
Chapter 12
Reasoning with Imperfect Knowledge

Ifwe reason about propositions inAI systemswhich are based on classic logic,we use
only two possible logic values, i.e., true and false. However, in the case of reasoning
about the real (physical) world such a two-valued evaluation is inadequate, because
of the aspect of uncertainty. There are two sources of this problem: imperfection
of knowledge about the real world which is gained by the system and vagueness of
notions used for describing objects/phenomena of the real world.

We discuss models which are applied for solving the problem of imperfect knowl-
edge in this chapter.1 There are three aspects of the imperfection of knowledge:
uncertainty of knowledge (information can be uncertain), imprecision of knowledge
(measurements of signals received by the AI system can be imprecise) and incom-
pleteness of knowledge (the system does not know all required facts).

In the first section themodel ofBayesian inference based on a probability measure
is introduced. This measure is used to express our uncertainty concerning knowl-
edge, not for assessing the degree of truthfulness of propositions. Dempster-Shafer
theory, which allows us to express a lack of complete knowledge, i.e., our ignorance,
with specific measures is considered in the second section. Various models of non-
monotonic reasoning can also be applied for solving the problem of incompleteness
of knowledge. Three such models, namely default logic, autoepistemic logic, and
circumscription reasoning are discussed in the third section.

12.1 Bayesian Inference and Bayes Networks

In Sect. 10.2 we have discussed the use of the Bayesian probability a posteriori
model2 for constructing a classifier in statistical pattern recognition. In this section
we interpret notions of the Bayesian model in a different way, in another application
context.

1Models applied for solving a problem of vague notions are introduced in the next chapter.
2Mathematical foundations of probabilistic reasoning are introduced in Appendix I.
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176 12 Reasoning with Imperfect Knowledge

Let e be an observation of some event (situation, behavior, symptom, etc.).3 Let
h1, h2, . . . , hn be various (distinct) hypotheses which can explain the occurrence of
the observation e. Let us consider a hypothesis hk with an a priori probability (i.e.,
without knowledge concerning the observation e) of P(hk). Let us assume that the
probability of an occurrence of the observation e assuming the truthfulness of the
hypothesis hk , i.e., the conditional probability P(e|hk), is known. Then, the a pos-
teriori probability, i.e., the probability of the hypothesis hk assuming an occurrence
of the observation e, is defined by the following formula:

P(hk |e) = P(e|hk) · P(hk)
P(e)

, (12.1)

where P(e) is the probability of an occurrence of the observation e given hypotheses
h1, h2, . . . , hn . The probability P(e) is computed according to the following formula:

P(e) =
n∑

i=1

P(e|hi ) · P(hi ). (12.2)

Let us analyze this model with the help of the following example.4 Let us assume
that we would like to diagnose a patient John Smith. Then h1, h2, . . . , hn denote
possible disease entities.5 We assume that the bird flu, denoted with h p, is spreading
throughout our country. The a priori probability of going down with the bird flu can
be evaluated as the percentage of our countrymen who have the bird flu.6 Then, let
an observation emean the patient has a temperature which is more than 39.5 ◦C. The
probability that a patient having the bird flu has a temperature above 39.5 ◦C, i.e.,
P(e|h p), can be evaluated as the percentage of our countrymen having the bird flu
who also have a temperature which is more than 39.5 ◦C.

Now, we can diagnose John Smith. If he has a temperature higher than 39.5 ◦C,
i.e., we observe an occurrence of the symptom e, then the probability that he has
gone down with the bird flu, P(h p|e), can be computed with the help of formula
(12.1).7

Of course, making a hypothesis on the basis of one symptom (one observation)
is not sound. Therefore, we can extend our formulas to the case of m observations
e1, e2, . . . , em . If we assume that the observations are conditionally independent

3Such an observation is represented as a fact in a knowledge base.
4Of course, all examples are simplified.
5Strictly speaking, hi means making a diagnosis (hypothesis) that the patient has the disease entity
denoted by an index i .
6Let us notice that it is really an a priori probability in the case of diagnosing John Smith, because
for such an evaluation we do not take into account any symptoms/factors concerning him.
7Let us notice that in order to use P(e) in formula (12.1) we have to compute this probability
with formula (12.2). Thus, a priori probabilities h1, h2, . . . , hn should be known for all disease
entities. We should also know the probabilities that a patient having an illness denoted by an index
i = 1, 2, . . . , n has a temperature which is more than 39.5 ◦C, i.e., P(e|hi ). We are able to evaluate
these probabilities if we have corresponding statistical data.
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given each hypothesis hi , i = 1, . . . , n,8 then we obtain the following formula for
the probability of a hypothesis hk given observations e1, e2, . . . , em :

P(hk |e1, e2, . . . , em) = P(e1|hk) · P(e2|hk) · · · · · P(em |hk) · P(hk)
P(e1, e2, . . . , em)

, (12.3)

where P(e1, e2, . . . , em) is the probability of observations e1, e2, . . . , em occurring
given hypotheses h1, h2, . . . , hn . This probability is computed according to the fol-
lowing formula:

P(e1, e2, . . . , em) =
n∑

i=1

P(e1|hi ) · P(e2|hi ) · · · · · P(em |hi ) · P(hi ). (12.4)

Summing up, the Bayesian model allows us to compute the probability of the
truthfulness of a given hypothesis on the basis of observations/facts which are stored
in the knowledge base. We will come back to this model at the end of this section,
when we present Bayes networks. First, however, we introduce basic notions of
probabilistic reasoning.

In probabilistic reasoning a problem domain is represented by a set of random
variables.9 For example, in medical diagnosis random variables can represent symp-
toms (e.g., a body temperature, a runny nose), disease entities (e.g., hepatitis, lung
cancer), risk factors (smoking, excess alcohol), etc.

For each random variable its domain (i.e., a set of events for which it is defined)
is determined. For example, in the case of car diagnosis for a variable Engine failure
cause we can determine its domain in the following way:

Engine f ailure cause: 〈piston sei zing up, timing gear f ailure, starter

f ailure, exhaust train f ailure, broken inlet valve〉.

Random variables are often logic (Boolean) variables, i.e., they take either the value
1 (true (T)) or 0 (false (F)). Sometimes we write smoking in case this variable takes
the value 1 and we write ¬ smoking otherwise.

For a random variable which describes a problem domain we define its distrib-
ution. The distribution determines the probabilities that the variable takes specific
values. For example, assuming that a random variable Engine failure cause takes
values: 1, 2, …, 5 for the events listed above, we can represent its distribution with
the help of the one-dimensional table shown in Fig. 12.1a.10 Let us notice that the
probabilities should add up to 1.0.

8This means that P(e1, e2, . . . , em |hi ) = P(e1|hi ) · P(e2|hi ) · · · · · P(em |hi ).
9In this chapter we consider discrete random variables. Formal definitions of a random variable, a
random vector, and distributions are contained in Appendix B.1.
10In the first column of the table elementary events are placed. For each elementary event the value
which is taken by the random variable is also defined.
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Engine failure cause
P(Engine 

failure cause)
1  (piston seizing up) 0.05

2  (timing gear failure) 0.1

3  (starter failure) 0.4

4  (exhaust train failure)      0.3

5  (broken inlet valve) 0.15

Unstable
gas flow

Gas supply
subsystem failure

0.008 0.01

0.002 0.98

(a)

(b)

P(X1 = a4 X2 = b6 X3 = c1)
(c)

P(X1 = a1)

P(X1 = a7 X2 = b6)

X1

X2

X3

a4

b6

c1
b1

c4

a1 a7

Unstable
gas flow

X1

X2Gas supply
subsystem failure

Fig. 12.1 a An example of the distribution of a random variable, b an example of the distribution
of a two-dimensional random vector, c the scheme of the table of the joint probability distribution

In the general case, if there are n random variables X1, X2, . . . Xn , which describe
a problem domain, they create a random vector (X1, X2, . . . Xn). In such a case we
define the distribution of a random vector. This determines all the possible combi-
nations of values that can be assigned to all variables. The distribution of a random
vector (X1, X2, . . . Xn) is called the joint probability distribution, JPD, of random
variables X1, X2, . . . Xn .

In the case of twodiscrete randomvariables X1 and X2 taking values fromdomains
which have m1 and m2 elements respectively, their joint probability distribution can
be represented by a two-dimensional m1 × m2 table P = [pi j ], i = 1, . . . ,m1,

j = 1, . . . ,m2. An element pi j of the table determines the probability that the
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variable X1 takes the value i and the variable X2 takes the value j . For example, if
there are two logical variables, Unstable gas flow and Gas supply subsystem failure,
then their joint probability distribution can be represented as shown in Fig. 12.1b.
Then, for example

P(Unstable gas f low ∧ ¬Gas supply subsystem f ailure) = 0.002.

Similarly to the one-dimensional case, the probabilities of all cells of the table should
add up to 1.0. Let us notice that we can determine probabilities not only for complete
propositions which concern a problem domain, i.e., for propositions which include
all variables of a random vector with values assigned. We can also determine prob-
abilities for propositions containing only some of the variables. For example, we
can compute the probability of the proposition ¬ Unstable gas flow by adding the
probabilities of the second column of the table, i.e., we can sum the probabilities for
all the values which are taken by the other variable Gas supply subsystem failure11:

P(¬Unstable gas f low) = 0.01 + 0.98 = 0.99.

Returning to an n-dimensional randomvector (X1, X2, . . . Xn), the joint probabil-
ity distribution of its variables is represented by an n-dimensional table. For example,
the scheme of such a table is shown in Fig. 12.1c. As we can see, the variables take
values X1 = a1, a2, . . . , a7, X2 = b1, b2, . . . , b6, X3 = c1, c2, c3, c4. Each elemen-
tary cell of the table contains the probability for the proposition including all the
variables. Thus, for example for the proposition X1 = a4 ∧ X2 = b6 ∧ X3 = c1 the
probability included in the elementary cell defined by the given coordinates of the ta-
ble is determined. The probability of the proposition X1 = a7∧X2 = b6 is computed
by adding the probabilities included in the cells which belong to the rightmost upper
“beam”. (It is defined according to the marginal distribution for variables X1 and
X2, whereas X3 takes any values.) For example, the probability of the proposition
X1 = a1 is computed by adding the probabilities included in the cells which belong
to the leftmost “wall”. (It is defined according to the marginal distribution for the
variable X1, whereas X2 and X3 take any values.)

There are two disadvantages of using the table of the joint probability distribution.
Firstly, we should be able to evaluate all values of a random vector distribution. This
is very difficult and sometimes impossible in practice. Secondly, it is inefficient, since
in practical applications we have hundreds of variables and each variable can take
thousands of values. Thus, the number of cells of the table of the joint probability

11Let us assume that a random vector (X1, X2) is given, where X1 takes values a1, . . . , am1 and
X2 takes values b1, . . . , bm2. If we are interested only in the distribution of one variable and the
other variable can take any values, then we talk about the marginal distribution of the first variable.
Then, for example the marginal distribution of the variable X1 is determined in the following way:
P(X1 = ai ) = P(X1 = ai , X2 = b1) + · · · + P(X1 = ai , X2 = bm2), i = 1, . . . ,m1.
The marginal distribution for the second variable X2 is determined in an analogous way. For an n-
dimensional random vector we can determine the marginal distribution for any subset of variables,
assuming that the remaining variables take any values.
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distribution can be huge. For example, if there are n variables and each variable can
take k values on average, then the number of cells is kn . Now, we can come back
to the Bayesian model, which inspired Pearl [222] to define a method which allows
probabilistic reasoning without using the joint probability distribution.

The Pearl method is based on a graph representation called a Bayes network.
A Bayes network is a directed acyclic graph.12 Nodes of the graph correspond to
random variables, which describe a problem domain. Edges of the graph represent a
direct dependency between variables. If an edge goes from a node labeled by X1 to
a node labeled by X2, then a direct cause-effect relation holds for the variable X1 (a
direct cause) and the variable X2 (an effect). We say the node labeled by X1 is the
predecessor of the node labeled by X2. Further on, the node labeled by X is equated
with the random variable X .

In a Bayes network, for each node which has predecessors we define a table show-
ing an influence of the predecessors on this node. Let a node Xi have p predecessors,
Xi1, . . . , Xip. Then, the conditional probabilities of all the possible values taken by
the variable Xi depending on all possible values of the variables Xi1, . . . , Xip are
determined by the table. For example, let a node X3 have two predecessors X1 and
X2. Let these variables take values as follows: X1 = a1, . . . , am1, X2 = b1, . . . , bm2,
X3 = c1, . . . , cm3. Then, the table defined for the node X1 is of the following form
(p(i)( j) denotes the corresponding probability):

X1 X2 P(X3|X1, X2)

c1 . . . cm3

a1 b1 p(1)(1) . . . p(1)(m3)
.
.
.

.

.

.
.
.
.

.

.

.
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.

a1 bm2 . . . . . . . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

am1 b1 . . . . . . . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

am1 bm2 p(m1·m2)(1) . . . p(m1·m2)(m3)

Let us notice that the values of all probabilities in any row of the table should add
up to 1.0. If a node X has no predecessors, then we define the table of the distribution
of the random variable X as we have done for the example table shown in Fig. 12.1a.

We consider an example of a Bayes network for logical variables.13 Let us notice
that if variables X1, X2 in the table above are logical, then there are only four
combinations of (logic) values, i.e., 1-1 (i.e.True-True), 1-0, 0-1, 0-0.14 If the variable
X3 is also a logical variable, we can write its value only if it is True, because we can

12That is, there are no directed cycles in the graph.
13In order to simplify our considerations, without loss of generality of principles.
14In our examples they are denoted T-T, T-F, F-T, F-F, respectively.
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F P(E|F)
T 0.98
F 0.04

U L P(F|U,L)
T T 0.99
T F 0.12
F T 0.95
F F 0.001

P(L)
0.001

P(U)
0.005

F P(S|F)
T 0.96
F 0.12

Leaky gas pipe 
system (L)

Failure signalling 
by local

Sensor (S)

Failure signalling 
by Expert (E)

System

Unstable
gas flow (U)

Failure of gas supply 
subsystem

(F)

Fig. 12.2 An example of a Bayes network

compute the value corresponding to False, taking into account the fact that the two
values should add up to 1.0.

An example of a Bayes network defined for diagnosing a gas supply subsystem is
shown in Fig. 12.2. The two upper nodes of the network represent the logic random
variablesUnstable gas flow and Leaky gas pipe system and they correspond to possi-
ble causes of a failure. Tables of distributions of these variables contain probabilities
of the causes occurring. For example, the probability of a leaky gas pipe system P(L)
equals 0.001. The table for the variable L determines the whole distribution, because
the probability that leaking does not occur P(¬L) is defined in an implicit way as
the complement of P(L).15

Each of the causesU andL can result inFailure of gas supply subsystem (F), which
is represented by edges of the network. The edges denote the direct dependency of the

15We can compute it as follows: P(¬L) = 1.0 − P(L) = 1.0 − 0.001 = 0.999.
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variableF on variablesU andL. For the nodeFwedefine a tablewhich determines the
conditional probabilities of all possible values taken by the variable F,16 depending
on all value assignments to variables U and L. For example, the probability of the
failure F, if there is an unstable gas flow and the gas pipe system is not leaking
equals 0.12.

Aswecan see, the failureF canbe signalled by a local Sensor (S)or, independently,
by an Expert (E) System. For example, the table for the local Sensor (S) can be
interpreted in the following way:

• the probability that the sensor signals a failure, if the failure occurs, P(S|F), equals
0.96,

• the probability that the sensor signals a failure, if a failure does not occur, (i.e., it
signals improperly), P(S |¬ F), equals 0.12,

• the probability that the sensor does not signal a failure, if a failure occurs,
P(¬S | F), equals 1.0 − 0.96 = 0.04,

• the probability that the sensor does not signal a failure, if a failure does not occur,
P(¬S |¬ F), equals 1.0 − 0.12 = 0.88.

A Bayes network allows us to assign probabilities to propositions defined with
the help of random variables which describe a problem domain according to the
following formula:

P(X1, . . . Xn) = P(Xn|Predecessors(Xn)) · P(Xn−1|Predecessors(Xn−1)) · · · ·
· · · · P(X2|Predecessors(X2)) · P(X1|Predecessors(X1)),

(12.5)

where Predecessors(Xi ) denotes all the nodes of the Bayes network which are
direct predecessors of the node Xi . If the node Xi has no predecessors, then
P(Xk |Predecessors(Xk)) = P(Xk).

Formula (12.5) says that if we want to compute the probability of a proposition
defined with variables X1, . . . , Xn , then we should multiply conditional probabil-
ities representing dependency of Xi , i = 1, . . . , n, only for those variables which
influence Xi directly.

For example, if we want to compute the probability that neither the local sensor
nor the expert system signals the failure in case there is an unstable gas flow and the
gas pipe system is no leaking, i.e.,

U , ¬L , F , ¬S , ¬E ,

then we compute it according to formula (12.5) and the network shown in Fig. 12.2
as follows:

16The variable F is a logical variable. Therefore, it is sufficient to determine the probabilities when
F equals True. Probabilities for the value False are complements of these probabilities.
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P(U,¬L,F,¬S,¬E)

= P(U) · P(¬L) · P(F|U,¬L) · P(¬S|F) · P(¬E|F)
= 0.005 · 0.999 · 0.12 · 0.04 · 0.02 = 0.00000047952.

Finally, let us consider the main idea of constructing a Bayes network that allows
us to use formula (12.5) for simplified probabilistic reasoning without using the joint
probability distribution. Let network nodes be labeled by variables X1, . . . , Xn in
such away that for a given node its predecessors have a lower index. In fact, using for-
mula (12.5), we assume that the event represented by the variable Xi is conditionally
independent17 from earlier events18 which are not its direct predecessors, assuming
the events represented by its direct predecessors19 have occurred. This means that
we should define the structure of the network in accordance with this assumption if
we want to make use of formula (12.5). In other words, if we add a node Xi to the
Bayes network, we should connect it with all the nodes among X1, . . . , Xi−1 which
influence it directly (and only with such nodes). Therefore, Bayes networks should
be defined in strict cooperation with domain (human) experts.

12.2 Dempster-Shafer Theory

Aswehave shown in the previous section, Bayes networks allowAI systems to reason
in a more efficient way than the standard models of probability theory. Apart from
the issue of the efficiency of inference based on imperfect knowledge, the problem of
incompleteness of knowledge makes the construction of a reasoning system difficult.
In such a situation, we do not know all required facts and we suspect that the lack
of complete information influences the quality of the reasoning process. Then, the
problem of expressing lack of knowledge arises, since we should be able to differen-
tiate between uncertainty concerning knowledge possessed and our ignorance (i.e.,
our awareness of the lack of some knowledge). This problem was noticed by Arthur
P. Dempster.20 To solve it he proposed a model based on the concept of lower and
upper probability in the late 1960s [67]. This model was then developed by Glenn
Shafer21 in 1976 [271]. Today the model is known asDempster-Shafer Theory, belief
function theory, or the mathematical theory of evidence.22

17Conditional independence of variables is defined formally by Definition I.10 in Appendix I.
18Earlier in the sense of indexing nodes of the network.
19We have denoted such predecessors by Predecessors(Xi ).
20Arthur Pentland Dempster—a professor of statistics at Harvard University. John W. Tukey (the
Cooley-Tukey algorithm for Fast Fourier Transforms) was an adviser of his Ph.D. thesis. His work
concerns the theory introduced in this section, cluster analysis, and image processing (the EM
algorithm).
21Glenn Shafer—a professor of statistics at Rutgers University. Apart from the development of
DST, he proposed a new approach to probability theory based on game theory (instead of measure
theory).
22In the context of reasoning with incomplete knowledge, evidence means information gained by
an AI system at some moment which is used as a premise of inference.
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A complete specification of the probability model is required in the Bayesian
approach. On the contrary, in Dempster-Shafer Theory a model can be specified in
an incomplete way. The second difference concerns the interpretation of the notion
of probability23 and, in consequence, a different way of computing it in a reason-
ing model. In the Bayesian approach we try to compute the probability that a given
proposition (hypothesis) is true. On the contrary, in DST we try to compute the
probability saying how available information, which creates the premises of our
reasoning, supports our belief about the truthfulness of a given proposition (hypoth-
esis). A “probability” interpreted in such a way is measured with the help of a belief
function, usually denoted Bel.24

For example, let us assume that I have foundTheAssayerbyGalileo in an unknown
antique shop in Rome. I would like to buy it, because I like old books. On the other
hand, I am not an expert. So I do not know whether it is genuine. In other words, I do
not possess any information concerning the book. In such a case we should define a
belief function Bel in the following way according to Dempster-Shafer Theory25:

Bel(genuine) = 0 and Bel(¬genuine) = 0.

Fortunately, I have recalled that my friend Mario, who lives in Rome, is an expert
in old books. Moreover, he has a special device which allows him to perform tests.
So I have phoned him and I have asked him to help me. Mario has arrived. He has
brought two devices. The first one has been made to confirm the authenticity of old
books according to certain criteria. The second one has been made to question the
authenticity of old books according to other criteria. After taking measurements of
the book, he has told me that he believes with a 0.9 degree of certainty that the book
is genuine as indicated by the first device. On the other hand, he believes with 0.01
degree of certainty that the book is fake as indicated by the second device. This time
the belief function Bel should be computed in the following way:

Bel(genuine) = 0.9 and Bel(¬genuine) = 0.01.

So I have bought the book.
According to the Dempster-Shafer approach, the belief function Bel is a lower

probability. The upper probability is called a plausibility function Pl, which for a
proposition S is defined as follows:

Pl(S) = 1 − Bel(¬S).

23We mean an intuitive interpretation of this notion, not in the sense of probability theory.
24Basic definitions of Dempster-Shafer Theory are included in Appendix I.3.
25Let us notice that a probability measure P has the following property: P(¬genuine) = 1
−P(genuine). This property does not hold for a belief function Bel.
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Thus, the plausibility function says how strong the evidence is against the proposition
S.26 Coming back to our example, we can compute the plausibility function for
genuine in the following way:

Pl(genuine) = 1 − Bel(¬genuine) = 1 − 0.01 = 0.99.

Summing up, in Dempster-Shafer Theorywe define two probabilitymeasures Bel
and Pl for a proposition. In other words, an interval [Bel , Pl] is determined for
the proposition. In our example this interval is [0 , 1] for genuine before getting the
advice from Mario and [0.9 , 0.99] after that. The width of the interval [Bel , Pl]
for the proposition represents the degree of completeness/incompleteness of our
information, which can be used in a reasoning process. If we receive more and more
information (evidence) the interval becomes narrow. Rules which allow us to take
into account new evidence for constructing a belief function are defined in Dempster-
Shafer Theory as well [67, 271].

12.3 Non-monotonic Reasoning

Reasoning models based on classical logic are monotonic. This means that after
adding new formulas to a model the set of its consequences is not reduced. Extending
the set of formulas can cause the possibility of inferring additional consequences,
however all consequences that have been inferred previously are sound. In the case
of AI systems which are to be used for reasoning about the real (physical) world,
such a reasoning scheme is not valid, because our beliefs (assumptions) are often
based on uncertain and incomplete knowledge.

For example, I claim “my car has good acceleration”.27 I can use this proposition
in a reasoning process, since I have no information which contradicts it. However, I
have just got a newmessage that my car has been crushed by a bulldozer. This means
that the claim “my car has good acceleration” should be removed from the set of my
beliefs, as well as all propositions which have been previously inferred on the basis
of this claim. Thus, the new proposition has not extended my set of beliefs. It has
reduced this set. As we can see, common-sense logic which is used for reasoning
about the real (physical) world is non-monotonic. Now, we introduce three non-
monotonic models, namely default logic, autoepistemic logic, and circumscription
reasoning.

26The stronger evidences are the less a value of Pl(S) is.
27Let us assume that I have only one car.
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Default logic was defined by Raymond Reiter28 in 1980 [239]. It is a formalism
which is more adequate for reasoning in AI systems than classical logic. Let us notice
that even such seemingly simple and obvious propositions as “Mammals do not fly”,
if expressed in First Order Logic, i.e.,

∀x[is_mammal(x) ⇒ does_not_fly(x)],

is false, because there are some mammals (bats), which fly. Of course, sometimes
defining a list of all the exceptions is impossible in practice. Therefore, in default
logic, apart form standard rules of inference29 default inference rules are defined. In
such rules a consistency requirement is introduced. This is of the form“it is consistent
to assume that P(x) holds”, which is denoted by M P(x). For our example such a
rule can be formulated in the following way:

is_mammal(x) : M does_not_fly(x)

does_not_fly(x)

which can be interpreted as follows: “If x is a mammal and it is consistent to assume
that x does not fly, then x does not fly”. In other words: “If x is a mammal, then x
does not fly in the absence of information to the contrary”.

Reiter introduced a very convenient rule of inference for knowledge bases, called
the Closed-World Assumption, CWA, in 1978 [240]. It says that the information
included in a knowledge base is a complete description of theworld, i.e., if something
is not known to be true, then it is false.

Autoepistemic logic was formulated by Robert C. Moore30 in 1985 [206] as a
result of research which was a continuation of studies into modal non-monotonic
systems led by Drew McDermott31 and Jon Doyle in 1980 [199]. The main idea of
this logic can be expressed as follows. Reasoning about the world can be based on
our introspective knowledge/beliefs. For example, from the fact that I am convinced
that I am not the husband of Wilma Flinstone, I can infer that I am not the husband
of Wilma Flinstone, because I would certainly know that I am the husband of Wilma
Flinstone, if I was the husband of Wilma Flinstone. Autoepistemic logic can be
viewed as a modal logic containing an operator “I am convinced that”. In such logic
sets of beliefs are used instead of sets of facts.

A non-monotonic logic called circumscriptionwas constructed by JohnMcCarthy
in 1980 [196]. We introduce its main idea with the help of our example proposition

28Raymond Reiter—a professor of computer science and logic at the University of Toronto. His
work concerns non-monotonic reasoning, knowledge representation models, logic programming,
and image analysis.
29Standard rules means such rules as the ones introduced in Chap.6.
30Robert C.Moore—a researcher atMicrosoft Research andNASAAmesResearchCenter, Ph.D. in
computer science (MIT). His work concerns NLP, artificial intelligence, automatic theorem proving,
and speech recognition.
31Drew McDermott—a professor of computer science at Yale University. His work concerns AI,
robotics, and pattern recognition.

http://dx.doi.org/10.1007/978-3-319-40022-8_6
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concerning mammals. This time, however, in order to handle the problem defined
above we introduce the predicate is_peculiar_mammal(x). Now, we can express our
proposition in First Order Logic in the following way:

∀x[is_mammal(x) ∧ ¬is_peculiar_mammal(x) ⇒ does_not_fly(x)].

Of course, we may not know whether a specific mammal is peculiar. Therefore,
we minimize the extension of such a predicate as is_peculiar_mammal(x), i.e.,
we minimize its extension only to the set of objects which are known to be pe-
culiar mammals. For example, if Zazu is not in this set, then the following holds:
¬is_peculiar_mammal(Zazu), which means that does_not_fly(Zazu). Let us notice
an analogy to the concept of Closed-World Assumption introduced above.

As we have mentioned at the beginning of this section, sometimes a non-
monotonic-reasoning-based system should remove a certain proposition as well as
propositions inferred on the basis of this proposition after gaining new informa-
tion. One question is: “Should all the propositions inferred on the basis of such a
proposition be removed?” If these propositions can be inferred only from a removed
proposition, then of course they should also be removed. However, the system should
not remove those propositions which can be inferred without using a removed propo-
sition. In order to solve this problem practically Jon Doyle32 introduced Truth Main-
tenance Systems, TMS, in 1979 [73]. Such systems can work according to various
scenarios. The simplest scenario consists of removing all the conclusions inferred
from a removed proposition-premise and repeating the whole inference process for
all conclusions. However, this simple scenario is time-consuming. An improved
version consists of remembering the chronology of entering new information and in-
ferring propositions in the system. Then, after removing some proposition-premise
P, only those conclusions are removed which have been inferred after storing the
proposition-premise P in the knowledge base.

Remembering sequences of justifications for conclusions is an evenmore efficient
method. If any proposition is removed, then all justifications, which can be inferred
only on the basis of this proposition are also removed. If, after such an operation,
a certain proposition cannot be justified, then it is invalidated.33 This scenario is a
basis for Justification-based Truth Maintenance Systems, JTMSs. They were defined
by Doyle in 1979 [73].

32Jon Doyle—a professor of computer science at the Massachusetts Institute of Technology, Stan-
ford University, and Carnegie-Mellon University. His work concerns reasoning methods, philo-
sophical foundations of Artificial Intelligence, and AI applications in economy and psychology.
33Such a proposition does not need to be removed (physically) from the knowledge base. It is
enough to mark that the proposition is invalid (currently). If, for example, the removed justification
is restored, then the system needs only to change its status to valid.
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In 1986 Johan de Kleer34 introduced a new class of truth maintenance systems
called Assumption-based Truth Maintenance Systems, ATMSs [66]. Whereas in sys-
tems based on justifications a consistent image of the world is stored (consisting
of premises and justified propositions), all justifications that have been assumed in
the knowledge base are maintained in an ATMS (maybe some of them currently as
invalid). Thus, the system maintains all assumptions that can be used for inferring a
given proposition. The system can justify a given proposition given a certain set of
assumptions, called a world. Such an approach is especially useful if we want the
system to change its view depending on its set of assumptions.

The issue of maintaining a knowledge base when new data frequently come into
an AI system is closely related to the frame problem formulated by McCarthy and
Patrick J. Hayes35 in 1969 [195]. The issue concerns defining efficient formalisms
for representing elements of a world description which do not change during an
inference process.

Bibliographical Note

The monograph [223] is a good introduction to Bayesian inference and networks. A
description of Dempster-Shafer Theory can be found in the classic book [271]. A
concise introduction to non-monotonic reasoning in AI can be found in [39].

34Johan de Kleer—a director of Systems and Practices Laboratory, Palo Alto Research Center
(PARC). His work concerns knowledge engineering, model-based reasoning, and AI applications
in qualitative physics.
35Patrick John Hayes—a British computer scientist and mathematician, a professor of prestigious
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automated inference, philosophical foundations of AI, and semantic networks.
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