
Chapter 10
Pattern Recognition and Cluster Analysis

Let us begin with a terminological remark, which concerns the notion of a pattern.
In pattern recognition and cluster analysis various objects, phenomena, processes,
structures, etc. can be considered as patterns. The notion is not limited to images,
which can be perceived by our sight. There are three basic approaches in the area
of pattern recognition. In the approach based on a feature space a pattern is repre-
sented by a feature vector. If patterns are of a structural nature, then syntactic pattern
recognition (introduced in Chap.8) or the structural approach1 is used. In the third
approach (artificial) neural networks are applied. (This approach is introduced in the
next chapter.)

In general, pattern recognition consists of classifying an unknown pattern into one
of several predefined categories, called classes.2 Cluster analysis can be considered
a complementary problem to pattern recognition. Grouping a set of patterns into
classes (categories) is its main task.3

The task of pattern recognition and its basic notions are formulated in the first
section. The next five sections concern various methods of pattern recognition. Clus-
ter analysis is introduced in the last section.

1In structural pattern recognition patterns are represented by structural representations, similarly to
syntactic pattern recognition. However, their recognition is done with the help of pattern matching
methods, not, as in the syntactic approach, by applying formal grammars and automata.
2For example, patients can be considered as patterns and then pattern recognition can consist of
classifying them into one of several disease entities.
3For example in the area of Business Intelligence we can try to group customers on the basis of
their features such as the date of their last purchase, the total value of their purchases for the last
two months, etc. into categories which determine a sales strategy (e.g., cross-selling, additional free
services/products).
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10.1 Problem of Pattern Recognition

The problem of pattern recognition can be described formally in the following way.
Let us assume that there are C categories (classes):

ω1, ω2, . . . , ωC , (10.1)

into which patterns can be classified. Let us assume also that each pattern is
represented by an n-dimensional feature vector X = (X1, X2, . . . , Xn), where
Xi , i = 1, . . . , n is called the i th component4 of the vector X.

In order to perform a pattern recognition task we should have a learning (training)
set, which is defined in the following way:

U = ( (X1, u1), (X2, u2), . . . , (XM , uM) ), (10.2)

where X j = (X j
1 , X

j
2 , . . . , X

j
n), j = 1, . . . , M , is the j th vector of the learning set

and u j = ωk, k ∈ {1, . . . ,C}, is the correct classification of the pattern represented
by the vector X j . (This means that the pattern represented by the vector X j belongs
to the class ωk .)

In this chapter we focus on the phase of classification, assuming that the repre-
sentation of patterns in the form of a learning set has been defined in a correct way.
However, before we introduce classification methods in the following sections, we
consider a few issues which concern defining a correct representation of patterns. In
a pattern recognition system, the following three phases precede classification:

• preprocessing,
• feature extraction,
• feature selection.

During preprocessing the following operations are performed: noise removal,
smoothing, and normalization. Noise removal is usually done with the help of signal
filtering methods.5 Normalization consists of scaling pattern features so that they
belong to comparable ranges.

For the classification phasewe require the number of pattern features to be as small
as possible, i.e., the dimensionality of feature vectors should be as small as possible.
If the dimensionality is big, then it results in a high cost of feature measuring, a
(time) inefficiency of classification algorithms, and, interestingly, often more errors
in the classification phase.6 Reduction of this dimensionality is the main task of

4A component represents some feature of the pattern.
5If patterns are images, then noise filtering, smoothing/sharpening, enhancement, and restoration
are typical preprocessing operations. Then, features such as edges, characteristic points, etc. are
identified. Finally, image segmentation and object identification are performed.
6This interesting phenomenon is discussed, e.g., in [235].
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Fig. 10.1 a An example of a feature space containing elements of a learning set, and examples of
methods: b minimum distance classification, c nearest neighbor (NN), d k-NN

the feature extraction phase. The reduction is done by combining and transforming
original features into new ones.7

Feature selection is the next phase. It consists of selecting those features which
have the biggest discriminative power. In other words, we identify those features that
lead to the smallest error during the classification phase.8

A space containing vectors representing patterns such that their components have
been extracted and selected during the phases described above is called a feature
space. An example feature space is shown in Fig. 10.1a. It is a two-dimensional
space, i.e., patterns belonging to it are represented by two features: X1 and X2. There
are patterns belonging to a class ω1, marked with circles, in the space. As we can
see, these patterns are concentrated, i.e., they are close each to other. We say they
create a cluster. Similarly, patterns belonging to a class ω2, marked with rectangles,

7The most popular feature extraction methods include Principal Component Analysis (PCA), Inde-
pendent Component Analysis, and Linear Discriminant Analysis. The issues related to feature
extraction methods are out of the scope of Artificial Intelligence. Therefore, they are not discussed
in the book. The reader can find a good introduction to this area in monographs cited at the end of
this chapter.
8This can be done, for example, with the help of the search methods introduced in Chap.4.
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create a second cluster in the feature space. Let us assume that we want to construct
a pattern recognition system which distinguishes between sprats and eels. Thus,
there are two classes: ω1 = sprats, ω2 = eels. Then, let us assume that the system
classifies fishes on the basis of two features: X1 = length of fish, X2 = weight of
fish. Of course, a learning set should be available, i.e., we should have a set of fishes
of both species. We should measure the length of the fishes and we should weigh
them. Then, we can place patterns of fishes in the feature space. In Fig. 10.1a sprats
(marked with circles) are shorter (the feature X1) and lighter (the feature X2) than
eels. In successive sections we discuss various classification methods, assuming a
learning set is placed in a feature space.

10.2 Minimum Distance Classifier

The construction of a minimum distance classifier is based on a human mechanism
of recognizing objects, phenomena, etc. If we are to assign an unknown object to one
of a few categories, we usually assign it to a category containing an object, which is
similar to the unknown one. Let us assume that for a set of classes ω1, ω2, . . . , ωC

there exists a set of reference (template) patterns/vectors9:

R1, R2, . . . , RC . (10.3)

In case clusters corresponding to these classes are regular, we can assume that a
vector computed as the mean (median, mode) vector of the cluster is the reference
pattern (cf. Fig. 10.1b).10

Now,we can begin classification. If an unknown patternX appears, thenwe should
measure its features and place the corresponding feature vector in the feature space
(cf. Fig. 10.1b—an unknown pattern is marked by a triangle with a question mark).
Then, a minimum distance classifier computes the distances between the unknown
pattern and the reference patterns, i.e.,

ρ(X, R1), ρ(X, R2), . . . , ρ(X, RC ), (10.4)

where ρ(X, R j ), j ∈ {1, 2, . . . ,C}, is the distance between the pattern X and the
reference pattern R j . Finally, the classifier assigns the pattern X to the class ωL

containing the reference pattern RL which is the nearest to the pattern X, i.e.,

ρ(X, RL) = min{ρ(X, R1), ρ(X, R2), . . . , ρ(X, RC )}, (10.5)

where the function min selects the smallest element from a set.

9Later we equate a pattern with its representation in the form of a feature vector.
10In our “fish example” a reference pattern corresponds to a fish of the mean length and the mean
weight in a given class.
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According to rule (10.5), a classifier assigns the unknown pattern to class ω1 in
Fig. 10.1b, because the distance between this pattern and the reference pattern R1 is
smaller than the distance between this pattern and the reference pattern R2, which
represents the second class.11 (Distances are marked with a dashed line.)

If we use a minimum distance classifier, or other methods which compute dis-
tances, then the choice of an adequate metric is a crucial issue. For various problems
the way of computing a distance influences the accuracy of the method. This issue
is discussed in Appendix G.2.

10.3 Nearest Neighbor Method

Sometimes determining reference patterns which represent clusters in an adequate
way is troublesome. It is very difficult if clusters are not regular, for example if they
aredispersed and scattered in somedirections. In such a casewe can apply theNearest
Neighbor, NN, method. The main idea of the method was introduced by Evelyn Fix12

and Joseph L. Hodges, Jr13 in 1951 [91], then it was characterized by Thomas M.
Cover14 and Peter E. Hart15 in 1967 [60]. In this method we compute the distances
between an unknown patternX and all the vectors of a learning setU . Then, we select
the class containing the pattern, which is the nearest to the pattern X. In the example
shown in Fig. 10.1c we assign the unknown pattern X to the class ω1, because this
class contains the nearest neighbor of X. (In Fig. 10.1c the distance between X and
the nearest pattern belonging to the class ω2 is also marked.) The NN method has
an intuitive interpretation. If we meet an unknown object (event, phenomenon) and
we want to classify it, then we can look for a resemblance to a similar object (event,
phenomenon) and assign the unknown object to a class including this similar object.

The NN rule can be defined formally in the following way. Let Uk denotes the
subset of the learning set including only those patterns that belong to the class ωk ,
i.e.,

Uk = {X j : (X j , u j ) ∈ U and u j = ωk}. (10.6)

11In our fish example this means that an unknown fish corresponding to an unknown pattern in
Fig. 10.1b is classified as a sprat (ω1), because it resembles the “reference sprat” R1 more than the
“reference eel” R2. (That is, it is nearer to the “reference sprat” in the feature space.).
12Evelyn Fix—a professor of statistics of the University of California, Berkeley, a Ph.D. student and
then a principal collaborator of the eminent Polish-American mathematician and statistician Jerzy
Spława-Neyman, who introduced the notion of a confidence interval (also, the Neyman-Pearson
lemma).
13Joseph Lawson Hodges, Jr—an eminent statistician (Hodges-Lahmann estimator, Hodges’ esti-
mator) at the University of California, Berkeley, a Ph.D. student of Jerzy Spława-Neyman.
14Thomas M. Cover—a professor at Stanford University, an author of excellent papers concerning
models based on statistics and information theory.
15Peter E. Hart—a professor of the Stanford University, a computer scientists (a co-author of a
heuristic search method A∗ and the model based on the Hough transform).
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Then, X is assigned to the class ωL , if

ρ(X, Xr ) = min
j=1,...,M

{ρ(X, X j )} and Xr ∈ UL . (10.7)

In practice a learning set can contain patterns characterized by values of features
which have been measured in an erroneous way. Then, the NN method could give
an invalid classification if a pattern with erroneous values of features is the nearest
neighbor. In order to eliminate such an effect, we apply the k-Nearest Neighbor, k-
NN, method. In this method we identify not one nearest neighbor, but the k nearest
neighbors. (k is a small odd number.) Then, we check which class possesses the
biggest number of representatives in the group of the nearest neighbors. An unknown
pattern is assigned to this class. Let us consider the example shown in Fig. 10.1d.
Two patterns belonging to the class ω2 are placed near the class ω1. (Their features
have likely been measured in an erroneous way.) If we apply the NN method, then
we assign the unknown pattern to the class ω2 incorrectly. However, if we use the
5-NNmethod, i.e., k = 5, then in the group of the five nearest neighbors three of them
belong to the class ω1, and the unknown pattern is assigned to this class correctly.

10.4 Decision-Boundary-Based Classifiers

Insteadof using referencepatterns or elements of a learning set,we can try to construct
boundaries which divide the feature space into subspaces corresponding to classes.
Such an idea was originally introduced by Ronald A. Fisher in 1936 [90]. It is used
for defining decision-boundary-based classifiers.

Let us begin by considering the case of two classes in a feature space which can be
separated in a linear way, i.e. they can be separated by a boundary which is defined
with the help of a linear function called a linear discriminant function. Let clusters
containing elements of a learning set and representing classesω1 and ω2 be placed in
a feature space as shown in Fig. 10.2a. These clusters can be separated by a boundary.
The points X = (X1, X2) belonging to the boundary fulfill the following equation:

d(X) = 2X1 − X2 − 4 = 0. (10.8)

Let us notice that all patterns of the learning set X which belong to the class ω1 fulfill
the following condition:

d(X) > 0, (10.9)

and all patterns of the learning set X which belong to the classω2 fulfill the following
condition:

d(X) < 0. (10.10)
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Fig. 10.2 a An example of a decision boundary which separates two classes, b a separation of three
classes by three decision boundaries, c possible boundaries between two classes, d an example of
the Support Vector Machine method

The function d is used for classifying unknown patterns. For example, the unknown
pattern marked with a triangle in Fig. 10.2a, which has coordinates X1 = 8, X2 = 6
is assigned to the class ω1, because the value of the function d for this pattern is
greater than zero, according to formula (10.8).

In the general case of an n-dimensional feature space, a linear discriminant func-
tion is of the following form:

d(X) =
n∑

i=1

Wi Xi + W0, (10.11)

whereW = (W1, . . . ,Wn) is called theweight vector andW0 is the threshold weight.
This function corresponds to a boundary which is a hyperplane.

If there are more than two classes, then we can partition the feature space with
the help of many boundaries in such a way that classes are separated pairwise. An
example of such a dichotomous approach is shown in Fig. 10.2b. The class ω1 is
separated from the class ω2 with the help of the discriminant function d12, the class
ω1 is separated from the class ω3 with the help of the discriminant function d13, and
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the class ω2 is separated from the class ω3 with the help of the discriminant function
d23.

In the case of the linear discriminant function method we can define a lot of
boundaries which separate clusters. Let us look at Fig. 10.2c, in which three bound-
aries separating clusters which represent classes ω1 and ω2 are defined. Although
all boundaries are correct, the two boundaries marked by dashed lines seem to be
worse than the third boundary. Our observation is accurate, because in the cases of
the boundaries marked by dashed lines a small shift of some cluster points makes it
necessary to modify these boundaries. However, the boundary marked with a solid
line runs sufficiently far from both clusters. This means that it is less sensitive to
some shifts of patterns in the feature space. This observation inspired Vladimir Vap-
nik16 to define Support Vector Machine, SVM, in 1979 [308]. The main idea of this
method is shown in Fig. 10.2d.

The Support Vector Machine looks for a boundary between two clusters which
is placed in such a way that its distance from both clusters is equal and as big as
possible. (In Fig. 10.2d it is marked with a solid line.) In order to determine such a
boundary, we construct two support hyper-planes, which are parallel one to another
and have the same distance from the boundary. (They are marked by dashed lines in
Fig. 10.2d.) Each hyperplane is supported on the elements of its cluster which are
protruding the most towards another cluster. These elements are marked by circles.
Since these elements are the feature vectors that the hyper-planes are supported on,
they are called support vectors.17

Till now,wehave assumed that clusters in a feature space canbe separated by linear
discriminant functions. If they cannot be separated by linear functions, we have to use
non-linear discriminant functions and define non-linear classifiers. However, con-
structing efficient non-linear classifiers is very difficult. In the 1990s some efficient
non-linear classifiers were defined [35, 92, 259]. An alternative approach consists of
using splines, i.e., piecewise-defined functions of smaller order.

10.5 Statistical Pattern Recognition

In statistical pattern recognition (Bayesian approach), presented by Richard O.
Duda18 and Peter E. Hart in [78], the probability19 of assigning a pattern to a class
is taken into consideration. These methods are based on the Bayesian model.20

16Vladimir Naumovich Vapnik—a professor at the Institute of Control Sciences, Moscow from
1961 to 1990, then at AT&T Bell Labs and NEC Laboratories, Princeton. His work concerns
mainly statistics and Artificial Intelligence (Vapnik–Chervonenkis theory).
17This is why the method is called Support Vector Machines.
18Richard O. Duda—a professor of electrical engineering at San Jose State University. His achieve-
ments concern pattern recognition. He defined the Hough transform. He is a co-author of the
excellent monograph “Pattern Classification and Scene Analysis”.
19The basic notions of probability theory are introduced in Appendices I.1, B.1 and I.2.
20Thomas Bayes—an eminent English mathematician and a Presbyterian minister. The “father” of
statistics.
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Fig. 10.3 a Examples of probability density functions for two classes, b a reconstruction of a
probability density function on a basis of a histogram, c an example of a decision rule for the
Bayesian classifier

In order to simplify our considerations, let us assume that all patterns belong to one
of two classes in a one-dimensional feature space. Let us assume that for classes ω1

and ω2 we know the a priori probabilities P(ω1) and P(ω2). The a priori probability
P(ω1) gives the probability that a pattern belongs to the class ω1 in general.21

Then, let us assume that for this (single) feature X1 characterizing our patterns
we know probability density functions p(X1|ω1) and p(X1|ω2) for both classes. The
probability density function p(X1|ω1) is a function which for a given value of the
variable X1 assigns the probability of its occurrence, assuming that we say about a
pattern which belongs to the class ω1. Let us return to our “fish example”. Now, ω1

means the class of sprats, ω2 means the class of anchovy, and the feature X1 means
the length of a fish. Then, p(9|sprat) = 0.42 means that the probability that a fish
is 9 cm long, assuming that it is a sprat, is equal to 0.42. For example, probability
density functions for two classes are shown in Fig. 10.3a. As we can see, values of

21We may know, for example, that there are four times more patterns belonging to the class ω1 than
patterns belonging to the class ω2 in nature. Then, P(ω1) = 4/5 and P(ω2) = 1/5.
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the feature X1 of patterns belonging to the class ω1 belong to the interval [5, 13].
Values around 9 are the most probable (the probability more than 0.4). Values of
the feature X1 of patterns belonging to the class ω2 belong to the interval [10, 24].
Values around 17 are the most probable.

If we use the Bayesian approach, the question is how to determine the proba-
bility density function for a given class? The simplest technique consists of using
a histogram, which shows the empirical distribution of a feature. This is shown in
Fig. 10.3b.22

If we have defined a priori probabilities for classes ω1 and ω2, and probability
density functions for these classes, we can define a posteriori probabilities P(ω1|X1)

and P(ω2|X1), according to Bayes’ rule:

P(ω j |X1) = p(X1|ω j )P(ω j )
∑2

k=1 p(X1|ωk)P(ωk)
, j = 1, 2. (10.12)

P(ω1|X1) is the probability that an unknown pattern belongs to the classω1, depend-
ing on the value of its feature X1. Thus, for our example P(sprat | 7) = 0.35 is inter-
preted in the followingway. The probability that a fish of length 7 cm is a sprat equals
0.35. Let us notice that we can omit the denominator of formula (10.12), because it
is the same for both classes.

Example graphs of a posteriori probability functions for both classes depending
on the feature X1 are shown in Fig. 10.3c. These graphs cross for the value xB . This
means that for values of the feature X1 greater than xB the probability that a pattern
belongs to the class ω2 is greater than the probability that the pattern belongs to
the class ω1 (and vice versa). As we can see, there are values of X1 for which the
probabilities of belonging to both classes are non-zero. There are also values of X1

for which the probability of belonging to a given class is equal to zero.
We can generalize our considerations to the case of more than two classes. For

classes ω1, ω2, . . . , ωC formula (10.12) is of the following form:

P(ω j |X1) = p(X1|ω j )P(ω j )
∑C

k=1 p(X1|ωk)P(ωk)
, j = 1, 2, . . . ,C. (10.13)

Now, we can formulate a rule for recognizing an unknown pattern characterized
by one feature X = (X1) with the help of the Bayes classifier. The classifier assigns
the pattern to that class for which the a posteriori probability is the biggest. Thus, X
is assigned to the class ωL , if

P(ωL |X1) > P(ω j |X1) for each j ∈ {1, 2, . . . ,C} , j �= L . (10.14)

22The height of the bar for an interval [a, b] should be h = p/w, where p is the number of elements
of the learning set which belong to the given class and are in the interval [a, b], andw is the number
of all elements of the learning set which belong to the given class.
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In case wewould like to recognize patterns in an n-dimensional feature space, i.e.,
X = (X1, X2, . . . , Xn), we can use the so-called naive Bayes classifier. We make
the assumption that all the features are independent. Then, the probability density
function for an n-dimensional feature vector is defined in the following way:

p(X|ω j ) =
n∏

i=1

p(Xi |ωi ). (10.15)

We can generalize the Bayes classifier even more. We can assume that erroneous
decisions concerning the recognition of an unknown pattern can have various costs,
i.e., they have various consequences. Then, we introduce a function of the cost (of
errors). This function and the a posteriori probability are the basis for defining the
risk function for the classifier. In this approach we try to minimize the risk function.

10.6 Decision Tree Classifier

The pattern recognition methods introduced in the previous sections belong to a one-
stage approach, in which we make the classification decision taking into account all
classes and all features in one step. However, the classification process can be decom-
posed into a sequence of steps. In subsequent stepswe can analyze successive features
with respect to various subsets of classes. Such an approach is called a multistage
(sequential) approach. The decision tree classifier introduced by J. Ross Quinlan23

in 1979 [233] is one of the most popular methods belonging to this approach. Let us
introduce it with the help of the following example.

Let us assume that we construct a classifier recognizing the creditworthiness of a
customer in a bank. We take into account two features of a customer: X1 = Income
(yearly) and X2 = Debt (of the customer to the bank). We assume two classes: ω1 =
creditworthy customers andω2 = non-creditworthy customers. Grouping of elements
of the learning set into two clusters is shown in Fig. 10.4. After analyzing these
clusters, i.e., analyzing the behavior of customers belonging to the corresponding
classes, we decide to divide the feature space with the help of a boundary which
separates customers with a yearly income more than 50,000e from those who have
a lower income. Defining this boundary corresponds to constructing the part of the
decision tree shown in Fig. 10.4a. The condition “Income > 50,000” which defines
the threshold is written into a node of the tree. If the condition is fulfilled, then
an unknown pattern belongs to the class ω1 (marked with a circle in the decision
tree and in the feature space). Further analysis allows us to divide the feature space
according to the feature Debt and to set a threshold of 100,000e. Customers whose
debt is greater than this threshold belong to the class ω2 (marked with a rectangle

23John Ross Quinlan—an Australian computer scientist, a researcher at the University of Sydney
and the RAND Corporation. His research concerns machine learning, decision theory, and data
exploration.
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Fig. 10.4 Successive steps constructing a decision tree and partitioning a feature space

in the decision trees and in the feature space). Such a division of the feature space
corresponds to developing the decision tree as shown in Fig. 10.4b. Finally, in order
to separate customers of the two classes in the lower left subspace we should set a
threshold equal to 25,000e for the feature Income. As we can see in Fig. 10.4c this
threshold separates creditworthy customers from the non-creditworthy ones in this
subspace. We obtain the decision tree shown in Fig. 10.4c as a result.

Summing up, a classifier based on a decision tree divides a feature space with the
help of boundaries which are parallel to the axes of the coordinate system that define
the feature space. These boundaries are constructed by the sequential identification
of thresholds for specific features.
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10.7 Cluster Analysis

When we have formulated a pattern recognition task in previous sections, we have
assumed that we have a learning set, which consists of patternswith their assignments
to proper classes. We have introduced various classifiers, which assign an unknown
pattern to a proper class. Cluster analysis is a problem which can be considered
complementary to pattern recognition. We assume here that we have a set of sample
patterns, however we do not know their classification. A cluster analysis task consists
of grouping these patterns into clusters, which represent classes. Grouping should
be done in such a way that patterns belonging to the same cluster are similar to
one another. At the same time, patterns which belong to distinct clusters should be
different from one another.

Thus, the notion of similarity is crucial in cluster analysis. Since patterns are
placed in a feature space, as in pattern recognition, we use the notion of metric24 also
in this case. We compute distances between patterns of a sample set with the help of
a given metric. If the distance between two patterns is small, then we treat them as
similar (and vice versa).

In general, cluster analysis methods are divided into the following two groups:

• methods based on partitioning, where we assume that we know howmany clusters
should be defined, and

• hierarchical methods, where the number of clusters is not predefined.

K-means clustering is one of the most popular methods based on partitioning.
The idea of the method was introduced by Hugo Steinhaus25 in 1956 [287] and
the algorithm was defined by James B. MacQueen26 in 1967 [190]. Firstly, let us
introduce the notion of the centroid of a cluster. The centroid is the mean of the
positions of all patterns which belong to a given cluster. Let us assume that we want
to group patterns into k clusters. The method can be defined in the following way.

1. Select k initial centroids of clusters. (The selection can bemade by random choice
of k patterns as initial centroids or by random choice of k points in the feature
space.)

2. Assign each pattern of the sample set to a cluster on the basis of the smallest
distance between the pattern and the cluster centroid.

3. For clusters created in Step 2. compute new centroids.
4. Repeat Steps 2. and 3. until clusters are stabilized. (We say that clusters are

stabilized, if pattern assignments do not change in a successive step (or changes

24Various metrics are introduced in Appendix G.2.
25Hugo Steinhaus—a Polish mathematician, a professor of Jan Kazimierz University in Lwów
(now Lviv, Ukraine) and Wrocław University, a Ph.D. student of David Hilbert, a co-founder of the
Lwów School of Mathematics (together with, among others, Stefan Banach and Stanisław Ulam).
His work concerns functional analysis (Banach-Steinhaus theorem), geometry, and mathematical
logic.
26James B. MacQueen—a psychologist, a professor of statistics at the University of California, Los
Angeles. His work concerns statistics, cluster analysis, and Markov processes.
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Fig. 10.5 Successive steps of k-means algorithm

are below a certain threshold) or centroids do not change (or changes are below
a certain threshold).)

Let us consider an example of the k-means algorithm, which is shown in Fig. 10.5.
A placement of patterns in a feature space is shown in Fig. 10.5a. Let us assume that
we would like to group the patterns into two clusters, i.e., k = 2. (Elements of
these clusters are marked either with circles or rectangles.) We assume that we have
selected cluster centroids randomly as shown in Fig. 10.5b. The distance between
the two leftmost patterns and the centroid of the “circle” cluster is smaller than the
distance between these patterns and the centroid of the “rectangle” cluster. Therefore,
they are assigned to this cluster (cf. Fig. 10.5b). The remaining patterns are assigned
to the “rectangle” cluster, because they are closer to its centroid than to the centroid
of the “circle” cluster. (Assignments of patterns to centroids are marked with dashed
lines.) After that we compute new centroids for both clusters. We have marked them
with a black circle (the first cluster) and a black rectangle (the second cluster). As
we can see in Fig. 10.5c, the centroid of the “rectangle” cluster has moved to the
right significantly and the centroid of the “circle” cluster has moved to the left a little
bit. After setting the new centroids we assign patterns to clusters anew, according
to the closest centroid. This time the “circle” cluster absorbs one pattern which was
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a “rectangle” previously. (It was the initial centroid of “rectangles”.) In Fig. 10.5d
we can see the movement of both centroids to the right and the absorption of two
“rectangle” patterns by the “circle” cluster. The final placement of the centroids is
shown in Fig. 10.5e. After this both clusters are stabilized. The effect of the grouping
is shown in Fig. 10.5f.

The idea of hierarchical cluster analysis was defined by Stephen C. Johnson27 in
1967 [150]. In such an approach we do not predefine the number of clusters. Instead
of this, we show how clusters defined till now can be merged into bigger clusters (an
agglomerative approach28) or how they can be decomposed into smaller clusters (a
divisive approach29).

Let us assume that a sample set consists of M patterns. The scheme of an agglom-
erative method can be defined in the following way.

1. Determine M initial clusters, which consist of a single pattern. Compute the
distances between pairs of such clusters as the distances between their patterns.

2. Find the nearest pair of clusters. Merge them into one cluster.
3. Compute distances between this newly created cluster and the remaining clusters.
4. Repeat Steps 2. and 3. until one big cluster containing all M patterns is created.

An agglomerative scheme is shown in Fig. 10.6. (Successive steps are shown from left
to right.) The feature space is one-dimensional (a feature X1). Firstly, we merge the
first two one-element clusters (counting from the top), because they are the nearest
to each other. In the second step we merge the next two one-element clusters. In the
third step wemerge the second two-element cluster with the last one-element cluster,
etc. Let us notice that if clusters contain more than one element, we should define a
method to compute a distance between them. The most popular methods include:

• the single linkagemethod—the distance between two clusters A and B is computed
as the distance between the two nearest elements EA and EB belonging to A and
B, respectively,

• the complete linkage method—the distance between two clusters A and B is com-
puted as the distance between the two farthest elements EA and EB belonging to
A and B, respectively,

• the centroid method—the distance between two clusters A and B is computed as
the distance between their centroids.

Successive steps of a divisive scheme are shown in Fig. 10.6 from right to left.

27Stephen Curtis Johnson—a researcher at Bell Labs and AT&T, then the president of USENIX. A
mathematician and a computer scientist. He has developed cpp—a C language compiler, YACC—a
UNIX generator of parsers, int—a C code analyzer, and a MATLAB compiler.
28In this case we begin with clusters containing single patterns and we can end up with one big
cluster containing all patterns of a sample set.
29In this case we begin with one big cluster containing all patterns of a sample set and we can end
up with clusters containing single patterns.
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Fig. 10.6 Agglomerative methods and divisive methods in hierarchical cluster analysis

Bibliographical Note

Monographs [28, 78, 79, 106, 171, 309] are good introductions to pattern recognition.
Cluster analysis methods are presented in [4, 85, 127].
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