
Chapter 11
Neural Networks

As we have mentioned in the previous chapter, the neural network model (NN)
is sometimes treated as one of the three approaches to pattern recognition (along
with the approach introduced in the previous chapter and syntactic-structural pattern
recognition). In fact, as we will see in this chapter, various models of (artificial)
neural networks are analogous to standard pattern recognition methods, in the sense
of their mathematical formalization.1

Nevertheless, in spite of these analogies, neural network theory is distinguished
from standard pattern recognition because of the former original methodological
foundations (connectionism), the possibility of implementing standard algorithms
with the help of network architectures and a variety of learning techniques.

A lot of different models of neural networks have been developed till now. A
taxonomy of these models is usually troublesome for beginners in the area of neural
networks. Therefore, in this chapter we introduce notions in a hierarchical (“bottom-
up”) step-by-step way. In the first section we introduce a generic model of a neuron
and we consider the criteria used for defining a typology of artificial neurons. Basic
types of neural networks are discussed in Sect. 2. A short survey of the most popular
specific models of neural networks is presented in the last section.

1Anil K. Jain—an eminent researcher in both these areas of Artificial Intelligence pointed out
these analogies in a paper [148] published in 2000. Thus, there are the following analogies: linear
discriminant functions—one-layer perceptron, Principal Component Analysis—auto-associative
NN, non-linear discriminant functions—multilayer perceptron, etc.

© Springer International Publishing Switzerland 2016
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158 11 Neural Networks

11.1 Artificial Neuron

At the end of the nineteenth century Santiago Ramón y Cajal2 discovered that a brain
consists of neural cells, then called neurons. The structure of a neuron is shown in
Fig. 11.1a. A neuron consists of a cell body (called the perikaryon or soma) and cellu-
lar extensions of two types. Extensions called dendrites are thin branching structures.
They are used for the transmission of signals from other neurons to the cell body. An
extension called an axon transmits a signal from the cell body to other neurons.

Communication among neurons is done by transmitting electrical or chemical
signals with the help of synapses. Research led by John Carew-Eccles3 discovered the
mechanism of communication among neurons. Transmission properties of synapses
are controlled by chemicals called neurotransmitters and synaptic signals can be
excitatory or inhibitory.

Fig. 11.1 a The structure of
a neuron, b the scheme of an
artificial neuron
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2Santiago Ramón y Cajal—an eminent histologist and neuroscientist, a professor of universities
in Valenzia, Barcelona, and Madrid. In 1906 he received the Nobel Prize (together with Camillo
Golgi) for research into neural structures.
3John Carew Eccles—a professor of neurophysiology at the University of Otago (New Zealand),
Australian National University, and the University at Buffalo. In 1963 he was awarded the Nobel
Prize for research into synaptic transmission.
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At the same time, Alan Lloyd Hodgkin4 and Andrew Fielding Huxley5 led research
into the process of initiating an action potential, which plays a key role in communi-
cation among neurons. They performed experiments on the huge axon of an Atlantic
squid. The experiments allowed them to discover the mechanism of this process.
At the moment when the total sum6 of excitatory postsynaptic potential reaches a
certain threshold, an action potential occurs in the neuron. The action potential is
then emitted by the neuron (we say that the neuron fires) and it is propagated via its
axon to other neurons. As was later shown by Bernard Katz7 the action potential is
generated according to the all or none principle, i.e., either it occurs fully or it does
not occur at all. In Fig. 11.1a a neuron as described above is marked with a solid line,
whereas axons belonging to two other neurons which send signals to it are marked
with dashed lines.

As we have mentioned already in Sect. 3.1, an (artificial) neural network, NN, is a
(simplified) model of a brain treated as a structure consisting of neurons. The model
of an artificial neuron was developed by Warren S. McCulloch and Walter Pitts in
1943 [198]. It is shown in Fig. 11.1b. We describe its structure and behavior on the
basis of the notions which have been introduced for a biological neuron above. Input
signals X0, X1, . . . , Xn correspond to neural signals sent from other neurons. We
assume (for technical reasons) that X0 = 1. These signals are represented by an
input vector X = (X0, X1, . . . , Xn).

In order to compute the total sum of affecting input signals on the neuron, we
introduce a postsynaptic potential function g. In our considerations we assume
that the function g is in the form of a sum. This means that input signals are
multiplied by synaptic weights W0,W1, . . . ,Wn , which define a weight vector
W = (W0,W1, . . . ,Wn). Synaptic weights play the role of the controller of trans-
mission properties of synapses by analogy to a biological neuron. The weights set
some inputs to be excitatory synapses and some to be inhibitory synapses. The mul-
tiplication of input signals by weights corresponds to the enhancement or weakening
of signals sent to the neuron from other neurons. After the multiplication of input
signals by weights, we sum the products, which gives a signal v:

v = g(W,X) =
n∑

i=0

Wi Xi . (11.1)

4Alan Lloyd Hodgkin—a professor of physiology and biophysics at the University of Cambridge. In
1963 he was awarded the Nobel Prize for research into nerve action potential. He was the President
of the Royal Society.
5Andrew Fielding Huxley—a professor of physiology and biophysics at the University of Cam-
bridge. In 1963 he was awarded the Nobel Prize (together with Alan Lloyd Hodgkin). He was
a grandson of the biologist Thomas H. Huxley, who was called “Darwin’s Bulldog” because he
vigorously supported the theory of evolution during a famous debate with the Bishop of Oxford
Samuel Wilberforce in 1860.
6In the sense that multiple excitatory synapses act on the neuron.
7Bernard Katz—a professor of biophysics at University College London. He was awarded the Nobel
Prize in physiology and medicine in 1970.

http://dx.doi.org/10.1007/978-3-319-40022-8_3
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Fig. 11.2 a The activation function of the McCulloch-Pitts neuron, b the general scheme of neuron
learning

This signal corresponds to the total sum of excitatory postsynaptic potential. Thus,
we have to check whether it has reached the proper threshold which is required for
activating the neuron. We do this with the help of the activation (transfer) function
f , which generates an output signal y for a signal v, i.e.,

y = f (v). (11.2)

McCulloch and Pitts used the Heaviside step function, usually denoted by 1(v) (cf.
Fig. 11.2a), as the activation function. It is defined in the following way:

1(v) =
{

1, if v ≥ 0,

0, if v < 0.
(11.3)
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As we can see the Heaviside step function gives 0 for values of a signal v which are
less than zero, otherwise it gives 1. Thus, the threshold is set to 0. In fact, we can set
any threshold with the help of the synaptic weight W0, since we have assumed that
the signal X0 = 1.

In the generic neuron model the output function out is the third function (in a
sequence of signal processing). It is used in advanced models. In the monograph
we assume that it is the identity function, i.e., out (y) = y. Therefore, we omit it in
further considerations.

The brain is an organ which can learn, so (artificial) neural networks also should
have this property. The general scheme of neuron learning is shown in Fig. 11.2b.
A neuron should learn to react in a proper way to patterns (i.e., feature vectors of
patterns) that are shown to it.8 We begin with a random initialization of the weight
vector W of the neuron. We place the training set at the neuron input. Then, we start
the main cycle of the learning process.

We enter the next vector X of the training set9 via the neuron input. The neuron
computes a value v for this vector according to a formula (11.1) and then it determines
the value y according to the given activation function.

The output signal y is the reaction of the neuron to a pattern which has been
shown. The main idea of the learning process consists of modifying the weights of
the neuron, depending on its reaction to the pattern shown. This is done according
to the chosen learning method.10 Thus, in the last step of the main cycle we modify
the weight vector W of the neuron. Then, we enter the next pattern of the training
set, etc.

After showing all feature vectors of the training set to the neuron, we can decide
whether it has learned to recognize patterns. We claim it has learned to recognize
patterns if its weights are set in such a way that it reacts to patterns in a correct way.
If not, we have to repeat the whole cycle of the learning process, i.e., we have to
place the training set at the neuron input once again and we have to begin showing
vectors once again. In Fig. 11.2b this is marked with dashed arrows.

Methods of neuron learning can be divided into the following two groups:

• supervised learning,
• unsupervised learning.

In supervised learning the training set is of the form:

U = ( (X(1), u(1)), (X(2), u(2)), . . . , (X(M), u(M)) ), (11.4)

where X( j) = (X0( j), X1( j), . . . , Xn( j)), j = 1, . . . ,M , is the j th input vector
and u( j) is the signal which should be generated by the neuron after input of this
vector (according to the opinion of a teacher). We say that the neuron reacts properly

8Showing patterns means entering their feature vectors via the neuron input.
9The first one is the first vector of the training set.
10Basic learning methods are introduced later.
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to the vectors shown, if for each pattern X( j) it generates an output signal y( j)which
is equal to the signal u( j) required by the teacher (accurate within a small error).

In unsupervised learning the training set is of the form:

U = ( X(1),X(2), . . . ,X(M) ). (11.5)

In this case the neuron should modify the weights itself in such a way that it generates
the same output signal for similar patterns and it generates various output signals for
patterns which are different from one another.11

Let us consider supervised learning with the example of the perceptron introduced
by Frank Rosenblatt in 1957 [246]. The bipolar step function is used as the activation
function for the perceptron. It is defined in the following way (cf. Fig. 11.3):

f (v) =
{

1, if v > 0,

−1, if v ≤ 0.
(11.6)

where v is computed according to formula (11.1). Learning, i.e., modifying the
perceptron weights, is performed according to the following principle.
If at the j th step of learning y( j) �= u( j), then new weights (for the ( j + 1)th step)
are computed according to the following formula:

Wi ( j + 1) = Wi ( j) + u( j)Xi ( j), (11.7)

where Xi ( j) is the i th coordinate of the vector shown in the j th step and u( j) is the
output signal required for this vector. Otherwise, i.e., if y( j) = u( j), the weights do
not change, i.e., Wi ( j + 1) = Wi ( j).12

Fig. 11.3 The activation
function of the perceptron

y = f(v)

v

1

-1

11The reader will easily notice analogies to pattern recognition and cluster analysis which have
been introduced in the previous chapter.
12In order to avoid confusing the indices of the training set elements we assume that after starting a
new cycle of learning we re-index these elements, i.e., they take the subsequent indices. Of course,
the first weight vector of the new cycle is computed on the basis of the last weight vector of the
previous one.
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Fig. 11.4 a The connection
of LED display segments to
the perceptron input, b the
display of the character A
and the corresponding
feature vector, c the display
of the character C and the
corresponding feature vector
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Let us assume that we would like to use a perceptron for recognizing characters
which are shown by an LED display as depicted in Fig. 11.4a. The display consists of
seven segments. If a segment is switched on, then it sends a signal to the perceptron
according to the scheme of connections which is shown in Fig. 11.4a. Thus, we can
denote the input vector by X = (X0, X1, X2, X3, X4, X5, X6, X7).

Let us assume that we would like to teach the perceptron to recognize two char-
acters, A and C.13 These characters are represented by the following input signals:
XA = (X0, 1, 1, 1, 1, 1, 0, 1) and XC = (X0, 1, 1, 0, 0, 0, 1, 1)14 (cf. Fig. 11.4b, c).
In the case of the character A the perceptron should generate an output signal u = 1
and in the case of the characterC the perceptron should generate an output signal u =
−1. Let us assume that W(1)= (W0(1),W1(1),W2(1),W3(1),W4(1),W5(1),W6(1),
W7(1)) = (0, 0, 0, 0, 0, 0, 0, 0) is the initial weight vector.15

Let us track the subsequent steps of the learning process.

Step 1. The character A, i.e., the feature vector (1, 1, 1, 1, 1, 1, 0, 1) is shown to the
perceptron. We compute a value v on the basis of this feature vector and
the initial weight vector according to formula (11.1). Since v = 0, we get

13A single perceptron with n inputs can be used for dividing the n-dimensional feature space into
two areas corresponding to two classes.
14Let us remember that X0 = 1 according to our earlier assumption.
15In order to show the idea of perceptron learning in a few steps, we make convenient assumptions,
e.g., that the randomly selected initial weight vector is of such a form.
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an output signal y = f (v) = −1 according to formulas (11.2) and (11.6).
However, the required output signal is u = 1 for the character A. Thus,
we have to modify the weight vector according to formula (11.7). One can
easily check that W(2) = (1, 1, 1, 1, 1, 1, 0, 1) is the new (modified) weight
vector.16

Step 2. The character C, i.e., the feature vector (1, 1, 1, 0, 0, 0, 1, 1) is shown to the
perceptron. We compute a value v on the basis of this feature vector and
the weight vector W(2). Since v = 4, the output signal y = f (v) = 1.
However, the required output signal u = −1 for the character C. Thus, we
have to modify the weight vector. It can easily be checked that W(3) =
(0, 0, 0, 1, 1, 1,−1, 0) is the new (modified) weight vector.17

Step 3. The character A is shown to the perceptron once again. We compute a value
v on the basis of this feature vector and the weight vector W(3). Since v = 3,
the output signal y = f (v) = 1 which is in accordance with the required
signal u = 1. Thus, we do not modify the weight vector, i.e., W(4) = W(3).

Step 4. The characterC is shown to the perceptron once again. We compute a value v
on the basis of this feature vector and the weight vector W(4). Since v = −1,
the output signal y = f (v) = −1 which is in accordance with the required
signal u = 1. Thus, we do not modify the weight vector, i.e., W(5) = W(4).

Step 5. The learning process is complete, because the perceptron recognizes
(classifies) both characters in the correct way.

Let us notice that the weight vector obtained as a result of the learning process,
W = (W0,W1 = 0,W2 = 0,W3 = 1,W4 = 1,W5 = 1,W6 = −1,W7 = 0),

has an interesting interpretation. The neutral weights W1 = W2 = W7 = 0 mean
that features X1, X2, and X7 are the same in both patterns. The positive weights
W3 = W4 = W5 = 1 enhance features X3, X4, and X5, which occur (are switched
on) in the pattern A and not in the pattern C. On the other hand, the negative weight
W6 = −1 weakens the feature X6, which occurs (is switched on) in the pattern C
and not in the pattern A.
Although the perceptron is one of the earliest neural network models, it is still an
object of advanced research because of its interesting learning properties [25].

After introducing the basic notions concerning construction, behavior, and learn-
ing an artificial neuron, we discuss differences among various types of artificial
neurons. A typology of artificial neuron models can be defined according to the
following four criteria:

• the structured functional scheme,
• the rule used for learning,
• the kind of the activation function,
• the kind of postsynaptic potential function.

A scheme of a neuron of a certain type which presents its functional compo-
nents (e.g., an adder computing the value of the postsynaptic potential function,

16We add the vector XA to the vector W(1), because u = 1.
17We subtract the vector XC from the vector W(2), because u = −1.
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Fig. 11.5 Structured functional schemes of a a perceptron and b an Adaline neuron; c the scheme
of Hebb’s rule, d a piecewise linear activation function

a component generating the value of the activation function, etc.) and data/signal
flows among these components is called a structured functional scheme.18 Such a
scheme for a perceptron is shown in Fig. 11.5a. A structured functional scheme for
an Adaline (Adaptive Linear Neuron) introduced by Bernard Widrow19 and Marcian
E. “Ted” Hoff20 in 1960 [313] is shown in Fig. 11.5b. One can easily notice that in
the Adaline scheme the signal v is an input signal of the learning component. (In the
perceptron model the signal y is used for learning.)

18There is no standard notation for structured functional schemes. Various drawing conventions are
used in monographs concerning neural networks.
19Bernard Widrow—a professor of electrical engineering at Stanford University. He invented,
together with T. Hoff, the least mean square filter algorithm (LMS). His work concerns pattern
recognition, adaptive signal processing, and neural networks.
20In 1971 Ted Hoff, together with Stanley Mazor, Masatoshi Shima, and Federico Faggin, designed
the first microprocessor—Intel 4004.
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In the case of these two models of neurons the difference between them is not so
big and concerns only the signal flow in the learning process. However, in the case
of advanced models, e.g., dynamic neural networks [117], the differences between
the schemes can be significant.

Secondly, the neuron models differ from each other regarding the learning rule.
For example, the learning rule for the perceptron introduced above is defined by
formula (11.7), whereas the learning rule for the Adaline neuron is formulated in the
following way:

Wi ( j + 1) = Wi ( j) + η[u( j) − v( j)]Xi ( j), (11.8)

where Xi ( j) is the i th coordinate of the vector shown at the j th step, u( j) is the
output signal required for this vector, v( j) is the signal received according to rule
(11.1), and η is the learning-rate coefficient. (It is a parameter of the method which
is determined experimentally.)

One of the most popular learning rules is based on research led by Donald O.
Hebb,21 which concerned the learning process at a synaptic level. Its results, pub-
lished in 1949 [133] allowed him to formulate a learning principle called Hebb’s
rule. This is based on the following observation [133]:

The general idea is an old one, that any two cells or systems of cells that are repeatedly active
at the same time will tend to become “associated”, so that activity in one facilitates activity
in the other.

This relationship is illustrated by Fig. 11.5c (for artificial neurons). Activity of the
neuron causes generation of an output signal y. The activity can occur at the same
time as activity of a preceding neuron (marked with a dashed line in the figure).
According to the observation of Hebb, in such a case neurons become associated,
i.e., the activity of a preceding neuron causes activity of its successor neuron. Since
the output of the preceding neuron is connected to the Xi input of its successor,
the association of the two neurons is obtained by increasing the weight Wi . This
relationship can be formulated in the form of Hebb’s rule of learning:

Wi ( j + 1) = Wi ( j) + ηy( j)Xi ( j), (11.9)

where η is the learning-rate coefficient. Let us notice that the input signal Xi ( j) is
equated here with activity of the preceding neuron which causes the generation of
its output signal. Of course, both neurons are self-learning, i.e., without the help of
a teacher.

The kind of activation function is the third criterion for defining a taxonomy of
neurons. We have already introduced activation functions for the McCulloch-Pitts
neuron (the Heaviside step function) and the perceptron (the bipolar step function).
Both functions operate in a very radical way, i.e., by a step. If we want a less radical
operation, we define a smooth activation function. For example, the piecewise linear
activation function shown in Fig. 11.5d is of the following smooth form:

21Donald Olding Hebb—a professor of psychology and neuropsychology at McGill University. His
work concerns the influence of neuron functioning on psychological processes such as learning.
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Fig. 11.6 The sigmoidal
activation function

f (v) =

⎧
⎪⎨

⎪⎩

1, if v > 1,

v, if − 1 ≤ v ≤ 1,

−1, if v < −1.

(11.10)

In the case of a sigmoidal neuron we use the sigmoidal activation function, which
is even smoother (cf. Fig. 11.6). It is defined by the following formula (the bipolar
case):

f (v) = tanh(βv) = 1 − eβv

1 + e−βv
. (11.11)

As we can see in Fig. 11.6, the greater the value of the parameter β is, the more
rapidly the output value changes and the function is more and more similar to the
piecewise linear function. In the case of advanced neuron models we use more com-
plex functions such as e.g., radial basis functions or functions based on the Gaussian
distribution (we discuss them in Sect. 11.3).

The kind of postsynaptic potential function is the last criterion introduced in this
section. It is used for computing the total sum of the affecting input signals of the
neuron. In this section we have assumed that it is of the form of a sum, i.e., it is
defined by formula (11.1). In fact, such a form is used in many models of neurons.
However, other forms of postsynaptic potential function can be found in the literature
in the case of advanced models such as Radial Basis Function neural networks, fuzzy
neural networks, etc.

11.2 Basic Structures of Neural Networks

As we have already mentioned, we use (artificial) neurons for building structures
called (artificial) neural networks. A one-layer neural network is the simplest struc-
ture. Its scheme is shown in Fig. 11.7a. Input signals are usually sent to all neurons of
such a structure. In the case of a multi-layer neural network, neurons which belong



168 11 Neural Networks

(c)

(a)

N(2)(2)
W1

(2)(2)

W3
(2)(2)

W2
(2)(2)

N(1)(2)

N(1)(3)

N(1)(1)

N(2)(3)

N(2)(1)

N(2)(2)

N(3)(3)

N(3)(2)

N(3)(1)

X2

X1

X3

y(3)(1)

input
layer
(1)

hidden
layer
(2)

output 
layer
(3)

y(3)(2)

y(3)(3)

N(1)(2)

N(1)(3)

N(1)(1)

X2

X1

X3

y(1)(1)

y(1)(2)

y(1)(3)

(b)

N(3)(1)
W2

(3)(1)

one
layer
(1)

N(1)(1)

N(1)(2)

N(1)(3)

N(3)(2)
W2

(3)(2)

N(3)(3)
W2

(3)(3)

y(2)(2) = X2
(3)(1)

y(2)(2) = X2
(3)(2)

y(2)(2) = X2
(3)(3)

y(1)(1) = X1
(2)(2)

y(1)(2) = X2
(2)(2)

y(1)(3) = X3
(2)(2)

y(2)(2) = f (W1
(2)(2) X1

(2)(2) + W2
(2)(2) X2

(2)(2) + W3
(2)(2) X3

(2)(2)) =    
= f (W1

(2)(2) y(1)(1) + W2
(2)(2) y(1)(2) + W3

(2)(2) y(1)(3))

Fig. 11.7 Examples of feedforward neural networks: a one-layer, b multi-layer (three-layer); c the
scheme for computing an output signal in a multi-layer network

to the r th layer send signals to neurons which belong to the (r + 1)th layer. Neurons
which belong to the same layer cannot communicate (cf. Fig. 11.7b). The first layer
is called the input layer, the last layer is called the output layer, and intermediate
layers are called hidden layers. Networks (one-layer, multi-layer) in which signals
flow in only one direction are called feedforward neural networks. Let us assume
the following notations (cf. Fig. 11.7b, c). N (r)(k) denotes the kth neuron of the r th
layer, y(r)(k) denotes its output signal. Input signals to the neuron N (r)(k) are denoted
by X (r)(k)

i , where i = 1, . . . , n, n is the number of inputs to this neuron,22 and its
weights are denoted by W (r)(k)

i . Let us notice also (cf. Fig. 11.7b, c) that the following
holds:

y(r−1)(k) = X (r)(p)
k (11.12)

22In our considerations we omit the input X (r)(k)
0 , because it equals 1 and we omit the weight W (r)(k)

0 ,
because it can be (as a constant) taken into account by modifying an activation threshold.



11.2 Basic Structures of Neural Networks 169

for any pth neuron of the r th layer. In other words, for any neuron which belongs
to the r th layer its kth input is connected with the output of the kth neuron of the
preceding layer, i.e., of the (r − 1)th layer.23

An example of computing the output signal for a neuron of a feedforward network
is shown in Fig. 11.7c. As we can see, for a neuron N (2)(2) the output signal is
computed according to formulas (11.1) and (11.2), i.e., y(2)(2) = f (W (2)(2)

1 X (2)(2)
1 +

W (2)(2)
2 X (2)(2)

2 +W (2)(2)
3 X (2)(2)

3 ). In the general case, we use the following formula for
computing the output signal for a neuron N (r)(k) taking into account the relationship
(11.12):

y(r)(k) = f (
∑

i

W (r)(k)
i X (r)(k)

i ) = f (
∑

i

W (r)(k)
i y(r−1)(i)). (11.13)

The backpropagation method was published by David E. Rumelhart, Geoffrey E.
Hinton and co-workers in 1986 [252]. It is the basic learning technique of feedfor-
ward networks. At the first step output signals for neurons of the output layer L are
computed by subsequent applications of formula (11.3) for neurons which belong
to successive layers of the network. At the second step we compute errors δ(L)(k) for
every kth neuron of the Lth (output) layer according to the following formula (cf.
Fig. 11.8a):

δ(L)(k) = (u(k) − y(L)(k))
d f (v(L)(k))

dv(L)(k)
, (11.14)

where u(k) is the correct (required) output signal for the kth neuron of the Lth layer
and f is the activation function.

Then, errors of neurons of the given layer are propagated backwards to neurons
of a preceding layer according to the following formula (cf. Fig. 11.8b):

δ(r)(k) =
∑

m

(δ(r+1)(m)W (r+1)(m)
k )

d f (v(r)(k))

dv(r)(k)
, (11.15)

where m goes through the set of neurons of the (r + 1)th layer. In the last step we
compute new weights W

′(r)(k)
i for each neuron N (r)(k) on the basis of the computed

errors in the following way (cf. Fig. 11.8c):

W
′(r)(k)
i = W (r)(k)

i + ηδ(r)(i)X (r)(k)
i = W (r)(k)

i + ηδ(r)(i)y(r−1)(i), (11.16)

where η is the learning-rate coefficient. A mathematical model of learning with the
help of the backpropagation method and the derivation of formulas (11.14)–(11.16)
are contained in Appendix H.

Fundamental problems of neural network learning include determining a stopping
condition for a learning process, how to compute the error of learning, determining

23Thus, we could omit an index of the neuron in the case of input signals, retaining only the index
of the layer, i.e., we could write X (r)

i instead of X (r)(k)
i .
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Fig. 11.8 Backpropagation
learning: a computing the
error for a neuron of the
output layer, b error
propagation, c computing a
weight (b)
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initial weights, and speeding up the learning process. We do not discuss these issues
in the monograph, because of its introductory nature. The reader is referred to mono-
graphs included in the bibliographical note at the end of this chapter.

A neural network can be designed in such a way that it contains connections
from some layers to preceding layers. In such a case input signals can be propagated
from later processing phases to earlier phases. Such networks are called recurrent
neural networks, from Latin recurrere–running back. They have great computing
power that is equal to the computing power of a Turing machine [156]. The first
recurrent neural network was introduced by John Hopfield in 1982 [140]. Neurons
of a Hopfield network are connected as shown in Fig. 11.9 (for the case of three
neurons).24 Input signals are directed multiply to the input of the network and signals

24We usually assume, following the first paper of Hopfield [140], that neuron connections are
symmetrical, i.e., W (1)(k)

i = W (1)(i)
k . However, in generalized models of Hopfield networks this

property is not assumed.
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Fig. 11.9 A recurrent
Hopfield network
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recur for some time until the system stabilizes. Hopfield networks are also used as
associative memory networks, which are introduced in the next section.

In general, recurrent networks can be multi-layer networks. In 1986 Michael I.
Jordan25 proposed a model, then called the Jordan network [151]. In this network,
apart from an input layer, a hidden layer and an output layer, an additional state layer
occurs. Inputs of neurons of the state layer are connected to outputs of neurons of
the output layer and outputs of neurons of the state layer are connected to inputs of
neurons of the hidden layer. Jordan networks are used for modeling human motor
control.

A similar functional structure occurs in the Elman network defined in the 1990s
by Jeffrey L. Elman26 [84]. The main difference of this model with respect to the
Jordan network consists of connecting inputs of neurons of an additional layer, called
here the context layer, with outputs of neurons of the hidden layer (not the output
layer). However, outputs of neurons of the context layer are connected to inputs of
neurons of the hidden layer, as in the Jordan model. Elman networks are used in
Natural Language Processing (NLP), psychology, and physics.

11.3 Concise Survey of Neural Network Models

This section includes a concise survey of the most popular models of neural networks.
Autoassociative memory networks are used for storing pattern vectors in order

to recognize similar patterns with the help of an association process. They can be

25Michael Irwin Jordan—a professor of computer science and statistics at the University of Califor-
nia, Berkeley and the Massachusetts Institute of Technology. His achievements concern self-learning
systems, Bayesian networks, and statistical models in AI.
26Jeffrey Locke Elman—an eminent psycholinguist, a professor of cognitive science at the Univer-
sity of California, San Diego.
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used for modeling associative storage27 in computer science. Processing incomplete
information is their second important application field. In this case the network sim-
ulates one of the fundamental functionalities of the brain, that is the ability to restore
a complete information on the basis of incomplete or distorted patterns with the
help of an association process.28 The original research into autoassociative memory
networks was led in the early 1970s by Teuveo Kohonen [164]. The most popular
neural networks of this type include the following models29:

• A two-layer, feedforward, with supervised learning Hinton network, which was
introduced by Geoffrey Hinton in 1981 [136].

• A bidirectional associative memory, BAM, network proposed by Stephen Gross-
berg and Michael A. Cohen30 [54].31 The BAM model can be considered to be
a generalization of a (one-layer) Hopfield network for a two-layer recurrent net-
work. Signal flows occur in one direction and then the other in alternate cycles
(bidirectionally) until the system stabilizes.

• Hamming networks were introduced by Richard P. Lippmann32 in 1987 [183].
They can also be considered to be a generalization of Hopfield networks with a
three-layer recurrent structure. Input and output layers are feedforward and the
hidden layer is recurrent. Their processing is based on minimizing the Hamming
distance33 between an input vector and model vectors stored in the network.34

Self-Organizing Maps, SOMs, were introduced by Teuvo Kohonen [165] in 1982.
They are used for cluster analysis, discussed in Sect. 10.7. Kohonen networks gen-
erate a discrete representation called a map of low dimensionality (maps are usually
two- or three-dimensional) on the basis of elements of a learning set.35 The map shows
clusters of vectors belonging to the learning set. In the case of Self-Organizing Maps
we use a specific type of unsupervised learning, which is called competitive learning.

27Associative storage allows a processor to perform high-speed data search.
28For example, if somebody mumbles, we can guess correct words. If we see a building that is
partially obscured by a tree, we can restore a view of the whole building.
29Apart from the Hopfield networks introduced in the previous section.
30Michael A. Cohen—a professor of computer science at Boston University, Ph.D. in psychology.
His work concerns Natural Language Processing, neural networks, and dynamical systems.
31The BAM model was developed significantly by Bart Kosko [170], who has been mentioned in
Chap. 1.
32Richard P. Lippmann—an eminent researcher at the Massachusetts Institute of Technology. His
work concerns speech recognition, signal processing, neural networks, and statistical pattern recog-
nition.
33The Hamming metric is introduced in Appendix G.
34Lippmann called the model the Hamming network in honor of Richard Wesley Hamming, an
eminent mathematician whose works influenced the development of computer science. Professor
Hamming programmed the earliest computers in the Manhattan Project (the production of the first
atomic bomb) in 1945. Then, he collaborated with Claude E. Shannon at the Bell Telephone Labo-
ratories. Professor Hamming has been a founder and a president of the Association for Computing
Machinery.
35This set can be defined formally by (11.15).

http://dx.doi.org/10.1007/978-3-319-40022-8_10
http://dx.doi.org/10.1007/978-3-319-40022-8_1
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Output neurons compete in order to be activated during the process of showing pat-
terns. Only the best neuron, called the winner, is activated. The winner is the neuron
for which the distance between its weight vector and the shown vector is minimal.
Then, in the case of competitive learning based on a WTA (Winner Takes All) strategy
only the weights of the winner are modified. In the case of a WTM (Winner Takes
Most) strategy weights are modified not only for the winner, but also for its neighbors
(“the winner takes most [of a prize], but not all”).

ART (Adaptive Resonance Theory) neural networks are used for solving problems
of pattern recognition. They were introduced by Stephen Grossberg and Gail Car-
penter [42] for solving one of the most crucial problems of neural network learning,
namely to increase the number of elements of a learning set. In case we increase
the number of elements of the learning set,36 the learning process has to start from
the very beginning, i.e., including patterns which have already been shown to the
network. Otherwise, the network could forget about them. Learning, which corre-
sponds to cluster analysis introduced in Sect. 10.7, is performed in ART networks
in the following way. If a new pattern is similar to patterns belonging to a certain
class, then it is added to this class. However, if it is not similar to any class, then it
is not added to the nearest class, but a new class is created for this pattern. Such a
strategy allows the network to preserve characteristics of the classes defined so far.
For the learning process a vigilance parameter is defined, which allows us to control
the creation of new classes. With the help of this parameter, we can divide a learning
set into a variety of classes which do not differ from each other significantly or we
can divide it into a few generalized classes.

Probabilistic neural networks defined by Donald F. Specht in 1990 [283] recog-
nize patterns on the basis of probability density functions of classes in an analogous
way to statistical pattern recognition introduced in Sect. 10.5.

Boltzmann machines37 can be viewed as a precursor of probabilistic neural net-
works. They were defined by Geoffrey E. Hinton and Terrence J. Sejnowski38 in
1986 [137].

Radial Basis Function, RBF, neural networks are a very interesting model. In this
model activation functions in the form of radial basis functions39 are defined for each
neuron separately, instead of using one global activation function. If we use a standard
neural network with one activation function (the step function, the sigmoidal function,
etc.), then we divide the feature space into subspaces (corresponding to classes) in
a global way with the help of all the neurons which take part in the process. This is
consistent with the idea of a distributed connectionist network model introduced in

36Of course, this is recommended, since the network becomes “more experienced”.
37Named after a way of defining a probability according to the Boltzmann distribution, similarly to
the simulated annealing method introduced in Chap. 4.
38Terrence “Terry” Joseph Sejnowski—a professor of biology and computer science and director of
the Institute of Neural Computation at the University of California, San Diego (earlier at California
Institute of Technology and John Hopkins University). John Hopfield was an adviser of his Ph.D.
in physics. His work concerns computational neuroscience.
39The value of a radial basis function depends only on the distance from a certain point called the
center. For example, the Gaussian function can be used as a radial basis function.

http://dx.doi.org/10.1007/978-3-319-40022-8_10
http://dx.doi.org/10.1007/978-3-319-40022-8_10
http://dx.doi.org/10.1007/978-3-319-40022-8_4
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Sect. 3.1. Meanwhile, the behavior of the basis function changes around the center
radially. It allows a neuron to “isolate” (determine) a subarea of the feature space in
a local way. Therefore, RBF networks are sometimes called local networks, which
is a reference to the local connectionist network model introduced in Sect. 3.1.

Bibliographical Note

There are a lot of monographs on neural networks. Books [27, 50, 87, 129, 257, 324]
are good introductions to this area of Artificial Intelligence.

http://dx.doi.org/10.1007/978-3-319-40022-8_3
http://dx.doi.org/10.1007/978-3-319-40022-8_3
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