
Chapter 5
Evolutionary Computing

Evolutionary computing is the most important group of methods within the biology-
inspired approach, because of their well-developed theoretical foundations as well as
the variety of their practical applications.As has beenmentioned in Sect. 3.2, themain
idea of these methods consists of simulating natural evolutionary processes. Firstly,
four types of such methods are presented, namely genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming. In the last section
other biology-inspired models, such as swarm intelligence and Artificial Immune
Systems, are introduced.

5.1 Genetic Algorithms

The first papers of Alex Fraser concerning genetic algorithms were published in
1957 [102]. However, this approach only became popular after the publication of an
excellent monograph by Holland [139] in 1975. As we have mentioned at the end
of the previous chapter, genetic algorithms can be treated as a significant extension
of the heuristic search approach that is used for finding the optimum solution to a
problem. In order to avoid finding local extrema instead of the global one and to
avoid getting stuck in a plateau area (cf. Fig. 4.11), a genetic algorithm goes through
a space of (potential) solutions with many search points, not with one search point
as in (standard) heuristic search methods. Such search points are called individuals.1

Thus, each individual in a solution space can be treated as a candidate for a (better
or worse) solution to the problem. A set of individuals “living” in a solution space
at any phase of a computation process is called a population. So, a population is a

1The analogy is with individuals living in biological environments.

© Springer International Publishing Switzerland 2016
M. Flasiński, Introduction to Artificial Intelligence,
DOI 10.1007/978-3-319-40022-8_5

53

http://dx.doi.org/10.1007/978-3-319-40022-8_3
http://dx.doi.org/10.1007/978-3-319-40022-8_4

54 5 Evolutionary Computing

set of representations of potential solutions to the problem. Succeeding populations
constructed in iterated phases of a computation are called generations. This means
that a state space in this approach is defined with succeeding generations constructed
by a genetic algorithm.2

For example, let us look at an exemplary solution space shown in Fig. 5.1. The
position of each individual in this space is determined by its coordinates (X1, X2).
These coordinates determine, in turn, the genotype of the individual. Usually, it is
assumed that a genotype consists of one chromosome. Each coordinate is binary-
coded, i.e., it is of the form of a string of genes: 0000, 0001, 0010, . . . , 1000, etc.
Thus, a genotype built of one chromosome consists of eight genes. Thefirst four genes
determine the coordinate X1 and the second four genes determine the coordinate X2.
For example, the individual marked with a circle in the solution space in Fig. 5.1
has the genotype 01010111. As we have mentioned in the previous chapter, each
search point of a space of (potential) solutions represents a set of values ascribed to
parameters of the problem considered.3 In the terminology of genetic algorithms such
a set of values is called the phenotype of this point/individual. In order to evaluate
the “quality” of an individual (i.e., a potential solution), we evaluate its phenotype
with the help of a fitness function.4

Let us assume for further considerations that we look for the (global) maximum of
our fitness function, which equals 11 and is marked with a dark grey color in Fig. 5.1.
In the solution space there are two local maxima with a fitness function value equal
to 8, which are marked with a light grey color. Let us notice that if we searched this
space with the hill-climbing method and we started with the top-leftmost point, i.e.,
the point (X1, X2) = (0000, 1000) with a fitness function value equal to 3, then
we would climb a local “peak” having coordinates (X1, X2) = (0001, 0111) with
a fitness function value equal to 8. Then, we would stay at the “peak”, because the
fitness function gives worse values in the neighborhood of this “peak”. However, this
would make it impossible to find the best solution, i.e., the global maximum. Using
genetic algorithms we avoid such situations.

Now, let us introduce the schemeof a genetic algorithm,which is shown inFig. 5.2.
Firstly, the initial population is defined by random generation of a fixed number (a
parameter of the method) of individuals. These individuals are our initial search
points in the solution space. For each individual the value of the fitness function is
computed. (This corresponds to the evaluation of a heuristic function for the search
methods discussed in a previous chapter.) In the next phase the best-fitted individuals
are selected for “breeding offsprings”. Such individuals create a parent population.

2Thus, succeeding populations are equivalent to states of this space.
3Each search point corresponds to a certain solution. (Such a “solution” does not satisfy us in most
cases.) If we deal with an abstractmodel of a problem (as in the previous chapter), not with a solution
space, then such a point corresponds to a certain phase of problem solving (for our example of a
labyrinth it is the path we have gone down) instead of representing values ascribed to parameters
of the problem.
4The fitness function plays an analogous role to the heuristic function defined for the searchmethods
presented in the previous chapter.

5.1 Genetic Algorithms 55

1000

0111

0110

0101

0100

0011

0010

0001

0000

0000 0001 0010 0011 0100 0101 0110 0111 1000

individual of genotype:
0101 0111

X1 X2

global
maximum

local
maximum

coordinate X1

coordinate X2

X2

X1

345676543

456787654

567898765

6789109876

789101110987

6789109876

567898765

486787684

45676543 3

Fig. 5.1 Formulation of a search problem for a genetic algorithm

The simplest method for such a selection is called roulette wheel selection. In this
method we assume that the roulette wheel area assigned to an individual is directly
proportional to its fitness function value. For example, let the current population
consist of four individuals P = {ind1, ind2, ind3, ind4} forwhich thefitness function
h gives the followingvalues: h(ind1) = 50, h(ind2) = 30, h(ind3) = 20, h(ind4) =
0. Then, taking into account that the sum of the values equals 100, we assign the
following roulette wheel areas to individuals: ind1 = 50/100% = 50%, ind2 =
30%, ind3 = 20%, ind4 = 0%. Then, we randomly choose individuals with the
help of the roulette wheel. Since no wheel area is assigned to the individual ind4
(0%), at least one of the remaining individuals must be chosen twice. (The individual
ind1 has the best chance, because its area comprises half of the wheel, i.e., the same
area as ind2 and ind3 combined.)

In order to avoid a situation in which some individuals with a very small fitness
function value (or even the zero value, as in the case of the individual ind4) have no
chance of being selected for “breeding offsprings”, one can use ranking selection. In
this method a ranking list which contains all the individuals, starting from the best-
fitted one and ending with the worst-fitted one, is defined. Then, for each individual
a rank is assigned. The rank is used for a random selection. For example, the rank
can be defined in the following way. Let us fix a parameter for computing a rank,
p = 0.67. Then, we choose the individual ind1 from our previous example with
probability p1 = p = 0.67. The individual ind2 is selected with probability p2 =
(1 − p1) · p = 0.33 · 0.67 = 0.22. The succeeding individual ind3 is chosen with
probability p3 = (1−(p1+p2))·p = 0.11·0.67 = 0.07.Generally, thenth individual

56 5 Evolutionary Computing

Fig. 5.2 The scheme of a
genetic algorithm

evaluation of population

generation of offspring population
by application of genetic

operators

selection of individual
with best fitness

evaluation of initial
population of individuals

selection of individuals
for reproduction

from the ranking list is selectedwith probability pn = (1−(p1+ p2+· · ·+ pn−1))· p.
Let us notice that according to such a scheme we assign a non-zero value to the last
individual ind4, i.e., p4 = 1 − (p1 + p2 + p3) = 1 − 0.96 = 0.04.

After the selection phase, an offspring population is generated with the help of
genetic operators (cf. Fig. 5.2). Reproduction is performed with the crossover (re-
combination) operator in the following way. Firstly, we randomly choose5 pairs
of individuals from the parent population as candidates for mating. These pairs of
parents “breed” pairs of offspring individuals by a recombination of sequences of
their chromosomes. For each pair of parents we randomly choose the crossover
point, which determines the place at which the chromosome is “cut”. For example, a
crossover operation for two parent individuals having chromosomes 01001000 and
01110011, with a fitness function value of 7 (for both of them) is depicted in Fig. 5.3.
The randomly chosen crossover point is 4, which means that both chromosomes are
cut after the fourth gene. Then, we recombine the first part of the first chromosome,
i.e., 0100, with the second part of the second chromosome, i.e., 0011, which gives a
new individual (offspring) with the chromosome 01000011. In the same way we ob-
tain a second new individual having the chromosome 01111000 (by a recombination
of the first part of the second chromosome and the second part of the first chromo-
some). Let us notice that one “child” (the one having the chromosome 01111000) is
“worse fitted” (to the environment) than the “parents”, because its fitness function
value equals 4. This individual corresponds to a worse solution of the problem. On
the other hand, the fitness function value of the second “child” (01000011) equals 10
and this individual reaches a satisfying solution (the global maximum) in one step.
Sometimes we use more than one crossover point; this technique is called multiple-
point crossover.

5This random choice is made with high probability, usually of a value from the interval [0.6, 1] in
order to allow many parents to take part in a reproduction process. This probability is a parameter
of the algorithm.

5.1 Genetic Algorithms 57

1000

0111

0110

0101

0100

0011

0010

0001

0000

0000 0001 0010 0011 0100 0101 0110 0111 1000

0100 1000

0111 0011

0111 1000

0100 0011

0100 1000

0111 0011

X1

X2

345676543

456787654

567898765

6789109876

789101110987

6789109876

567898765

486787684

345676543

Fig. 5.3 Applying the crossover operator in a genetic algorithm

Themutation operator changes the value of a single gene from0 to 1 or from1 to 0.
Contrary to a crossover, amutation is performed very rarely.6 For example, in Fig. 5.4
we can see an individual represented by the chromosome 01110111. Although its
fitness function value (8) is quite big, this individual is a local maximum. If we used
this individual in the hill-climbing method, then we would get stuck in this place (cf.
Fig. 4.11). However, if we mutated the third gene of its chromosome from 1 to 0,
then we would obtain a new individual, which has the chromosome 01010111 (cf.
Fig. 5.4). This search point has a better chance to reach the global maximum.7

In the third phase, called evaluation of a population, values of the fitness function
are computed for individuals of the new offspring population (cf. Fig. 5.2). After the
evaluation, the termination condition of the algorithm is checked. If the condition
is fulfilled, then we select the individual with the best fitness as our solution of
the problem. The termination condition can be defined based on a fixed number of
generations determined, the computation time, reaching a satisfying value of the
fitness function for some individual, etc. If the condition is not fulfilled, then the
work of the algorithm continues (cf. Fig. 5.2).

In this section we have introduced fundamental notions and ideas for genetic al-
gorithms. As we can see, this approach is based on biological intuitions. Of course,
for the purpose of constructing an AI system, we should formalize it with mathe-
matical notions and models. The Markov chain model is one of the most elegant
formalizations used in this case. This model is introduced in Appendix B.2.

6Since mutations occur very rarely in nature, we assume a small probability in this case, e.g., a
value from the interval [0, 0.01]. This probability is a parameter of the algorithm.
7In genetic algorithms mutation plays a secondary role. However, as we will see in subsequent
sections, mutation is a very important operator in other methods of evolutionary computing.

http://dx.doi.org/10.1007/978-3-319-40022-8_4

58 5 Evolutionary Computing

1000

0111

0110

0101

0100

0011

0010

0001

0000

0000 0001 0010 0011 0100 0101 0110 0111 1000

0111 0111

0101 0111

MUT

local
maximum

global
maximum

X1

X2

345676543

456787654

567898765

6789109876

789101110987

6789109876

567898765

486787684

345676543

Fig. 5.4 Applying the mutation operator in a genetic algorithm

5.2 Evolution Strategies

In the genetic algorithm discussed in the previous section, an individual (a potential
solution) has been coded in binary. Such a representation is convenient if we are
searching a discrete solution space,8 for example in the case of a discrete optimization
problem. Evolution strategies were developed in the 1960s by Rechenberg [236]
and Schwefel [267] at the Technical University of Berlin in order to support their
research into numerical optimization problems.9 In this approach, an individual is
represented by a pair of vectors (X, σ), where X = (X1, X2, . . . , Xn) determines
the location of the individual in the n-dimensional (continuous) solution space,10

σ = (σ1, σ2, . . . , σn) is a string of parameters of the method.11

Let us discuss the general scheme of an evolution strategy shown in Fig. 5.5a.
Similarly to the case of genetic algorithms, we begin with the initialization and
evaluation of a μ-element parent population R. Then, we start the basic cycle of the
method, which consists of three phases.

During the first phase λ-element offspring population O is generated. Each de-
scendant is created in the following way. Firstly, ρ individuals, which will be used

8An example of a discrete solution space has been defined in the previous section in Fig. 5.1.
9The research into fluid dynamics was carried out at the Hermann Föttinger Institute for Hydrody-
namics at TUB.
10AvectorX represents here the chromosomeof the individual, and its components X1, X2, . . . , Xn ,
being real numbers, correspond to its genes.
11A parameter σi is used for mutating a gene Xi .

5.2 Evolution Strategies 59

for the production of a given descendant, are chosen.12 These “parents” are drawn
with replacement according to the uniform distribution.13 Then, these ρ parents pro-
duce a “preliminary version” of the descendant with the crossover operator. After
recombination the element σ of the child chromosome, which contains parameters
of the method, is mutated. Finally, a mutation of the individual, i.e., a mutation of the
element X of its chromosome, is performed with the help of the mutated parameters
of σ .

In the second phase an evaluation of the offspring population O is made. This is
performed in an analogous way to genetic algorithms, that is with the help of the
fitness function.

The third phase consists of the selection of μ individuals to form a new parent
population P according to the values of the fitness function. There are two main
approaches to selection. In the selection of the (μ + λ) type a choice is made from
among individuals which belong to both the (old) parent population and the offspring
population. This means that the best parents and the best children create the next
generation.14 In selection of the (μ, λ) type we choose individuals to form the next
generation from the offspring population.

Similarly to genetic algorithms, a termination condition is checked at the end of
the cycle. If it is fulfilled, the best individual is chosen as our solution to the problem.
Otherwise, a new cycle is started (cf. Fig. 5.5a).

After describing the general scheme let us introduce a way of denoting evolution
strategies [23].We assume an interpretation of parametersμ,λ,ρ as in the description
above. If we use selection of the (μ + λ) type, then the evolution strategy is denoted
by (μ/ρ + λ). If we use selection of the (μ, λ) type, then the evolution strategy is
denoted by (μ/ρ, λ).

Now, we present a way of defining genetic operators for evolution strategies.
Let us assume that both parents Father and Mother are placed in a solution space

according to vectors XF = (X F
1 , X F

2) and XM = (X M
1 , X M

2), respectively, as shown
in Fig. 5.5b.15 Since an individual is represented by a vector of real numbers, calcu-
lating the average of the values of corresponding genes which belong to the parents
is the most natural way of defining the crossover operator. Therefore, the position
of Child is determined by the vector XC = (XC

1 , XC
2), where XC

1 = (X F
1 + X M

1)/2
and XC

2 = (X F
2 + X M

2)/2 (cf. Fig. 5.5b).
In case of crossover by averaging, we also compute σ C by taking the average

values of σ F and σ M , which represent the parameters of the method. An exchange
of single genes of parents can be an alternative way of creating an offspring.

12This means that a “child” can have more than two “parents”.
13Firstly, this means that each individual has the same chance to breed an offspring (the uniform
distribution). Secondly, any individual can be used for breeding several times (drawing with re-
placement). This is the main difference in comparison to genetic algorithms, in which the best-fitted
individuals have better chances to breed an offspring (roulette wheel selection, ranking selection).
14As one can see, we try to improve on the law of Nature. A “second life” is given to outstanding
parents.
15The reader is advised to compare Fig. 5.5b with Fig. 4.11 in the previous chapter. For clarity there
is no axis h(X1, X2) corresponding to the fitness function in Fig. 5.5b.

http://dx.doi.org/10.1007/978-3-319-40022-8_4

60 5 Evolutionary Computing

evaluation of population O

generation of -element offspring
population O by application of

genetic operators

selection of µ individuals to form new
parent population P

selection of individual
with best fitness from P

parent (Father) X1

X2

X2
F

X1
F X1

M

X2
M

XF

XM

(X2
F+X2

M)/2

(X1
F+X1

M)/2

XC

initialization and evaluation
of µ-element parent population P

parent (Mother)

offspring (Child)

(a)

(b)

Fig. 5.5 a The scheme of an evolution strategy, b an example of crossover by averaging in an
evolution strategy

As we have mentioned above, firstly, mutation is performed for an element σ ,
secondly for an element X. A mutation of the element σ consists of multiplying
its every gene by a certain coefficient determined by a random number,16 which is
generated according to the normal distribution.17 After modifying the vector σ , we
use it for a replacement of the individual in the solution space, as shown in Fig. 5.6. As
we can see in the figure, the position of the individual represented byX is determined
by its genes (coordinates) X1 and X2. Now, we can e.g., mutate its gene X1 by adding

16Sometimes, the coefficient is determined by several random numbers.
17Formal definitions of notions of probability theory which are used in this chapter are contained
in Appendix B.1.

5.2 Evolution Strategies 61

Fig. 5.6 Mutation of an
individual in an evolution
strategy

individual I

mutated
individual I

m

mutation

X1X1 X1
m

X2

X2

X2
m

X

Xm

1·N1(0,1)

2·N2(0,1)

a number σ1 · N1(0, 1), where σ1 is its corresponding gene—and the parameter of
the method—and N1(0, 1) is a random number generated according to the normal
distribution with an expected value (average) equal to 0 and a standard deviation
equal to 1.

Let us notice that the element σ = (σ1, σ2, . . . , σn) contains parameters which
determine how big amutation is.18 Aswe have seen, these parameters aremodified,19

which means that evolution strategies are self-adapting.

5.3 Evolutionary Programming

In 1966 Lawrence J. Fogel introduced an approach to evolutionary computing which
is called evolutionary programming [99]. The main idea of this approach differs
from the methods discussed above. One difference concerns the level of abstraction
at which evolution processes are simulated. In genetic algorithms and evolution
strategies search points in a solution space correspond to individuals in a population.
However, in the case of evolutionary programming instead of individuals we deal
with a species-level abstraction.20 This influences, of course, how the method is
constructed. First of all, there is no crossover operation, since there is no crossover
among species. Secondly, a mutation is defined in such a way that radical changes
occur with low probability and small changes are preferred.

The second important difference with respect to the methods introduced in previ-
ous sections is the fact that in evolutionary programming we do not assume any
specific form of representation of an individual.21 A representation of an indi-

18Bigger values of these parameters cause a bigger change to an individual in a solution space.
Strictly speaking, the bigger the value of a parameter σk , the more the gene Xk is mutated, which
corresponds to moving the individual along the Xk axis.
19The probabilities of both a crossover and amutation are constant parameters in genetic algorithms.
20Let us remember that a population is a set of individuals of the same species which live in the
same area. Thus, in the case of evolutionary programmingwe should rather use the term biocoenosis
instead of population, which is more correct from the point of view of biology.
21We have assumed a binary representation of individuals in genetic algorithms and real number
vectors in evolution strategies.

62 5 Evolutionary Computing

Fig. 5.7 The scheme of
evolutionary programming

evaluation of population O

generation of offspring population O
by mutation of each individual from

population P

generation of new population P
by selection of individuals from current

population P and population O

selection of individual
with the best fitness from P

initialization and evaluation
of population P

vidual should, simply, be adequate for a given problem. A variety of representa-
tions (variable-length vectors, matrices, etc.) are used in evolutionary programming
projects for defining abstract models of problems.

Now, we present a scheme of evolutionary programming, which is shown in
Fig. 5.7. The initialization and evaluation of a (parent) population P is a preliminary
phase. Then, we begin the basic cycle of the method. The generation of the offspring
population O by a mutation of each individual from the population P is performed
in the first phase. Mutation is made randomly according to the normal distribution.
The second phase consists of the evaluation of the population O. The generation
of a new population P by a selection of individuals from the current population
P and the population O is performed in the third phase. In a standard version of
evolutionary programming a ranking selection is applied for this purpose. Then, as
in previous methods, a termination condition is tested. If it is fulfilled, we choose the
best individual as the solution to the problem. If not, a new cycle is begun.

At the end of the twentieth century David Fogel22 introduced two improvements
in evolutionary programming. Firstly, instead of ranking selection, a certain variant
of tournament selection is applied. Tournament selection consists of dividing a pop-
ulation into groups which usually contain several individuals and selecting the best

22David Fogel—a researcher in the area of evolutionary computing. In his famous research project
Blondie24, an evolutionary-computing-based AI system became an expert in English draughts
(checkers). Fogel has been the President of the IEEE Computational Intelligence Society and the
Editor-in-Chief of IEEE Transactions on Evolutionary Computation. He is the son of Lawrence J.
Fogel.

5.3 Evolutionary Programming 63

individuals from each group separately. This method is especially useful for multi-
criteria optimization problems, when we optimize more than one function. Secondly,
D. Fogel has introduced self-adapting mechanisms similar to those used in evolution
strategies.

Since no specific form of representation of an individual is assumed in evolu-
tionary programming, the approach may be applied to a variety of problems, e.g.,
control systems, pharmaceutical design, power engineering, cancer diagnosis, and
signal processing. In Artificial Intelligence the approach is used not only for solving
problems,mainly optimization and combinatorial problems, but also for constructing
self-learning systems.

In fact, the history of this approach began in 1966 in the area of self-learning
systems. L.J. Fogel in his pioneering paper [99] discussed the problem of formal
grammar induction,23 strictly speaking the problem of synthesizing a formal au-
tomaton24 on the basis of a sample of sentences belonging to some language. A
formal automaton is a system used to analyse a formal language. The synthesis of an
automaton A by an AI system consists of an automatic construction of A on the basis
of a sample of sentences, which belong to a formal language. L.J. Fogel showed that
such a synthesis can be made via evolutionary programming. In his model a formal
automaton evolves by the simulation of processes of crossover and mutation in order
to be able to analyze a formal language. Let us notice a difference between problem
solving by genetic algorithms/evolution strategies discussed previously and solving
the problem of synthesis of an automaton by the AI system constructed by L.J. Fogel.
In the first case, generation of a problem solution is the goal of the method, whereas
in the second case we want to generate a system (automaton) that solves a certain
class of problems (a formal language analysis). Such an idea would appear twenty
years later in the work of M.L. Cramer, which concern genetic programming. This
approach is introduced in the next section.

5.4 Genetic Programming

Although genetic programming was popularized in the 1990s by John Koza due to
his well-known monograph [172], the main idea of this approach was introduced
in 1985 by Cramer [61]. In genetic programming instead of searching a solution
space with the help of a program, which is implemented on the basis of principles of
evolution theory, a population of programs is created. Then, a space of programs is
searched in order to find the one which can solve a class of problems in a satisfactory
way. Of course, we have to define a function, to assess the quality (adequacy) of such
programs. Thus, automatic synthesis of a computer program to solve a given problem
is the objective of genetic programming. This objective has been extended to other

23This problem is discussed in Sect. 8.4.
24Formal automata are introduced in Sect. 8.2.

http://dx.doi.org/10.1007/978-3-319-40022-8_8
http://dx.doi.org/10.1007/978-3-319-40022-8_8

64 5 Evolutionary Computing

systems in the technical sciences, such as digital circuits (electronics), controllers
(automatic control), etc.25

In order to achieve such an ambitious objective, a human designer has to deliver
certain knowledge to an AI system [173]. Firstly, the system has to know which
components are to be used for generating a solution. In the case of a software system
synthesis, arithmetic operations, mathematical functions, and various instructions
of a programming language are such components. In the case of a digital circuit
synthesis AND, OR, NOT, NAND, NOR logic gates, various flip-flops, etc. are such
components. Secondly, a human designer has to define the fitness function. It seems
that this is themost difficult problem. In order to define the fitness function, one has to
formalize the task of a synthesized system precisely. Solving problems which belong
to a certain class is, of course, the main objective of a synthesized system. Thus,
systems-individuals should evolve in order to solve problems in a satisfactory way.
In other words, the fitness function should define how well the system solves these
problems. Thirdly, a human designer should deliver control parameters such as the
size of the population, the probability of applying genetic operators, the termination
condition, etc.

In genetic programming, programs are usually represented by tree or graph struc-
tures. InFig. 5.8a the expression−b/2a is representedwith the help of a tree structure.
All expressions of a programming language can be represented with such a tree rep-
resentation. The specific form of the “chromosomes” of individuals results in the
specific form of the genetic operators. A mutation is shown in Figs. 5.8a and 5.8c. A
part of the first tree, which ismutated—the subtree−b (it is encircled by a dashed line
in Fig. 5.8a) is removed. A subtree representing the expression −b − √

� (encircled
by a dashed line in Fig. 5.8c) is joined to the tree in place of the removed part. A tree

which represents the expression
−b − √

�

2a
is obtained as a result of this mutation. A

crossover operator consists of exchanging subtrees of trees (individuals). Let us cross
a tree which has been obtained as a result of the mutation (Fig. 5.8c) and a tree which

represents the expression
a + b

−b + √
�
, which is shown in Fig. 5.8b. The parts of the

“chromosomes" which are exchanged are encircled by a dashed line. As a result of
the crossover we obtain the tree shown in Fig. 5.8d, which represents the expression

a + b

−b − √
�

(it is not interesting), and the tree shown in Fig. 5.8e, which represents

the expression
−b + √

�

2a
. This second expression has a well-known mathematical

interpretation, as does the initial expression −b/2a shown in Fig. 5.8a.
Let us notice that we have to formulate thewell-defined fitness function in order to

generate (with genetic operators) a system which solves a certain class of problems.
The fitness function directs the actions of the genetic operators. In genetic program-

25If we analyze the applications of genetic programming, it seems that the synthesis of systems of
electronics or automatic control is easier than the synthesis of software systems.

5.4 Genetic Programming 65

(a)
2 · a

/

2 a

.

−

b

−

−

b

/

2 a

.

+

−

b

/

2 a

.

−b / 2a

−b

+

−

b

/

a b

+

−

b

−

/

a b

+

MUT

(b) (c)

(d) (e)

a + b
−b +

−b −
2a

−b +
2a

a + b
−b −

Fig. 5.8 a An exemplary expression of a programming language which is coded as a tree structure
and its mutation, b, c the crossover of two structures, d, e descendant structures which are results
of the crossover

ming crossing reasonable solutions is a basic operator. The mutation operator plays
an auxiliary role.

On the basis of genetic programming a very interesting approach, called meta-
genetic programming, was defined in 1987 by Jürgen Schmidhuber of the Technical
University of Munich [265]. In this approach both chromosomes and genetic oper-
ators evolve themselves, instead of being determined by a human designer. Thus, a
meta-genetic programming system evolves itself with the help of genetic program-
ming. A similar approach was used for constructing the Eurisko system by Douglas
Lenat26 in 1976. The system, which is based on heuristic rules, also contains meta-
rules allowing it to change these heuristic rules.

26Douglas Lenat—a professor of computer science at Stanford University and Carnegie-Mellon
University. A president of Cycorp, Inc., which researches the construction of a common-sense
knowledge base (ontology) Cyc.

66 5 Evolutionary Computing

5.5 Other Biology-Inspired Models

Biology-based models have been used for developing other interesting methods in
Artificial Intelligence. The best known methods include swarm intelligence, intro-
duced by Gerardo Beni and Jing Wang in 1989 [22], and Artificial Immune Systems,
developed by Farmer et al. [86] in 1986.

Modeling an AI system as a self-organized population of autonomous individuals
which interact with one another and with their environment is the main idea of
swarm intelligence. An individual can take the form of an agent,27 which transforms
observations into actions in order to achieve a pre-specified target. It can also take the
formof a boid introduced byCraigReynolds in 1987 [238]. Boids cooperate in a flock
according to three rules: a separation rule (keep a required distance from other boids
to avoid crowding), a cohesion rule (move towards the center of mass of the flock
to avoid fragmenting the flock) and an alignment rule (move in the direction of the
average target of the flock). There are a lot of algorithms defined using this approach.
Ant Colony Optimization, ACO, algorithms were proposed byMarco Dorigo in 1992
[72]. Agents are modeled as “artificial ants”, which seek solutions in a solution space
and lay down “pheromone trails”. Pheromone values increase for promising places,
whereas for places which are not visited frequently pheromones “evaporate”. This
results in more and more ants visiting promising areas of the solution space [298].

Particle Swarm Optimization, PSO, is a method of searching for the best solution
in an n-dimensional solution space. It was introduced by Russell Eberhart and James
Kennedy in 1995 [82]. A solution is searched for by a swarm of particles moving in
the solution space. The swarm moves in a direction of leaders, i.e., particles having
the best fitness function values. Each time a better solution is found the swarm
changes its direction of motion and accelerates in this new direction. Experiments
have shown that the method is resilient to problems related to local extrema.

Artificial Immune Systems, AISs [43], aremainly used for solving problems related
to detecting anomalies. The idea of differentiating between normal/“own” cases and
pathological/“alien” cases is based on the immune system of a biological organism.
All the cases that are not “similar” to known cases are classified as anomalies. When
an unknown case appears and its characteristics are similar to those recognized by
one of the detectors of anomalies, it is assumed to be an “alien” and this detector is
activated. The activated detector is “processed” with operators such as mutation and
duplication. In such a way the system learns how to recognize pathological cases.

Bibliographical Note

A general introduction to the field can be found in [83, 65, 169, 201, 260]. Genetic
algorithms are discussed in [111, 139], evolution strategies in [268], evolutionary
programming in [100], and genetic programming in [172].

27Agent systems are discussed in Chap.14. Therefore, we do not define them in this section.

http://dx.doi.org/10.1007/978-3-319-40022-8_14

	5 Evolutionary Computing
	5.1 Genetic Algorithms
	5.2 Evolution Strategies
	5.3 Evolutionary Programming
	5.4 Genetic Programming
	5.5 Other Biology-Inspired Models

