns automata
theory, semantics of programming languages, formal program verification, and graph theory (Floyd-
Warshall algorithm).

114 8 Syntactic Pattern Analysis

automata which correspond to these classes of grammars, respectively. Both types of
automata are inefficient computationally, so they cannot be used effectively in prac-
tical applications. Therefore, enhanced context-free grammars have been defined in
order to solve this problem. Such grammars include programmed grammars defined
by Daniel J. Rosenkrantz25 in [248] in 1969, indexed grammars introduced by Alfred
Vaino Aho26 in [1] in 1968, and dynamically programmed grammars published in
[95] in 1999.

8.3 Interpretation of Structural Patterns

In the previous sectionwe have shown how to use an automaton for checkingwhether
an expression (sentence) belongs to a language generated by a grammar. In other
words, an automatonhas beenused to testwhether an expression is built properly from
the point of viewof a language’s syntax,which is important, e.g., inNatural Language
Processing. Generally, in Artificial Intelligence we are interested not only in the
syntactical correctness of expressions, but also we are interested in their semantic
aspect, i.e., we want to perform a proper interpretation of expressions.27 Let us
consider once more our example of Hector, Victor, et al. introduced in Sect. 8.1.
Let us assume that Hector and Victor accept globalism and conservatism, and they
reject anarchism and pacifism. On the other hand, Hyacinthus and Pacificus accept
anarchism and pacifism, and they reject globalism and conservatism. Let us assume
that only such propositions belong to a new language L5. Now, we can define a
grammar G5 which not only generates sentences which are correct syntactically, but
also these propositions are consistent with the assumptions presented above. (That is,
these propositions are true.) The set of productions P5 of the grammar G5 is defined
as follows:

25Daniel J. Rosenkrantz—a professor of the State University of New York, a scientist at General
Electric, the Editor-in-Chief of the prestigious Journal of the ACM. His achievements concern
compiler design and the theory of algorithms.
26Alfred Vaino Aho—a physicist, an electronic engineer, and an eminent computer scientist, a
professor of Columbia University and a scientist at Bell Labs. His work concerns compiler design,
and the theory of algorithms. He is known as the author of the excellent books (written with J.D.
Ullman and J.E. Hopcroft) Data Structures and Algorithms and The Theory of Parsing, Translation,
and Compiling.
27Similarly to the logic-based methods discussed in Sect. 6.1.

http://dx.doi.org/10.1007/978-3-319-40022-8_6

8.3 Interpretation of Structural Patterns 115

(1) S → Hector A1

(2) S → Victor A1

(3) S → Hyacinthus A2

(4) S → Pacificus A2

(5) A1 → accepts B1

(6) A1 → rejects B2

(7) A2 → rejects B1

(8) A2 → accepts B2

(9) B1 → globalism
(10) B1 → conservatism
(11) B2 → anarchism
(12) B2 → pacifism .

One can easily check that with the help of the set of productions P5 we can
generate all the valid propositions of our model of the world. On the other hand, it is
impossible to generate a false proposition, e.g.,Hector rejects globalism, although
this sentence is correct syntactically.

Now, for the grammar G5 we can define a finite-state automaton A5. This automa-
ton is shown in Fig. 8.3a. (For a simplicity we have not defined the final rejection
state FN and transitions to this state.) Let us notice that the automaton A5 not only
checks the syntactical correctness of a sentence, but it also interprets these sentences
and accepts only those sentences which are valid in our model of the world.

The automata, which have been introduced till now are called acceptors (recog-
nizers). They accept (a state FT) or do not accept (a state FN) a sentence depending
on a specific criterion such as syntax correctness or validity (truthfulness) in some
model. Transducers are the second group of automata. During an analysis they gen-
erate expressions on their outputs.28 For example, they can be used for translating
expressions of a certain language into expressions of another language. The transition
function of such an automaton determines a goal state and writes some expression
into the output. For example, let us define a transducer A6, which translates language
L5 into Polish. We define the transition function as follows: δ(A1, accepts) = (B1,

akceptuje), δ(A1, rejects) = (B2, odrzuca), etc. The transducer A6 is shown in
Fig. 8.3b.

Although Natural Language Processing, NLP, is one the most important appli-
cation areas of transducers, there are also other areas in which they are used, i.e.,
interpretation of the world by automata is not limited to the case of describing the
world with the help of natural languages. Certain phenomena are described with the
help of other representations (e.g., charts) which express their essence in a better
way. Then, in syntactic pattern recognition we can ascribe a certain interpretation
to terminal symbols, as shown, for example, in Fig. 8.3c. Graphical elements rep-
resented by terminal symbols (in our example: “straight arrows” and “arc arrows”)
are called primitives. Primitives play the role of elementary components used for
defining charts.

28Therefore, transducers are called also automata with output.

116 8 Syntactic Pattern Analysis

f g

a
b

c

d
a

c

a
a

a

a
a

a

b
b bb

bdebca5c6a2bdeb

c
c

c
c
c
c

dd ee
e

d e a
a
a

a
a
a

b bbb c

c
c

c
c
c

f g

bdebc2a6c4bfgb

(a)

(c) (d) (e)

Hector A1

S FT

Victor

Hyacinthus
Pacificus

accepts

rejects

globalism
conservatism

anarchism
pacifism

B1

A2 B2

rejects

accepts

(b)

Hector / Hektor A1

S FT

Victor / Wiktor

Hyacinthus / Hiacynt
Pacificus / Pacyfik

rejects /
odrzuca

globalism / globalizm

conservatism /
konserwatyzm

anarchism / anarchizm
pacifism / pacyfizm

B1

A2 B2

accepts /
akceptuje

rejects /
odrzuca

accepts /
akceptuje

Fig. 8.3 a An automaton A5 which accepts propositions that are valid in the model defined by
the language L5, b a transducer A6 which translates the language L5 into Polish, c an example of
structural primitives, d-e structural representations of ECG patterns

For example, in medical diagnosis we use ECG charts in order to identify heart
diseases. An example of a structural representation of a normal ECG is shown in
Fig. 8.3d, whereas the case of a myocardial infarction is shown in Fig. 8.3e. These
representations can be treated as sentences defined in the language of ECG patterns.
Thus, on the basis of a set of such representations (sentences)we candefine agrammar
which generates this language. Given a grammar we can construct an automaton
(transducer), which writes an interpretation of an ECG to its output.

8.3 Interpretation of Structural Patterns 117

Even if we look at an ECG casually, we notice that the primitives occurring in
charts are diversified with respect to, e.g., their length or the angle of a depression.
Therefore, in order to achieve a more precise structural representation, attributes
can be ascribed to primitives. For example, two attributes, the length (l) and the
deflection angle (±α), are ascribed to the primitive a shown in Fig. 8.4a. In such a
case attributed grammars are used for pattern generation. Automata applied to the
interpretation of attributed patterns (expressions) additionally compute the distance
between an analyzed pattern and a model pattern. This distance allows us to assess
the degree of confidence of the interpretation made by the automaton.

Instead of ascribing attributes to a primitive, we can define discrete patterns of
deviations of a model primitive as shown in Fig. 8.4b. Then, we can ascribe prob-
abilities to deviations, e.g., on the basis of the frequency of their occurrence. One
such model is stochastic grammars introduced in the 1970s and the 1980s and then
developed by King-Sun Fu29 and Taylor L. Booth30 [34,103,104]. In such gram-
mars the probability of the application of each production is defined. A stochastic
automaton gives the probability that a chart represents a recognized phenomenon
expressed by a corresponding structural pattern after analyzing a part of the chart.
Stochastic grammars and automata are also used in Natural Language Processing,
which is discussed in Chap.16. It is interesting that Markov chains,31 which have
been introduced for genetic algorithms in Chap.5 are also a mathematical model for
a stochastic automaton.

In approaches to the distortion of structural patterns discussed till now we have
assumed that the structure of such representations is correct. In other words, a primi-
tive could be distorted but it has to occur in a structure in the proper place. This means
that if structural representations are hand-written sentences of a natural language then
vaguely hand-written letters are the only kind of errors. However, in practice we can
omit some letter (e.g., if we write “gramar”), we can incorrectly add some letter (e.g.,
if we write “grammuar”), or we can replace a correct letter by an incorrect one (e.g.,
if we write “glammar”). Fortunately, in syntactic pattern recognition certain metrics
are defined which can be used to compute the distance between a model pattern
and its structural distortion. The Levenshtein metrics32 [179] are some of the most
popular metrics used for this purpose. They are introduced in Appendix G.

29King-Sun Fu—a professor of electrical engineering and computer science at Purdue Univer-
sity, Stanford University and University of California, Berkeley. The “father” of syntactic pattern
recognition, the first president of the International Association for Pattern Recognition (IAPR),
and the author of excellent monographs, including Syntactic Pattern Recognition and Applications,
Prentice-Hall 1982. After his untimely death in 1985 IAPR established the biennial King-Sun Fu
Prize for a contribution to pattern recognition.
30Taylor L. Booth—a professor of mathematics and computer science at the University of Connecti-
cut. His research concerns Markov chains, formal language theory, and undecidability. A founder
and the first President of the Computing Sciences Accreditation Board (CSAB).
31Markov chains are defined formally in Appendix B.2.
32Vladimir Iosifovich Levenshtein—a professor of computer science and mathematics at the
Keldysh Institute of Applied Mathematics in Moscow and the Steklov Mathematical Institute.
In 2006 he was awarded the IEEE Richard W. Hamming Medal.

http://dx.doi.org/10.1007/978-3-319-40022-8_16
http://dx.doi.org/10.1007/978-3-319-40022-8_5

118 8 Syntactic Pattern Analysis

a

a

a

a

a

a
a

a

a

a

a

a
a
a

cc
c

c
c

a5c2a2c2a2c2a5

c

a

l

-
+

a
a1 a2

a4
a3

(d)(c)(b)

(a)

c
a

a2c2a5c4a2c2

a

a
a

a

a

a
a

a

cc
c

c
c

c
c

Fig. 8.4 a Ascribing attributes to a primitive, b a model primitive and patterns of its deviations,
c-d structural representations of stock chart patterns

Syntactic-pattern-recognition-based AI systems have been used in various appli-
cation areas. In medicine these include, apart from ECG, also EEG (monitoring the
brain’s electrical activity), PWA (pulse wave analysis), ABR (recording an audi-
tory brainstem response for determining hearing levels), etc. Analysis of economic
phenomena is another area of syntactic pattern recognition applications. For exam-
ple, structural representations of stock chart patterns used for technical analysis are
shown in Figs. 8.4c, d. A structural representation of the Head and Shoulders forma-
tion, which occurs when a trend is in the process of reversal, is shown in Fig. 8.4c,
whereas a representation of the Flag formation, which is a trend continuation pattern,
is shown in Fig. 8.4d.

In practical applications, if there are a lot of exemplary patterns (i.e., exemplary
sentences of a language) then defining a grammar by hand is very difficult, sometimes
impossible, because a (human) designer is not able to comprehend the whole set of
sample patterns. Therefore, methods for automatic construction of a grammar on the
basis of sample patterns have been developed. We discuss them in the next section.

8.4 Induction of Generative Grammars

We present the main idea of grammar induction (grammatical inference) with the
help of a simple method of formal derivatives for regular grammars [104]. Firstly, we
introduce the notion of a formal derivative. Let A(0) be a set of expressions built of
terminal symbols. The formal derivative of a set A(0)with respect to a terminal symbol
a, denoted DaA(0), is a set of expressions which are constructed from expressions
of A(0) by removing a symbol a occurring at the beginning of these expressions. In
other words, DaA(0) is the set of expressions x such that ax belongs to A(0).
For example, let there be given a set

8.4 Induction of Generative Grammars 119

A(0) = {Jack cooks well, Jack runs quickly}.

Then

DJackA(0) = {cooks well, runs quickly} = A(1).

We can continue by computing a formal derivative for the set A(1):

DcooksA(1) = {well} = A(2).

Now, if we compute a formal derivative once more, this time for the set A(2), then
we obtain a set containing the empty word λ only:

DwellA
(2) = {λ} = A(3).

In fact, if a symbol well is attached to the empty word, then we obtain an expression
well, which belongs to the set A(2).

Let us notice that computing a formal derivative can give the empty set as a result.
For example, if we compute a formal derivative of the set A(3) with respect to any
symbol, e.g., with respect to the symbol quickly, then we obtain:

DquicklyA(3) = ∅,

because there is no such expression, which gives the empty word after attaching the
symbol quickly (or any other symbol).

In this method we have to compute all the formal derivatives. Thus, let us do so:

DrunsA(1) = {quickly} = A(4),

DquicklyA(4) = {λ} = A(5).

Computing any derivative of the set A(5) gives the empty set.
After computing all formal derivatives we can define the productions of a regular

grammar which generates expressions belonging to the set A(0). A symbol A(0) is
the start symbol of the grammar. Productions are defined according to the following
two rules.

1. If the formal derivative of a set A(n) with respect to a symbol a is equal to a set
A(k), i.e., DaA(n) = A(k), and the set A(k) does not consist of the empty word,
then add a production A(n) → aA(k) to the set of productions of the grammar.

2. If the formal derivative of a set A(n) with respect to a symbol a is equal to a set
A(k), i.e., DaA(n) = A(k), and the set A(k) consists of the empty word, then add a
production A(n) → a to the set of productions of the grammar.

As one can easily check, after applying these rules we obtain the following set of
productions.

120 8 Syntactic Pattern Analysis

(1) A(0) → Jack A(1)

(2) A(1) → cooks A(2)

(3) A(2) → well
(4) A(1) → runs A(4)

(5) A(4) → quickly .

The method introduced above is used for the induction of a grammar, which
generates only a given sample of a language. Methods which try to generalize a
sample to the whole language are defined in syntactic pattern recognition, as well.
Let us notice that such an induction of a grammar corresponds to inductive reasoning
(see Appendix F.2). In fact, we go from individual cases (a sample of sentences) to
their generalization of the form of a grammar.

In case of the Chomsky generative grammars a lot of induction methods have
been defined for regular languages. Research results in the case of context-free lan-
guages are still unsatisfactory. However, the induction of graph grammars, which are
introduced in the next section, is a real challenge.

8.5 Graph Grammars

As we have mentioned in Chap.6, reasoning as symbolic computation is based on
Abstract Rewriting Systems, ARSs, which can be divided into Term Rewriting Sys-
tems, TRSs (e.g., lambda calculus introduced in Sect. 6.5), String Rewriting Systems,
SRSs, which have been discussed in previous sections with the help of the example
of the Chomsky generative grammars, and Graph Rewriting Systems, GRSs. The last
ones are used for rewriting (transforming) structures in the form of graphs. Graph
grammars, which are introduced in this section, are the most popular kind of Graph
Rewriting Systems.

Graphs are widely used in Artificial Intelligence (and in general, in computer sci-
ence), because they are the most general structures used for representing aspects of
the world. AI representations such as semantic networks, frames, scripts, structures
used for semantic interpretation in First Order Logic, Bayesian networks, structures
used in model-based reasoning—all of them are graphs. Therefore, graph grammars
are an important formalism for generating (in general, transforming) such represen-
tations. First of all, we show how they can be applied for modeling (describing)
processes (phenomena) of the world. We consider the example of an intelligent
system for integrating areas of Computer-Aided Design and Computer-Aided Man-
ufacturing.33 The definition of such a representation of a mechanical part which can
be translated automatically into the language of technological operations performed
by manufacturing equipment is a crucial problem in this area.

33The example is based on a model introduced in: Flasiński M.: Use of graph grammars for the
description of mechanical parts. Computer-Aided Design 27 (1995), pp. 403–433, Elsevier.

http://dx.doi.org/10.1007/978-3-319-40022-8_6
http://dx.doi.org/10.1007/978-3-319-40022-8_6

8.5 Graph Grammars 121

U5

S

1

V

43

V

A

R

S

V
U

V

3

1

54

AA

R

S

V V

3

1

4

A

R

V V

34

R

V

3
R

2

3

6

5

1

4
R

Fig. 8.5 An example of a graph grammar derivation, which represents modeling a part in a CAD
system and its manufacturing controlled by a CAM system

The derivation of a graph with a graph grammar which corresponds to both a
design process and a technological process is shown in Fig. 8.5. Raw material in
the form of a rectangular cuboid is represented by a graph node labeled by R. The
faces of the cuboid are indexed as shown in the figure. An application of the first
production results in replacing the node R by a graph that consists of nodes R and
V, which are connected with an edge labeled with 3. This production corresponds to
embedding a feature called a V-slot in the face indexed with 3 of the solid R.34 In the
second step of the derivation, a V-slot is embedded in the face indexed with 4 of the
solid R. Then, a Slot is embedded in the face indexed with 1 of the solid R. Let us
notice that this Slot is adjacent to both V-slots, which is represented by edges labeled
with A. Finally, a U-slot is embedded in the face indexed with 5 of the solid R.

Defining a way of replacing a graph of the left-hand side of a production by a
graph of the right-hand side of the production is a fundamental problem of graph
grammars. (In the example above we see only the result of such a replacement.) This
operation is performed with the help of the embedding transformation. On one hand,
the embedding transformation complicates a derivation. On the other hand, it is the
source of the very great descriptive power of graph grammars. It is so important that
a taxonomy of graph grammars is defined on its basis. We present the embedding
transformation, which was introduced by the research team of Grzegorz Rozenberg35

for edNLC graph grammars in the 1980s [149].

34During a technological process this corresponds to milling a V-slot in the raw material.
35Grzegorz Rozenberg—a professor of Leiden University, the University of Colorado at Boulder,
and the Polish Academy of Sciences in Warsaw, an eminent computer scientist and mathematician.
His research concerns formal language theory, concurrent systems, and natural computing. Prof.
G. Rozenberg was the president of the European Association for Theoretical Computer Science for
11 years.

122 8 Syntactic Pattern Analysis

(c)

(b)

(a)

FemaleMale Female
spouse sister

sisterspouse

Female

parent

Male

childFemale

Female

parent

Male

Male Female

child

spouse sister

sisterspouse

parent
child nephew

aunt

Fig. 8.6 a An example of a graph grammar production which is used for transforming a semantic
network, b-c an application of a graph grammar production for transforming a semantic network

Let us transform a semantic network which represents family relations36 with
an edNLC graph grammar. Graphs of the left-hand side and the right-hand side of
a production which represents the birth of a male child are shown in Fig. 8.6a. An
object of the class Female is replaced by itself with an object of the class Male
attached with the help of relations child-parent. A part of a semantic network before
applying this production (i.e., before the birth) is shown in Fig. 8.6b and a part of the
network after applying the production (i.e. after the birth) is shown in Fig. 8.6c. Let
us notice that firstly, the production has to reconstruct (horizontal) edges connecting
a (happy) mother with her husband and with her sister, because we have destroyed
these edges in removing the node Female (mother) corresponding to the left-hand
side of the production. Secondly, the production has to establish new edges between
the child and his father as well as between the child and his aunt. All the reconstructed
edges in Fig. 8.6c are bold. This reconstruction is performed by the production with
the help of the embedding transformation, which is defined in the following way.

36A similar semantic network has been introduced in Sect. 7.1.

http://dx.doi.org/10.1007/978-3-319-40022-8_7

8.5 Graph Grammars 123

C(spouse, out) = {(Female,Male, spouse, out), (8.19)

(Male,Male,parent, out), (8.20)

(Male,Male, child, in)} (8.21)

C(sister, out) = {(Female,Female, sister, out), (8.22)

(Male,Female,aunt, out), (8.23)

(Male,Female,nephew, in)} (8.24)

C(spouse, in) = {(Female,Male, spouse, in)} (8.25)

C(sister, in) = {(Female,Female, sister, in)}. (8.26)

For example, formula (8.24) is interpreted in the following way.

• Each edge before the production application, which:

– has been labeled by sister—C(sister, ...) and
– has gone out (out) from the left-hand side of the production—C(....., out)

should be replaced by

• the new edge, which:

– connects a node of the right-hand side graph labeled by
Male—(Male,,, ...),

– with a node of the context of the production, which has been pointed out by the
old edge37 and which has been labeled by Female—(.....,Female,, ...),

– is labeled with nephew—(.....,,nephew, ...)
– and comes into (in) this node of the right-hand side graph—(.....,,, in).

One can easily notice that formulas (8.19), (8.22), (8.25), and (8.26) reconstruct
only the old edges, i.e., the edges, which previously existed in the semantic network.
On the other hand, the remaining formulas establish new relations between the child
and his father as well as between the child and his aunt.

In the case of the use of graph languages in AI we are interested in their analysis
more than in their generation. Unfortunately, the construction of an efficient graph
automaton is very difficult.38 At the end of the twentieth century theETPL(k) subclass
of edNLC grammars with efficient automata was defined [93, 94]. ETPL(k) graph
grammars have been applied for various AI areas such as transforming semantic
networks in real-time expert systems, scene analysis in robotic systems, reasoning
in multi-agent systems, intelligent integrators for CAD/CAM/CAPP, sign language
recognition, model-based reasoning in diagnostic expert systems, etc. The problem
of grammar induction, introduced in the previous section, has been solved for these
grammars as well [96].

37The old edge has pointed out an aunt—C(sister, out).
38This was shown in the 1980s during research into the membership problem for graph languages,
which was led (independently) by G. Turan and F.J. Brandenburg.

124 8 Syntactic Pattern Analysis

Bibliographical Note

Monographs [41, 104, 113, 215] are good introductions to syntactic pattern recog-
nition.

	8 Syntactic Pattern Analysis
	8.1 Generation of Structural Patterns
	8.2 Analysis of Structural Patterns
	8.3 Interpretation of Structural Patterns
	8.4 Induction of Generative Grammars
	8.5 Graph Grammars

