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Chapter 1
Introduction: Phenomena of Autistic Reasoning

List of Abbreviations

CwA child (children) with autism. In most cases we assume high-functioning
verbal individuals, unless specified otherwise

CC control child (children), normal, typically developing children
AwA adult(s) with autism
PwA people (person) with autism (CwA [ AwA)
ASD autistic spectrum disorder
ACS autistic spectrum condition
AC autistic condition
AS Asperger’s syndrome
NL natural language
AI Artificial Intelligence
ML Machine Learning

In this book we evaluate the accounts and models of autistic reasoning and
cognition from the computational standpoint. Autism is a development disorder
characterized by restrictive, stereotyped and repetitive behavior as well as lim-
ited social interaction and communication, and narrow interest (DSM-IV, 1994).
Although autism is being researched intensively, little is known about how people
with autism reason. Most scientists have focused on the intuitive Theory-of-Mind
reasoning (Baron-Cohen 1995), which attributes beliefs and intentions to other
people to understand, predict and control behavior. A small number of studies
including (Leevers and Harris 2000; Scott and Baron-Cohen 1996; Peterson and
Bowler 2000; Stenning and van Lambalgen 2008; Pijnacker et al. 2008) investigated
broader aspects of logical reasoning and so far the finding are not very consistent.

Let us formalize some decision-making problems from the real world and
consider how humans and machines can solve them. Control humans, people with
autism and intelligent machines each have characteristic limitations in solving these
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2 1 Introduction: Phenomena of Autistic Reasoning

problems. One of the key question of this book is how can these limitations be
characterized in terms of specific features of algorithms. That would make the
current science of autism much more formal, more systematic, more concise and
hopefully more efficient in terms of rehabilitation strategies.

Today, computational and psychological studies of autism are very sparse and
disconnected, and in this book we try to describe their results in the unified
framework. We select the studies with experimental results with models that are
computationally plausible in our view. Then we describe a model of autistic
reasoning that is consistent with these studies on one hand and also generalizes
our own experiments with exploration and training of autistic reasoning on the
other hand. The main feature of our model is that it is axiom level – based and
describes the autistic syndrome from the standpoint of axioms that have not been
properly acquired and therefore should be trained. These axioms are backed up by
our computational frameworks for reasoning about mental states and autistic active
learning. We then investigate how these trained axioms improve reasoning as a first
step and the overall behavior of children with autism as a second step.

Recent psychological studies have revealed that autistic children can neither
reason properly about mental states nor understand emotions (Perner 1991; Leslie
1987; Pilowsky et al. 2000). There is a strong need for efficient educational support
for such children with special needs. Autism is a developmental disorder which is
currently defined in terms of its symptoms (Eigsti and Shapiro 2003). The three
main accounts of the psychology of autism can be outlined as follows:

Theory of mind account, which refers to the ability to infer and understand what
oneself and others are thinking (knowing, believing, desiring) in order to plan
one’s own behavior and predict the behavior of others. This ability to reason
about mental attitudes is impaired in patients with autism (Baron-Cohen 2000).
This reasoning disability leads to difficulties with such mental reasoning-based
forms of behavior as pretend play, problems in understanding false beliefs, and
the ability to tell lies.

Weak central coherence account, which refers to the inability of individuals with
autism to process information in context, even having a remarkable ability to
remember details (Frith 1989, 2001). For example, autistic individuals seem to
have more difficulty than controls in recalling sentences or a main plot of a story,
being as good as controls at recalling unconnected word strings (Hermelin and
O’Connor 1967).

Executive dysfunction account, which refers to the inability of autistic individuals to
maintain appropriate problem-solving behavior (Pennington and Ozonoff 1996;
Russell 1997). This is often manifested in the form of behavior that perseveres
inappropriately despite changing goals (Ozonoff 1997).

In this book we mainly focus on formalization and computational implemen-
tation of the first account and develop a tool that assists the learning process of
reasoning about mental attitudes. To do that, we subject the Theory of Mind (ToM)
and its impairment under autism to a formal analysis, propose a formal model of
reasoning about mental attitudes (adequate for such learning), and build a training
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tool in accordance to this model. This tool is based on a simulation of reasoning
about mental states and actions by conflicting software agents. We present the
deployment of the natural language multiagent mental simulator NL_MAMS for
mental and emotional development of autistic children.

In this book we treat the ToM from the perspective of logical artificial intelli-
gence, providing a more systematic way to characterize mental states, mental actions
and how their representation is corrupted under autism. Building the adequate model
of the mental world and emotions is important for teaching the individuals, whose
understanding of mental world is impaired.

In our previous studies we have analyzed each of the above three accounts in
terms of models of underlying reasoning. The theory of mind account has been
a subject of the systematic exploration of the reasoning about mental states by
individuals with mental disorders (Galitsky 2000, 2001). The ToM account has
been extended to reflect the computational experience of “teaching” computers to
reason about mental attitudes: an adequate formalization of the mental world has
been built to represent a number of autism phenomena. These studies addressed
the peculiarities of autistic reasoning about knowledge, beliefs, intentions, and
about other mental states and actions. Involving the formalisms of logical artificial
intelligence, and the BDI (Belief-Desire-Intention) model in particular (Bratman
1987), the system for representation of reasoning about mental states and actions
has been built. Our system is capable of simulating the verbal behavior of autistic
as well as control patients (Galitsky 2002b). We have also analyzed various forms
of autistic reasoning about action, time, space and probabilities, and have found
that their deductive reasoning skills are stronger than their inductive, abductive,
and analogical forms of reasoning (Galitsky and Goldberg 2003). We developed
a set of exercises and built the software implementations focusing on selected
reasoning patterns, teaching autistic trainees to reason properly about mental states
in accordance to the traditions of axiomatic method, since the natural ways of
teaching (by example) usually do not help (Galitsky 2003). Also, it has been
shown that the training of reasoning about beliefs, desires and intentions assists
the emotional development (Galitsky 2001). A series of interactive rehabilitation
software tools have been developed which stimulate various forms of commonsense
reasoning, conversation and decision-making in autistic trainees (Peterson et al.
2004).

The second and third accounts of autism above have been characterized in
terms of default reasoning (Peterson et al. 2004; Galitsky and Peterson 2005),
where typical and atypical situations are treated differently, in contrast to classical
reasoning.

In this book, we propose a new conceptual reasoning model for autism in
which the core deficits, and other related symptoms, emerge as a result of a basic
problem with symbolic reasoning. Our model attempts to provide the developmental
mechanism required to explain why primary deficits related to social orientation
may be the cause for autism and its broader features, and why intensive early
intervention by means of stimulating reasoning about mental attitudes frequently
helps to improve autistic reasoning.
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Beyond the Introduction, the book is organized as follows. We firstly discuss
computational models and generally accepted accounts of autism (Chap. 2) and then
proceed to intuitive Theory of Mind (Chap. 3) and its formalization (Chap. 4). The
reader who prefers to avoid technical details may want to skip Chaps. 4, 5, 6, and 7
and proceed to Chaps. 8 and 9.

In Chap. 5 the mental simulator NL_MAMS is presented, the system that is
capable of automated reasoning within our framework of the mental world. User
interface and implementation of the simulator is followed by evaluation of its
reasoning capabilities and the description of its deployment for the rehabilitation
of reasoning. Chapter 8 presents the NL_MAMS-assisted rehabilitation strategy
and describes its evaluation. Towards the end of the book we analyze educational
value of the proposed rehabilitation strategy and describe a case study. In describing
the theory of mind, we will be relying on the language of logic programming, this
being a convenient way to introduce the mental world both to computers and autistic
children.

1.1 How Computer Scientists Can Help Individuals
with Autism

The main behavioral problem of children with autism (CwA) lays in the area of
reasoning, decision making, control, and cognition as reflected in their behavior
and motion. These are the areas of expertise of engineers, building the reasoning,
search, recommend, recognition and control systems. Today, in the second decade
of the twenty-first century, these specialists and these systems are very common,
and plenty of experience is accumulated on how these systems malfunctions and
how they can be repaired.

At the same time, a high number of models for the malfunction of autistic
reasoning, control and cognition has been proposed by psychologists, neurobiol-
ogists, geneticists and specialists in neural networks, specialists without a hands-on
experience with respective engineering systems. The mystery of autism still has
a long way to be solved, and there is a tremendous amount of inconsistencies
between today accounts and models of autism. Some of these inconsistencies are, in
our opinion, due to computational implausibility of some proposed models. These
models can be realistic in terms of how a correct sensory or reasoning system might
work, according to their authors, but indeed they look faulty to an engineer who
might have tried respective architecture, failed and now knows a reason for it.

In this book we take a number of models of autism and apply a computational
plausibility test to them. We attempt at combining the best of two words: computer
scientists are inspired by psychological experiments on how intelligence works, and
autism specialists learn from the experience of computer scientists and engineers
building systems and solving problems similar to those where children with autism
have deficiencies. Applying the computational plausibility criteria, we reduce the
number of models of autistic dysfunctions and attempt to convert them to a form
acceptable by members of computer science community.
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Traditionally, strict (formalized, mathematical) thinking is considered as an
opposite entity to the emotional (fuzzy, approximate) thinking and behavior.
However, for autistic patients the strict rule-based learning is much easier than the
direct introduction of the various forms of emotional behavior, hence the latter is
achieved via the former. Therefore, we are teaching autistic kids the “mechanic”
forms of mental and especially emotional behavior. Regretfully, the attempts to
directly introduce the emotional interaction with the others in a natural manner
(teaching by examples, imitating) frequently fail.

In this book, we want to characterize autistic reasoning patterns from the
perspective of axiomatic logic, similar to how a behavior of an automatic agent
is expressed. Our interest is how various forms of autistic reasoning are connected
with each other and determine the observable decision-making and behavior. We
will also address the issue of how can our experience with reasoning of automatic
agents, accumulated in artificial intelligence, help with understanding and treatment
of reasoning of autistic individuals.

In the current body of research on autism there is no accurate model for how
the correct reasoning in various reasoning domains should work. There is a lack
of formal interconnection between the reasoning patterns in different domains
(mental, physical, spatial/temporal, probabilistic, etc.). To overcome this, we need
a systematic approach to reasoning that is based on practical experience building
software agents with decision-making capabilities, acting in the above domains.

Frequently, CwA are good at some analytical tasks, including reasoning and
calculations. At the same time, they lack communicative and cognitive skills, and
their orientation in the mental world is limited. Such children are the primary
target of the methodology developed in this book, they can learn axioms directly
from multiple sources including their teachers. The best teachers for them are
computer scientists because they literally use a similar language of rigidity and
attention to details. High-functioning CwA with advances analytical skills can then
infer theorems from acquired axioms and apply these theorems to their decision-
making and behavior, being guided by rehabilitation professionals. Such CwA are
the part of the broader audience of computer scientists who would be happy to
learn reasoning patterns from this book skipping the psychological and general
humanitarian wrapper of reasoning (the latter is required by the rest of CwA for
whom the boundary between reasoning and behavior is not that crisp).

1.2 Developing Deductive Reasoning Skills of Machines
and Children with Autism

The issue of training to overcome various deficiencies of autistic reasoning has
been addressed in a number of studies (Green 1996; Baron-Cohen 2000). There is a
series of peculiar techniques developed to teach children with autism certain forms
of reasoning, mainly reasoning about mental states and actions, reasoning about
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generic actions, default and defeasible reasoning, deductive, inductive, abductive
and analogical reasoning patterns, probabilistic decision-making etc. Skills of
reasoning in some of these domains are lacking in every child with autism (Howlin
1998).

Teaching by analogy is the standard technique for both junior students and adults
in a majority of subject domains. However, autistic trainees experience significant
difficulties learning from examples, they can imitate some forms of behavior and
actions of other people but do it without understanding. Also, visual programming
tools is an efficient way to introduce abstract and general programming concept,
they are quite efficient for both education of programming and efficient software
development (Grandin 2006). In spite of the appeal to use visual programming tools,
autistic children do not learn abstract reasoning patterns from them most of times.

Hence in terms of reasoning patterns, controls learn by induction and analogy,
and reinforce learning results by deduction (explicit rules) in most of real-world
domain (excluding e.g. math). At the same time, autistic trainees learn by deductive
rules most of the time, and other reasoning patterns play auxiliary roles only
(Galitsky 2005).

Therefore, teaching autistic trainees in any domain must be preceded by for-
mulating exact and explicit rules. Otherwise, the teaching approach that might be
adequate for a control trainee would be unacceptable for an autistic trainee, as our
experience shows (Galitsky and Goldberg 2003). Teaching a new entity to a child
with autism, one needs to make sure that all entities the current one refers to are
fully conceptually understood. On the contrary, a child from a control group is
ready to acquire a new entity in the environment where some features are uncertain,
assuming she can learn them later (Fig. 1.1).

The idea of this book is to explore the similarity between formulating domain
knowledge in a way acceptable by a computer and formulation of this knowledge
to be acquired by an autistic trainee. We enumerate the commonalities in cognitive
demands of computers and autistic trainees with respect to teaching them knowledge
representation and reasoning in real-world domains:

1. All concepts have to be clearly and explicitly defined. A basis of indefinable
concepts may be selected, but a programmer/teacher should be aware that a
computer or trainee will not be able to freely operate and provide explanations
with these concepts from the basis. For example, when taught the rules for
basic mental states of the mental world (knowledge and intention), followed

Learn to reason (formally, symbolically) about mental states Þ

Capable of applying rules to subjects of real world Þ

Can understand others and behave properly in real world

Fig. 1.1 Main steps of our proposal
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by the rules by derived mental/communicative actions derived from this basis,
the autistic trainees are capable of explaining what is pretending and deceiving
(derived) but not what is knowledge and intention (basic).

2. Definitions for concepts can be either procedural or declarative. A trainee can
be taught a sequence of actions to achieve a goal, or a clause for a sequence of
conditions an environment should satisfy to achieve this goal. To be capable of
training in a declarative way, respective trainees’ skills have to be developed. For
example, if a child with autism is requested to be at the top of a rock in the middle
of a puddle with a fishing pole, the child needs some skills to determine the order
of operations: put on rubber boots, take a fishing pole, cross the puddle and climb
the rock. In contrast to a control child who would acquire this skill independently
on the basis of trial-and-error, a child with autism needs a substantial guidance
to learn how to search for a proper sequence of actions independently.

3. All special cases should be addressed. For example, for an arbitrary predicate
like want we would expect a smart trainee to operate with want(Who, What) with
arbitrary Who and What. It is not the case for a child with autism who does not
understand that other people may want something,

When we refer to an autistic or computer software trainee, we assume a medium-
to-high-functioning individuals with autism and a standard software environment
without sophisticated machine learning systems like explanation-based generaliza-
tion (Mitchell et al. 1986) or inductive logic programming (Muggleton and De Raedt
1994).

In this book we will demonstrate that experimental cognitive science is relevant
to a number of important AI problems in reasoning and machine learning. We focus
on the domain of autistic reasoning that is a curious mixture of topics in AI and
cognitive sciences. We will outline the commonalities of teaching autistic children
and teaching computers (programming) to solve real-world problems, and provide a
simplified illustration on how the experience of the former can be applied to the lat-
ter. Our claim is that it is significantly easier to teach control children to solve these
problems than to teach children with autism, and, obviously, it is even more so for
programming, where much more details have to be provided for robust functioning.

We will also demonstrate that lessons learned in teaching reasoning about mental
world, adjusting one’s action to an environment and can be naturally applied to
improve the performance of machine reasoning in the respective domains. The
conclusion will be that theoretical and experimental cognitive science of autistic
reasoning might contribute to such traditionally “technical” areas as machine
learning and reasoning.

1.3 Prior Work in Intelligent Systems for Autistic Education

Learning behavior in mental space based on rules, as described in this study,
can be viewed as a special way of learning programming, in particular, object–
oriented programming. Galvez et al. (2009) present a blended e-learning experience
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consisting of supplying an undergraduate student population with a problem-solving
environment in which students can resolve programming exercises. The system
applies an assessment for learning strategy where students are formatively assessed
and also generates feedback and hints to help students to understand and overcome
their misconceptions and to reinforce correctly learned concepts.

The synergies, functional effectiveness and integration of behavior simulation
within an e-learning environment have attracted little interest for serious research
so far, despite the overarching importance of knowledge acquisition by students for
fostering their innovation and creativity. Learners often fail to reach their desired
learning objects due to the failure of methods to provide them with a ubiquitous
learning grid. Lau and Tsui (2009) discuss how knowledge management can be
used effectively in e-learning, and how it can provide a learning grid to enable the
learner to identify the right learning objects in an environment which is based on the
learner’s context and personal preferences.

The use of ontologies to model the knowledge of specific domains such as
mental attitudes represents a key aspect for the integration of information coming
from different sources, for supporting collaboration within virtual communities,
and for reasoning on available knowledge. In the e-learning field, ontologies can
be used to model educational domains and to build, organize and update specific
learning resources (i.e. learning objects, learner profiles, learning paths, etc.). One
of the main problems of educational domains modeling is the lacking of expertise
in the knowledge engineering field by the e-learning actors. Gaeta et al. (2009)
present an integrated approach to manage the life-cycle of ontologies, used to define
personalized e-learning experiences supporting blended learning activities, without
any specific expertise in knowledge engineering. Also, collaborative learning serves
as an important part of e-learning. It increases interactivity and accessibility to
various learning resources either synchronously or asynchronously among users.
Distributed interactivity through Web services thus forms the focus of (Fang and
Sing 2009) who review service-oriented architecture, distributed infrastructure and
highlight the need to integrate service-oriented technologies for meaningful and
interactive collaborative learning processes.

The need for providing learners with web-based learning content that match their
accessibility needs and preferences, as well as providing ways to match learning
content to user’s devices has been identified as an important issue in accessible
educational environment. For a web-based open and dynamic learning environment,
personalized support for learners becomes more important. In order to achieve
optimal efficiency in a learning process, individual learner’s cognitive learning
style should be taken into account. Due to different types of learners using these
systems, it is necessary to provide them with an individualized learning support
system. However, the design and development of web-based learning environments
for people with special abilities has been addressed so far by the development of
hypermedia and multimedia based on educational content. Guo and Zhang (2009)
presented a framework of individual web-based learning system by focusing on
learner’s cognitive learning process, learning pattern and activities, as well as
the technology support needed. Based on the learner-focused mode and cognitive
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learning theory, the authors demonstrate an online course design and development
that supports the students with the learning flexibility and adaptation.

Multiple technologies have been suggested for mental rehabilitation, including
playing LEGO (Resnick 1987), video-clips together with a set of dolls (Blocher
and Picard 2002), autonomous mobile robots and the interactive tool for browsing
and recognizing emotional expressions. Recent advances in mobile and ubiquitous
technologies provide an opportunity to efficiently and accurately capture important
information preceding and associated with problematic behaviors of children with
autism. The ability to obtain this type of data will help with both intervention and
behavioral rehabilitation efforts. Through collaboration with behavioral scientists
and therapists, Sano et al. (2012) identified relevant design requirements and
created an easy-to-use mobile application for collecting, labeling, and sharing in-
situ behavior data in individuals diagnosed with autism.

These computer-based tools assist the development of a wide spectrum of
behavioral and cognitive skills. However, our focus is teaching reasoning about
the mental world, which then naturally leads to communication and other skills
(Galitsky 2002a). The goal of this book is to describe an intelligent education
system that is at least capable of reasoning on its own, in contrast to the approaches
mentioned above which are the infrastructures for providing access to various
media.

To differentiate the proposed educational environment from existing software
packages for children with autism, we address the following issues:

• The software needs to stimulate reasoning with an accent on rule-base reasoning.
In particular, reasoning about intention, knowledge and beliefs of others should
be developed after the basic entities are introduces via rules.

• The software has to be intelligent. This requirement is due to the fact that in
contrast to conventional learning process, such software has to be capable of
substituting interaction with humans in a certain degree. Frequently, autistic
trainees prefer to deal with software agents rather than with humans. These
software agents need to demonstrate the reasoning skills, which are expected to
be developed by the learners, rather than just to introduce a domain for reasoning.

• While identifying three core deficits outlined above certainly helps in the study
and diagnosis of autism, it does not provide a causal explanation of the disorder,
nor does it provide a rehabilitation mechanism. It is worth mentioning a number
of neural network-based models of autistic phenomena (see e.g. Cohen 1994);
however there is no explicit connection between these models and reasoning or
possible rehabilitation strategies.

1.4 Teaching Theory of Mind to Autistic Patients

Teaching children with autism can be overwhelming, but it also can be a triumph
at the same time. The possibility to teach autistic children theory of mind has been
assessed in multiple studies because of potentially important clinical implications.
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If it is true that a deficit in reasoning about mental attitudes leads to impairment in
social interaction and understanding of oneself and others, then an efficient method
for teaching theory of mind may assist in overall autism rehabilitation. Autism
training studies, including the current one, are valuable sources of knowledge
regarding how improved reasoning patterns affect trainees’ behavior including
social interaction.

The theory of mind training studies conducted so far have shown that some
individuals with autism can be taught to pass the particular tasks of reasoning about
mental states (Swettenham 1996; Baron-Cohen and Swettenham 1997; Sutton et al.
1999; Scott et al. 2002). In most cases, it is natural to assume that trainees indeed
apply one or another reasoning pattern rather than memorizing exact answers.
Regrettably, in most cases, the studies of how individuals with autism acquire mental
reasoning patterns are lacking an accurate formulation of these patterns, backed
up by computational experiments. We believe the latter is essential to differentiate
between mental and non-mental components of reasoning process.

Another problem with teaching particular patterns of reasoning about mental
states is a verification of how children can generalize from acquired mental rea-
soning patterns. Because the majority of ToM training studies have not considered
deductive links between the mental reasoning patterns involved in a given thought,
it is unclear how the acquisition of one pattern should have affected others.
We believe that the question of mutual dependence of reasoning patterns should
be addressed from a computational perspective. Indeed, applying axioms about
intention, knowledge and beliefs to be introduced, we subject their generalizations
to a formal treatment and observe how they can be taught (Chaps. 4 and 8).

A number of earlier studies have focused on theory of mind tasks, demonstrating
that members of high-functioning group of individuals with autism are able to pass
first-order (Baron-Cohen 1989; Swettenham et al. 1996), second order and even
third-order tasks (Happe 1994). Also, the tasks include interaction and conversa-
tional skills concerning maintaining the topic of conversation and adjustment of
conversation topics for others, interpretation and expression of non-verbal signals,
listening and expressing interest in others have been investigated.

The results of these ToM training studies are that the performance of the group
which has undergone training has improved (at least with the second order tasks)
with respect to controls. However, frequently children were able to apply non-
mental state rules, and were not able to show the results of their training in
their behavior. Only a smaller proportion of high-functioning autistic children are
believed by these authors to improve their social skills as a result of training. In
terms of generalization, children were able to apply acquired mental rules to other
subjects and objects. However, it is still unclear what was being generalized – new
knowledge about inferring mental states or a non-mental-state rule that allowed
participants to pass tests. Disappointingly, children with autism can hardly transfer
their reasoning skills from one mental domain to another (e.g. recognition of
emotion, pretense, false belief; Hadwin et al. 1997, Fig. 1.2).

http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_8
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Fig. 1.2 On the left: a typical posture, position and avoidance of the other children. On the
right: an autistic child is subject to repeated attempts of adult to make eye-to-eye contact (Both
reproduced from Hutt and Hutt 1970)

We believe that the reasons for the rather low efficiency of the above training,
in addition to autism-specific reasoning impairments, concern the consistency and
persistency of the training and the thoroughness of coverage of the domain of mental
reasoning. Here we discuss how to develop the experimental studies, verifying
whether treatment of autistic theory of mind reasoning is efficient or not, into long-
term rehabilitation strategies which are viable for a wide audience of individuals
with autism.

Firstly, the training has to be consistent. A totality of the first-order mental
entities should be introduced first, followed by the totality of second-order entities, if
acquired properly. The third-order rules should be introduced only after the trainees
can consistently demonstrate not only passing the simpler exercises, but respective
behavior and understanding second-order entities of others.

Secondly, in terms of persistence, the training should be attempted from the
earliest possible age and as long as a trainee is interested in practicing the exercises.
If no success is observed at a given age, the training should be attempted again in a
few months assuming a trainee has acquired some necessary background knowledge
and/or reasoning skills to adopt certain mental-state reasoning patterns failed earlier.

Thirdly, trainees would benefit from the complete coverage of mental domain,
which is rather compact in comparison with other domains. The totality of basic
mental entities (intention, knowledge and belief) should be introduced together with
derived mental entities (including pretending, deceiving, explaining, forgiving etc.).
Such coverage is assured by the formal model specifying how to derive mental
entities from the basic ones; this formal model will be introduced in Chap. 4.

Similar to the theory of mind training settings introduced above, we teach
individuals with autism mental entities and their combinations. However, unlike

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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the previously mentioned studies, we use formalized means to teach mental entities,
suggesting that they are more suitable to the peculiarities of autistic development
(Peterson and Galitsky 2004).

We use the non-human (computer) resources, readily acceptable by autistic
children, to introduce them to the mental world (of humans) via formalized rea-
soning. The paradox of our methodology is that reasoning about the mental world,
usually supposed to be irrational and displayed as an emotion, can nevertheless
be considered from the abstract perspective, formalized and used in training. This
hypothesis (Galitsky 2002b) is used as a framework of our rehabilitation strategy
to develop rational and emotional behavior in the real mental world. Traditionally,
strict (formalized, mathematical) thinking is considered as an opposite notion to
emotional (fuzzy, approximate) thinking and behavior. Since for the autistic trainees
strict rule-based learning is much easier than the direct introduction of the various
forms of emotional behavior, the latter is achieved via the former.

Our model of the human agent is based on the supposition that there are a
number of standard axioms for mental entities, including emotions; these axioms
are genetically set for normal children and are corrupted in the autistic brain
(Galitsky 2013). The patterns of corruption vary from trainee to trainee and are
correlated with the specifically outlined groups of individuals with autism. They
have to acquire these axioms explicitly, by means of direct training, using the
specific scenarios. Frequently, autism is not accompanied by learning disabilities,
so the patents willingly participate in training programs. Our practical experience
shows that using a software-based training allows us to hold the attention of autistic
trainees for much longer periods than traditional means of one-to-one treatment by
a human trainer.

1.5 How to Read This Book

The main targets of this book are software engineers, computer scientists and
mathematicians interested in theory and practice of autism. This category of readers
is expected to learn about autism and remediation strategies in their native language.
Describing the problems children with autism experience in various circumstances,
we describe similar problems in engineering artificial intelligence systems and try
to find common solutions. Specialists in logical Artificial Intelligence should focus
on Chaps. 4, 5, and 6, and machine learning and cognitive system professionals – on
Chap. 7. Software engineers might find Sections 4–7 equally appealing. Computer
engineers and natural scientists who are parents of children with autism can briefly
familiarize themselves with Chaps. 2, 3, 4, 5, 6, and 7 and read in depth Chaps. 8
and 9.

For those who prefer to avoid the language of logic and computation, we
recommend Chaps. 3, 6, 7, 8, and 9. Rehabilitation professionals can briefly look
at Chaps. 2 and 3 and proceed to Chaps. 8 and 9.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_5
http://dx.doi.org/10.1007/978-3-319-39972-0_6
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http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_5
http://dx.doi.org/10.1007/978-3-319-39972-0_6
http://dx.doi.org/10.1007/978-3-319-39972-0_7
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Chapter 2
Computational Models of Autism

2.1 Autistic Deficits

Speaking about the deficits, we describe observable features of CwA irrespectively
of how these features can be connected. For example, deficits of a car with a flat tire
would be making an unpleasant noise, not following directions, having a rim of the
wheel riding on the tire tread, irreparable damage to the tire, loud noise, and flat tire
itself. Although all these symptoms are due to the same cause, we enumerate them
as car deficits at the same level, as a list.

Our second example will be a set of search engine deficits. Anything in which a
given search engine deviates from an ideal one where we can quickly find everything
we want is its deficit:

1. There are documents I know exist but the search engine does not give them to me
when I search for the corresponding topic. This is called a search recall deficit.

2. It gives me some documents that are misleading, and it should not have given
them to me. This is called a search precision deficit.

3. I have to wait for more than a second for search results to show. This is a slowness
deficit.

4. When I search with in given topic or context, it gives me documents with the
search query keywords but belonging to a different topic. This is called a user
intent recognition deficit.

There are multiple reasons for a search engine to display deficits, includ-
ing its implementation, structure of a search index, relevance model, how key-
words are treated and ontologies are employed. A baseline search system such
as Lucene/SOLR/Elastic Search without use of learning from users, linguistic
processing or domain ontology would possess deficits 1, 2 and 4, but not 3. Any
engineering system has some advantages and some deficits (Fig. 2.1).
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Fig. 2.1 Some symptoms for a problematic operating system (technet.microsoft.com)

Having considered the deficits of an engineering system, we are now ready to
enumerate a broad range of deficit of CwA (Fig. 2.2):

1. Higher-level abstract thinking, including making inferences (Minshew 1996;
Minshew and Goldstein 1998). This has long been known to be an area of deficit
in autism. The notable finding of this study is the dissociation between intact
performance on rule-learning tasks and deficits on concept formation tasks.
Rule-learning tasks are ones in which there is a rule to solve the problem and
the task is to discover the rule. Although the individuals in this study typically
identified the rule correctly, they had difficulty changing rules when the context
changed. Changing the rule to fit changing contexts adds to the information
processing demands of the task, and is the basis of generalization. Concept
formation tasks have no set solutions but require the individual to create one.
Concept formation tasks are essentially problem solving in novel situations.
This pattern is consistent with the behavior typical of autism, which is typically
rule-dependent, lacking in flexibility, failing to consider the implications of
context, and inability to cope with novel situations.

2. Shared attention, including social referencing and problem-solving (Mundy
et al. 1990).

3. Joint Attention deficit. By 15 months of age, children are eager to share
their interests with others. They show things to others, they try to share their
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Fig. 2.2 Some symptoms of autism (chart from the Autism Society of America)

enjoyment, they babble reciprocally and they direct others’ attention to objects
which interest them. Later, when they have language, they ask about others’
interests and ideas, and they share others’ enjoyment.

4. Social cognition refers to the mental processes involved in perceiving, attending
to, remembering, thinking about, and making sense of the people in our social
world (Moskowitz 2005). Deficits in social cognition include

• deficits in social and emotional learning including difficulty

– managing emotions,
– appreciating the perspectives of others,
– developing pro-social goals,
– using interpersonal skills to handle developmentally appropriate tasks

(Payton et al. 2000);
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• difficulty differentiating one’s own feelings from the feelings of others (i.e.,
Theory of Mind);

• difficulty integrating diverse information to construct meaning in context
(i.e., central coherence) (Frith and Happe 1994; Happe et al. 1996).

5. Deficits in the capacities for affective reciprocity (Baranek 1999; Dawson and
Galpert 1990). This deficit occurs to the extent to which the person sends
various social signals to others, through facial expression, tone of voice and
social and emotional gestures. It could be seen as a type of instinctual drive
whose function is to cause a child to send social signals to others and to look
for social signals. The more the child is driven to interact with others, the more
he or she can learn the meaning of such signals. Affective reciprocity is also
shown by affectionate and empathic behaviors, greeting others with pleasure
and spontaneously offering to share toys or food with others. Deficits in social
reciprocity include:

• difficulty initiating and responding to bids for interaction,
• limitations with maintaining turn-taking in interactions,
• problems with providing contingent responses to bids for interaction initi-

ated by others.

6. Motor domain deficit. The tests responsible were those involving complex
motor actions or motor sequences as opposed to isolated motor movements
such as finger tapping. This domain was included not only to complete the
survey of major cognitive domains but also because dysfunction in higher
brain regions often produces problems with complex motor sequences. This is
generally called motor apraxia. This motor deficit has been found by many other
investigators and motor skills deficits are now being recognized as an integral
part of autism and the other disorders in this category. In young children, motor
apraxia causes the problems with operating mechanical devices such as door
knobs and wind up toys, whereas button pressing is not a problem. Later, motor
apraxia is responsible for difficulty holding pencils, cutting with scissors, and
tying shoe laces. In school age children, it is responsible for the problems
with handwriting, either slowness or sloppiness. In the gross motor area, it is
responsible for the lack of coordination in sports and contributes to the inability
of many to ride bicycles or rollerblades. It is likely also responsible for the
stilted quality to facial expressions.

7. Deficits in language and related cognitive skills include:

• impaired acquisition of words, word combinations, and syntax

(i) initial words are often nouns and attributes, while words representing
social stimuli, such as people’s names (i.e., subjects) and actions (i.e.,
verbs), are delayed;

(ii) the child loses words previously acquired;
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• use and understanding of nonverbal and verbal communication

(i) facial expressions, body language, and gestures as forms of communi-
cation are delayed in the latter part of the first year of life and remain
unconventional throughout development;

(ii) unconventional gestures (e.g., pulling a caregiver’s hand toward an item)
emerge prior to more conventional gestures (e.g., giving, pointing, and
head nods/headshakes);

(iii) understanding of gaze shifting, distal gestures, facial expressions, and
rules of proximity and body language is limited;

(iv) receptive language appears more delayed than expressive;
(v) use of immediate echolalia and/or delayed echolalia (scripted language)

is observed;

• vocal development deficits, including

(i) atypical response to caregiver’s vocalizations,
(ii) atypical vocal productions beyond the first year of life,

(iii) abnormal prosody once speech emerges (speech may sound robotic);

• symbolic play deficits, including

(i) delayed acquisition of functional and conventional use of objects,
(ii) repetitive, inflexible play,

(iii) limited cooperative play in interactive situations;

• conversation deficits, including

(i) limitations in understanding and applying social norms of conversa-
tion (e.g., balancing turns, vocal volume, proximity, and conversa-
tional timing);

(ii) provision of inappropriate and unnecessary information in conversa-
tional contexts;

(iii) problems taking turns during conversation;
(iv) difficulty initiating topics of shared interest;
(v) preference for topics of special interest;

(vi) difficulties in recognizing the need for clarification;
(vii) challenges adequately repairing miscommunications;

(viii) problems understanding figurative language, including idioms, multi-
ple meanings, and sarcasm;

• literacy deficits, including difficulty

8. Complex language deficit, i.e., the interpretative aspects of language. These
include reading comprehension, story comprehension, comprehension of
idioms and metaphors, verbal inference making, and comprehension of
complex sentence structure. The latter is particularly important because it
is the language of everyday life. It typically involves sentences like: before
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you do this, I want you to do that and then do this and so on. These sentences
place particularly heavy demands on information processing because they
require processing of each segment and then a second stage of processing to
determine the meaning of each bit to the next bit. Understanding the meaning
of such a sentence requires yet a third level of processing. A similar process
occurs with the understanding of a story. The combination of superior formal
language abilities and inferior comprehension produces a wide gap between the
listener’s estimate of the autistic individual’s language comprehension and his
or her actual comprehension. The failure to understand what the person with
autism understands is a major contributor to their dysfunction in many settings.

9. Memory for complex information deficit. Complexity can result from increasing
amounts of simple information or increasing inherent complexity of the
information. In essence, individuals with autism have difficulty with recall
of complex material, because they fail to make use of cognitive organizing
strategies or to benefit from the meaning of the material. Secondly, this
pertained to both visual and auditory information. CwA remember less from
the material presented to them than age and IQ matched peers; this has also
been shown to reduce the amount of information they remember from recently
experienced events. Thus, this memory impairment is likely to contribute to the
social, language, and problem solving deficits. Knowledge of this impairment
can be used to improve learning. Memory and learning can be improved by
reducing the amount of material presented (smaller chunks), preprocessing the
information (give the bottom line rather than patterns that require deduction
of the bottom line), and increasing the processing time. Visual presentation
of information often accomplishes all of these, and likely explains why
they benefit from such adaptations. Visual material is constantly present for
reference and re-reading, to guide behavior.

10. Deficit in the ability to selectively manipulate sensory representation. A
different, perhaps more fundamental deficit should be entertained as being
present in many persons with autism, particularly if they are low-functioning: a
deficit in the ability to selectively manipulate sensory representations, concepts,
and thoughts themselves (although these may also be deficient). In basic terms,
this is a problem with the ability to imagine. However, it is not a deficit in simple
visual imagery; there is self- reported evidence that high-functioning persons
with autism not only have visual imaginations but rely upon them (Grandin
2006). Instead, what is referred to here is the ability to select elements of mental
states and manipulate them. Normally, humans are able to focus on different
aspects of an object or experience, and even seem to break these aspects away
from the original experience and manipulate them separately. A person can see
a white ball and separate out its whiteness from its shape. PwA are however well
known for not being able to do this. They are notorious for context dependence
and for apparently focusing on the “wrong” features of everyday objects.

11. Deficit in social referencing. Social referencing is known as the seeking
and use of information from another individual to help evaluate a situation
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(Bruinsma et al. 2004). The reason this may be difficult for individuals with
autism is that they may prefer not interact with others and may not find
this behavior reinforcing, and would rather engage in self-stimulatory type
behaviors instead. Lacking these skills in the classroom can present teaching
challenges to the teacher during whole class instruction, choral responding and
teaching in the natural environment.

A number of patterns of deficits have been proposed in autism over the years;
some of these are still being debated. These include:

• a single primary cognitive-single neural system deficit versus multiple primary
co-existing cognitive-multiple neural systems deficit;

• auditory and not visual information processing deficit;
• information acquisition deficit versus information processing deficit,
• and simple versus complex information processing deficit(s).

Instances of essential autistic deficits can be visualized (Fig. 2.3).
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Fig. 2.3 Essential autistic deficits and their inter-relations
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2.1.1 Hypotheses for the Origin of Autistic Reasoning

There are a number of other hypotheses concerning autistic reasoning, including
(Gopnik et al. 2000) stating that children with autism are impaired in their ability
to form theories about the world. Theories provide an understanding of causality to
enable children to generate explanations about their environment. Not only mental
domain but also reasoning about physical world is corrupted as well (not as strongly
as about mental world (Leslie and Keeble 1987; Oakes and Cohen 1990)). Children
with autism are less likely to generate “wh-” questions and are impaired on probe
questions of causal explanations of emotions and thoughts (Tager-Flusberg 1989).
Overall impairment in causal language across two narrative contexts (Losh and
Capps 2006) is reported, as well as impairment on causal language relating to mental
states and emotions (Capps et al. 2000). Also, a correlation between mental ability
or false belief performance and an ability of these children to explain observed
scenarios has been established. Relative to controls, CwA have a lower overall
ability to provide explanations for voluntary actions and impossible physical and
biological events (Sobel and Lillard 2001).

2.2 Tests for Differentiating Normal and Autistic Cognition
and Reasoning

Raven’s Progressive Matrices (RPM) is a standardized intelligence test that consists
of problems resembling geometric analogies, in which a matrix of figures is
presented with one entry missing and the correct missing entry must be selected
from among a set of answer choices (Raven 1936). An example Raven’s problem is
shown in Fig. 2.4.

Sally-Anne task (Wimmer and Perner 1983), in which the subject is shown a
short play with two dolls, Sally and Anne, shown in (Fig. 2.5). Sally places a marble
into a basket and, after Anne leaves the room, moves the marble from the basket
into a box. The subject is then asked where Anne will look for the marble when
she returns. Responding correctly, that Anne will look in the basket, requires an
understanding of Anne’s false belief that the marble is still in the basket; Anne’s
belief is false in that it represents something that the subject watching the skit knows
is not true.

In a standard version of False Belief task (Wimmer and Perner 1983), the child is
introduced to two characters, Maxi and his mother. Maxi places an object of interest
into a cupboard, and then leaves the scene. While he is away, his mother removes
the object from the cupboard and places it in a drawer. The child is then asked to
predict where Maxi will look for the object when he returns to the scene.

A box of Smarties is emptied, refilled with pencils and then shown to a child who
is ignorant of the change. The child is asked: “What do you think is in the box?”,
and it answers: ‘Smarties!’ It is then shown the contents of the box. The pencils are
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Fig. 2.4 An example
Raven’s problem

1 2 3 4

5 6 7 8

put back into the box, and the child is now asked: ‘What do you think your [absent]
mother will say is in the box?’

A famous experiment, the ‘false belief’ task investigates how autistic subjects
reason about other people’s belief. The standard design of the experiment is as
follows. A child and a doll (Maxi) are in a room together with the experimenter.
Maxi and child witness a bar of chocolate being placed in a box. Then Maxi is
brought out of the room. The child sees the experimenter move the chocolate from
the box to a drawer. Maxi is brought back in. The experimenter asks the child:
‘Where does Maxi think the chocolate is?’ The answers to this question reveal an
interesting cut-off point, and a difference between CwA and CC.

Before the age of about 4 years, the normally developing child responds where
the child knows the chocolate to be (i.e. the drawer); after that age, the child
responds where Maxi must falsely believe the chocolate to be (i.e. the box). By
contrast, CwA continue to answer ‘in the drawer’ for a long time. This experiment
has been repeated many times, in many variations, with fairly robust results. There
is for instance the ‘Smarties’ task, which goes as follows. Not shown to the child-
subject, a box of Smarties is emptied and refilled with pencils. The child is asked:
“What do you think is in the box?”, and it happily answers: ‘Smarties!’ It is then
shown the contents of the box. The pencils are put back into the box, and the child
is now asked: ‘What do you think your [absent] mother will say is in the box?’

We may then observe the same critical age: before age 4 the child answers:
‘Pencils!’, whereas after age 4 the child will say: ‘Smarties!’ Even more strikingly,
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This is Sally.

Sally has a marble. She puts the marble into her basket.

Sally goes out for a walk.

Now Sally comes back. She wants to play with her marble.

Anne takes the marble out of the basket and puts it into the box.

Where will Sally look for her marble?

Sally has a basket. Anna has a box.

This is Anne.

Fig. 2.5 Sally-Ann test (From visualsupportsandbeyond 2016)

when asked what it believed was in the box before seeing the actual contents, the
younger child will say ‘Pencils’, even though it has just answered ‘Smarties!’.

Feelings, Attitudes, and Behaviors Scale for Children (FAB-C) (Beitchman et al.
1996). The FAB-C is a self-report instrument designed to assess problems in
children 6–13 years of age. It consists of 48 yes/no statements. Children are asked
to indicate whether or not the statements describe them by circling yes or no. The
questionnaire consists of five scales that measure conduct problems, self-image,
worry, negative peer relations and antisocial attitudes.
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Conners’ Rating Scales-Revised (CRS-R) It provides a parental report of the
behavioral, emotional and social functioning of the sibling. This questionnaire is
composed of 80 items. Four response choices were available for each question, not
true at all (never, seldom), just a little true (occasionally), pretty much true (often,
quite a bit), very much true (very often, very frequent), and the score on each item
ranged from 0 to 3.

N-back test is a continuous performance task that is commonly used as an
assessment in cognitive neuroscience to measure a part of working memory. The
n-back was introduced by Kirchner (1958). The subject is presented with a sequence
of stimuli, and the task consists of indicating when the current stimulus matches
the one from n steps earlier in the sequence. The load factor n can be adjusted to
make the task more or less difficult. The visual n-back test is similar to the classic
memory game of “Concentration”. However, instead of different items that are in a
fixed location on the game board, there is only one item, that appears in different
positions on the game board during each turn. 1-N means that you have to remember
the position of the item, ONE turn back. 2-N means that you have to remember the
position of the item TWO turns back, and so on.

For example, an auditory three-back test could consist of the experimenter
reading the following list of letters to the test subject:

T L H C H O C Q L C K L H C Q T R R K C H R

The subject is supposed to indicate when the letters marked in bold are read,
because those correspond to the letters that were read three steps earlier.

Test for Pretend Play is designed to assess the three types of symbolic play,
substituting one object for another object, or person attributing an imagined property
to an object or person. Another type of symbolic play is a reference to an absent
object, person or substance.

Test for Pretend Play can be used with a wide variety of children to assess a
child’s level of conceptual development and ability to use. This test also indicates
a child’s imaginative ability, creativity and emotional status. The test presents two
versions of the test using structured conditions:on-verbal version – children up to
3 years and older children with insufficient comprehension to follow the language
used in the verbal version, and verbal version – children of 3 years and above.

2.3 Neural Network Models

Advocates of neural network approaches believe that neural simulations act at the
middle level, between molecular and behavioral levels. They give a chance for the
understanding of the real reasons of causing behavior and linking network dynamics
with molecular and genetic properties.
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2.3.1 The Bridge Between Neural Models and Reasoning

If one considers an abstract reasoning system and looks at its input, output and
interaction between black boxes as reasoning units, very little judgment can be
obtained about its functioning. The information that can be extracted as a result
of such observation is just a communication protocol between the reasoning units,
but not the meaning of what each unit is reasoning about. A simulation of such
system, based on this data, would be an attempt to reproduce a reasoning protocol
and no information about the subjects of reasoning or reasoning domain would be
obtained.

Hence neural network models targets the protocol of autistic reasoning, not the
reasoning domain itself. Furthermore, numerical simulation of interaction between
reasoning and cognitive units only gives a limited, one-sided view of such protocol.
To better reproduce autistic reasoning and then all the way towards representing
autistic behavior, a logical, not numerical model is required to match the model and
its outcomes with experimental observations.

Neural network models are inspired by the fact that brain includes neurons.
However, decoding of neuron signals into a semantic representation can be done
very superficially, with almost complete loss of information. We believe that unlike
reasoning models, neural network models help with neither prediction of health
treatment nor some mechanism that can be potentially discovered experimentally.

Reasoning patterns, the subjects of this book, are the most insightful chunks
of information that can be obtained, observing autistic phenomenology at different
levels, from genetic to neural and to behavioral level. It is rather hard to build a
bridge from neural circuitry to reasoning patterns directly. What can be done is
establishing some features of existence. Building a neural model of some reasoning
patterns, one can show that to implement certain reasoning patterns, there should
exist a neural layer with certain patterns of firing. If a neural network can solve a
particular AI problem, the conclusion is that there exists a way of a biological neural
network to implement this functionality in the brain.

Let us imagine a search engine as a part of a brain, implemented as an inverse
index searcher. There are certain patterns of activity for how the search engine reads
this index from a disk, which can be observable from outside, without knowing
semantics of search. Depending of search queries, different areas of index on the
disk can be loaded. This pattern of activity becomes much more complicated when
a search index is shared between multiple servers and some forms of shards are
implemented (Fig. 2.6). Imagine that we have activity patterns data for disk access
timing somewhat similar to neuron firing. How much can be said about search
algorithms, given the observations of the patterns of activity of a search engine disk
reading, having knowledge about Java implementation of memory management?
Obviously not much. This example helps to explain our skepticism related to how
the neural network models of the brain shed a light on how the brain implements
reasoning.



2.3 Neural Network Models 29

Fig. 2.6 The data on activity of distributed search system (on the left) and its architecture (on the
right)

The idea that cognitive processes arise from the interaction of neurons through
synaptic connections has been popular for a few decades. The knowledge in inter-
active and distributed neural systems is stored in the strengths of the connections
and is acquired step-by-step in the course of accumulating experience. How can
autistic reasoning and a degradation of semantic knowledge associated with this be
explained via neural network models?

McClelland and Rogers (2003) hypothesize that degradation of semantic knowl-
edge occurs through degradation of the patterns of neural activity that attempts
to retrieve the knowledge stored in the connections. The authors demonstrate
that through simulation models for development and disintegration of cogni-
tive processes, with the focus on domain-specific patterns of generalization in
young children and structure change of conceptual knowledge as a function of
experience.

Rumelhart and Todd (1993) connectionist network is shown in Fig. 2.7. Inputs,
consisting from concept-relation pair, are on the left and activation propagates to
the right. Every unit in the pool on the sending side on the left projects to every unit
on the receiving side on the right. The network is trained to turn on all these output
units that represent the correct completions of the input patterns.

The connectionist neural model suggest there exists a representation unit such as
temporal pole that ties together all objects properties with various types of informa-
tion. Temporal pole is strongly affected by the semantic dementia disease. Temporal
lobe can also be a region that stores addresses for conceptual representations.
Patterns of activations in the temporal lobe capture semantic similarity between
concepts and serve as means of semantic generalization on one hand. Also, damage
in these areas disrupts the abilities to activate more specific properties of concepts
elsewhere. The parallel distributed processing accounts of cognitive activity have
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Fig. 2.7 The network used to learn propositions about concepts (From Rumelhart and Todd 1993)

posed a serious and pressing challenge to the view of the mind as a serial symbol
manipulator (Clark 1989; Rumelhart and McClelland 1986).

Major brain structures implicated in autism are shown in Fig. 2.8.

2.3.2 Sensory Hyper-sensitivity

The combination of sensory hyperarousal and abnormal attentional selectivity
suggests that autism may involve over-connected neural networks, in which signal
is insufficiently differentiated from noise or irrelevant information and in which
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Fig. 2.8 The brain structures implicated in autism

information capacity is therefore reduced (Belmonte et al. 2004). This idea is
consistent with genetic and neurochemical results, such as linkage to the 15q11–13
region, which contains a cluster of ” -amino-butyric acid (GABA) receptor genes
(Buxbaum et al. 2002), low GABA receptor binding in hippocampus (Blatt et al.
2001), and low GABA levels in blood platelets (Rolf et al. 1993), and with the
substantial comorbidity of epilepsy with autism. Also, substantial amount of noise
in neural networks is associated with autistic psychophysical anomalies such as high
visual motion coherence thresholds (Milne et al. 2002).

Low level visual, tactile and proprioceptive inputs are intact or even improved
in CwA. At the same time, visual impairments occur at the level of image
interpretation and integration of visual signals; it is still unclear if this is true
for other modalities. Hyper-sensitivity and enhanced ability to detect details in
input stimulus is augmented with difficulties in integrating sensory information
into a coherent pattern. It is hypothesized that these difficulties contribute to motor
deficits. The measures of motor coherence are correlated with motor skills of
CwA. Gowen and Miall (2005) found out that CwA’s performance is worse on
motor tasks which require more sensory processing, such as pointing and timing,
compared to repetitive tapping and hand turning. A miscalculated sensory input
affects determination of the spatial state used to plan and modify movements. Babies
who are visually hypersensitive or auditorially hypersensitive will need a more
soothing type of enticement to take an interest in that outside world. Babies who
are underreactive will require more animated interactions.

Baron-Cohen et al. (2008) argue that the excellent attention to detail in PwA is
itself a consequence of sensory hyper-sensitivity. The authors review an experiment
from our laboratory demonstrating sensory hyper-sensitivity detection thresholds in
vision and conclude that the origins of the association between autism and talent
begin at the sensory level, include excellent attention to detail and end with hyper-
systemizing.

Mottron and Burack (2001) suggested an approach called ‘enhanced perceptual
functioning’ of CwA associated with a stronger low-level perceptual processing.
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Studies using questionnaires such as the sensory profile have revealed sensory
abnormalities in over 90 % of CwA (Tomchek and Dunn 2007). In visual processing,
PwA are more accurate at detecting the orientation of first-order gratings (simple,
luminance-defined) but less accurate at identifying second-order gratings (complex,
texture-defined). In the auditory modality, superior pitch processing has been found
in PwA. In the tactile modality, Blakemore et al. (2006) showed a hyper-sensitivity
to vibro-tactile stimulation to a frequency of 200 Hz but not for 30 Hz. In addition,
the CwA group rated supra-threshold tactile stimulation as significantly more
intense than CC did.

Hyper-sensitivity could result from a processing difference at various sensory
levels including the density or sensitivity of sensory receptors, inhibitory and
exhibitory neurotransmitter imbalance or speed of neural processing. Belmonte et al.
(2004) suggested local range neural over-connectivity in posterior, sensory parts of
the cerebral cortex is responsible for the sensory ‘magnification’ in CwA.

2.3.3 High or Low Connectivity?

The apparent contradiction between theories of over-connectivity and under- con-
nectivity in autism may arise because of the multiple ways the term connectivity
can be defined. One should differentiate local connectivity within neural assemblies
from long-range connectivity between functional brain regions. On the other hand,
one can separate physical connectivity (associated with synapses and tracts) from
computational connectivity (associated with information transfer). Physically, in
the autistic brain, high local connectivity may develop at the same time as low
long-range connectivity develops (Just et al. 2004; Belmonte et al. 2004). It might
be caused by frequent changes in synapse reduction and formation that breaks
the computationally optimal balance between local and long-range connections.
A decrease in network entropy due to indiscriminately high connectivity within
local networks could yield abnormally low information capacity and may develop
in tandem with abnormally low computational connectivity with other regions.

According to the under-connectivity theory there is an excess of low-level
(sensory) processes, with under-functioning of high-level neural connections and
synchronization (Gepner and Feron 2009). fMRI and EEG studies suggest local
over-connectivity in the cortex and weak functional connections to/from frontal
lobes. Under-connectivity is observed mainly within each hemisphere of the cortex.
Autism may be in this view a disorder of the association cortex. The theory does
not explain how and why this under -connectivity can arise, and how does it explain
many specific autistic symptoms.

“Default brain network” (cingulate cortex, mPFC, lateral PC) shows low activity
for goal-related actions; it is active in social and emotional processing, mind-
wandering, daydreaming. Activity of the default network is negatively correlated
with the “action network” (conscious goal-directed thinking), but this is not the
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case in autism. Perhaps this is a manifestation of under – connectivity, and shows
disturbance of self-referential thought, necessary for development of the theory of
mind.

There is an abnormal brain activation in a number of circuits under autism in a
mirror neuron system (responsible for imitation) as well as other systems, and at
the same time the performance of CwA on various imitation tasks may be normal.
Another large neural subsystem related to the representation of the self-structures,
the default mode network, has also been affected. The impairment of these two
systems may be the result of general under-connectivity between spatially separated
brain areas (Gepner and Feron 2009).

2.3.4 Deviation of Neural Network Functioning

The majority of studies in the area of computational autism focuses on autistic
perception as most prominent autistic features and attempt to explain how the
deviation of perception system architecture might explain what has been observed
in experimental studies of autistic cognition. Peculiarities of visual, auditory and
tactile autistic perceptions are analyzed.

Neural networks theories of cognitive processes state that many mental oper-
ations are carried out through successive sets (layers) of neuronal processing
elements (Gordon 1997). With the proper input and training criteria, and the proper
learning of rules, such networks have proven to be extremely efficient at extracting
rules and patterns that are implicit in the data presented to them. However, the
accuracy of this extraction is very dependent on the number of processing elements
in the active learning layer (Baum and Hausler 1989). If there are too few elements
then the network does not learn with very good accuracy: it, in fact, tends to over-
generalize. If there are too many elements, then the network learns each specific
situation presented to it and doesn’t generalize enough. If some number of working
elements leads to adequate performance, a somewhat greater number can result in
truly superior performance in learning implicit rules and patterns, as long as it avoids
becoming too specific.

This observation might be tied in to normal development, and to the abnormal
development(s) that occur in autism, in the following way: the normal development
of higher cerebral functions in a child’s cortex appears to be driven by at least two
major influences:

1. predetermined connections;
2. activity and use.

It has often been noted that the number of genes coding for the brain and neural
tissue (about fifty thousand) are insufficient to specify all the connections of the
mature brain. Thus, the development of these connections must be guided in part by
experience. Edelman (1987) and (Edelman et al. 1997) have suggested that whether
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an uncommitted area develops connections with one region or another is based on
the outcome of a competition for use. The developing child’s brain normally has
several primary sensory inputs which are hard-wired, including vision, audition, and
touch. Such sensory inputs will attempt to stimulate upstream neuronal processing
resources that are not yet employed.

Normally, the multiple influences on a child lead to a balance of forces, with
the normal balance of lower and higher processing abilities (and neuroanatomic
maps) as a result. The amount of neural tissue that is devoted to each higher
function therefore represents a tradeoff between several forces: an attempt to
optimize processing, the practical limits on optimization (because of lack of enough
experience and training time), and competition with other functions for those same
neuronal processing elements.

The hypothesis is that a developing brain of CwA has all those same forces at
work, but for some reason some processing systems are impaired or delayed in
their development. The systems in question are those involved in speech perception
and speech production. Specific genetic deficits in speech generation have been
tentatively identified, and it is plausible that there are combinations of deficits with
more widespread effects on both speech generation and perception.

We continue to hypothesize that if the systems related to speech perception
and speech production were developmentally impaired, then many higher abilities
correlated with appropriate auditory input and output would never develop properly.
Whatever cerebral tissue would have been devoted to those higher functions would
then be free to be incorporated into other processes (assuming the tissue itself was
not too badly affected by the same defects). If vision were intact, then visual-related
abilities would be expected to rely on extra cerebral tissue. The result would be a
child’s brain that was not capable of all of the normal functions of a child, but that
was capable of performing some functions satisfactorily. The brain would not be
capable of those abilities that are related to speech and language capability, such
as a long-term component of working memory (the part normally dependent upon
an articulatory loop), and perhaps even such higher functions as the “inner voice”
aspects of consciousness. It would, however, be extraordinarily good at wordless
visual perception and analysis. Neuropathologically, such a brain might have only a
few, apparently nonspecific, abnormalities. It would not have to have fewer neurons
than normal.

In reality, the autistic brain is average or larger-than-average in size (Courchesne
et al. 1999). It might be possible to detect additional areas responsible for visual-
related functions, but perhaps not with current behavioral tasks and instrumentation.
Autism may therefore represent disorders of activity-dependent plasticity during
brain development that occur at several different levels: gene, synapse, neuron,
network, and neuronal group.

In Fig. 2.9 solid arrows indicate direction of neural transmission, based on current
information; large striped arrow depicts uncertain cerebellar effects. Large scissors
depict cellular “lesions” in important structures that might contribute to network
dysfunction or a “disconnection syndrome.” Small scissors show potential sites
for disconnection within networks and an example of “functional” (correct: globus
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Fig. 2.9 Putative neural networks in autism

Fig. 2.10 The social brain (Adapted from Talairach and Tournoux 1988)

pallidus to thalamus) or “dysfunctional” (aberrant) repair that might occur from
bypassing the globus pallidus. In schizophrenia, a disconnection is thought to occur
between the dorsolateral prefrontal area and the anterior cingulate cortex (Benes
et al. 1993).

Medial and inferior frontal and superior temporal cortices in Fig. 2.10, along
with the amygdala, form a network of brain regions that implement computations
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relevant to social processes. Perceptual inputs to these social computations may arise
in part from regions in the fusiform gyrus and from the adjacent inferior occipital
gyrus that activate in response to faces. This social computational network has been
implicated in autism.

2.3.5 Neural Network Architecture

iSTART model (Grossberg and Seidman 2006) proposes a neural model which
explains how cognitive, emotional, timing and motor processes interact together,
involving brain regions like prefrontal and temporal cortex, amygdala, hippocam-
pus, and cerebellum, attempting to reproduce “autistic” symptoms. The iSTART
model based on Grossberg’s Adaptive Resonance Theory. According to this model,
under-aroused emotional depression in the amygdala, learning of hyper-specific
recognition categories in temporal and pre-frontal cortices, and breakdown of
attention-based and motor circuits in hippocampus and cerebellum. The model
proposes how particular types of imbalanced mechanisms in different parts of the
brain can generate “autistic symptoms” through brain-wide interactions.

Autistic people have vigilance (ability to maintain concentrated attention over
prolonged periods of time) fixed at such a high setting that their learned rep-
resentations are very concrete, hyper-sensitive and hyper-specific. While this is
an interesting and rather comprehensive attempt to build a theory that explains
many symptoms of autism, parameters such as vigilance are hard to connect to the
molecular level and physical processes in the brain.

Gustafsson described autism as deficient self-organization of feature map
(Gustafsson 1997; Gustafsson and Paplinski 2003). His model is based on
Kohonen’s (1995) self-organizing maps where excessive inhibition results in the
inadequate formation of cortical feature maps. He hypothesized that excessive
lateral inhibition, as a primary deficit, may prevent adequate feature maps from
forming. Courchesne and Allen (1997) explained that the parietal lobe and the
cerebellum are both involved in the physiology of autism with cerebellar modulation
of the use of attentional resources. It has been suggested that autism stems from
under-developed and highly specialized and focused cortical maps, without overlap
between different concepts. In this model, the initial amount of nerve-growth factor
is assumed to influence the map formation.

Björne and Balkenius (2005) proposed a computational model with three inter-
acting components for context sensitive reinforcement learning, context processing
and automation to autonomously learn a focus attention and a shift attention task.
The performance of the model is similar to that of normal children, and when a
single parameter is changed, the performance on the two tasks approaches that of
autistic children. To learn associations between stimuli and responses in a context
dependent way, the authors use an extension of the Q-learning algorithm (Watkins
and Dayan 1992). A ContextQ system learns associations between stimuli and
responses based on the reinforcement. The CONTEXT system controls in what

https://en.wikipedia.org/wiki/Attention#Attention
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Fig. 2.11 Overview of the reinforcement learning model (on the left) and neural network-based
implementation of the estimating function (on the right)

context each stimulus-response association should be used. The AUTOMATION
system learns to produce stimulus-triggered contextual shifts (Fig. 2.11). The
function of the context system is to integrate sensory input over time to create a code
for the current context (Balkenius 2000). Here, it operates as a working memory for
the last potential target that the system reacted to.

The function which assigns a value to each action in each states is approximated
via an artificial neural network with shunting inhibition from the context nodes ck to
the association between a state node si and an action node aj (Fig. 2.11 on the right).

Deuel (2002) proposed to represent autism as a common phenotype, charac-
terized and explainable by an early onset of dysfunction in a circuit that involves
cerebellar adaptive timing, the limbic and neocortical systems.

Overall, neural network models describe the features of meta-reasoning, and it
is hard to correlate them with the feature of object-level reasoning. Majority of
information is communicated in object-level, and only its specific parts is in meta-
level.

2.3.6 Neural Simulation of Attention Deficit Disorder

To shift attention, neurons need to desynchronize and then synchronize again. In
the language of dynamical systems this means that the trajectory of the system,
describing neural activity has to leave one attractor basin and jump to another basin.
However, neural dysfunctions may make this process difficult. One cause may be
due to the damage of leak ion channels that slow down the process of spontaneous
depolarization of neurons. Neurons stay in the same activity patterns for extended
time, leading to hyper-specific memories, problems with disengagement of atten-
tion, and a general lack of flexibility of changing brain states. Lack of frequent
changes of brain states in the developmental process will lead to under-connectivity.
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Fig. 2.12 Model of visual recognition (O’Reilly and Munakata 2000) based on Casanova (2007).
Two steps of visual recognition simulation: on the left the first object was recognized, on the right
after attention shifted to the second object

This is due to the fact that Hebbian learning mechanisms will not naturally increase
the strength of distal connections. Attractor dynamics of two models implemented
in the Emergent simulator has been studied to verify the attention hypothesis.

The first example is based on a model of visual recognition (Fig. 2.12), and it
involves:

• recognition of two objects presented in the visual field;
• information is first processed by the on-off cells in the retina and passed to the

thalamic lateral geniculate nuclei (LGN);
• from the LGN it is passed to the V1 and larger receptive fields of V2;
• the dorsal stream includes the V5/MT layers (Spat 1 and 2 in Fig. 2.12) that

help to localize where the object is in the visual field and through the feedback
connection helps to maintain the V2 and V1 activity focused on this object;

• the ventral stream includes V4/IT for object recognitions, and has connections
with the V5/MT region.

Spat1 has recurrent activations and inhibition, focusing on a single object. In
normal situations after a short time neurons desynchronize and synchronize on the
second object, and as a result attention is shifted and the second object recognized.
Damage to leak channels disables this process and the system cannot disengage
attention from the first object for a long time. It is interesting that leak channels may
also be damaged in the other direction letting large depolarizing current out, and
thus ma- king the system unstable, jumping from one object to the other. This is
characteristic of the attention deficit hyperactivity disorder (ADHD).

Thus, relatively simple low-level problem with properties of neurons may lead to
autism and ADHD. Considering the influence of such problems on the development,
a variety of symptoms may be explained.
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2.4 Game-Theoretic Approach

The precise cognitive dysfunctions that determine the heterogeneity at the heart
of this spectrum, however, remains unclear. Furthermore, it remains possible that
impairment in social interaction is not a fundamental deficit but a reflection of
deficits in distinct cognitive processes. To better understand heterogeneity within
autistic spectrum, Yoshida et al. (2010) employed a game-theoretic approach to
characterize unobservable computational processes implicit in social interactions.

Using a social hunting game with autistic adults, the authors found that a selec-
tive difficulty representing the level of strategic sophistication of others, namely
inferring others’ mindreading strategy, specifically predicts symptom severity.

In contrast, a reduced ability in iterative planning was predicted by overall
intellectual level. Our findings provide the first quantitative approach that can reveal
the underlying computational dysfunctions that generate the autistic “spectrum.”

The game success score was significantly higher for the CwA group than for the
control group, while there was no significant difference between the groups for both
verbal and strategic intelligence scores. Both the control and the autistic group had
a higher game score when they behaved more cooperatively, when the computer
agent was more sophisticated. The participants in the autistic group showed a larger
variety of behavior than the control participants.

To identify functional abnormalities in the computational processes involved in
the task, Yoshida et al. (2010) used the Theory of Mind model and the fixed strategy
model. The Theory of Mind model included two model parameters characterizing
the cognitive processing: one is the upper bound of sophistication, which defines the
capacity of strategic planning, and the other is a forgetting effect, which controls
how quickly a player responds to changes in the other’s sophistication, thereby
representing a measure of cognitive flexibility. For the fixed strategy model, as it
is assumed that players do not change their strategy, only the sophistication level is
estimated.

Bayesian model selection based on the log likelihoods showed that the Theory
of Mind model of CC with belief inference accounted for the behavior significantly
better than the fixed strategy model without belief inference. At the same time the
fixed strategy model explained individual behavior better for more than two-third of
CwA. CwA were guided to a significantly lower degree of belief inference than that
of the control participants. CwA also showed deficits in cognitive flexibility as they
tend to be tied to their past strategies during the social game rather than a capability
to flexibly change rules and strategies by paying attention the other’s new actions
(Sect. 6.4). Also the level of nested expressions of the mental world (you think that
I think that you think, etc.) for PwA participants was related to IQ scores. A study
using a “Beauty Contest” game has indicated an association between higher-level
reasoning in CC and higher intelligence scores (Coricelli and Nagel 2009). Highly
intelligent PwA behave cooperatively as if they make predictions over a longer time-
horizon. This suggests that the level of sophistication, a key component of higher-
level reasoning, can be inferred in more complex dynamic social exchanges.

http://dx.doi.org/10.1007/978-3-319-39972-0_6
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Bermudez (2005) claims that a mechanism of emotional sensitivity including
“social referencing” is a form of low-level mindreading that is required for proper
social understanding and social coordination without involving the attribution of
propositional attitudes. In game theory there are social interactions that are modeled
without assuming that the agents involved are engaged in explaining or predicting
each other’s behavior. In social situations that have the structure of the iterated
prisoner’s dilemma: “start out cooperating and then mirror your partner’s move
for each successive move” (Axelrod 1984). Applying this heuristic rule relies on
understanding the players’ moves such as cooperation and defection, based on the
information of what has happened in the last round. These are the patterns of social
interaction that are conducted on the basis of a heuristic strategy that involves
the results of previous interactions rather than their psychological flavor. To play
these kinds of games successfully, one does not need to reason about other players’
intents; one only have to coordinate our behavior with theirs.

2.5 Accounts of Autism

A number of psychological theories of autism have been proposed with varied
relevance to autistic reasoning and computational interpretation. We will look
at these theories from the computational perspective, analyzing which system
architecture might be causing the respective algorithmic limitation. Each account is
framed as a feature of information processing, which is explained to cause autistic
behavior deficits (Sect. 2.1). The competition between the accounts of autism is
grounded in how well the link

Reasoning; cognition & information processing ! behavior & skills

is established, how many features of autistic behavior it can explain (Fig. 2.13), how
mutually consistent is the explanation of the causal link, and how compatible is the
given account with other popular accounts of autism.

Some of the most popular ones are:

• the Theory-of-Mind (ToM) deficit theory (Leslie 1987). We devote a separate
chapter to it since it is mostly computationally feasible among other theories.

• the weak central coherence theory (Happe and Frith 2006)
• the executive function deficit theory (Russell 1997),
• joint attention, and
• the affective foundation theory (Hobson and Lee 1999).

One of the examples of autistic behavior caused by peculiar perception capabilities
is stereotypy (Fig. 2.14).
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Fig. 2.13 Causes of autistic
behavior

Fig. 2.14 Holding a palm
near the mouth is not caused
by social habits but stereotypy

2.5.1 Weak Central Coherence Account

(Frith and Happe’s 1994) weak central coherence theory of autism refers to an
abnormally weak tendency to bind local details into global percepts. This theory is
also built on the observation that CwA show certain supernormal abilities, including
hyper-sensitivity. PwA are good at things which can be done by attention to detail
while ignoring ‘the big picture’, particularly in some visual tasks. They show a lack
of susceptibility to some visual illusions (e.g. Muller-Lyer 1889). Furthermore, they
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perform very well on the hidden figures task. The theoretical basis of weak central
coherence is (Fodor 1983) theory of the modularity of mind.

Fodor postulated a central processing unit which processes the information
supplied by the modules in a modality-free manner. Fodor viewed analogy and
metaphor as the essential operations of the central processor. Weak central coher-
ence states that under the distributed architecture in CwA the central processor does
not fully perform its integrative function, resulting in the separate modules sharing
their own specific information with other modules. As additional support for this
account one may refer to the well-known inability of CwA to understand metaphor,
and also their failure to exploit analogies in problem solving.

O’Loughlin and Thagard (2000) analyse several tasks on which autistic people
are known to fail, such as the false belief task and the box task, and find that these
tasks have a common logical structure that is identical to that of the suppression
task (Fig. 2.15 This leads to a prediction for autistic people’s behavior on the
suppression task, which has been verified. This latter result is analyzed in terms of
the neural implementation, which then gives a chance to make a connection to the
genetics of autism. However, a structure of excitation and inhibition is fairly trivial
and obviously not expressive enough to reproduce logical reasoning in its general
form. Hence we believe that although such analysis is useful in understanding

Fig. 2.15 Connectionist model for Sallie-Anne task (O’Loughlin and Thagard 2000)
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Fig. 2.16 Getting lost in a number of stimuli of various natures

a probable mechanism of integrative function, it cannot systematically advance
our understanding of the reasoning capability of neither CwA nor neural-based
intelligent machines.

Weak central coherence in autism has been demonstrated in the context of
superior performance on visuo-motor tasks such as the Embedded Figures Test
(Jolliffe and Baron-Cohen 1997), the Wechsler Block Design subtest (Shah and Frith
1983), tasks of visual discrimination and visual search (Plaisted et al. 1998), as well
as impaired performance on more abstract tasks such as arranging sentences to form
a coherent context (Jolliffe and Baron-Cohen 2000). The general pattern is one of
superior segmentation of stimuli and attention to detail within these stimuli.

The week central coherence theory thus predicts that people with autism
spectrum conditions will perform best on the tasks and occupations with focus on
individual details (Fig. 2.16). At the same time, CwA are also mostly driven by
the problems involving tons of details. Also, the Emphasizing-Systemizing theory
predicts that people with autism spectrum conditions will be most driven by tasks
and occupations that involve analysis of rule-based systems instead of generalization
from data.

To a great extent, these predictions overlap: systemizing demands excellent
attention to detail to isolate parameters that may then be tested individually for their
effects on the system’s output. From the ML point, CwA have decent skills to apply
individual learning systems but are not capable of integrating them, applying, for
example, a family of bagging and boosting algorithms (Zhi-Hua 2012).

However, differences in theoretical predictions arise in complex multimodal
systems where a manipulation of inputs produces widespread effects on outputs,
or when outputs vary with complex interactions among widely separated inputs.
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The central coherence theory, taken by itself, predicts that PwA will be unable
to perceive such stimuli because tackling them requires a global view of the
interrelations between large sets of inputs and outputs. In other words, this is the
engineering ability to combine a meta-detector from individual detectors, meta-
recognizer from partial, individual recognition systems.

According to central coherence, CwA are expected to be capable of dealing
with simple systems that can be understood in terms of relations between one or a
few inputs and outputs. Conversely the Empathizing-Systemizing theory (Sect. 3.2),
taken by itself, predicts that (relative to their mental age) people with autism will be
able to learn how any sort of regular system works, regardless of its complexity, so
long as it can be described by familiar and formalized rules.

2.5.2 Executive Function Deficit Account

Russell (1997) executive function deficit account focuses on the data that CwA often
exhibit severe perseveration. They go on carrying out some routine when it is no
longer appropriate. CwA show great difficulty in adjusting their action to a context
(Fig. 2.17).

Fig. 2.17 CwA experience difficulties switching tasks with different movement and perception
modes

http://dx.doi.org/10.1007/978-3-319-39972-0_3
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They experience problems in switching tasks when the context calls for a switch,
but it is not governed by any explicit rule. This perseveration gives rise to many of
the symptoms of autism: obsessiveness, insensitivity to context, inappropriateness
of behavior and literalness of carrying out instructions.

Task-switching is the brief of executive function, a process (or processes)
responsible for high-level action control such as planning, initiation, co-ordination,
inhibition and control of action sequences. Executive Function deficit also exists in
the mental space, maintaining a goal, and pursuing it in the real world under possibly
adverse circumstances. In this respect Executive Function deficit is correlated with
extreme behavioral rigidity of CwA.

The origin of the concept of “Executive Function” deficit was heavily influenced
by the analysis of neuropsychological patients. This has the important consequence
that it is often most discussed in terms of its malfunctioning, and it is unclear how
the proper executive function performs in humans and machines.

Situation calculus, AI theories of planning are expected to be relevant since
they provide analyses of what is involved in planning action. On the contrary, the
psychological study of normal planning of CC is mainly explored in the problem
solving studies. Note that although CwA lack spontaneity, they may be able to carry
out tasks involving fantasy play when instructed, as is indeed necessary if they are
to engage with diagnostic tests such as the false belief task at all.

CwA’s problem solving in turn has been most extensively studied in terms of
the level of expertise, analyzing the difference between expert and novice problem
solving. When discussing cognitive analyses of the malfunctioning of reasoning
about mental states, it is natural that much clinical literature is oriented toward
giving patients a unique categorization. A popular opinion of the contemporary
psychiatry is that the existence of clusters of such categories is not always
transparent. PwA are substantially more depressed, as measured by the relevant
clinical diagnosis instruments, than the controls are.

It is unclear if executive dysfunction observed in autism is the same as the
executive dysfunction observed in depression. The latter can be referred to as meta-
executive dysfunction since depression affects reasoning about reasoning, not the
object-level reasoning patterns like autism does. It is unclear if one could fractionate
autistic problems, could the executive function subset be due to the accompanying
depression. Studies (Ozonoff and Strayer 2001) challenge the view that PwA
perform the Tower problems, WCST and similar complex problem solving tasks
poorly because of a deficiency in working memory itself. Alternative theories have
proposed that individuals with autism perform poorly on executive function tasks
because of primary or inherent deficiencies in conceptual reasoning and planning
abilities (Frith 1989; Frith and Happe 1994; Just et al. 2004). These models, the
central coherence, complex information processing and underconnectivity models
(Sect. 2.3) were proposed on the basis of the observation of a spectrum of deficits
in higher order cognitive abilities and intact basic abilities in the same domains.
In more detailed studies of individual cognitive domains, a relationship between
increasing information processing demands and the emergence of deficits has been
shown.
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Following along these lines, we observe that successfully applying simple
axioms for reasoning about mental states, CwA fail to apply more complex ones.
At the same time one cannot say that ALL axioms in a given domain are absent.
A reasoning system can possess an executive processing unit in the form of meta-
reasoning, or reasoning about reasoning process that helps to control it. However,
it is hard to imagine how a deep learning neural network system has a central
coherence or executive function capability. Given a training set, it can be trained
to solve a given problem, and it needs to be re-trained to solve another problem.
An ensemble of deep learning systems would need an executive processor, but
it has to have the same layered architecture so it is hard to imagine how it can
implement the executive, meta-reasoning functionality that is totally different from
multidimensional optimization functionality implemented by layered deep learning
network.

Over last few decades, the popularity of neural networks was going up and down.
After being a popular trend in the 1980s, they were dismissed as bunk by the AI
establishment and the idea of “deep learning” was seen as scientific lunacy. At the
time of writing of this book the neural network approach became popular again in
the form of deep learning. Deep learning has become seen as technology’s next big
thing, sparking bidding wars among companies like Google to acquire companies
researching ways to use deep learning. Deep learning applications are already
working in major search engines including the image search. These algorithms
allow users to image search terms like “handshake”, get Smart Replies to their
Gmail accounts and rely on machine translation. Deep learning is expected to be
applied to other major problems like climate science, energy conservation, and in
genomics.

Human brain has 1000-trillion synapses (10 to the power of 15). The largest
computers have about a billion synapses, a million times less than brain. Deep
learning scientist believe that expanding computer power and the size of training sets
they can achieve the performance of the human brain. However, the observation of
autistic brain does not support this belief: a huge sufficiently uniform neural network
such as autistic brain is unable to learn from experience even simplest rules, such
as that other people might have intent. It means that a uniform layered topology of
a neural network, which includes fully functional neurons, cannot learn even very
simple facts such as a basic binary relation between a subject and a mental object.
Therefore, the claims about a connection between the deep neural network and the
brain are premature.

Due to peculiar deviation in active learning process, as we will show in Sect. 7.3,
people with autism spectrum conditions show unusually strong repetitive behaviors,
a desire for routines, and a need for sameness.

The executive dysfunction theory also states that autism involves a form of
frontal lobe pathology leading to perseveration or inability to shift focus. Although
evidence for such executive deficits does exist (Pennington and Ozonoff 1996;
Russell 1997), the high variance in measures of executive function in autism
spectrum conditions, along with the lack of correlation between measures of
executive function and measures of reciprocal social interaction and repetitive

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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behaviors (Joseph and Tager-Flusberg 2004), suggests that executive dysfunction
is unlikely to be a core feature of autism spectrum conditions.

The executive account has also traditionally ignored the content of repetitive
behaviors. There are different ways repetitive behavior is explained. We demonstrate
it by the deficiency in autistic active learning system, as a result of autistic cognitive
development. On the contrary, Empathizing-Systemizing theory draws attention to
the fact that much repetitive behavior involves the child’s obsessional or strong
interests, the foci of which cluster in the domain of strongly regular systems (Baron-
Cohen and Wheelwright 1999). Rather than primary executive dysfunction, these
behaviors may reflect an unusually strong interest in systems. Our explanation of
this is that CwA have such strong interest in behavior patterns because they are
unable to recognize less repetitive ones, not because of superior analytical skills.

Whilst some forms of repetitive behavior in autism, such as “stereotypies” (e.g.,
twiddling the fingers rapidly in peripheral vision) may be due to executive deficits,
the executive account has traditionally ignored the content of “repetitive behavior”.

The current account draws attention to the fact that much repetitive behavior
involves the child’s “obsessional” or strong interests with mechanical systems
(such as light switches or water faucets) or other systems that can be understood
in physical-causal terms. Rather than these behaviors being a sign of executive
dysfunction, these may reflect the child’s intact or even superior development of
their folk physics. The child’s obsession with machines and systems, and what is
often described as their “need for sameness” in attempting to hold the environment
constant, might be signs of the child as a superior folk-physicist: conducting mini-
experiments in his or her surroundings, in an attempt to identify physical-causal
principles underlying events.

A recent study of obsessions suggests that these are not random with respect
to content (which would be predicted by the content-free executive dysfunction
theory), but that these tests are clustered in the domain of folk physics (Baron-Cohen
and Wheelwright 1999).

2.5.3 Autistic Memory

In the case of verbal linguistic tasks, increasing grammatical complexity of sen-
tences leads to the emergence of deficits in high functioning autistic individuals,
as did the transition from syntax to discourse (words to sentences to stories). In a
study of memory using an extensive battery of tests, memory for simple information
was demonstrated to be intact, documenting the preservation of basic associative
memory processes (Minshew and Goldstein 2001). However, as the complexity of
the task is getting higher, autistic deficits became more and more visible, as the use
of contextual structure and organizational strategies to support memory diminishes
(Fig. 2.18).
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Fig. 2.18 The architecture of consciousness and working memory

An interesting discovery in autism research is that having verbal working mem-
ory intact, CwA’ s spatial working memory may possibly be corrupted. Ozonoff
and Strayer (2001) used a spatial memory-span task (recall of the location of three
to five geometric shapes on a computer screen) and a box search task (participants
had to search for objects hidden behind colored boxes using a method that required
holding the color of the boxes in working memory during the search). Significant
differences between CwA and CC were not found for either of these two tasks.
Other measures of spatial working memory such as eye movement studies have
also provided different results. The delayed oculomotor response task (memory-
guided saccade) has been used as a measure of spatial working memory since the
development of the technique with non-human primates by (Kojima and Goldman-
Rakic 1982). In this procedure, the participant fixates on a central point, a peripheral
target is presented and then extinguished, and the task is to make an eye movement
to the remembered location of the target following a delay. Minshew et al. (1999)
showed that CwA did significantly less well on this task than did CC with increased
rates of response suppression errors and impaired precision in reaching the target.
The saccades of CwA were very close to the target location but did not achieve the
precise location.

Williams et al. (2005) attempted to address the inconsistent literature regarding
verbal working memory and spatial working memory in CwA by using tasks that
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assess the status of working memory components without involvement of planning
or reasoning tasks. The authors also verified the hypothesized intactness of verbal
working memory and impairment of spatial working memory by assessing these
different abilities in the same individuals with high-functioning autism.

If the autism groups do more poorly than controls on the spatial tasks but not on
the verbal tasks, it may be because the spatial tasks are more difficult and, therefore,
more sensitive to cognitive deficits associated with autism. A traditional method
of evaluating task difficulty is to evaluate the degree of association between task
performance and general intelligence (Full Scale IQ).

The children, adolescents and adults with autism performed at similar levels
relative to the cognitive and age-matched controls on the working memory tasks that
involved the articulatory loop and performed poorer than the controls on the tasks
that involved the visuospatial sketchpad. These findings demonstrate a dissociation
between verbal and spatial working memory in the same individuals with autism.
Intact verbal working memory and impaired spatial working memory have been
demonstrated in multiple studies.

Williams et al. (2005) found no deficit in verbal working memory or the
articulatory loop in high-functioning PwA. They exhibited difficulties in spatial
working memory or the visuo-spatial sketchpad. These data do not support spatial
or verbal working memory impairments as the core deficits underlying problem
solving and planning impairments in PwA but confirm the existence of inherent
dysfunctions in problem solving itself as the source of difficulty on tasks such as the
Tower of London/Hanoi.

2.5.4 Account of Complex Information Processing Failure

It is now generally understood that the behavioral syndrome of autism is the
result of multiple primary deficits and that these deficits involve the processing of
information and are the result of the underdevelopment of the neural systems of the
forebrain and not regional dysfunction (Minshew and Goldstein 1998). Although
five to ten percent of CwA are the result of other diseases, the majority of cases are
thought to be the result of about five abnormal genes coding for or regulating brain
development (Rutter et al. 1994).

For humans and machines, complex information processing is a conceptual
construct, not a specific ability. It is a term for a class of abilities that place
high computational demands on the brain or a processing unit. Deficits in specific
abilities such as theory of mind and executive function that are commonly discussed
in connection with autism all fall under this general construct (Sutton et al. 1999).

The value of this conceptual construct is that it emphasizes the need to evaluate
tasks autistic individuals cannot do in terms of the computational demands on
the brain. This approach provides guidelines for modifying the demands of tasks
that individuals are unable to do. However, the scientific value is that this term is
also used in the neurophysiology to characterize delayed cognitive potentials. This
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account also encourages thinking about brain algorithms in terms of developmental
processes in the brain involved in the emergence of the intricate circuitry of the
forebrain. The complex information processing account makes it easy to relate
findings across several levels of the pathophysiology of autism. Such links are
critical if the cause of autism is to be understood.

According to the current account, autism is a selective disorder of complex
information processing abilities with intact simple information processing abilities.
The common denominator of deficits in autism is the high demands placed on
information processing or computation by the brain. The complex information pro-
cessing model explains why these particular symptoms together form a syndrome
and the failure of IQ scores. This model also predicts the common co-occurrence of
mental retardation in autism, and the difference between autism and general mental
retardation. The validity of this characterization of cognitive functioning in autism
is supported by its reciprocal relationship with the neuropsychologic profile for
the simple information processing disease. The presence of this same dissociation
between deficient complex and intact simple abilities in the motor domain further
confirms the validity of this construct. The relationship of deficits in autism to their
computational demands on the brain is helpful in comprehension and analysis of
behavioral and academic difficulties of CwA.

The human mind’s activity of taking in, storing, and using information is shown
in Fig. 2.19. In early models, input flows into the sensory registers (eyes, ears)
and then information proceeds to short-term memory. Short-term memory holds
information for only a moment, and then it combines it with information from
the long-term memory. With effort, information moves into long-term storage. The
short-term memory generates responses (output).

Information is encoded in sensory memory; perception determines what will be
held in working memory. Working memory manages the flow of information and
integrates new information with knowledge from long-term memory. Connected
information that is thoroughly processed can become part of long-term memory.
When that information is activated it moves to working memory. Each part of
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Fig. 2.19 From sensory to long-term memory
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Fig. 2.20 A difference between the information processing pathways of extraverts and introverts

the system interacts with the others to guide perception; represent, organize and
interpret information; apply and modify propositions, concepts, images, schemas,
and strategies; construct knowledge; and solve problems (Fig. 2.19). Extrovert
individuals process information via a different pathway to introvert individuals,
including CwA (Fig. 2.20). Acetylcholine pathway of introverts is longer than the
one of extraverts.

2.5.5 Affective Foundation Account

Greenspan (1997) attempts to derive ToM from a fundamental ontogenetic pro-
cesses – in particular from the affective foundations of interpersonal communi-
cation. Humans uniquely control shared attention, especially by gaze (Fig. 2.21).
We diagnose where others’ attention is focused from information about where they
are looking. ‘Intersubjectivity’ is established through mutual control of attention.
Just as Piaget saw the child’s sensorimotor activity as achieving the child’s
mastery of where itself left off and the world began, so Hobson sees the child’s
understanding of itself as a social being separated from others being achieved
through joint attentional activity. The child must learn that the other can have
different representations, and different wants and values. Hobson proposes that it is
autists’ valuation of these experiences of intersubjectivity which is abnormal. If the
child does not experience the achievement of intersubjectivity as rewarding (or even
experiences it as aversive), then any cognitive developments founded on it will not
develop normally. Cognitive symptoms of autism are, on this theory, consequences
of this valuation.

Hobson et al. (2013) followed pretend play among young children with autism.
Age- and language-matched children with autism, autism spectrum disorder, and
developmental disorders without autism were administered for the Test of Pretend
Play (Lewis and Boucher 1997), with an additional rating of ‘playful pretense’.
As predicted, children with autism showed less playful pretend than participants
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Fig. 2.21 CC’s attention to a foot being grabbed by someone by a CC

with developmental disorders who did not have autism. Across the groups, playful
pretense was correlated with individual differences in communication and social
interaction, even when scores on the pretend play test were taken into account.
Limitations in creative, playful pretend among children with autism relate to their
restricted interpersonal communication and engagement.

In The Growth of the Mind (1997), Greenspan showed how emotions create,
organize, and orchestrate many of the mind’s most important functions, including
intelligence and emotional health. He further showed that intellect, academic
abilities, sense of self, consciousness, and morality have common origins in our
earliest and ongoing emotional experiences and that emotions are the architects of a
vast array of cognitive operations throughout the life span.

During the formative years there is a sensitive interaction between genetically –
set abilities and environmental experience, which we formalize via active learning
framework in Sect. 7.3. Experience appears to adapt the infant’s biology to his or
her environment (Hofer 1995). In this process, however, not all experiences are the
same. Children seem to require certain types of experiences involving a series of
specific types of emotional interactions geared to their particular developmental
needs.

The difficulty in connecting affect to motor planning and symbols discussed in
the last section is only one part of a larger set of transformations of affect that depend
on specific types of emotional interactions. To more fully understand the importance
of affect in autism, and the development of intellectual and social skills, it may prove
useful to explore a number of affective transformations during the first 3 years of
life.

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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In the first year, affects become more complex. There is a transition from simple
affective states like hunger and arousal to, by 8 months, complex affect states like
surprise, fear and caution, joy and happiness, and enthusiasm and curiosity. As the
child progresses, affects become more differentiated. Eventually, affects organize
reciprocal interactions and problem-solving. Then they become symbolized. Even-
tually, it becomes possible to reflect on them. The transformation procedure can be
described in terms of six core early organizations that give the organism its desire
to act and underlie intelligence and emotional health (Greenspan 1997).

First, to attend to the outside world, and eventually to have joint attention or
shared attention, requires affective interest in the world outside one’s own body—in
sights, sounds, and movements. Obviously, parents who provide pleasurable sights
and sounds to a new baby will entice the baby into focusing on the world.

The affect diathesis account focuses on the inability to connect affect or
intent to motor planning capacities and emerging symbols capacities for empathy,
psychological mindedness, abstract thinking, social problem-solving, functional
language, and affective reciprocity all stem from the infant’s ability to connect affect
or intent to motor planning capacities and emerging symbols (Greenspan 1992).

Relative deficits in this core capacity leads to problems in higher-level emotional
and intellectual processes. The core psychological deficit in autism may, therefore,
involve an inability to connect affect (i.e., intent) to motor planning and sequencing
capacities and symbol formation.

Consider a 14-month-old child who takes his father by the hand and pulls him
to the toy area, points to the shelf, and motions for a toy. As the father picks him
up, and he reaches for and gets the toy, he nods, smiles, and bubbles with pleasure.
For this complex, problem-solving social interaction to occur, the infant needs to
have an emotional desire or wish (i.e., intent or affective interest) that indicates
what he wants. The infant then needs to connect his desire or affective interest
to an action plan (i.e., a plan to get his toy). The direction-giving affects and the
action plan together enable the child to create a pattern of meaningful, social,
problem-solving interactions. Without this connection between affect and action
plans, complex interactive problem-solving patterns are not possible. Action plans
without affective direction or meaning tend to become repetitive (perseverative),
aimless, or self-stimulatory, which is what is observed when there is a deficit in this
core capacity.

2.5.6 Thinking in Pictures Account of Autism

Kunda et al. (2010) analyze the hypothesis that some individuals on the autism spec-
trum may use visual mental representations and processes to perform certain tasks
that typically developing individuals perform verbally. They present a framework
for interpreting empirical evidence related to this “Thinking in Pictures” hypothesis
and then provide comprehensive reviews of data from several different cognitive
tasks, including the n-back task, serial recall, dual task studies, Raven’s Progressive
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Matrices, semantic processing, false belief tasks, visual search and attention, spatial
recall, and visual recall.

In her well-known autobiographical book “Thinking in Pictures”, Temple
Grandin (2006) describes how her visual thinking style benefits her work in
engineering design but also creates difficulties in understanding abstract concepts.
Assuming that CC are able to use both visual and verbal mental representations,
Kunda et al. (2010) build upon the observation that CwA prefer the former over that
latter.

For an abstract hardware image understanding system, how can one determine
whether it operates with visual patterns directly (being a pictorial-level representa-
tion system) or use a logic forms layer where information extracted from an image is
represented “verbally”? Usually, the latter system is much more flexible and robust
to image deviations. For a simpler object identification task, there are two classes of
approaches:

1. Given a database of images of candidate objects, compare its records with the
given image within the sliding window till we get a high value of pixel similarity.
In case of high similarity of a database image of a given object with a certain area
of the image being recognize, we conclude about the respective recognize object.
This kind of system is close to Google Image Search, when given an image, the
system attempts to find a similar one, without deep interpretation.

2. Given an ontology of features of objects to be identified, we first ascend from the
level of pixels to the level of presentation of these features as logic forms, and
then try to satisfy the “verbal” definitions of these objects. This approach is much
less sensitive to noise in the image, to how an object can be viewed, illumination
conditions etc. Also, this approach is much more efficient since a rule system
and an ontology is much more compact than a database of sample images. Such
systems are employed in abroad range of applications from medical to driver-less
cars.

Hence from the engineering standpoint, a verbal system is much for advantageous
than a pictorial, non-verbal, operating with images directly without an upper
abstraction layer.

Evidence from neuropsychology has suggested that visual and verbal semantic
memory are somewhat dissociated, in that brain lesions can selectively impair the
use of one or the other (Hart and Gordon 1992).

In the n-back task (Sect. 2.2, Kirchner 1958), a subject is presented with a
sequence of stimuli and asked whether the current stimulus matches the one shown n
steps ago. The variable n can take the value of one (respond “yes” to any succession
of two identical stimuli), two (respond “yes” to any stimulus matching the one
presented two steps back), and so on. Stimuli can vary as to their content and
presentation, such as letters presented visually or auditorily, pictures, etc.

For CC the n-back task is thought to recruit verbal rehearsal processes in working
memory (i.e. phonological verbal representations), among other executive resources
(Smith and Jonides 1999). Recent fMRI studies have shown that, while behavioral
measures on the n-back task may be similar, there can be significant differences
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Fig. 2.22 Cognitive strengths in autism

in patterns of brain activation between CwA and CC. In one study using stimuli
of visually presented letters, the autism group showed less brain activation than
controls in left prefrontal and parietal regions associated with verbal processing and
greater activation in right hemisphere and posterior regions associated with visual
processing (Koshino et al. 2005). In another study using stimuli of photographs of
faces, a similar decrease in left prefrontal activation was found in the autism group
(Koshino et al. 2008). These studies suggest that individuals with autism may be
using a visual strategy for the n-back task, whereas controls use at least a partially
verbal strategy.

Visual strength in autism is depicted in Fig. 2.22. On the top, left to right:
Block Design part of the Wechsler test of intelligence, Locating embedded figures,
copying impossible figures. On the bottom: Identifying target size in Ebbinghaus
illusion, Finding the odd-man-out in cluttered displays whether the target is defined
by a single feature or a conjunction of features, tolerating higher levels of noise in
determining an object orientation.

Weak Central Coherence account hypothesizes that individuals with autism have
a limited ability to integrate detail-level information into higher-level meanings, or
are at least biased towards local instead of global processing (Happe and Frith 2006).
This trait is presumed to account for some of the stereotyped patterns of behaviors
and interests in individuals with autism. These observations can also be explained
under the Thinking in Pictures hypothesis by enhanced visual attentional strategies
that could arise from a bias towards pictorial representations. Other evidence for
Weak Central Coherence often includes verbal tests, such as deficits in homograph
pronunciation in sentence contexts (as cited in Happe and Frith 2006). These tests,
while measuring local, word-level versus higher-order, sentence-level processing,
can also be interpreted as tests of verbal reasoning skills, which would be impaired
under the Thinking in Pictures account.
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2.5.7 Joint Attention Family of Accounts

Joint attention, or coordinated attention between social partners to share interest
in entities, objects or events, is an essential PwA deficit. Reduced joint attention
in infancy is correlated with an autism diagnosis. At the same time a range in
joint attention deficits among PwA predict development across a range of cognitive
domains. Joint attention includes two types of behaviors, initiation of joint attention
and response to it, which may exhibit independent but related development steps
and associations with other domains. Communities of default software agents do
not have joint attention and have to be coded explicitly to be capable of perceive
stimuli in a coordinated manner. Agents require an interaction protocol or a meta-
agent to control the cognition efforts and obtain the most reliable results; it is hard
to imagine if the agents can derive such protocol as learning results.

According to social-cognitive theory of joint attention, it is yielded by under-
standing of others’ intentions. At the same time, according to the parallel and
distributed processing model of joint attention, it develops with increasing represen-
tational skills. The evidence that joint attention deficits are caused by face-to-face
difficulties is rather weak. This evidence is supported by associations between joint
attention and developmental levels, which backs up the parallel and distributed
processing rather than the social-cognitive model.

There is a popular opinion that initiation of joint attention is more of a core
difficulty in autism than response to joint attention, since it may be more consistently
impaired in the course of life of a PwA. However, when thoroughly measured, a
response to joint attention may also be impaired across development. The evidence
that starting of joint attention is more of a core deficit than responding to it is rather
weak.

Joint attention is a pivotal skill that novices can use to acquire information from
others – it is related to subsequent development across a range of domains for CC
and CwA. Individual differences in joint attention among people on the spectrum
are predictive of adaptive skills, symptoms, social functioning, linguistic skills and
cognitive development.

An associations between early joint attention and subsequent development are
often considered as evidence for the social-cognitive theory of joint attention where
the development of joint attention from simpler social behaviors (such as face-to-
face engagement) reflects an emerging understanding of others as intentional agents
that in turn initiates a subsequent symbolic development (Fig. 2.23).

Alternatively, rather than arising from and being defined by an understanding of
others’ mental states, joint attention may not initially reflect social understanding but
may lead to social knowledge (Fig. 2.24, Gillespie-Lynch 2013). According to the
parallel and distributed processing model of joint attention, it arises from an increas-
ing ability to integrate information about oneself, another and the conjunction of the
self and other in relation to an external object (triadic relations). The key distinction
between the two models is the relative importance of understanding another person’s
mind versus the importance of practice representing triadic relationships.
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Fig. 2.23 The child turns to attend to the object because he realizes that the adult has communica-
tive intent

Fig. 2.24 Under parallel and distributed processing model of joint attention, the child practices
representing triadic relations by engaging in joint attention

Passing a ball, a human involves a triadic relation between herself and her intent
to have a peer grab the ball, the intent of the ball receiver and the ball itself
(Fig. 2.25). Learning triadic relation can be a substitute for learning the actual
mental world if there is a difficulty understanding the latter.

2.5.8 From Intent to Symbolic Representation

The brain can operate as an analogue or symbolic solver. Literature on brain research
does not explicitly differentiate between these two classes of solvers that makes
the discussion not as concise as desired. We will now define these classes of
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Fig. 2.25 Triadic relation
between two persons and the
ball

solvers to better explain what are the symbolic operations in the brain. To control
the movement, an analogue system needs to solve a certain equation, and it is
implemented as a neural subsystem which is described by this equation, plus a
measurement component which links the internal analogue solver with external
sensors and control components.

Conversely, a symbolic solver has symbols for external objects which it compre-
hends and controls, and also symbols for relations between these objects. To make
a control decision, the internal solver manipulates these symbols to arrange them in
a position that can be interpreted as a control scenario.

As the ability to form symbols emerges, a child needs to connect her inner affects
(intent) to symbols to create meaningful ideas, such as those involved in functional
language, imagination, and creative and logical thought. The meaningful use of
symbols usually emerges from earlier and continuing meaningful (affect-mediated)
problem-solving interactions that enable a toddler to understand the patterns in
her world and eventually use symbols to convey these patterns in thought and
dialog.

Without affective connections, symbols like action plans are used in a repetitive
(perseverative) manner (e.g., scripting, echolalia). The capacity to connect affect
to action plans and symbols is likely part of a larger transformation of affect. The
infant goes from global and/or catastrophic affective patterns (in the early months of
life) to reciprocal ones. The capacity for engaging in a continuous flow of reciprocal
affective interactions enables the child to modulate mood and behavior, functional
preverbal and verbal communication, and thinking.

It also enables more flexible scanning of the environment because the child gets
feedback from what he sees and, based on that feedback, explores further. There
is, therefore, more integrated visual-spatial and motor functioning because intense
global affects push for discharge and vigilant or overly focused or highly distractible
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Fig. 2.26 Trying to attract
attention

visual-motor patterns, whereas long chains of reciprocal interaction support back-
and-forth exploration of the environment and, therefore, flexible, broad, integrated
perceptual patterns.

In facilitating back-and-forth interaction with the environment, the capacity
for reciprocal interaction also facilitates associative learning. Associative learning
(building up a reservoir of related experiences, thoughts, feelings, and behaviors
which give range and depth to one’s personality, inner life, and adaptive responses)
is necessary for healthy mental growth. Its absence leads to rigid, mechanical
feelings, thinking, and behavior patterns, as are often seen in CwA (Fig. 2.26).

Processing deficit occurs early in life, it can undermine CwA capability to
engage in expectable learning interactions essential for many critical emotional and
cognitive skills. For example, CwA may have more difficulty causing usual expected
interactions from his parents. CwA may perplex, confuse, frustrate, and undermine
purposeful, interactive communication with even very competent parents. Without
appropriate explicit introduction of the rules of interaction, he will be unable to
either comprehend these rules of complex social interactions himself or to develop
a sense of himself. These may include implicit social functions and social “rules,”
and developing friendships and a sense of bond with his peers, which are learned
mostly between the age of 12 and 24 months (Emde et al. 1991). By the time CwA
with processing difficulties officially diagnosed, his challenging interaction patterns
with his peers have already excluded him from important learning sessions and may
have amplified his difficulties. The loss of engagement and intentional, interactive
relatedness to key caregivers may cause CwA to withdraw more idiosyncratically
into his own world. CwA then becomes even more aimless and/or repetitive. What
later looks like a primary biological deficit may, therefore, be part of a dynamic
process through which the child’s lack of affective reciprocal interactions has
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intensified specific, early, biologically-based processing problems and derailed the
learning of critical social and intellectual skills.

2.5.9 Steps in the Normal Development

An early and continuing component of shared attention involves attention to the
world outside of one’s own body with rhythmic, affectively-mediated motor patterns
of perception. For example, in the early months of life, babies can be observed
to move their arms and legs in rhythm to their mother’s voices (Condon and
Sander 1974; Condon 1975). Soon children begin integrating what they hear and
see (Sect. 7.3). By 4–5 months, one can readily observe synchronous movement in
rhythm with mother’s affective communication via her voice, facial expressions, or
body movements. As development proceeds, reciprocal gestural, vocal, and verbal
communication generally occurs in an interactive rhythm. A consequence of this
may be the observation that it’s harder to remember or understand verbal phrases
presented in a monotone than in an affective rhythm.

The second functional developmental capacity is engagement. For an infant to
engage with a caregiver requires joy and pleasure in that relationship. When that’s
not present, children can withdraw and become self-absorbed. For children who
have processing problems, it may be much harder to pull them into that joyful
relationship.

(Greenspan 2001) observed that most children can be pulled into various degrees
of relating through therapeutic work that works with processing differences and
relationships of CwA at the same time. Engagement and relating appears to be a
very flexible capacity. While language and certain cognitive functions may improve
slowly for some children, the capacity for warmth and relatedness seems to progress
more readily.

The third functional developmental capacity is two-way purposeful communica-
tion. Two-way communication and affective reciprocity obviously requires affect
to provide the “intent.” When an infant reaches for his daddy to take the rattle off
his head or hand it back to him, or gets into a back-and-forth smiling game, one
clearly sees affect (intent) guiding the interaction (i.e., the infant wants that rattle).
According to (Greenspan 2001), Piaget thought that means-ends relationships
occurred at 9 months with motor behavior (i.e., an infant reaching and pulling a
string to ring a bell).

The baby’s affective probe occurs much earlier than the motor probe. Causal
affective behavior occurs earlier than causal large muscle motor behavior. First we
see a smile causing a smile, a frown getting a frown. Later on, we see the baby reach
for and give back objects. At this stage as well, the affect diathesis is occurring, now
transforming relating into two-way, affective communication (rather than just joyful
interest in the caregiver).

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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The fourth level of transformation occurs between 10 months and 18 months. It
involves the development of a range of new capacities, all related to the toddler’s
ability to engage in longer sequences of affective reciprocal interactions with clear
intent or problem-solving goals and the ability to perceive and interact in these larger
patterns. This transformation enables the toddler to form a more integrated sense of
self, integrate affective polarities, social problem-solve, and broaden visual-spatial
and auditory processing abilities.

In this fourth stage, the child is also beginning to integrate affective polarities.
Early on, infants tend to have extreme affect states—all happy or gleeful or all sad—
but by 18–19 months we see children begin to shift affect states more readily and
actually integrate affect states such as happiness and sadness, anger and closeness.

They can be angry and then seem to want forgiveness and make up. When playing
with a 13-month-old child, it feels like if he were angry and had a gun, he very well
might pull the trigger. With the 18-month-old, it feels like he integrates his caring
and anger. He might look mad and feel connected and warm at the same time. One
can often feel the quality of these affect states when playing with infants and toddlers
at different ages.

At the fifth level, transformations involve the affect system investing ideas. For
example, in pretend play, affects or desires drive the theme (dolls hugging or kissing)
as well as functional language (“I’m hungry,” “I’m angry,” “Give me that.” “Look!
I want to show you something.”). Functional language, whether it’s on a need basis
(“Give me juice.”), or at a collaborative “show you this or that,” or sharing opinions
“I didn’t like that” basis, is very different from simply labeling objects or pictures.

Here is also where IQ tests fall down. IQ tests do not differentiate well enough
between the different uses of ideas and language, such as between pragmatic
language or creative and abstract thinking versus a simple using language to label
objects or for rote, memory-based problems.

At the sixth level of transformation, a child builds bridges between affectively
meaningful ideas. Establishing reality-testing, a symbolic sense of self, and moving
back and forth between a fantasy to reality depends on reaching this next level. For
example, critical to establishing reality-testing (which is the basis for later abstract
thinking) is an affective “me” intending to do something with an affective “other.”

There has to be an interaction involving affect between the “me” and the “other”
to establish a psychological boundary (i.e., an affective sense of what’s “me” and an
affective sense of what’s “outside me”). That boundary doesn’t come out of reading
books or out of doing puzzles. It comes from interactions involving the exchange of
affective gestures and symbols. It comes out of interactions such as “I want this.”
“No, you can’t have it,” or “Yes, you can.” In addition, these interactions must be
part of a continuous flow of back-and-forth affective gestures. Islands of affective
interactions followed by self-absorption leads to an “in and out” affective probe
or rhythm with the external world (reality). A stable sense of reality requires a
continuous interactive relationship to the significant “others” in our lives. Abstract
and inferential thinking grows from a solid reality boundary.
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2.5.10 Accounts of Autism and Corporate Environment

Having compared CwA with controls, we observed a number of ways the deficiency
of the former can be described and represented as a series of models. A control child
have an ability to execute well each of these models. Is it true for a community of
agents (a multiagent system, an organization, a company) each of which possesses
ToM, proper executive function, proper central coherence, and other reasoning
capabilities? The answer is “no”. With a certain motivational structure of agents,
which can be referred to as “bureaucratic”, a multiagent system of capable agents
evolves into an entity whose behavior is rather abnormal. In this section we consider
various accounts of autism in the context of multiagent systems and demonstrate that
multiagent systems are frequently closer to CwA than to CC in terms of the accounts
of this chapter.

Once capable in individual capacity agents (human and possible automated) are
functioning in the framework of an organization (a company), their motivational and
knowledge structure is such that as an overall system they frequently become totally
unintelligent (from the standpoint of an external observer, a user of this company).
This is because the agents (of a company customer support) have conflicting goals:
to impress the user that they want to satisfy his requests on one hand, and to save
company’s resources on the other hand. At the same time, the customer support
agents have their personal goals to save their own resources (Sect. 4.1.2). Having
these conflicting goals, the multiagent system impresses their users and peers as the
one with corrupt reasoning patterns. We will share the examples from the personal
experience of the author.

A financial company providing online Tax services, H&R Block assists its
customers with filing tax returns online. Driven by a broad range of government
regulations, H&R block is concerned with a lot of issues of compliance with
the regulations, including privacy, security, disclosure to tax officials, and others.
Nevertheless, they loose online customer tax return data and get away with this.
Maintaining their focus on less important issues (from the customer viewpoint), they
are unable to retain the customer data worth of hours of work to re-input. Nothing
can be worse from the customer viewpoint. Their customer support is unable to
address this problem either, citing the split between H&R Block Online Services
that do not have their own customer support and H&R Block customer support that
is detached from the Online Services. Hence the way some multiagent systems are
frequently formed show the lack of central coherence.

Another example is a Citibank scenario:

• A customer applied for a credit card
• Citibank responded that the application was denied
• In a month Citibank sent a bill with an annual fee for this credit card (this card

was never received and never activated).
• In 2 months Citibank sent a bill for the unpaid annual fee plus the late payment

charge for this fee because this annual fee was never paid (because the card was
never issued, according the customer).

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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• The customer becomes aware of this incident and tries to cancel the non-existing
cards and dispute the fees. This process takes months and months.

There is an unlimited amount of documents on the web reporting an unreasonable
behavior of multiagent systems in the form of corporations, interacting and commu-
nicating with single agents (individuals). Taking into account that each agent of this
multiagent system is a rational agent (a control human with full-functioning systems
described in autistic accounts, Sect. 6.2), we express this phenomenon as distributed
incompetence. Although the reasoning about knowledge community analyses how
knowledge is multiplied if agents are combined into multiagent systems, in this book
we observed the opposite phenomenon when multiagent system is formed in a way
which reproduces autistic accounts.

Hence having drawn the classes of autistic reasoning ! behavior and control
reasoning ! behavior, multiagent systems in the form of corporations mostly
belong to the former class. Most of times they do not follow common sense and
demonstrate deviations described by a number of autistic accounts presented in this
chapter.

A broad range of features of autistic cognition can be observed in multiagent
system with non-trivial motivational patterns. Corporate environment is a good
example of such system: frequently, agents are not uniformly motivated to perform
their functions, or not motivated at all. Some bureaucratic structures clearly display
certain features of autistic cognition. This is an example for how an external
observer describes behavior of such system in terms of how its representative
describes his mission:

The only thing I am authorized to do is to tell you that I am not authorized to do anything.

2.6 Autistic Linguistics

2.6.1 Cognitive Skills and Processes Involved in Making Sense
of Text

Reading for understanding is especially challenging for CwA, although CwA
usually demonstrate well-developed word recognition skills, but their reading
comprehension is severely impaired (Nation et al. 2006). An extreme profile of
word recognition skills developing in advance of reading comprehension, termed
hyperlexia, is associated with autism (Grigorenko et al. 2003). The ability to decode
words has a neural basis: hyperlexic reading is caused by involving both the left
hemisphere’s phonological and the right hemisphere’s visual systems (Turkeltaub
et al. 2004). Computers can also be referred to as hyperlexic readers: it is so easy to
program them to recognize words and so difficult to make them recognize meanings
of individual words and especially phrases. Text comprehension is extremely
complex problem for a computer which some state-of-art NLP systems have only
tacked in a very limited manner.

http://dx.doi.org/10.1007/978-3-319-39972-0_6
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CwA tend to demonstrate well-developed word recognition skills in absence
of corresponding skills in constructing meanings. In CC, such ability as text
integration, metacognitive monitoring (Sect. 4.1.3), reasoning and working memory
all contribute to variability in the reading comprehension skills.

Inference making is an especially difficult skill for both CwA and computational
linguistic program to acquire. It has been suggested for CC by Perfetti et al. (2005)
that limited processing resources or working memory, not knowing when to draw
inferences, and failure to monitor comprehension for text coherence (i.e., focusing
on words rather than global meaning) all lead to the problems in text comprehension.
Comprehension monitoring is prompted by a high standard for text coherence:
readers who strive to make sense of what they read will be more likely to monitor
and repair their understanding than readers with a low standard of coherence, the
latter will fail to detect inconsistencies at the sentence level.

Propositional, non-linguistic verbal representations are necessary to form false
belief concepts. Propositions can be thought of as the building blocks of a low-level
representational system, where a single proposition takes the form of a related set of
symbols that carries semantic meaning. Linguistic representations occur at a much
higher level of abstraction than propositions and are explicitly tied to a particular
language.

There are hypotheses that false belief impairments in autism has a low-level
representational origin; the development of false belief concepts has been described
as requiring, for instance, the representation of “complements” (Hale and Tager-
Flusberg 2003) or “meta-representation” (Leslie 1987 and Sect. 4.1.3).

Hale and Tager-Flusberg (2003) demonstrated that training on sentential com-
plements leads to improved ToM performance, and that this linguistic influence is
highly specific and did not extend to children trained on another type of embedded
construction, namely relative clauses. Traditionally, a complement is a constituent
of a clause, such as a noun phrase or adjective phrase, that is used to predicate
a description of the subject or object of the clause. As to examples of sentential
complements, let us consider the following:

1. Mike read the newspaper. (direct object complement of the verb)
2. Make gave it to me. (indirect object complement of the verb)
3. Peter put it in the suitcase. (must-present locative complement of the verb: it is

not enough to just say, Peter put it.)
4. This question seems quite ambiguous. (adjective phrase complement of the verb).

In order to represent a false belief, one must have some mechanism for
representing a belief as being held to be true in one context (e.g. by a character
in a story), as well as the property of a belief being false in a different context (e.g.
in the story itself). Recent modeling work in cognitive architectures has found that
this type of information can be represented within a propositional logical system
(Bello and Cassimatis 2006). It is hard for CwA to understand the narrative text
structure because they are unable to determine character’s motives or identify with
characters’ emotions or perspectives due to their ToM limitations.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_4
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Especially when reading longer texts, memory dysfunction may contribute to
reading comprehension deficits. Connecting sentences together to construct a global
understanding requires substantial memory capacity. At the time of writing, rhetoric
parsers require more than 100 times more memory and processing time compared
to sentence-level syntactic parsers. Although high-functioning CwA have strengths
in formal memory, memory unattached to interpretation of symbols, they have
memory impairment due to poor use of organizational strategies, especially when
the information is complex and requires the creation of an organizational structure
to facilitate memory (Williams et al. 2005). Reading for understanding requires
individuals and machines to construct an organizational structure and schema to
aid memory. In addition to memory deficits and poor organization strategies, a
tendency to focus on details makes it challenging for CwA to perform discourse-
level analysis. For computer rhetoric parsers, a high-dimensional training setting
requiring extensive morphological and syntactic information is required.

In terms of semantic processing, CwA can be characterized as “speaking like
foreigners”. When CwA selects words they do not understand the logic of words and
instead speaks by separate thoughts. At the discourse level, CwA do not understand
the rhetoric structure of a sentence, how a sentence starts, develops and stops. When
a person speaks a foreign language, she expresses her thoughts as a combination of
words in his native language, translated into this foreign language on a one-by-one
basis. This is similar to how CwA forms their sentences. CwA speaks by separate
units each of which expresses a separate feeling.

ASD is characterized by both lower-order behaviors such as motor movements
and higher-order cognitive behaviors such as circumscribed interests and insistence
on sameness. Both of these are manifest in language as well. Van Santen et al.
(2013) reported an automated method for identifying and quantifying two types of
repetitive speech in ASD: repetitions of what child him or herself said (intra-speaker
repetitions) and of what the conversation partner said (inter-speaker repetitions, or
echolalia).

Rouhizadeh et al. (2015) automatically assess the presence of repetitions in
language, specifically at the semantic level, in children’s conversation with an
adult examiner during a semi-structured dialogue. CwA are expected to talk about
fewer topics more repeatedly during their conversations. The authors hypothesize
that a significantly higher semantic overlap ratio between dialogue turns in CwA
compared to those with typical development. In order to calculate the semantic
overlap at different turn intervals for each child, we apply multiple semantic
similarity metrics (weighted by child specificity scores) on every turn pair in
four distance windows. The result of this analysis is that the CwA group had a
significantly higher semantic overlap than the CC group in most of the distance
windows. The patterns of semantic similarity between child’s turns could provide
an automated and robust CwA-specific behavioral marker.

Since individuals with autism are hypothesized to have weak central coherence
then one would predict that the clinical groups would have difficulty integrating
information globally so as to derive full meaning. Two experiments were designed
by Jolliffe and Baron-Cohen (2000) to test global coherence. The first experiment
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investigated whether CwA could arrange sentences coherently. The second experi-
ment explored if CwA are less able to use context to make a global, discourse-related
inference. CwA groups have lesser skills to arrange sentences coherently and to use
context with the aim at a global inference. The results confirm the impaired global
coherence of CwA. Arranging sentences and making global inferences are highly
inter-dependent, so central coherence is required to complete these different tasks in
a coordinated manner. Of the two clinical groups, the autism group had the greater
deficit.

It is well known in computational linguistics that to automatically derive rhetoric
structure, or to validate text coherence, all lower level linguistic information,
including morphology, syntax and semantics, needs to be taken into account.
Instead of depending on mostly hand-engineered sparse features and independent
separately developed components for each rhetoric parsing subtask, (Weiss 2015)
proposed an integrated approach for text level discourse parsing relying on deep
learning. Firstly, each of the discourse parsing subtasks, such as argument boundary
detection, labeling, discourse relation identification and sense classification, need
to be formulated in terms of recurrent neural networks (Elman 1990) and similar
derivable learning architectures. To benefit from their ability to learn intermediate
representations, the layers of this neural network will be partially stacked on top
of each order, such that the last but one layer (i.e. output layer) for each subtask
is shared with other subtasks. By placing increasingly more difficult subtasks
at different layers in one deep architecture, they can benefit from each others
intermediate representations, improve robustness and training speed. Figure 2.27
combines unsupervised training of word embeddings with the layer-wise multi-task
learning of higher representations and illustrates our goal of a unified end-to-end
approach for text-level discourse parsing utilizing different layers of representations.

Fig. 2.27 Illustration for
how a multi-compartment
approach for text-level
discourse parsing with
multi-layer multi-task
learning of higher
representations can work
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2.6.2 Grammar and Affect

Even grammar, which Chomsky and other linguists have assumed to be innate,
depends on affect and affective interactions to become functional. CwA frequently
verbalize nouns in a repetitious way (“Dog, dog, dog.”). If the intervention can get
them affectively interactive, however, they can often learn to use proper grammar.
For example, a child is opening and closing a gate. We get stuck behind this gate. If
they push us away, they are becoming purposeful.

Purposeful behavior that is stimulated by tan affect creates a foundation for the
purposeful and meaningful use of words. The child who pushed us away and said
nothing at some point will say “go” while doing this. We may then say, “Where go?
Where go?” We might further say, “Should we go away or stay? Away or stay?” The
child may say, “Go away, go away.” Following this dialog, CwA is using the correct
grammar. From the viewpoint of the corpus of research on autism and affect, one
might disagree with (Chomsky 1966) when he writes that grammar is largely innate
and that only life experience in a broad sense led to turning on the language switch in
humans. As we discussed in the previous section, grammar requires certain types of
affective experience, and specific grammar feature are correlated with special forms
of affect and the features of the Theory of Mind. Affective reciprocity is needed to
create purposeful action and then related purposeful symbols or words. The affect,
by providing intent, enables the components of language to align (e.g., “open door”
versus “door, door, door.”). Many investigators may have missed the importance of
affective reciprocity because it occurs routinely with most infants and toddlers and
their caregivers.

Reciprocal affective interactions also influence the basic grammar and semantic
aspects of language. We have found, for example, that children not capable of
reciprocal affective interactions (e.g., children with autistic spectrum disorders),
tend to use words ungrammatically, repeating nouns or verbs in a perseverative
manner.

Interestingly, if we try to simply correct their grammar, it doesn’t work very
well. They make progress, however, when we first help them engage in reciprocal
affective gesturing and use their affect and gesturing purposefully (e.g., we get stuck
behind the door they are opening and closing and they eventually learn to push us
away). At that point, they begin to align their verbs and nouns in a grammatically
correct manner—“Daddy, go!” or “Leave me alone.” We observe the same patterns
in children from deprived backgrounds, such as orphanages. Whether the intrusions
are environmental or biological, it appears that a prerequisite for correct use of
grammar is the purposeful use of affects in interactive relationships. This fact may
have been missed by linguists who suggested grammar was largely innate and
simply turned on or off by global features of the environment because it’s easy
to take reciprocal affect cueing and other preverbal aspects of communication for
granted. They occur so regularly.
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It’s only when we find circumstances where they don’t occur that we can see
their true impact. Similar to grammar, the meaning of words, both the semantic and
pragmatic aspects are also imbedded in the earlier reality of gestural interactions,
which are used to explore and know the world. The literal meaning of a word or
concept, for example, the concept of a door or a table or a mommy or a daddy is
first known through gestural interactions with it. The capacity to form the word is
then linked to what is already partially known. The known entity takes on additional
meaning through context and further emotional experience with it. Therefore, both
the literal and the relative meaning of words and concepts emerge from reciprocal
affective interactions which provide the foundations and context for meanings.

The capacity for long chains of reciprocity and the basic capacity to plan and
sequence actions may also support the ability to sequence words or ideas and
eventually concepts in a speech, essay, or debate, or simply a long conversation.
Sequencing ideas relates both to this basic ability to abstract meaning from earlier
preverbal experiences and then sequence them meaningfully.

2.6.3 Understanding Metaphors

Highly abstract or figurative metaphors are problematic for certain groups of
language users amongst CwA. As a result of impairment in communication, social
interaction and behavior, CwA are characterized by atypical information processing
in diverse areas of cognition (Skoyles 2011). CwA experience difficulties when a
figurative language is encountered. Happé (1995) describes:

A request to “Stick your coat down over there” is met by a serious request for glue. Ask
if she will “give you a hand”, and she will answer that she needs to keep both hands and
cannot cut one off to give to you. Tell him that his sister is “crying her eyes out” and he will
look anxiously on the floor for her eye-balls : : :

The reduced skills of CwA to understand metaphors in language communication as
well as figurative language is obviously an obstacle in communication, since most
people “think in metaphors” and a language system is inherently figurative (Lakoff
and Johson 1980). The growing demand to overcome this barrier has led to the
investigation of possible ways in which NLP can detect and simplify non-literal
expressions in a text.

The simile is a figure of speech that builds on a comparison in order to leverage
certain attributes of an entity in a striking manner. A simile compares one entity
with another entity of a different kind. Simile is used to make a description more
emphatic or vivid (e.g. as fast as a cougar).

CwA and message understanding systems show almost no impairment in com-
prehending the similes which have literal meaning (Happé 1995). This relative
ease in processing is probably due to the fact that metaphors in the form of
comparison contain explicit markers (e.g. like and as), which evoke comparison
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between two things in a certain aspect. With regard to understanding figurative
similes, Hobson et al. (2013) describes in the case of fifteen-year-old:

He could neither grasp nor formulate similarities, differences or absurdities, nor could he
understand metaphor.

One of the most obvious markers of similes, the word like, could be a source
of a lot of misinterpretations (Niculae and Yaneva 2013). For example, ‘like’ could
be a verb, a noun, a preposition, or Facebook attribute, depending on the context.
Given that autistic people have problems understanding contexts (Skoyles 2011,
Sect. 6.4), how would an autistic reader perceive the role of ‘like’ in a more elaborate
and ambiguous comparison? Another possible linguistic reason for the corrupt
understanding of similes might be that like is used ambiguously in many expressions
which are neither similes nor comparisons, such as I feel like a soup or I feel like
something goes wrong a wrong way. Even if the expression does not include such
an ambiguous use of like, there are other cases in which a CwA might be confused.
For example, if the simile is highly figurative or abstract, it may be completely
incomprehensible, such as in the example of A love is like a flame (Fig. 2.28).

Fig. 2.28 An example of
autistic writing on
philosophical topics. Hand
support is necessary to help in
writing. Text includes
answers to certain questions
and some associated thoughts

http://dx.doi.org/10.1007/978-3-319-39972-0_6
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2.7 Our Account of Autism: Reasoning Engine ➔ Behavior

Having outlined most popular accounts of autism, we intend to formulate the one
most valid in terms of an artificial computational system which controls a behavior
of a human or robot in the real world. This account will not include neural or genetic
considerations: it will be brain component – neutral. Whereas most accounts,
including computational ones, try to combine psychological, behavioral, cognitive,
neural, genetic and even philosophical considerations, we prefer to have a model
fully formalized and self-contained (Fig. 2.29, Minshew and Goldstein 1998). Such
model should be viewed as an engineering design model, providing sufficient details
so that a software engineer can build it from our specification. This specification
should be formally consistent and do not contradict to the experimental observation
of autistic cognition and behavior.

The desired features of such system are as follows:

• It should only take into account the details of what we know about human brain
and its specifics under autism related to reasoning processes.

• It should treat the features of behavior as thoroughly as possible, and explicitly
link behavior to reasoning. Only forms of behavior which can be expressed
concisely are used.

• The intelligence, problem solving and communication skills are formally defined
and are formalized in as much degrees as possible. Behavioral capabilities are
taken from the studies within the above accounts and beyond them.

• No hypotheses about meta-functioning, interaction between hypothetical compo-
nents, hypothetical control scenarios of these components are relied upon.

Fig. 2.29 Etiology of autism
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Fig. 2.30 Corruption happens at the level of individual axioms, responsible for a particular
reasoning domain

Once these features are approved, the nucleus of our account becomes fairly
compact and self-contained:

1. Specific behavior is caused by a deviation in a reasoning system;
2. Deviation in a reasoning system is caused by lack of certain axioms.

Then the treatment methodology is to teach these missing axioms as rules once
they are identified.

In our account of autistic reasoning, corruption happens at the level of axioms
(Fig. 2.30). From the theoretical reasoning standpoint, we assume that the reasoning
machinery itself is functional and the only cause of a lack of reasoning skills in a
given domain is a lack of a respective axiom.

As a first example, we consider the missing axiom “Other people have inten-
tions”. Without this axiom, children ignore questions “what he wants”. Once the
child is explained that other people have such “things” as desires, wants and
intentions, which can come and go, this child starts answering the above question.
This means that the axiom is acquired, when this question is answered about an
arbitrary intent.

Proceeding to another example, we state that to be able to generalize from
samples and to formulate rules, an individual or a reasoning machine needs an axiom
of induction. If an individual or reasoning machine cannot perform generalization
from samples, he is missing an axiom of induction. In this case, the range of skills
generally referred to as ‘machine learning’ is missing.

An intelligence machine needs to acquire axioms to answer questions, in
particular, the axioms for intend and for generalizing from samples. Before such
axioms are fed into this machine, it is unable to answer questions in these domains.
After the acquisition of the axioms, the machine becomes capable of answering
these questions.
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How to figure out which axiom is missing in a give child? If, having certain
axioms disabled, an artificial reasoning system displays the same behavior (in
particular, answers questions and fails to answer questions in a similar manner) as a
given individual, then we conclude that this individual is missing this axiom.

Each CwA can then be represented as a profile of missing vs intact vs acquired
axioms. What can be observed is that more complex derived axiom can be missing
when the basis, simpler axiom is present, but not the other way around. We will
evaluate this observation in Sect. 9.10.

2.8 Discussion and Conclusions

We enumerated the generally accepted accounts of autism and showed their strong
and weak points. On the positive side, they cover a broad range of features of
autistic behavior and cognition and link them with neural layers and mechanisms,
as well as genetics and cognitive components. On the negative side, these accounts
are incomplete as information systems, a lot of their schemas are informal and not
necessarily plausible. It is unclear, if one can build a computational system which
corresponds to a given account, so that its output can imitate the described behavior.

Each account of autism focuses on a specific features of reasoning and cognition,
and explains how it affects the autistic behavior and skills. Each account splits
reasoning and cognition into different components and then hypothesizes which
components are intact and which are broken. Each account then attempts to explain
the peculiarities of autistic behavior given the functionality of the broken compo-
nents. Since these components and the addressed features of behavior overlap, each
account positions itself among other accounts with similar components and features
of behavior.

For example, a text understanding system includes morphological, syntactic,
semantic, pragmatic and discourse components. The behavior of text understanding
system can be the way its answers questions, and following accounts explaining its
malfunctioning can be plausible:

• System intent to understand questions is broken
• Particular processing level is not tuned well, so some words in the input questions

are missed
• Communication between processing levels is broken, so answering of

Boolean/conjunctive queries is incorrect
• Control of how different classifiers are combined in a hybrid system is not

adjusted well, so it cannot answer compound queries

Similar structure can be applied to image, video, sound, abstract pattern recogni-
tion system and recognition in other modalities.

Multiple accounts of autism illustrate that there are multiple psychological
characterizations of autism. These accounts share some commonalities and they are
not mutually exclusive at all. Hobson’s theory can be viewed as explaining where

http://dx.doi.org/10.1007/978-3-319-39972-0_9
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ToM abilities are coming from, genetically determined module or being develop out
of learning to communicate. ToM’s theory-theory does not provide any evidence for
the genetic basis of ToM corruption. Also, executive function and central coherence
are presumably computational capacities of systems and as such they might be
components of whatever system provides an implementation of ToM abilities.

One of our points of criticism of the current computational accounts of autism
is that they attempt to describe a meta-language for implementation of reasoning
instead of focusing on the object-language level. Since one can only hypothesize
about the signals in the natural neural network, a formal computational model of
a neural network is essentially a meta-language level model. When the activity of
an artificial neural network is similar to that of a natural one, it means that the
meta-language model might potentially be plausible, and nothing can be said about
an object – level. For a reasoning system implemented as a neural network, its
reasoning domain belongs to its object-language, and neural signals, communication
protocols, which can be experimentally assessed – to the meta-language level.

There are examples in science and humanities where a phenomena is expressed
using meta-language only, without employing a power of language-object. One
of the purest example of it is Kafka’s novel “The Trial”. In this novel the
author presents only a meta-level account of what is happening with a character
being prosecuted; language-object level description is absent. From the scientific
standpoint, his description of an observation of society functioning is far from being
perfect and efficient. Similarly, neural network models of the functioning of autistic
brain involves only a single layer of information processing.

Having analyzed the accounts of autism, we decided to pursue a pure compu-
tational and less intuitive, holistic account and to observe how far we can go in
terms of completeness of our account, its prediction capabilities and values for
rehabilitation. This account should provide a conceptual basis for improving autistic
reasoning as well as a foundation for software for autistic rehabilitation.
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Chapter 3
Intuitive Theory of Mind

3.1 Introducing Theory of Mind

Theory of Mind (ToM) is an umbrella term commonly used to refer to both the
commonsense theory and its associated cognitive processes. ToM investigates how
people ascribe mental states to other people and how people use mental states to
explain and predict the actions of those other persons. ToM explores mindreading,
mentalizing or mentalistic abilities, shared by most adults. These abilities are used
to treat other agents as ones possessing the unobservable mental or psychological
states, actions and processes, which cannot be explicitly perceived. These abilities
are also used to anticipate and explain the agents’ behavior in terms of such states
and processes.

This is how an adult with autism (Wrongplanet 2015) reflects on his ToM
capabilities:

I actually very well remember the time when I considered other people as objects, moving
and talking, but devoid of thoughts and feelings. Sometime in my twenties I started looking
at people and thinking “Can they possibly have consciousness, same as I do?” This thought
seemed preposterous and unworldly. But I finally convinced myself, and now I assume that
other people have independents minds and thoughts. This assumption is on the conscious
level and disagrees with my intuition.

Two different well known theories have been proposed to explain the basic
mechanism underlying the ToM abilities. They are usually referred to as simulation
theory and theory-theory (Vogeley et al. 2001). According to simulation theory, ToM
skills are based on taking someone else’s view and projecting one’s own attitude
onto someone else. The simulation approach to reasoning about mental states will
be explored in Chap. 5. By contrast, according to theory-theory, theory of mind
capacity is based on a distinct body of theoretical knowledge acquired during the
individual’s ontogenetic development. From the computer science standpoint, ToM
is a meta-theory of the theory about mental world. We will investigate what kind of
meta-theory is required for the mental world in Sect. 4.1.3.
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Fig. 3.1 René Descartes’s
illustration of “Simulation
theory” and “theory theory”
dualism. Inputs are passed on
by the sensory organs to the
epiphysis in the brain and
from there to the immaterial
spirit

Both theory-theory and simulation-theory are actually families of theories. Some
theory-theorists maintain that our naïve ToM is a result of our scientific-like exercise
of a problem domain capacity to provide a theoretical basis. Other theory-theorists
defend a quite different proposal that mindreading relies on the development of a
mental organ specifically dedicated to the psychological domain. Simulation-theory
also shows different aspects: according to its “moderate” view, mental concepts are
not completely excluded from simulation (Fig. 3.1). Simulation can be represented
as a procedure through which we:

1. yield and attach to ourselves some mental states of pretense that are intended to
correspond to those of the simulated agent;

2. project them onto the target.

By contrast, a stronger version of simulation-based approach denies the supe-
riority of first-person mindreading and proposes that we imaginatively transform
ourselves into the simulated agent, interpreting the target’s behavior without using
any kind of mental concept, not even ones referring to ourselves.

Neurophysiological evidence relevant to theory-theory vs simulation was pro-
vided by (Gallese et al. 1996), who demonstrated a mirror neuron system in
macaques (Fig. 3.2). Mirror neurons are premotor neurons that are activated when a
monkey performs an object-directed action including keeping, capturing, grasping,
tearing, manipulating and holding. These neurons are also activated when the
animal observes a human experimenter, performing the same class of actions. The
discovery of mirror neurons provided a possible mechanism for a simulation theory
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Fig. 3.2 Brain areas involved in the mirror neuron subsystem (Iacoboni and Mazziotta 2007)

account of theory of mind (Gallese and Goldman 1998). Multimodal neurons in
motor cortex react to visual observations, helping to understand actions of others
by simulating similar motor activity. Distortion in the development of the mirror
neural system interferes with the ability to imitate, leading to social impairment and
communication difficulties, and may be responsible for the lack of ToM (Iacoboni
and Mazziotta 2007).

There has been an important debate in philosophy contrasting ‘theory’ vs.
‘simulation’ accounts of reasoning about mental states (see for example (Harris
2000)). This issue is strongly correlated with autism, and in this book we implement
a hybrid approach to implementation of ToM engine, merging simulation with
implementation of meta-reasoning (Chap. 4). (Stenning 2002) argues that the two
may not be as distinct as would at first appear. Chapter 4 of this book is devoted
to theory-theory approach, and Chap. 5 describes the simulation approach to
implement ToM reasoning.

Before the age of 4, children can impress an external observer that they play
together but indeed they play independently, not interacting with each other, each in
her own space. Before the age of 3, children do not understand that other children
have beliefs, desires and intentions, they live in their own worlds. After the age
of 4 children discover that other people have Belief-Desire-Intention (BDI, Rao
and Georgeff 1995, Sect. 4.1.2) model of the mental world. Children discover that
other people can have wishes not necessarily connected with their own wishes. But
initially, before that age children cannot handle this, and they play in parallel worlds.
They stop making other people do what they want, but they try to avoid each other
and minimize interactions. Then at the age of 5 children start understanding that
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interaction can work, they start forming beliefs that “under some conditions I can
achieve something I want her to do; it is possible to reach an agreement.”

3.2 Emphasizing and Systemizing

The empathizing-systemizing theory of autism (Baron-Cohen 2002) proposes that
autism spectrum conditions involve deficits in the normal process of empathy, rela-
tive to mental age. These deficits can occur by degrees. The notion of empathizing
is introduced to cover a broad range of reasoning sub-domains: theory of mind,
mind-reading, empathy, and taking the intentional stance (Dennett 1987). We define
empathizing as reasoning about the mental world. Empathy includes two elements:

(a) Attribution of mental states and mental actions to oneself and others, as a natural
way to make sense of the actions of agents (Baron-Cohen 1994; Premack 1990);
and

(b) Emotional reactions that are appropriate in a given mental state.

Since the first test of mind-blindness was administered to children with autism
(Baron-Cohen et al. 1985), more than 30 experimental tests have been developed,
confirming the impairments in the development of empathizing (Baron-Cohen
1995). The skills of empathizing significantly varies for CwA but are still signif-
icantly inferior to that of controls (Fig. 3.3). The limited capabilities in empathizing
lead to social and communicative development and in the imagination of others’
minds (Baron-Cohen 1987; Leslie 1987).

(Baron-Cohen 2002) attempts to rely on the empathizing-systemizing theory to
explain other psychological models such as impairments of executive function or
central coherence. From the engineering standpoint, a device can have multiple
malfunctions which do not need to be caused by a single subsystem. Nevertheless,
in autism research the community attempts to form a single model which would
explain the whole range of autistic phenomenology. Even in a reasoning domain, the
range of reasoning peculiarities is so broad that it seems hard to find the root cause
in the reasoning problems themselves, let along the behavioral autistic features.

Although autism is most often conceptualized as a syndrome of deficits, its
altered developmental emphases can also lead to remarkable analytical strengths
in some domains. (Baron-Cohen 2002) explains the cognitive superiorities found in
autism by the concept of systemizing. It is defined as a drive to analyze objects and
events to understand their structure and to predict their future behavior.

Autistic systematizing is based on reduced generalization skills of induction, but
fairly efficient rule system once the rules become available to CwA. CwA are good
at applying rules to technical systems (such as machines and tools), natural systems
(such as biological and geographical phenomena), and abstract systems (such as
mathematics or computer programs). Several studies indicate that systemizing in
autism is at least in line with mental age, or superior (Baron-Cohen et al. 2003;
Lawson et al. 2004). Systemizing may underlie a different set of behavioral features
in autism that we refer to as the triad of strengths (Fig. 3.4).
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Fig. 3.3 Interaction with horses helps to stimulate empathy

Fig. 3.4 Deficits and strengths of CwA and respective reasoning domains

The outcomes Sally-Ann and ‘Smarties’ experiments (Sect. 2.2) have been
argued to support the ‘theory of mind deficit’ hypothesis on the cause of autism.
Proposed by (Leslie in 1987), it postulates that human beings have evolved a
special ‘module’ devoted specifically to reasoning about other people’s minds. As
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such, this module would provide a cognitive underpinning for empathy. In CC,
the module would constitute the difference between humans and their ancestors –
indeed, chimpanzees seem to be able to do much less in the way of mind-reading.
In CwA, this module would be delayed or impaired, thus explaining abnormalities
in communication and also in the acquisition of language, if it is indeed true that
the development of joint attention is crucial to language learning (as claimed for
instance by Tomasello 1988).

(Norenzayan et al. 2012) found that symptoms of autism correlated with lack of
religious belief. They also asked CwA about their empathy (using questions like
“I often find it difficult to judge if someone is rude or polite” and “I am good at
predicting how someone will feel.”).

They found that empathy also correlated with belief. Using a statistical technique
of bootstrapping they found that the most plausible explanation for the correlation
was that autism was related to a lack of empathy, which in turn was related
to lack of belief. In other words, lack of empathy was the ‘in between’ factor
that mediated the relationship between autism and lack of belief. The authors
also measured something called systemizing, which is all “about aptitude for, and
interest in, reasoning about mechanical and physical objects and processes”, and
is measure using questions like “I am fascinated by how machines work” and “I
find it difficult to understand information the bank sends me on different investment
and saving systems”. Like empathy, systemizing is correlated both with being male
and the degree of autism (although in the opposite direction: autistics are better at
systematizing than controls). But, unlike empathy, systematizing does not mediate
the effect of autism on religion, in terms of formal correlation.

(Seidner et al. 1988; Stipek and DeCotis 1988) explore memories of emotional
experience recounted by high-functioning children with autism and their typically
developing peers to mine the depths of children’s emotional understanding and
discern their strategies for interpreting emotional encounters. Researchers have gen-
erated many insights into those types of experiences children consider emotionally
evocative by concentrating on the thematic content. This work has shown that high-
functioning autistic children demonstrate particularly limited understanding of more
complex emotions such as pride, embarrassment, and shame, failing to distinguish
these emotions from less complex feelings of similar hedonic tone (e.g., happiness
and sadness; Capps et al. 1992).

Yet, without complementary analyses of discourse structure, information on
children’s strategies for interpreting their emotional experiences is currently lack-
ing. (Losh and Capps 2006) address this problem and consider whether potential
differences in discourse structure are restricted to emotional memories or, rather,
represent a more pervasive difficulty. They do so by comparing the structural
features of children’s emotional accounts to those of non-emotional physical states.
In view of recent findings of impaired episodic memories in autism (Bowler et al.
2000), the inclusion of non-emotional terms (e.g., sick and tired) is of particular
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value in the assessment of emotion-specific patterns not assessed in prior studies of
autistic individuals’ recounted emotional experiences.

3.3 ToM and Other Autistic Accounts

Certain predictions arise, if one considers Empathy-Systemizing and Central Coher-
ence (Sect. 2.5.1) not as mutually exclusive explanations of autistic behavior, but as
complementary ones that can be developmentally unified.

Specifically, the attention to detail described by weak central coherence may
be one of the earliest manifestations of a strong drive toward systemizing, or vice
versa, interest in systemizing may arise as a consequence of attention to detail. As
cognitive capacities become more complex and mature, strong “systemizers” may
begin to apply some kind of engineering methodology. In this methodology even
complex systems are understood by successive local observations in which one input
at a time is manipulated while all others are held constant, and effects on the outputs
are observed in a similarly sequential manner. This is how an engineering system
can be optimized, a causal links between the parameters can be established, or a fault
in an engineering system can be discovered. Thus the ultimate effect of the cognitive
style described as weak central coherence is not a lack of ability to understand global
relationships but rather a difference in the process by which global relationships are
established. This is true at least in high-functioning CwA.

Experimental comparison of the ability to make inferences about complex
systems, between CwA and controls, and across different stages of development
or levels of functioning, may lead to the recognition of Empathy-Systemizing as an
elaboration of the Central Coherence model, one that may make more precise and
more accurate predictions about the behavior of people with autism when confronted
with complex systems. In contrast to controls, CwA use a higher-dimensional
representation for learning, so it is more computationally intensive to combine all
these dimensions.

Although both central coherence and systemizing are useful psychological
models to explain many aspects of autistic behavior, a complete explanation of
autism will require that these psychological models be joined with neurobiological
substrates—a process complicated by the fact that neither capacity is likely to be
atomic in neurobiological terms.

To establish the relations between the psychological theories of autism, logical
analysis can be helpful. (Stenning and van Lambalgen 2008) believe that there
is a common core to the ToM deficit theory and executive disorder theory, which
consists in well-defined failures in non-monotonic reasoning. However, we believe
that these deficiencies are very different in nature: non-monotonic reasoning is the
logical, domain-independent part, and ToM is a domain-specific set of axioms which
happens to be corrupted but can be successfully taught.

http://dx.doi.org/10.1007/978-3-319-39972-0_2
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3.4 ToM and a Module to Implement It

The notion of a ‘ToM module’ is fairly broad. In the context “from a neural system
to behavior” it is obviously meant to be a piece of dedicated neural circuitry. In this
way, it can differentiate us from our ancestors and it can also be malfunctioning
in isolation. But it is precisely this isolation, (‘encapsulation’ according to Fodor),
that is doubtful. One reason is just our general skepticism that evolution does not
generally proceed by adding new modules (rather than tweaking old ones), and
another is that much of the problem of functionally characterizing human reasoning
about minds is about interactions between modules. ToM requires language to
formulate beliefs in and it also entails a considerable involvement of working
memory, as can be seen in ‘nested’ forms of ToM, as in the example of (Dunbar
et al. 2015)

Shakespeare intended us to realize that Othello believes that Iago knows that Desdemona is
in love with Cassio.

Once we understand that it is rather implausible for ToM moduleto operate in
isolation, then the ToM deficit hypothesis is becoming less sound. We can now
consider the interactions of the ToM module with other language and memory
functions, which lead to the possibility that a corruption in these functions is
correlated with autism. It is also unclear what the ToM module would have to
contain, given the observation that reasoning about intents of others can be partially
functional in both CwA and non-human primates.

In this book we differentiate between the general reasoning capabilities and ToM
axioms. We believe that they are not interdependent in most occasions. Since we
know we can teach ToM axioms successfully, and there is not such axiom that can
not be taught to any child, we do not confirm this “modularity” idea.

It is unclear from the experiments at what stage ToM abilities emerge. False-
belief tasks were initially proposed as diagnosing a lack of these abilities in normal
3 year-olds and their presence in normal 4-year-olds (Leslie 1987). Others have
proposed that irrelevant linguistic demands of these tasks underestimate 3-year-
olds’ performance. For example, in the ‘Sally-Anne’ task, the child sees the doll see
the sweet placed in one box, and then the child but not the doll sees the sweet moved
to another. Now if the child is asked ‘Where will the doll look for the sweet first?’
(instead of ‘Where will the doll look for the sweet?’) then children as young as two
can sometimes solve the problem (Siegal and Beattie 1991). This might be read as
evidence of the 3-year-olds in the original task adopting a conditional reading of the
question (Where should the doll look?) rather than a descriptive one (Where will the
doll look first?). Another possibility associated with a problem in the selection task,
is that the younger child’s problem may be with sequencing contingencies in their
responses. These arguments push reasoning about intentions earlier in ontogeny.

Hence it is unclear if a neural module for ToM exists. However, it is safe to
conclude that ToM-related reasoning belong to a separate clearly circumscribed
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component detached from the reasoning in other domains such as time, space and
other dimensions of physical world.

3.5 ToM in Humans and Animals

Are Theory of Mind abilities unique to humans? (Premack and Woodruff 1978)
posed the question: “Does the chimpanzee have a theory of mind”? An affirmative
answer would downplay the overall significance of culture and enculturation in
human ToM abilities. Reviewing a few decades of experimentation with primates
that followed from Premack and Woodruff’s provocative paper, (Call and Tomasello
2008) provide the definitive answer to their question: yes and no. There is solid
experimental evidence that chimpanzees understand the goals and intentions of
others, as well as the perception and knowledge of others. The behavioral evidence
from chimpanzees suggests understanding that goes beyond the reading of surface
behaviors of others, to underlying goals and perceptions – at least to the extent that
human infants do in similar experimental designs.

In contrast, there is no experimental evidence that chimpanzees can grasp the
notion of a false belief, or predict the behavior of another based on what the
other knows. If we take a narrow view of the scope of ToM abilities, focusing on
social cognitive reasoning, then our closest biological relatives have nothing like
our human abilities. If instead we broaden our scope to include social perception
and intentional interaction, then chimpanzees are convincingly competent. This
shift in research focus toward social competency has led some researchers consider
the question for more distant biological relatives, including domesticated dogs and
other highly-social animals. The broad set of social skills that are often associated
with human’s ToM abilities appear to be common among animals. Birds will hide
food far away from potential thieves, and wait to stash food until an onlooker is
distracted. Dogs are able to follow a human’s eyes or pointing gestures to hidden
food. In contrast, not one other species has passed the false belief test, or exhibited
anything like the deep social reasoning which is performed well by humans
effortlessly.

ToM starts from (Premack and Woodruff 1978) work on chimpanzees to differen-
tiate between humans and non-human primates. (Leslie 1987) proposed that human
beings have a brain ‘module’ that does reasoning about minds, by implementing a
ToM, and that autistic reasoning is associated with one or another form of corruption
in this module.

So in CC the module constitutes the difference between humans and their ances-
tors. The work hypothesizes that once chimpanzee acquires ToM, their reasoning
would approach humans, and once humans loose parts of ToM, they approach
autistic reasoning. At the same time chimpanzees are hyper-social animals, unlike
CwA. Whatever cognitive additions yielded humans from their ape ancestors, may
be over-represented in autistic cognition. Just for an example to illustrate, much
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of autistic cognition is an obsessive attempt to extract exception-less truth about
a complicated world. This sounds to us rather more like the scientific life than
that of chimpanzees. Computer scientists and other natural science academics can
empathize with autistic reasoners.

These issues raise many questions concerning what non-human primates are
capable of doing in terms of reasoning about behavior and mental processes.
Apes are capable of reasoning about the plans of other apes, including the
intentions behind their behavior, but they appear not to be able to reason about
specific knowledge (epistemic) states. Correspondingly, young children first develop
‘desire’ psychology before they proceed to ‘knowledge’ and ‘belief’ psychology.

3.6 CwA and CC in Abstract Reasoning Tasks

Recent studies (e.g. Dawson et al. 2007) have reported that autistic people perform
in the normal range on the Raven Progressive Matrices test, a formal reasoning test
that requires integration of relations as well as the ability to deduce behavioral rules
and form high-level abstractions. (Morsanyi and Holyoak 2010) compared autistic
and control children, matched on age, IQ, and verbal and non-verbal working
memory, using both the Raven test and pictorial tests of analogical reasoning. They
found that autistic children reasoning capabilities are similar to those of controls on
reasoning with relations tests. The authors conclude that the basic ability to reason
systematically with relations in the physical world, for both abstract and thematic
entities, is intact in autism.

(Gokcen et al. 2009) investigated the potential values of executive function and
social cognition deficits in autism. While ToM is generally accepted as a whole,
a number of researchers suggested that it can be separated into two components
(mental state reasoning and decoding). Both aspects of ToM and verbal working
memory abilities were investigated with relatively demanding tasks of mental
reasoning for parents of children with autism, who had verbal working memory
deficits as well as low performance on a mental state reasoning task. The parents had
difficulties in reasoning about others’ emotions. In contrast to findings in the control
group, low performance of mental state reasoning ability was not associated with
working memory deficit in index parents. Social cognition and working memory
impairments may represent potential genetic risks associated with autism.

In the physical world, children with autism perform relatively well. Autistic
participants outperformed non-autistic participants on abstract spatial tests (Steven-
son and Gernsbacher 2013). Non-autistic participants did not outperform autistic
participants on any of the three domains (spatial, numerical, and verbal) or at either
of the two reasoning levels (concrete and abstract), suggesting similarity in abilities
between autistic and non-autistic individuals, with abstract spatial reasoning as an
autistic strength.
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3.7 ToM Controversy

The term “ToM” is problematic since the “theory” part implies a particular theo-
retical perspective on how people reason about the “mind”. This reasoning happens
through the fluid application of theoretical knowledge. The problems with this term
have been fruitful since they stimulate psychologists to address the fundamental
questions about the role of abstract knowledge (as a classical theoretical construct)
in contemporary psychology. “Simulation theory” and “theory theory” dualism can
be even considered from the philosophy of mind perspective (Crane and Patterson
2001).

In development psychology, changes in a child’s capacity to reason about the
mental states of other people has been experimentally observed. One experimental
instrument for studying children’s abilities to reason about the mental states of
others is the False-belief task (Sect. 2.2). Success on this task has been criticized
as neither entirely dependent on commonsense psychology abilities nor broadly
representative of them (Bloom and German 2000). At the same time, the value
of False-belief task is to reliably demonstrating an existence of the developmental
shift. (Wellman et al. 2001) aggregated the results of almost two hundred separate
studies of the False-belief task, finding that 3-year-olds will consistently fail this
task on the majority of trials by indicating that Maxi will look for the object in
the location to which his mother has moved it. 4-year-olds will succeed on half the
trials, while 5-year-olds will succeed on the majority of trials. (Call and Tomasello
1999) demonstrated that these results are consistent across verbal and non-verbal
versions of this task.

There is a developmental change between 3 and 5-year-olds, but it is unclear what
exactly is being developed between these ages. One school of thought is that this
developmental change can best be characterized as the acquisition by children of a
better theoretical model of human psychology, a view first referred to as the “Theory
Theory” by philosopher Adam Morton (1980). This view has several advocates
among developmental psychologists (Wellman 1990; Gopnik and Wellman 1994),
who characterize young children as extremely effective scientists that incrementally
adapt their innate knowledge of people to accommodate for their experiences
in the world. After years of social interaction, children’s developing theories of
the mind become more robust in their abilities to predict and explain human
behavior, and increasingly include all of the principles of commonsense psychology
in Heider’s (1958) original characterization. This perspective is consistent with a
broader position within developmental psychology that argues that the development
of cognitive abilities is best viewed in terms of conceptual change. This perspective
follows from the constructivist theories of development advanced by Piaget (1954),
and can be contrasted with nativist theories that view the emergence of cognitive
abilities as the maturation of innate brain functions.

While robots can acquire some ToM axioms, it is hard to imagine an algorithm
that they would learn ToM from their experience. So in terms of reasoning, we
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hypothesize that all humans have ToM axioms embedded, but CC have this axiom
“activated” at the age 4 and CwA are unable to activate it.

(Baron-Cohen et al. 1985) first hypothesized that the main behavioral symptoms
of autism could be explained by a deficit in Theory of Mind abilities. The authors
compared normal children with those diagnosed with autism and Down’s syndrome
on a variant of false-belief task involving two dolls, Sally and Anne. Even though
the mental age of the autistic children was higher than that of the other groups,
they alone failed to correctly ascribe a false belief to the doll in the experiment.
The finding sparked a vigorous theoretical debate among the community of
developmental psychologists and autism researchers that continues today.

Tager-Flusberg (2007) reflects on two decades of research that followed Baron-
Cohen et al.’s hypothesis, which has upheld the original result: children with autism
have difficulty attributing mental states to themselves or to other people. However,
the significance of this finding is in doubt. Deficits in ToM abilities are not universal
among autistic children, and neither offer an explanation for other typical symptoms
such as repetitive nor for restricted behavior patterns. Tager-Flusberg advises to
avoid a narrow view of the social-cognitive deficits in autism, and refers to recent
studies on children’s perception of mental-state information in faces, voices, and
body gestures (Grigorenko et al. 2003). If the connection between ToM abilities
and autism is to be explanatory, then the traditional understanding of ToM must be
broadened to includes these social-perceptual skills. In today’s corpus of work, the
relationship between ToM and autism is fairly complex to serve as an illustration
for the nativist-constructivist debate.

3.8 Discussion and Conclusions

People with autism and machines sometimes have difficulty comprehending when
other people and users of these machines do not know something. CwA can get
very agitated when a peer does not know the answer to a question she asks. By
not understanding that other people think, believe, know, and want differently
than themselves, CwA have problems relating socially and communicating to other
people. As a result CwA and computer systems are frequently unable to anticipate
what others will say or do in various situations, and have difficulty understanding
that their classmates even have thoughts and emotions.

ToM arose from the study of primates and their social organization, and
scholars in many fields – philosophy, anthropology, psychology, psychiatry and
neuroscience – have contributed to this expanding topic.

For the purpose of a better representation and treatment, a more concise, more
formal representation for reasoning about mental world than ToM is required. Since
CwA have strong systematizing skills, they should be the foundation to ground the
emphasizing skills. Since they cannot be introduced in a natural way, they should
be taught via rules, such as an empathy to someone’s pain, a scenario to pretend, a
knowledge state to ask or share information.
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To enable ToM to better correlate reasoning about mental attitudes and behavior,
the notion of knowing about knowing needs to be formalized and expressed as
axioms. Moreover, relations between knowledge space and intention space needs to
be established as a rule system suitable for teaching CwA and machines (Chap. 4). A
formal link between ToM as a theory-theory and meta-reasoning (Sect. 4.1.3) needs
to be established. We need to marry ToM which ascribes mental states to humans
with the multiagent systems theory which accumulated substantial experience doing
this for automated agents: it will happen in Chaps. 4 and 5.

The foundation of ToM are connected with the nativist-constructivist debate
which has been initiated by philosophers hundreds of years ago. It concerns the
origin of knowledge and whether it is yielded by native abilities or was derived
empirically. In terms of linguistic capabilities, this is formulated as whether humans
possess a specific cognitive mechanism for comprehending and producing language,
or these capabilities are due to a general cognitive tools. The former represents the
nativists theories and the latter is favored by constructivists. If an individual has
an innate grammatical knowledge, it has to be domain-specific. Also, a deviation,
a move away from this grammatical knowledge means that a language is not
associated with special cognitive skills.

Computer science favors the nativist positions and robots need separate compo-
nents for each kind of knowledge. Teaching CwA, however, we intend to give them
general axioms about knowledge and then expect these axioms to be applied in
multiple modalities beyond language. How can we teach children to classify states
and words for them into abstract categories, unless they already have knowledge of
these categories? To overcome this difficulty, we will introduce a basis of undefined
concepts and then teach other concepts of mental world relying on this basis.

If robots are capable to recognize faces, voices and body gestures and have
functioning ToM components, it can be shown that removal of some axioms in the
ToM component will break the overall system, having signal recognition component
intact (Galitsky 2002).

As to our framework of reasoning engine ! behavior, we now focus on the main
component of reasoning such as reasoning about mental states as the cornerstone of
autistic reasoning. We target explaining the broad range of autistic behavior via the
peculiarities of autistic reasoning in this very restricted domain, putting the whole
physical world aside. We will look at emphasizing from the systemizing standpoint
and attempt to represent the richness of mental world in a formal, structured way
acceptable to an autistic systematizer.
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Chapter 4
Formalizing Theory of Mind

While identifying multiple core deficits outlined above certainly helps in the study
and diagnosis of autism, it does not provide a causal explanation of the disorder,
nor does it provide a rehabilitation mechanism. A more concise account of autistic
reasoning and how it implies behavior in the real is required, and in this chapter we
attempt to build a formal model of ToM so that in the chapter to follow we can build
a computational implementation of it.

Reasoning about mental world is the cornerstone of autistic reasoning phe-
nomena. Unlike controls, children with autism experience difficulties differenti-
ating between physical and mental objects like thoughts and mental actions like
knowledge sharing. We start with the ToM, representing autistic reasoning in
psychological terms, and proceed to its formalization in terms of belief-desire-
intention. Having represented the ToM as a computational model, we proceed
towards the computational linguistic model of basic (knowing and wanting) and
derived mental entities such as informing, pretending, cheating and reconciling.
Relying on the linguistic approach of semantic roles and logic programming-
style clauses, definitions for derived mental entities are proposed which can be
directly taught to children with autism. A link between reasoning about the mental
world, behavior in it, communication with other people and its emotional colors
are introduced based on the formalized Theory of Mind. More complex form of
formalized behavior forms and interactions between human to be taught to autistic
patients are also analyzed, including arguing, offending, explaining, cooperation and
team formation.

In our formal description of the real mental world, we follow its natural language
representation as closely as possible, while obeying the restrictions of a formal
language. In contrast to the traditional modal logic-based formal representation
of knowledge, belief and intention, we use the wider set of mental entities with
multiple possible interpretations. Acquiring mental entities, autistic trainees are
expected to reproduce them in their behavioral patterns and to discover them in
the verbal communication of others. Therefore, both natural language and formal
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Fig. 4.1 Mental space and its
dimensions to represent
Theory of Mind

language (user interfaces of software) representations need to accompany each
mental scenario (a scenario with interacting human agents). Sometimes, autistic
children prefer to operate with the latter: the user interface of a software system
seems to be more attractive than reading or talking in the NL.

This basis (Fig. 4.1) is an adequate approximation of meanings in the multiagent
settings. Meaning of entity is expressed with respect to agent’s reaction. There are
multiple definitions (clauses) for each NL entity (ambiguity). However, there is
one-to-one map between generalizations of these clauses in a metalanguage and
respective NL entities.

4.1 Computer Science of Theory of Mind

In this section we will define the main problem of ToM, introduce the BDI model,
focus on meta-reasoning and then proceed to computational linguistics’ issues of
ToM.

4.1.1 Defining Main Problem of ToM

In this section we give a computational definition of main ToM problem, and in the
rest of this section we address a number of issues associated with its solution.

Definition The main problem of ToM is to build a set of consecutive mental states
given an arbitrary initial mental state in the fixed vocabulary of mental states and
actions. The formal declarative definitions of mental states and actions are also
given. This set of consecutive mental actions must be consistent with the definitions
of involved mental states and actions.

Informally, for a human this set should sound plausible, as far as the definition of
mental states and actions are plausible and match human intuition. Since definition
of mental actions are of a declarative nature, they do not give a hint on how to
navigate mental space to satisfy them, including pre-conditions and effects. The
richer the set of definitions is available, the more extensive the derived set of
consecutive mental states is expected to be. Definitions can include communicative
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Fig. 4.2 The Task of ToM engine is to yield a set of consecutive mental states for an arbitrary
initial one, having the set of initial mental states

actions, emotions, requests (Fig. 4.2). The objective of this book is to build a
computational model for solving this problem and to teach CwA to solve it. The
limitation of autistic reasoning as presented in this Figure is both ToM engine
operating with mental entities, and definitions for mental entities. Although the
former cannot be built directly, we focus on the latter and teach definitions of mental
states and actions. This in turn improves the ToM engine itself feeding it with a high
number of instances of these definitions.

We attempt to build a generic model of mental world that is sufficiently
expressive to represent ToM as it is described in literature on one hand, and
formalized as a theory in this book on the other hand. This model is expected to
differentiate CwA and CC, as well as concisely describe ASD spectrum in terms
of ToM capabilities, from high functioning in reasoning about mental states to
rudimentary reasoning skills. There is a single mental world and we expect there to
be a single ToM not just associated with autistic reasoning but rather broad spectrum
of activities of human and automated agents. The ToM-oriented model of mental
world follows the series of formalisms we have develop to simulate the mental
attitude in a broad variety of domains, including mental states of investors, bloggers,
wireless subscribers, negotiators, literature characters (Galitsky 2002, 2009). Each
of these domains requires formation of the special set of mental entities, and a set
of domain-specific additional constraints for the co-occurrence of mental entities.

The main players in the mental world are beliefs, desires and intentions. These
players are states as well as actions, which lead to these states, such as informing
leads to knowing. At the same time, mental states cause mental actions that are
believed to bring an agent to desired mental states. For example, the state of not
knowing of agent H may lead to its action of asking which may cause the action of
informing by a peer agent which finally brings the state of knowing.

CwA confuses both mental states and action, as well as transitions between them.
CwA does not know what knowing means, so the state of knowledge (absolute,
always true, facts) and beliefs (something which can be revised, updated, associated
with an emotion, forgotten) should be taught together with the action that leads to
it. A typical example here is how to teach a CwA to answer the question “What is
in my bag?”. CwA needs to be demonstrated that to acquire knowledge of what it is
in a bag, a person should:
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1. Open a bag and look into it
2. Ask those who know what is in the bag.

Alternatives for (1) are other perception modalities: a bag can be smelled, touched
or attached to an ear to hear a sound.

Rather than trying to explain to a child with autism what are the states of knowing,
believing and wanting, we introduce scenarios where associated mental actions lead
to these states. These states are set to be indefinable, so instead of trying to define
them, we introduce scenarios where CwA learn to operate with these indefinable
mental states. The other, derived mental states are then introduced based on explicit
formal definitions, relying on already acquired concepts of knowing, believing
and wanting. Although for CC there is no substantial difference between basic
and derived mental states, CwA acquire basic mental states by learning scenarios
and derived mental states by learning their definitions, according to our teaching
strategy.

Notice that CC form representation skills for mental states and actions naturally,
by learning mental world, whereas CwA need to be taught following the axiomatic
principle. This is similar to how most people learn geometry as axiomatic system:
given axioms for a point and a line (indefinable entities), they learn to prove
theorems about geometric figures. To do that they first consider various “scenarios”
for how lines and points are situated, “interacting” with each other. This helps
to develop intuition about geometric abstractions. For CwA, entities of ToM are
abstractions in a similar sense, so they need to learn the mental states and actions
in the same ways mathematicians learn abstract theories. Possibly, CwA will never
use mental actions naturally, but at least learning the mental world in an axiomatic
form will make learning process concise and systematic.

In ToM, agents form coalitions (try to play together), negotiate (dispute and
quarrel) about achieving certain physical and mental states (e.g. possession of a toy
or knowledge about what is in someone’s bag). To adequately represent multiagent
cooperation or conflicts within ToM, it is necessary to build a computational
framework that is capable of producing a sequence of consecutive mental states and
actions given an arbitrary initial set of mental states. Also a ToM simulation system
is expected to search for causal links in the known, observed part of a scenario
of interaction between children and predicts the future, unknown continuation of
scenario in terms of mental states actions.

Before we start our comprehensive introduction to the formalized ToM, we
briefly outline the main concepts. In our formal description of the mental world
we try to follow its natural language representation as close as possible. Coding
the conflict scenarios as logic programs, we target the different formal treatment
of distinct mental entities, which are in use in the natural language description of
this scenario. Adequate description of the mental world can be performed using
mental entities and merging all other physical actions into a constant predicate for
an arbitrary physical action and its resultant physical state (for simplicity). It is well
known that humans can adequately operate with the set of natural language mental
expressions containing not more than four mutually dependent mental entities.
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4.1.2 Belief–Desire–Intention Model

The belief–desire–intention (BDI) model is a software model developed for pro-
gramming intelligent agents. It is focused on the implementation of an agent’s
beliefs, desires and intentions, relying on these entities to solve a particular problem
in agent programming. BDI model separates the process of selecting a plan (from
a plan library or an external planner application) from the execution of currently
active plans. BDI is a practical mechanism to solve ToM problems: BDI agents are
able to balance the time spent on deliberating about plans (choosing what to do)
and executing those plans (doing it). CwA need to be taught to plan to split their
thinking into the one concerning choosing what to do and the one associated with
actual doing.

BDI follows Michael Bratman’s theory of human practical reasoning it imple-
ments the notions of belief, desire and intention. Intention and desire are both
pro-attitudes (mental attitudes concerned with action), but intention is distinguished
as a conduct-controlling pro-attitude. He identifies commitment as the difference
between desire and intention, noting that it leads to temporal persistence in plans
and also further plans being made on the basis of those plans to which it is already
committed. There is a logical model that allows to define and reason about BDI
agents. A formal logical descriptions such as (Rao and Georgeff 1995) BDICTL
combines a multiple-modal logic (with modalities representing beliefs, desires and
intentions) with the temporal logic CTL*. (Wooldridge 2000) used BDICTL to
define the Logic Of Rational Agents, by incorporating an action logic, which allows
reasoning not only about individual agents, but also about communication and other
interaction in a multiagent system.

The idealized architectural components of a BDI system are as follows:

• Beliefs: Beliefs represent the current, instant knowledge (informational) state of
the agent. These states include beliefs about the world including her self and
peer agents. (Meta-)beliefs can also include inference rules (clauses), allowing to
derive new beliefs. We using the term belief together with knowledge to confirm
that what an agent believes is not always true and can be updated, revised or
rejected.

• Desires: Desires are the motivational state of the agent. They represent objectives
or situations that the agent would like to accomplish or bring about. Examples of
desires might be: find the best location, get food or become famous.

• Goals: A goal is a subtype of desire that has been used to express an for
active pursuit by the agent. Usage of the term goals adds the further restriction
that the set of active desires must be consistent. For example, one should not
have concurrent goals to spend money to buy something he wants and to save
money at the same time (even though both spending and saving could both be
desirable)



100 4 Formalizing Theory of Mind

• Intentions: Intentions represent the deliberative state of the agent – what the agent
has chosen to do. Intentions are desires to which the agent has to some extent
committed. In implemented systems, this means the agent has begun executing a
plan.

• Plans: Plans are sequences of actions (recipes or knowledge areas) that an
agent can perform to achieve one or more of its intentions. Plans may include
other plans: my plan to go to pre-school may include a plan to find my favorite
toy to take with me. Plans must be defined to CwA in a way that first a
sequence of actions must be planned, then attempted to be executed and then
adjusted to the environment as appropriate. It has to be explained that it is
hard to plan everything exactly, 100 % because there are always unknown
circumstances, and actions need to be altered to accommodate them.

• Events: These are brief states that are caused by sources outside of a human
or automated agent. Events are triggers for reactive activity by the agent. An
event may update beliefs, trigger plans or modify goals. Events may be generated
externally and received by sensors or integrated systems. Additionally, events
may be generated internally to trigger decoupled updates or plans of activity.
The difference between events which may occur, may be attended or avoided,
may be expected or emergent, needs to be explained to CwA (Fig. 4.3).

Inference
Mechanisms

Script
Elaborator

Possible
Worlds

UpDater

Beliefs Desires

Perceptual
processes

Body monitoring
system

Decision-making
(practical reasoning)

system

Action control
system

BEHAVIOR

Fig. 4.3 The connection between beliefs, desires, intentions, the resultant behavior and its
monitoring
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4.1.3 Meta-Reasoning

The capacity to think about our own thinking may lie at the heart of ToM.
Philosophers and cognitive scientists have investigated these matters for many years.
As humans, we continually think about ourselves and our strengths and weaknesses
in order to manage both the private and public worlds within which we exist.
Researchers in artificial intelligence have gone further, attempting to implement
actual machines that mimic, simulate, and perhaps even replicate this capacity,
called metareasoning.

If a text tells us how to do things, or how something has been done, we classify
this text as a language-object. If a text is saying how to write a document which
explains how to do things, we classify it as metalanguage. Metalanguage is a
language or symbolic system used to discuss, describe, or analyze another language
or symbolic system. In theorem proving, metalanguage is a language in which
proofs are manipulated and tactics are programmed, as opposed to the logic itself
(the object-language). In logic, it is a language in which the truth of statements in
another language is being discussed.

Meta-reasoning addresses a question of how to give a system its own representa-
tion to manipulate. Meta-reasoning needs both levels for both languages and domain
behavior. We depict two main classes of interest in Fig. 4.4.

Traditionally thinking or reasoning has been cast as a decision cycle within
an action-perception loop similar to that shown in Fig. 4.5 An intelligent agent
perceives some stimuli from the environment and behaves rationally to achieve its
goals by selecting some action from its set of competencies. The result of these
actions at the ground level is subsequently perceived at the object level, and the
cycle continues. Metareasoning is the process of reasoning about this reasoning
cycle. It consists of both the metalevel control of computational activities and the
introspective monitoring of reasoning (see Fig. 4.6). This cyclical arrangement
represents a higher-level reflection of the standard action-perception cycle, and as
such, it represents the perception of reasoning and its control.

Introspective monitoring is necessary to gather sufficient information with which
to make effective metalevel control decisions. Monitoring may involve the gathering

Language Language Object Domain

Behaviour Behaviour

Induces by computation/deduction

RepresentsRepresents

Fig. 4.4 Meta-reasoning chart: mutual relationships between major classes of our interest
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of computational performance data so as to build a profile of various decision
algorithms. It could involve generating explanations for object-level choices and
their effect on ground-level performance. When reasoning fails at some task, it may
involve the explanation of the causal contributions of failure and the diagnosis of
the object-level reasoning process.

The introspective monitoring of reasoning about performance requires an agent
to maintain some kind of internal feedback in addition to perception, so that it can
perform effectively and can evaluate the results of metareasoning. If the reasoning
that is performed at the object level (and not just its results) is represented in
a declarative knowledge structure that captures the mental states and decision-
making sequence, then these knowledge structures can themselves be passed to the
metalevel for monitoring.

For example, the Meta-AQUA system (Cox and Ram 1999) keeps a trace of its
story understanding decisions in structures called a trace meta-explanation pattern
(TMXP). Here the object-level story understanding task is to explain anomalous
or unusual events in a ground-level story perceived by the system. Then, if this
explanation process fails, Meta-AQUA passes the TMXP and the current story
representation to a learning subsystem. The learner performs an introspection of
the trace to obtain an explanation of the explanation failure called an introspective
metaexplanation pattern (IMXP). The IMXPs are used to generate a set of learning
goals that are passed back to control the object-level learning and hence improve
subsequent understanding. TMXPs explain how reasoning occurs; IMXPs explain
why reasoning fails. Explainability and introspective monitoring are skills which
need to be taught to CwA.

Charts Fig. 4.7 are fairly helpful in explaining CwA how they plan their reasoning
and physical action activity. The most basic decision in classical metareasoning is
whether an agent should act or continue to reason. For example, the anytime planner
always has a current best plan produced by the object-level reasoning. Given that
the passage of time incurs a certain fee, the metareasoner must decide whether the
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Fig. 4.7 From doing and understanding to metareasoning (on the top). Multiagent meta-level
control (on the bottom)

expected benefit gained by planning further outweighs the cost of doing nothing. If
so, it produces another plan; otherwise, it executes the actions in the plan it already
has.

In a multiagent context, if two or more agents need to coordinate their actions,
the agents’ metacontrol components must be on the same page. The agents must
reason about the same problem and may need to be at the same stage of the
problem-solving process. For example, suppose one agent decides to devote little
time to communication negotiation (Alexander et al. 2007) before moving to other
deliberative decisions, while another agent sets aside a large portion of deliberation
time for negotiation; the latter agent would waste time trying to negotiate with an
unwilling partner.

We define an agent’s problem-solving context as the information required for
deliberative-level decision making, including the agent’ s current goals, action
choices, its past and current performance, resource usage, dependence on other
agents, and so on. Suppose the agent’s context when it is in the midst of execution
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is called the current context, and a pending context is one where an agent
deliberates about various “what-if” scenarios related to coordination with other
agents. Distributed metareasoning can also be viewed as a coordination of problem-
solving contexts. One metalevel control issue would be to decide when to complete
deliberation in a pending context and when to replace the current context with the
pending context. Thus, if an agent changes the problem-solving context on which it
is focused, it must notify other agents with which it may interact. This suggests that
the metacontrol component of each agent should have a multiagent policy where
the content and timing of deliberations are choreographed carefully and include
branches to account for what could happen as deliberation (and execution) plays
out. Figure 4.7 on the bottom describes the interaction among the metalevel control
components of multiple agents.

Cox and Raja (2007) outline a general approach to meta-reasoning in the sense
of providing a basis for selecting and justifying computational actions. Addressing
the problem of resource-bounded rationality, the authors provide a means for
analyzing and generating optimal computational strategies. Because reasoning
about a computation without doing it necessarily involves uncertainty as to its
outcome, probability and decision theory were selected as main tools.

A system needs to implement manguage to impress peers of being human-like
and intelligent, needs to be capable of thinking about one’s own thinking. Tradition-
ally within cognitive science and artificial intelligence, thinking or reasoning has
been cast as a decision cycle within an action-perception loop. An intelligent agent
perceives some stimuli from the environment and behaves rationally to achieve its
goals by selecting some action from its set of competencies. The result of these
actions at the ground level is subsequently perceived at the object level and the
cycle continues. Meta-reasoning is the process of reasoning about this reasoning
cycle. It consists of both the meta-level control of computational activities and
the introspective monitoring of reasoning. (Galitsky 2015) focused on linguistic
issues of text which describes such cognitive architecture. It turns out that there
is a correlation between a cognitive architecture and a discourse structure used to
express it in text. Relying on this correlation, it is possible to automatically classify
texts with respect to metalanguage they contain.

A mixture of object-language and metalanguage descriptions can be found in
literature. Describing the nature, a historical event, an encounter between people, an
author uses a language-object. Describing thoughts, beliefs, desires and knowledge
of characters about the nature, events and interactions between people, an author
uses a metalanguage. The entities/relations of such metalanguage range over the
expressions (phrases) of the language-object. In other words, the physical world is
usually described in language-object, and the mental world typically combines both
levels.

One of the purest examples of use of metalanguage in literature is Franz
Kafka’s novel “The Trial”. According to our model, the whole plot is described
in metalanguage, and object-level representation is absent. This is unlike a typical
work of literature, where both levels are employed. In “The Trial” a reader learns the
main character Joseph K is being prosecuted, his thoughts are described, meeting
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with various people related to the trial are presented. However, no information is
available about a reason for the trial, the charge, the circumstances of the deed. The
novel is a pure example of the presence of meta-theory and absence of object-level
theory, from the standpoint of logic. The reader is expected to form the object–level
theory herself to avoid ambiguity in interpretation of the novel.

Exploration of “The Trial” helps to understand the linguistic properties of
metalanguage and language-object. For example, it is easy to differentiate between
a mental and a physical words, just relying on keywords. However, to distinguish
meta-language from language-object in text, one need to consider different dis-
course structures, which we will automatically learn from text.

The following paragraph of text can be viewed as a fragment of an algorithm
for how to solve an abstract problem of acquittal. Since it suggests a domain-
independent approach (it does not matter what an accused did), it can be considered
as a meta-algorithm.

‘There are three possibilities: absolute acquittal, apparent acquittal and defer-
ment. Absolute acquittal is the best, but there is nothing I could do to get that sort
of outcome. I don’t think there’s anyone at all who could do anything to get an
absolute acquittal. Probably the only thing that could do that is if the accused is
innocent. As you are innocent it could actually be possible and you could depend on
your innocence alone. In that case you will not need me or any other kind of help.’

In some sense this algorithm follows along the lines of a ‘vanilla’ interpreter in
Prolog, a typical example of a meta-program:

where the novel enumerates various clauses, but never ground terms expressing
the details of a hypothetical crime (no instances of A or B). clause(A,B) is expression
of the format A:- B, where A is a term being defined (a clause head) and B is a
sequence of defining terms (a body of this clause). This interpreter shows multiple
possibilities a term can be proved, similarly to multiple possibilities of acquittal
spelled out by Kafka. We hypothesize that a text expressing such a meta-program,
Kafka’s text, should have specific sequences of rhetoric relation, infrequent in
other texts. We will attempt to find distinct discourse patterns associated with
metalanguage and differentiate it with other texts. In the literature domain, it is
possible to draw a boundary between the pure metalanguage (peculiar works of
literature) and a mixed level text (a typical work of literature).

Let us consider an example of an introspection in the domain of conflicts. An
agent who is an opponent to a complainant is capable of following reasoning about
complainant’s mental states as well as about their own:

If a complainant asks me about his problem then if I would not know the answer I will deny
responsibility, and if he asks me how to fix the problem I would need to consult an external
source because I don’t know.
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4.1.4 Entities of ToM

In natural language, mental entities, as well as other words, have a variety of
meanings. At the same time, a set of meanings which are expressed by a given
word for mental action or state has a lot of common features. Therefore, we will use
the multiple definitions for the same mental entity. To maintain the proper level of
abstraction, expressing that a subject of a mental action can be a fact, other mental
action or a clause, we use metapredicates. The arguments of these metapredicates
range over agents and their subjects of beliefs, knowledge, intentions and other
metal actions and states (metapredicates are the predicates whose arguments range
over arbitrary well-written formulas (Criscuolo et al. 2002)). For example, a relation
of reconciliation between two people involved in a conflict, conflict mediator, a
subject of their conflict and a reconciliation event is expressed as:

Person-in-conflict1, Person-in-conflict2, Mediator range over person names,
whereas ConflictSubj and Event can be facts, formulas for mental states and actions,
and even clauses (definitions) expressing conditions for mental states and actions.

The set of mental metapredicates, can be divided into three categories:

• Metapredicates for basic mental states, intention, knowledge and belief, follow-
ing the BDI model;

• Metapredicates for derived mental states and actions. They are expressed via
the metapredicates for basic mental states. For example, there are families of
definitions for cheat, reconcile, etc. This category also includes communicative
actions (mental actions involving an actor and a receiver according to Speech Act
theory) such as inform, explain, convince.

• Metapredicates for emotions. Emotions are the formally independent entities,
which are semantically close to one or another derived mental states, but contain
additional sentiment load.

Teaching of mental entities occurs according to these categories. First, CwA
needs to be shown the structure of mental action or states as a metapredicates, with
examples for each kind of their signature (believe in a fact, believe in a conditional
event, believe in a belief, belief in a condition for intent). Then basic mental states
should be taught by examples. After that, derived mental states are introduced via
definitions; multiple meanings for each are demonstrated via multiple definitions.
These definitions rely on the bases of intent, knowledge, belief. Finally, emotions
are defined in this bases again and the rules for their pre- and post-conditions are
spelled out.

How strong is the coverage of our basis, and how accurately can derived mental
states and actions be defined in this basis? The precision of our approach can be
estimated as a difference between a formal definition of mental state in our basis D
and informal definition in plain words P. Our claim is that the deviation of meaning
of D from P is so small that it does not lead to a different choice of action in a
situation S where P is substituted with D:
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Claim: For any S and any P if the best action to bring an agent into a most desired
state is A, it is the same action for S and D.

Where !A stands for the following relation: given states leads to an optimal
action in terms of most desired resultant state.

In other words, our approximation is accurate enough to assure the agent to select
the same action in the cases of an ideal and approximate definition of a mental state
D, given an arbitrary set S of other expressions for mental states D is added to.

For example, we can approximate to be afraid (of something) by not want
(something), when we talk about an agent that chooses an avoidance behavior. If
such the agent has two choices – to avoid or not to avoid, it does not matter for
his choice of action whether he does not want to be with another agent or feels
being frightened by that agent. Therefore, a derived mental entity forms the class
of equivalence of mental entities (emotions) with respect to the choice of action by
an agent (mental or physical, from the fixed set). The reader can easily construct
mental formulas for forgetting (lack of a belief that follows its presence at some
point in time), dreaming (intention of some physical or mental state to occur),
imagining (believing that something holds knowing that the belief is wrong), feeling
guilty (intention that some action that has been committed should not has been done
and belief that it depended on the agent’s physical or mental state), infatuation,
fascination, anger, surprise, embarrassment, shame, anxiety, etc., approximating
their meanings for particular situations. A meaning of an entity can be formally
defined in a narrow domain only (particularly, as a set of relevant answers in a
question-answering settings, Galitsky 2003).

4.1.5 Linguistics of ToM Entities

Learning communicative actions is a key to entering the mental world. Computa-
tional verb lexicons are key to supporting acquisition of entities for actions, and a
rule-based form to express their meanings. Verbs express the semantics of an event
being described as well as the relational information among participants in that
event, and project the syntactic structures that encode that information. Verbs, and in
particular the ones for communicative actions, are also highly variable, displaying
a rich range of semantic behaviors. Verb classification helps a learning systems to
deal with this complexity by organizing verbs into groups that share core semantic
properties.

VerbNet (Kipper et al. 2008) is one such lexicon, which identifies semantic roles
and syntactic patterns characteristic of the verbs in each class and makes explicit the
connections between the syntactic patterns and the underlying semantic relations
that can be inferred for all members of the class. Each syntactic frame in a class has
a corresponding semantic representation that details the semantic relations between
event participants across the course of the event.
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Let us consider the verb amuse. There is a cluster of similar verbs that have
a similar structure of arguments (semantic roles) such as amaze, anger, arouse,
disturb, irritate, and other. VerbNet is a good source of information on verbs in
general and communicative actions in particular. The roles of the arguments of these
communicative actions are as follows:

• Experiencer (usually, an animate entity)
• Stimulus
• Result

The frames (the classes of meanings differentiated by syntactic features for how
this verb occurs in a sentence) are as follows (NP – noun phrase, N – noun, V –
communicative action, VP – verb phrase, ADV – adjective):
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For this example, the information for the class of verbs amuse is at http://verbs.
colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1

We now show how communicative actions are split into clusters:

4.1.6 From Deduction to Simulation and Learning

In this section we provide our motivations for selecting a hybrid approach to
solve a main ToM problem. Formalizing ToM, we need to extend traditional
BDI implementation of reasoning, based on modal logics, that is not well suited
for expression practical applications, as we are going to show. In the last few
decades, the interest to formal modeling of various forms of human reasoning
and to simulation of mental behavior has strongly risen. A series of phenomena
in human reasoning have been reflected in such approaches as reasoning about
action and knowledge, nonmonotonic reasoning, and others. Modal logic-based
and situation calculus–based approaches have become the most popular in formal
modeling the mental attitudes (McCarthy 1995; Fagin et al. 1996; Wooldridge
2000). However, these approaches have to be extended for robust and efficient
software implementations, associated with the following. It seems to be hard to
directly take advantage of the practical limitation for the complexity of mental
formulas (below four, Sect. 4.3.2). Also, the first-order logics, which are well-

http://verbs.colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1
http://verbs.colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1
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suited to handle certain phenomena of natural language in general, are frequently
inadequate to handle the peculiarities of ambiguity in mental natural language
expressions (Sect. 4.2.4).

We believe that using pure deductive logical means as, for example, default
logic for semantic disambiguation, reasoning about action and time (see e.g.
Shoham 1993; Shanahan 1997), if applied to mental world, or constraint satisfaction
machinery for mental states, taken together, do not provide a solution to formalize
ToM. Pure deduction possesses neither expressiveness not computational efficiency
for providing an adequate coverage of possible behaviors by inferring future mental
states from the given ones. Multiagent simulation and a case-based system, which
runs an exhaustive search through the totality of possible agents’ actions, need
to come into play in addition to pure reasoning means to build the environment,
adequate for applying the laws of mental world to complaints. Indeed, in terms of
computational complexity such exhaustive search is possible, because the formal
expressions involved are compact. To reproduce a ToM scenario, desired mental
simulator should be capable of producing a sequence of consecutive mental states
given an arbitrary initial one.

We believe that situation calculus and its implementation for reasoning about
dynamic domains (e.g. GOLOG, (Levesque et al. 1997)) is adequate for reasoning
about physical actions, but lacks the expressiveness to operate with mental actions.
Situation calculus is relevant expressing the effect axioms (how a mental action
results in a certain mental states) but has an insufficient expressive means to
determine a possible mental action (to choose it from an agent’s perspective, see e.g.
(Shanahan 1997)). This is due to the fact that some form of simulation is required
in addition to deductive-based form of reasoning about actions.

Since deductive reasoning about mental states is necessary but insufficient, it
has to be taught to CwA first, followed by teaching procedural algorithms for a
proper choice of behaviors. Computer scientists should verify their formalisms of
reasoning about mental states in a way similar to how we do it in this book: propose
an axiom, teach it to CwA and observe the improved reasoning skills. Usually it is
much simpler to teach an axiom or a rule to a CwA, when she is ready to acquire
it and has the required background knowledge, than to do it with a robot. This is
because in the latter case a foundation framework has to be built, whereas in humans
it already exists.

Over last three decades, a number of control architectures for practical reasoning
agents have been proposed (Galitsky and Pampapathi 2005); however, most of them
have been used only in artificial environments, and very few have been accepted to
the field-tested applications.

It took a significant amount of efforts to learn that procedural reasoning systems
(d’Inverno et al. 1998), are more plausible than those based on the traditional imple-
mentation of inference search. Implementation of BDI model has been successfully
deployed in such procedural reasoning systems, but the substantial development
of both the former reasoning implementation approach and latter representation
formalism is required to apply it to the real mental world.
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Traditionally, representation of the laws of mental worlds is developed via
axioms (for example, an agent knows what it knows). This approach does not solve
the general problem of obtaining the totality of possible mental states, given an
initial mental state (Chap. 5). Just a limited number of consecutive mental states can
be yielded in a first-order system where meanings of knowledge, belief and intention
are expressed as formal modalities. The problem of analysis of real-world conflicts
between human agents, which is formulated in natural language and involves the
words for various mental states, actions and emotions, requires at least solving the
problem above. We believe that merging the declarative (laws of mental world),
procedural (simulation of an agent’s choice of action) and machine learning (taking
into account previous experience) components are required to adequately reproduce
the phenomenology of human reasoning about mental attitudes. In this chapter, we
are demonstrating that the above is true in the particular domain of reasoning for
autistic remediation.

Computational implementation of reasoning about the mental world needs to
involve much more extensive phenomenological data than axioms in general are able
to represent; therefore, we expect to employ machine learning to take advantage of
previously accumulated multiagent scenarios. At the same time, machine learning
community does not specifically focus on such the domain as mental world, where
statistical approaches do not seem to be applicable. Also, considering a multiagent
scenario as an abstract set of features under machine learning settings leads to a loss
of accuracy. So specific machine learning methods needs to be developed for such
domain as mental world; here we will start the development of machine learning.
On the positive side, because the vocabulary of mental expression is quite limited,
the text information retrieval problem for mental entities can be solved much more
easily than for arbitrary domain-specific entities. Furthermore, the system, once
developed, can be reused from domain to domain (Galitsky 2003).

An alternative cognitive approach to represent mental world was undertaken by
(Riesbeck et al. 1975) in order to specify the primitive representations for all verbs
expressing thoughts in support of natural language understanding. They intended to
express what human agents say about the mental world, rather than represent details
concerning a complex memory and reasoning model. They therefore used only two
mental primitives: mental transfer of information from one location to another and
mental building of conceptualizations, and a few support structures such as mental
locations, e.g., working memory, central processor and long-term memory.

A generic cognitive model of the mental world is depicted in Fig. 4.8. Cognitive
processes (mental actions) are shown on the lefts, and mental states – on the
right. Each mental action corresponds to a cluster of linguistic communicative
and decision-making actions, related to either inference or memory. This model
is subject to aggregation and restructuring to approach the ToM approach, being
developed in this book (Fig. 4.9). Mental states and actions are derived and classified
in a way suitable for explaining autistic reasoning about the mental world and also
for teaching CwA proper reasoning about it.

http://dx.doi.org/10.1007/978-3-319-39972-0_5
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Mental World
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Fig. 4.8 Generic cognitive model of mental world

Since an adequate implementation of ToM reasoning requires deduction, simu-
lation and learning, the training exercises would fall into these categories as well:

Training to perform deduction Given a (behavioral) rule of the sort P ! A (pre-
condition ! action), memorize it, identify the cases of applicability of P, apply it,
derive action A and perform it.

Training to perform simulation Given a choice of actions fA1, : : : ,Ang (exhaustive
search, enumeration of candidate hypotheses), hypothetically commit Ai, hypothet-
ically face the consequences and finally decide which is the best action Abest.

Training to perform learning Given a training set of pairs fA ! Cg (action !

consequences), where some consequences are wanted and some are unwanted,
decide for a given action Aunknown if it would cause wanted or unwanted conse-
quences. For such decision, a measure of similarity between Aunknown and each
member of the training set Ai is required. This sort of training also covers abductive
and analogical forms of reasoning along with induction.
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Mental World

Mental Actions 
(defined using 
basic mental states) Derived Mental

States

Basic Mental 
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Emotions 
(mental states
with addit.
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Actions’ pre-conditions

-

Effects of 
actions

Communicative 
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Fig. 4.9 Our ToM-oriented model of mental world which targets knowledge representation in a
particular domain (complaint scenarios) is on the bottom

This is the loop and the order CwA should be taught selecting an action,
following the BDI architecture:

repeat

1. options: option-generator(event-queue)
2. selected-options: deliberate(options)
3. update-intentions(selected-options)
4. execute()
5. get-new-external-events()
6. drop-unsuccessful-attitudes()
7. drop-impossible-attitudes()

end repeat

4.2 ToM Step-by-Step

We present a step-by-step introduction to our representation of the mental world,
followed by its implementation by the NL_MAMS simulator in Chap. 5. Steps of
this introduction are either definitions or hypotheses which have been computation-
ally verified in our studies.

Logico-philosophical investigation of mental entities is a well-established area
in AI. Similar to the vocabulary of mental actions introduced in this chapter, many
cognitive vocabularies make a prominent distinction between mental states (as

http://dx.doi.org/10.1007/978-3-319-39972-0_5
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knowledge or belief) and mental mechanisms (as the mental events that process
knowledge or information). For example, conceptual dependency theory (Schank
1969) distinguishes between two sets of representations: primitive mental acts and
mental conceptualizations upon which the acts operate. In addition, the theory
proposes a number of causal links that connect members of one set with members of
the other. With such building blocks, a representational language such as conceptual
dependency must be able to represent many process terms: think (about), remember,
infer, realize and calculate; and numerous state terms: fact, belief, guess, doubt, and
disbelief. From now on we will be using PROLOG notation for our expressions of
mental states and actions.

4.2.1 Mental States and Actions

We first hypothesize that we can merge (ignore the difference between) the totality
of entities of other than mental (physical) nature.

Hypothesis 1 Actions and states are divided into mental (communicative, e.g.
informing-knowing) and physical (remaining, e.g. making withdrawal – decreased
account balance). We approximate our description of the mental world using
mental states and actions (Fig. 4.9) and merging all physical actions into a constant
predicate for an arbitrary physical action and its potential resultant physical states.
This approximation is valid most of times modeling the mental states of a software
users where the set of available physical actions (as software options, e.g. turn, stop,
lend, buy a product, order a service, get a ticket etc.) is rather limited.

Hypothesis 2 Humans can adequately operate with the set of natural language men-
tal expressions containing not more than four mutually dependent mental entities.
This hypothesis is based on psychological observations concerning theory of mind
representations of control subjects and individuals with mental disorders (Baron-
Cohen 2000; Pilowsky et al. 2000). These kinds of experiments are conducted with
the number of nested mental entities from one to four, confirming that the higher
number causes difficulties for the majority of subjects.

In the play “Othello”, Shakespeare manages to keep track of five separate mental
states: he intended that his audience believes that Iago wants Othello to suppose
that Desdemona loves Cassio. Being able to maintain four-five separate individuals’
mental states is the natural upper limit for most adults.

Hypothesis 3 In natural language, each mental entity has a variety of meanings.
There are multiple clauses defining every mental metapredicate via the other ones.
Absence of such family of definitions for a mental entity means that all possible
meanings are implicitly assumed. Thus the problem of disambiguation in a formal
language is posed for situations where agents exchange messages in the natural
language.
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Definition 4 The elementary expression for a mental state or mental action is of the
form

where m1 : : : m4 are the metapredicates for mental states and actions, occurring
with or without negation; m4,(m3 and m4), (m2, m3 and m4) may be absent; in
accordance to Hypothesis 3, the total number of metapredicates is equal or less
than four.

a1 : : : a4 are the agents from the set of all agents A, square brackets denote
the variables for the second agent a1’ : : : a4’ (this is the passive agent for the
mental actions, committed by the active agent, denoted by the first argument).
For example, an action (and resultant state) with its actor and its receiver is
expressed by metapredicate inform(Actor, Receiver, Knowledge), and an action
with two (possibly, symmetric or anti-symmetric) receivers – by metapredicate
reconcile(Actor, Receiver1, Receiver2, MatterToSettleDown). Further on we will
assume that mental metapredicates are allowed to have additional arguments and
will not be showing them explicitly.

p is a predicate or expression for physical action or state, Hypothesis 1.
We call such elementary expression for an arbitrary p a mental formula. It obeys

the standard criteria of being a well-written formula.

Definition 5 The totality of well-formed mental formulas falls into three following
categories:

1. Interpretable mental formulas that represent existing mental states.
2. Mental formula that always holds for any set of agents (an axiom for modal logic,

for example know(Who, know(Who, Knowledge))).
3. Invalid mental formula that cannot be interpreted. For example, it is impossible

that a person pretends about someone else’s mental state pretend(a1, a2,want(a3,
Something)). The reader may object this example suggesting that Someone may
pretend to a boring acquaintance that his partner wants him to spend the evening
with her. However, the exact meaning here is that Someone pretends that he
believes that his partner wants him to spend the evening with her, so that the
respective former expression is invalid and the respective latter expression is
valid (interpretable). Prohibitive mental formulas are provided together with
corresponding definitions.

Hypothesis 6 For any interpretable mental formula there is a natural language entity
which covers it. There is a many-to-one mapping between interpretable mental
formulas and natural language mental entities. Hence natural language entities can
be viewed as the classes of equivalence for mental formulas. Otherwise, there would
be mental states which cannot be expressed in natural language (this would cause a
new entity to appear to cover this mental state).

Hypothesis 7 There are certain syntactic constraints for the formulas describing the
mental world that are sufficient to express an arbitrary multiagent scenario. A set of
expressions for a mental state has two following components:
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1. Mental state fluents, characterizing instant mental states;
2. Mental state clauses, specifying the set of consecutive mental states.

Mental state fluents are expressed with mental formulas as a following conjunc-
tion

where mi1 : : : mi4 are the metapredicates for mental states and actions, occurring
with or without negation; mi4,(mi3 and mi4), (mi2, mi3 and mi4) may be absent; aj1

: : : aj4 are the agents from the set of all agents A;
Note that there are maximum four metapredicates in the conjunctive members

above.
For example, Peter knows that Nick does not know that Peter wants Mike to play

with a toy ! know(peter, not know(nick, want(peter, play(mike, toy)))), m11 D know,
m14 D not know, a11 D peter, p D play(mike, toy).

Also, permanent mental conditions that are expected to be valid through multiple
consecutive mental states are expressed via clauses. Let us denote by � the
conjunctive member above

The following expressions are interpretable mental formulas to express the
continuous mental conditions

This is a condition for physical action. Here * denotes the logic programming
conjunction “,” or disjunction “;”. Let us consider the example: Peter would make a
deposit if he knew that Nick wants him to do so: deposit(peter, fund):- know(peter,
want(nick, deposit(peter, fund))).

For example, Mike knows the following: Peter would make a deposit if Mike
informs Peter that Nick wants Peter to make this deposit and if Peter does not want
to make this deposit himself ! know(mike, deposit(peter, fund):- inform(mike, peter,
want(nick, deposit(peter, fund))), not deposit(mike, fund)).

Note that an agent may have not only knowledge or belief that includes a causal
relationship, but also intention about convincing other agents concerning particular
causal link. For example, Mike wants the following: Peter would make a deposit
if Mike informs Peter that Nick wants Peter to make this deposit ! want(mike,
(deposit(peter, fund):- inform(mike, peter, want(nick, deposit(peter, fund))))). The
reader may compare last two examples and reveal the ambiguity of the natural
language expressions in terms of whether the clause is the argument of �, or� forms
the head of a clause.
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Additional considerations should be taken into account analyzing the allowed
expressions for mental states: each formula � in the expressions above (conjunctive
member) is an interpretable mental formula (Hypothesis 5).

Hypothesis 8 Without loss of the spectrum of meanings for mental entities, we
can merge the action and resultant mental states if they are expressed using similar
mental entities (to inform – being informed, to pretend – being impressed by a
pretending, etc.) unless it leads to contradictions or ambiguities in characterizing
resultant mental states.

Hypothesis 9 We can ignore certain temporal relationships between the mental and
physical states, so that the resultant scenario will stay the same. Asynchronous
temporal relations can be reduced to a sequence. Complex spatial attributes of
mental entities can be reduced to a sequence.

(Partial) ordering of mental states expressed by formulas �1, : : : ,�k in the
clause body that denotes respective consecutive (in time) mental states �1, : : : ,�k is
sufficient to represent temporal constraints with respect to the resultant multiagent
scenario (agents’ choice of actions).

4.2.2 Example of a Definition of a Mental Action

Once a CwA is capable of operating with basic mental states, he can be taught the
definitions of derived mental states so that relying on these definitions she can be
involved in a more complex forms of behavior that asking and answering simple
questions about what knows what and who wants what. We give an example for
how a CwA can be taught to perform and recognize deception, the mental action
that can be defined in the basis. It might sound unethical to teach a child wrong
forms of behavior, but it is better to understand deception than to be a victim of it.

CC play with deception without operating with an explicit definition for it, but
CwA needs it concisely defined. To achieve a Goal, a person C (cheater) selects
deception if there is no easy way (such as working towards this Goal or asking for
help) to achieve it otherwise. If there is another person T, the target of this deception,
who can commit an action A wanted by C, and C believes that once T is informed
Deception then T will commit A, then C will inform T about Deception.
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Notice the additional condition which makes this definition valid:

• C cannot perform an Action to achieve the Goal himself;
• No-one (Helper) can commit an Action so that Goal is achieved;
• C believes that once T gets to believe (know) statement Deception, she will

perform an action which results in the Goal;
• C believes T does not know Deception on her own (otherwise there is no reason

to deceive, and it will have no effect).
• C believes that T does not want Goal on her own, (otherwise there would be no

reason to deceive).

Finally, C informs T about Deception. This definition covers only a successful
deception where C achieves his Goal. To turn it into an unsuccessful or successful
deception, the last three terms should be removed.

The reader can observe that deception can indeed be defined in the basis of want-
know-believe. A CwA does not have to have definitions for the basic mental states
want-know-believe to learn how to perform deceptions as long as he is capable of
operating with scenarios involving these basic mental states. Unlike CC who does
not have to explicitly verify the conditions of this clause, CwA have to do a step by
step verification of these conditions so that his deception behavior look normal. This
is due to the fact that CwA cannot perform mental actions based on his intuition,
like CC does, so it is necessary to formalize it and follow each step literally.

We will now illustrate the above Hypotheses:

Hypothesis 1 This definition does not depend on the physical state from Deception,
Goal, or Action.

Hypothesis 2 No term in the clause has more than four embedded metapredicates.

Hypothesis 3 There are multiple meanings for deceiving (cheating, misrepresen-
tation, concealing facts) depending on what kind of Goal and what are the means
Deception to achieve it.

Definitions 4 & 5 The formula for the entity being defined (the head of the clause
above) and all defining terms (the body of the clause above) are well-written
interpretable mental formulas.

Hypothesis 6 Natural language entity deceive covers a series of clauses where
some of the terms in the defining part are omitted or added. A switch to another
mental entity such as explain will occur if Deception is a true fact (remove the term
believe(C, not Deception) from the above definition). A switch to pretend will also
occur if we remove all terms with Action from the defining part and add the clause
that instead of Action C just wants T to believe in her pretense.
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Hypothesis 7 A fluent in deceiving will be a transition belief state where T is
already informed Deception but has not perform Action. Also note the subject of
C’s belief is a clause.

Hypothesis 8 The order of states and actions should be as per the definition. In
the characterizing the initial mental state, the order of terms is arbitrary. Once C
initiated the deceiving behavior, the order of mental states and actions (shown in
gray area) does matter.

4.2.3 Derived Metapredicates

After we successfully expressed as complex concept as deceiving, we can approach
the attempt to express all mental states and actions in our basis.

Hypothesis 9 The set of derived metapredicates exhaustively covers the set of verbs
expressing interactions between people and their feelings. We treat in depth the
entities of ToM introduced in Sect. 4.2.1.

Derived metapredicates fall into two following categories:

1. Metapredicates for derived mental states and actions without explicit sentiments
load. These are characterized in the dimensions of knowledge, and intention
only and can be formalized fairly well, as we have seen. Teaching of these
metapredicates for CwA takes advantage of this high accuracy of approximation
of meanings.

2. Metapredicates for emotions. These are formally independent of (1) mental
metapredicates that belong to the classes of equivalence of the above category
of metapredicates with respect to agents’ choice of action, required to reach
one mental state from another. These metapredicate are loaded with sentiments,
emotions and feeling which cannot be expressed in our basis. However, for the
purpose of teaching these approximations are satisfactory.

Since all our mental metapredicates allow multiple interpretations, we merge
desire as a long-term goal with intention as an instant goal to the metapredicate
want(Agent, Goal), where Goal ��1 * : : : *�k. It allows us to reduce the number
of the well-written mental formulas for the analysis of interpretable formulas
(Definition 5). The difference between belief and knowledge is that an agent
is capable of changing and revising beliefs, but knowledge is only subject to
acquisition (Fagin et al. 1996).

We can express not only mental actions for a single agent, but also the mental
actions involved in a multiagent conflict in the basis of want-know-believe. Here
we provide just a single clause for selected mental actions, keeping in mind that
multiple clauses are expressing the meanings in various contexts of multiagent
interaction (for example, definitions of inform, Hypothesis 10).

In the definitions below, the reader may notice a use of meta-programming, where
a clause occurs as an argument of a defining predicate to express a deductive link in
a general way, to cover a wide spectrum of meanings.
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4.2.4 Handling Multiple Meanings

Hypothesis 10 The set of available actions for agents is derived from the respective
set of natural language entities. For each such entity, we obtain a spectrum of
conditions to perform the denoted action based on the family of definitions for this
entity in want-know-believe basis. From the linguistic perspective, the spectrum of
meanings for an entity that denotes mental action is determined by the context of
this entity (the set of other mental entities in the accompanying sentences). In our
model of mental world, there is a spectrum of clauses for each mental action such
that each clause enumerates particular conditions on mental states. As an example,
we present four clauses for inform, taking into account that there are much more
clauses to form the whole spectrum for this predicate:
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Clearly, each natural language mental entity has a number of meanings, some
of them may be determined in a context. Formalizing mental world, one needs
to represent the totality of meanings, relevant in a particular domain, for each
respective lexical unit. A clear-cut approach then would be to sum up all meanings
for each participating mental entity and build a respective set of clauses. However,
following this approach, we lose very valuable information that the NL divides
the totality of meanings into the classes with denotation by words. Ignoring this
information would lead us to a loss of overall structure of mental world, vigilantly
reflected in NL.

If we have a pair of different definitions (clauses) for a given entity, there should
be a machinery to formally express the similarity between these clauses to avoid
losing important semantic data. For example, it is hard to construct a common
parameterized definition for suggest and hint in the basis of want-know-believe;
however, totally independent clauses would be misleading (e.g. if we want to handle
the case of hint about a solution � suggest a solution).

It is quite natural from the formal representation viewpoint that we use the same
predicate to express the totality of meanings for the same lexical entity. It should
be a generic framework to express such common features. When we form a series
of clauses for a mental entity, we need to take into account that there should be a
common feature among the clauses for a given mental entity in natural language
to distinguish these clauses from those of other mental entities in natural language.
As we have verified, there is a syntactic meta-criterion that relates a clause to a
unique mental entity. Syntactic here denotes the grammar of formal representation
language, the clauses (not a grammar of natural language).

Hence we can define an isomorphism between the NL mental entities and the
metapredicates that express the criterion of belonging to the set of clauses for the
predicate that we use for this mental entity.

For an example of such mapping, let us consider the set of definitions for the
entity inform, presented above.

All of these clauses include the term want(Who, know(Whom, What)). Let us
build the meta-clause that expresses such the common feature.
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The syntactic meta-predicate clauseFor accepts a mental entity to be expressed
and a clause for it. The body of this mental predicate verifies that the clause obeys
certain criteria, built to express the totality of meanings for this mental entity. We
have verified that such isomorphism can be built for almost all mental entities we
use in representation of the scenarios from our dataset (Sect. 4.3).

We conclude this subsection with a brief comment on the observation of the
commonality between clauses and existence of a “covering” metapredicate ranging
over clauses for the same natural language entity. If such commonality would not
exist, the natural language would have hard time expressing information about the
mental world in an efficient manner. If there were a lexical unit for each meaning,
it would be hard to memorize and operate with such a language. Similarly, if there
were no commonality in various meanings of the world (these meanings were not
forming a cluster “around” this world), humans would have a hard time resolving
the ambiguity of the natural language denotations in the real mental world. At the
same time we mention that expressing the common features in the meta-language of
the logic programming language is the feature of our particular approach. Different
natural languages cluster the meanings of mental entities in distinct ways; for
example, the notion of pretending in Russian follows the logic of example in
Hypothesis 6 closer than in English.

4.2.5 Representing Emotions

Emotions are not pure logical entities; however, for the purpose of autistic training
we need to formalize them. Again, our basis of knowledge-belief-intention comes
into play to express a pre-condition for a given emotional states to appear. Most
of times, approximations of emotional states in the basis are fairly distant from the
real meanings of emotions and loose genuine emotional colors, but are nevertheless
adequate in terms of possible agent’s reaction. Based on our definitions of emotion,
the agents can select an action to overcome or at least to attempt to overcome a
negative emotion and retain a positive one.

Here are some definitions of emotions in our basis. For more complex cases, we
present the clauses along the verbal definition of an emotion.

forgetting:– lack of a belief that follows its presence at some point in time.
dreaming:– intention of some physical or mental state to occur, having a belief that

currently it does not hold;
imagining:– believing that something holds knowing that the belief is wrong;
feeling guilty:– intention that some action that has been committed should not has

been done and belief that it depended on the agent’s physical or mental state.
fairly treated: – belief that people think of me in a similar way I think of myself
surprised:– expected one thing, but turned out to be another thing
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(something is unwanted and cannot be improved employing available knowl-
edge). The same definition would be for sad,

(J is jealous if he wants the same state SomethingNice another agent H possesses,
according to J’s belief, but she is not in this state).

(An unfairly treated person believes what he did (Action1) is as good as Action2
committed by someone else (F), but an Authority agent wants (likes) F’s action and
not U’s action).

(F is frightened by S committing Action when this Action is unwanted and
inevitable: S will commit it even when F asks S not to do it.)

confident:- persons believes in something, and believes that other people believe
that he does not believe in this.

L first believe what T was saying (expressed as a clause), then T said Event-
LostTrust, but now L does not believe this EventLostTrust, and after that L does not
believe whatever SaidByTButNotBel T is saying.

Although the emotions expressed via these definitions are unnatural, they follow
the form suitable to be defined and perceived by CwA.

In the settings of mental entities of (Cox and Ram 1999), in order to use
representations of mental terms effectively, a system should consider the structure
of the representation, rather than to show how to syntactically manipulate with
representations or make sound inferences from them, as we do in this study. As
an example, let is consider a treatment of the pair of predicates forget(P, M) and :

remember(P, M).
Because the predicates involve memory, it is helpful to posit the existence of two

contrasting sets of axioms: the background knowledge (BK), or long-term memory
of the agent, P, and the foreground knowledge (FK), representing the currently
conscious or active axioms of the agent. The resulting interpretation of person P
forgetting memory item M is

With such a representation, one can also express the proposition that the person
P knows that he has forgotten something. P knows that M is in his background
knowledge, but cannot retrieve it into his foreground knowledge:
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To include these interpretations to an agent’s behavior library is to add content
to the representation, rather than simply semantics. It is part of the metaphysical
interpretation (McCarthy 1979) of the representation that determines an ontological
category (i.e., what ought to be represented), and it begins to claim that the sets
BK and FK are necessary distinct. However, meaning is not only correspondences
with the world to be represented, but meaning is also determined by the inferences
a system can draw from a representation (Schank 1969). The forget predicate offers
little in this regard. Moreover, this predicate will not assist a reasoning system to
understand what happens when it forgets some memory item, M, nor will it help the
system learn to avoid forgetting the item in the future. Finally, because the semantics
of a mental event which did not actually occur is not represented well by a simple
negation of a predicate representing an event which did occur (Cox and Ram 1999;
Ram and Moorman 1999), the logical expression :Remember (John, M) does not
bring computationally sound information.

We have experimentally verified that one neither has to enumerate all possible
meanings nor approach them as close as possible to teach applicability and
reasonability of these emotions to CwA. Our model of emotions in the mental
world is adequate in terms of mental rehabilitation, but may be far from optimal for
building agents that impress the audience with intelligent and emotional behavior
(compare with (Scheutz 2001; Breazeal 1998; Sloman 2000)).

Formal treatment of emotions helps to compensate for our simplification of
scenario description by means of predicates for actions. In addition to above
definition of emotions, we consider them as fluent (time- and situation-dependent)
predicates that are the preconditions for mental actions. Also, emotions are the
fluents that are affected by committed mental actions (Galitsky 2005):

We will be using examples from the domain for customer complaints. This
domain can be considered as a mental world playground for older CwA and adults
with ASD. Since complaints are a systematic extensive source of description of
complicated mental states such as conflicts, we will be using this domain as a source
of examples of complex regions in the mental world. We will be exploring relations
between a Customer and a Company, as an introduction for CwA to the world of
adults and their relations.

We will now introduce situation calculus, using an arbitrary (not necessarily
mental attitudes-related) approach. Situation calculus is formulated in a first-order
language with certain second-order features (Levesque et al. 1997). A possible
world history that is a result of a sequence of actions is called situation. The
expression, do(a,s), denotes the successor situation to s after action a is applied. For
example, do(complain(Customer, do(harm(Company),S0)), is a situation expressing
the world history that is based on the sequence of actions fcomplain(Customer),
harm(Company)g, where Customer and Company are variables (with explicit
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meanings). We refer the reader to (Levesque et al. 1997) for the further details on
the implementation of situation calculus. Also, situations involve the fluents, whose
values vary from situation to situation and denote them by predicates with the latter
arguments ranging over the situations, for example,

For example, an action ignoring leads to emotional state (fluent) feel unfairly
treated. In such a state, cooperative actions are unlikely for an agent, which will
rather disagree or bring to attention then agree, encourage or ask for advice.
Formally,

To illustrate our model of interchange between emotions and mental actions, let
us consider the following complaint fragment. We present the textual fragments
form the actual complaint written by its author and then show how to represent it
using our formal language. After that, we show how this complaint fragment can be
represented by means of user-friendly form. Such kind of form is specially oriented
towards the mental component of a complaint and will be discussed in further details
in the Section below.

The following three statements correspond to the sentences above. We assume
that the first two sentences express mental actions, and the third sentence contains
the emotion and its causal link.

Here the emotion is expressed as a result of two consecutive actions, one of
the Customer and the other of CS (Customer Support), coming from an initial pre-
complaint state S0.

Hypothesis 11 Emotions represented via definitions in knowledge-intention-belief
basis are both pre-conditions and effects of mental actions.

Each class of emotions can be covered by at least a single definition in our basis,
however it is sufficient to determine an action to optimally maintain the outcome
(Table 4.1).
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Table 4.1 Classes of emotions and their representatives (the left column) and members (the right
column)

Class representative Class members

Sad Upset, frustrate, frustration, distress, hurt, disturb, sadden, trouble,
wound, disappoint, disconcert, displease, grieve, affront, dismayed

Anger Indignation, rage, fury, furious, offence, infuriate, insult, hate,
offend, annoyance

Surprise Astonish, shock, horrify, aghast
Disgust Sickened, disgust, revolt
Cheat Scam, trick, fiddle, swindle, sting, dodge
Insulting Derogatory, disparaging, deprecating, offensive
Harass Annoy, pester, bother, pursue, nuisance, stalk, hassle, worry, tease

4.3 Scenarios in the Mental World

So far we have suggested the generic model of mental world suitable for explaining
autistic reasoning and its remediation. The main inhabitants of mental world are
agents with mental attitudes and scenarios of their interactions; these agents display
their attitudes in their decision-making process. Once we taught CwA individual
mental actions, we can proceed to exercising with sequences that include familiar
communicative actions and states. The most important class of scenarios is conflict
scenarios: CwAs need to be thoroughly explained and trained on how to handle
conflicts.

Scenarios of interaction between agents are an important subject of study in AI.
An extensive body of the literature addresses the problem of logical simulation
of behavior of autonomous agents, taking into account their beliefs, desires and
intentions (Bratman 1987). A substantial advancement has been achieved in building
the scenarios of multiagent interaction, given properties of agent including their
attitudes. Recent work in agent communications has been in argumentation (Rahwan
et al. 2003; Chesnevar et al. 2004), in dialog games (Boella et al. 2004), in formal
models of dialog (Johnson et al. 2005), in conversation policies (Nodine and
Unruh 2000) and in social semantics (Carley 1997). However, means of automated
comparative analysis for interaction scenarios for human agents are still lacking).
The comparative analysis of interaction scenarios is needed in many applications.
A number of linguistic and agent-related technologies are required in such domain
requiring learning human behavior such as customer complaints (Chang et al. 2009).

Definition 11 We define scenario as a sequence of mental states of interacting
(having mutual beliefs) agents where each transition from mental state m to m C 1
is a result of the action of each agent.

Hypothesis 12 Each conflict between agents (human, software or hardware), can
be represented as a sequence or mental states and communicative actions such that
these actions are logically deduced to be the best from the standpoint of agent’s
available knowledge and belief.
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Having introduced the entities of the mental world, we now proceed to build a
software system and educational methodology which takes a textual description of
a conflict as an input and represent it as a sequence of communicative actions and
intermediate mental states, as an output.

There are three following methodologies (continued from Sect. 4.2) to build
scenarios given agents’ attributes and initial mental states.

• A deductive (planning) approach, where agents actions are deduced using their
explicit pre-conditions, and possible states are derived using axioms

• A simulation approach, where the exhaustive search through all possible agents’
actions is implemented, taking into account possible opponents’ reactions. The
set of explicit action preferences is applied to filter the best action, unless a
particular action is explicitly desired.

• A machine learning (case-based reasoning or inductive/abductive/analogical
reasoning) approach, where a scenario is constructed from the components of
previously accumulated scenarios. The scenarios for reuse are selected based on
the similarity of initial (and consecutive) mental states with the given one.

The third approach is the most efficient to handle the scenarios which can be
used for training autistic reasoning. The first approach above is viable where we go
beyond the pure mental actions; it is usually hard to express all required constraints
for mental actions only. The simulation approach is most suitable for the domains
which lie entirely within the mental world. The simulation approach is quite helpful
for complaints but still delivers less accuracy in the prediction of future agents’
actions in the comparison with the machine learning one.

Besides a scenario formalization problem, we formulate a prediction one. Can
a human mental attitude and communicative actions be predicted in a domain-
independent manner, without taking into account details of a particular environment
such as educational, banking or military? We attempt to computationally demon-
strate that humans choose their attitude and action in mental space following
some common laws of the mental world, in addition to environment-specific
considerations. We give a positive answer to this question, providing a common
framework for tackling rather distinct domains, relying only on learned ‘laws’ of
the world of mental interactions. The Speech Act theory (Sect. 4.3.5) addresses
this problem from the linguistic and philosophical standpoint, and in this book we
approach it from computational standpoint.

Once such domain-independent prediction framework is build, it can be applied
to a number of problems where simulation of human decision making is necessary,
starting from educational to industrial. Currently, two classes of approach are
applied to the domain of human simulation, behavior prediction and human
sentiment analysis. The first one, popular in industry, is based on keywords referring
to topicality or sentiment polarity. Since it is rather hard to represent meanings via
bag-of-words approach, especially when one tries to extract communicative actions
which are frequently implicit in text, it is rather hard to predict human behavior
based on keyword analysis.
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The second class of approaches relies on implementation of reasoning about
mental states, and is associated with performance and expressiveness limitations
of attempts to implement axiomatic formal reasoning. We build the representation
machinery and develop a machine learning technique for operating with a wide
range of scenarios which are based on a sequence of communicative actions. We
also propose a framework for classifying scenarios of inter-human conflicts; it can
be implemented in a stand-alone mode or used in combination with deductive
reasoning or simulation. Once we confirm that this machinery works well in real
world scenarios, it becomes a good foundation for teaching CwA how to tackle
these scenarios.

Formalized inter-human conflict is a special case of formal scenario where the
agents have inconsistent and dynamic goals; a negotiation procedure is required
to achieve a compromise (Muller and Dieng 2000). It turns out that following the
logical structure of how negotiations are represented in a scenario (text or structure)
it is possible to judge on consistency of this scenario (Galitsky 2006). We take
advantage of this possibility teaching CwA how to recognize a conflict scenario
and behave in it.

4.3.1 Multiagent Conflict

The issue of multiagent conflict has been extensively addressed in the literature; in
this chapter rather simple definition is sufficient for out purpose. It is essential to
explain to CwA what the conflicts are, how to avoid them, and how to resolve once
in a conflict state.

Definition 13 Multiagent conflict is a scenario where agents have inconsistent
intentions (about states):

In a conflict scenario, we distinguish two selected states when one follows
another. The pre-conflict state include the deviation of the expected from the actual
features (quality) of received product or service:

4.3.2 Dimensions of Intentionality

As we discussed in Sect. 4.2, humans are characterized by the degree mental
formulas are nested: an order of a mental formula, or intentionality. This a limit
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Fig. 4.10 You can just tell he’s thinking what you’re thinking about his thoughts

on thinking about what other people are thinking about other people. Humans can
go about seven levels up this chain of intentionality.

• You know that I will look at the moon.
• I think that you know that I will look at the moon.
• You hope that I think that you know that I will look at the moon.
• And so forth

But this limit doesn’t just influence apples; and all the drama associated with
that. Intentionality limits every social interaction. If one is telling a story with more
than seven levels of intentionality it will not be appreciated. It is not worth telling a
joke that complex either.

But when it comes to telling a good joke or story, the secret isn’t just trying to
make it as low level as possible either. We proceed with our example from Sect. 4.1
(Fig. 4.10). In Othello:

1. Shakespeare wants
2. The audience to believe that : : :
3. Iago wants : : :
4. Othello to believe that : : :
5. Desdemona loves Cassio : : :
6. Who loves her right back.

As the greatest playwright has discovered, people don’t like it being too simple.
It turns out there is a sweet spot between our 7th level limit and a basic story that the
readers enjoy a lot. It is in this range where the best jokes live, the best narratives,
and the best plays. (Dunbar et al. 2015) have identified that this value is around the
same place as Othello; between five and six levels of intentionality (Fig. 4.11).
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Fig. 4.11 The rating of a joke versus the number of levels of intentionality it features (Dunbar
et al. 2015)

4.3.3 Dissatisfaction and Complaint Scenarios

An important class of textual description of conflicts is a complaint, where a
particular party in a conflict is seeking help from an authority. It should be explained
to CwA when it is appropriate to attempt to solve a conflict independently, and when
is a good time to ask for help from parents, rehabilitation personnel or older friends.

Definition 14 Pre-conflict is a multiagent conflict scenario where the expression
above occurs. To grow in a complaint, initial dissatisfaction must be further fed
with the further desperation connected with an interaction with customer support
representatives and other opponents. Let us consider a step-by-step example of a
complaint scenario. Here, we use the conventions of logic programming; variables
are capitalized and comments follow ‘%’.

% Mike wants Peter to fix his toy (make ‘feature’ working)

% Peter cannot/does not do it
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% mike believes that there is a certain Reason for not doing it

% but Mike does not know what is the Reason. ‘not’ here has a linguistic meaning
(not “negation as failure” meaning)

Note that there is a wide variety of ways a child can express his dissatisfaction
initially, his opponent responds, etc. However, the common step in the majority of
conflict scenarios is the confusion of a proponent over why he was treated in such a
way, what was the Reason his toy was not fixed

Usually, if the actions of an opponent are adequate, a full-scale conflict does not
arise and the proponent does not get upset. Hence we approach

Definition 15 A typical conflict resulting in an upset proponent as a scenario with
the following features:

• a conflict of intentions concerning the physical state of a product/service (pre-
conflict), and

• a conflict of intentions concerning the mental and physical actions of customer
support and resultant state of their satisfaction.

Our formal definition of a conflict scenario includes both conflicts in mental and
physical spaces.

Having the definition of a formal complaint, we raise the series of questions:

• How to formalize complaint given its textual description?
• What kind of features can be/should be extracted from complaints, including

validity, aggressive/defensive attitude of a person, positive/negative mood of a
complainant, etc.?

• How to measure similarity between complaints?
• How to find their essential component?

We will answer these questions in the following sections, and now we introduce
our model of a mentalized conflict, which is a reduction of a scenario that assumes
that all physical actions are alike. In accordance to our model, the physical world
serves as a “neutral environment” where mental actions lead to certain mental states
which in turn cause a next series of mental actions (Hypothesis 12, Fig. 4.12). At
this point, we are stating that mental states are determined by the previous mental
and physical states and actions.

We proceed to a multi-step reduction of a scenario representation. A fragment
from a banking complaint serves as an example of how the content is reduced.
Textual representation is modified accordingly to demonstrate the essence of
transformation of scenario representation formulas at each step. An intuitive way
to look at these steps is to pretend that one keeps forgetting details about which
physical states (e.g. account balance) took place over last month, then forgetting
details on which physical actions (e.g. withdrawals/deposits) have been committed,
and finally, ignoring the sequence of associated mental states (beliefs about account
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Fig. 4.12 The chart of inter-dependencies between physical and mental actions and states. We
consecutively remove physical states and actions and mental states to form the skeleton of a conflict
scenario – the sequence of mental actions

balance, intentions about withdrawals, knowledge of account regulations). Keeping
forgetting all these particulars leads to remembering only which mental actions
occurred in connection with certain interactions between friends (ask, explain,
disagree, approve, request etc.).

Let us first introduce a fragment of an interaction scenario ‘for adults’:

I know that they believe I don’t know what my account balance is because they deposited
the amount back which they withdrew before as a maintenance fee to tell me that they did
not charge it. I am going to confirm that I will now withdraw all remaining funds from my
account.

Below is its formal representation using physical and mental actions and states,
as well as the causal link:

Reduction Step 16.1. Let us assume that mental states are determined by mental
actions and physical actions but not physical states. We substitute physical states
by physical actions only, or by using mental states or actions in addition if it
reduces an ambiguity in the derived physical actions. Such the transformation
keeps the causal, special, temporal and other kinds of constraints between the
remaining mental states and actions. In our example above, we perform the
following substitution:

Reduction Step 16.2. At this elimination step we substitute every physical actions
by a set of mental actions with argument over arbitrary physical action so that
we have the same effect (resultant mental state). The latter means that such
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substitution should not break causal links within a scenario. We hypothesize that
it is always possible to substitute a concrete instantiated physical action Af by
one or more mental actions Af2m with arguments over the a generic (arbitrary)
physical action that leads to a resultant mental state Sm which is fixed. This
replacing set of mental entities should be consistent with the physical actions
to be replaced:

Here we are not concerned with a resultant physical state we have substituted
by actions at the previous step above. For the example above, the following
substitution is performed:

In the textual representation below expressions in square brackets are the
arguments of mental actions:

I know that they believe I don’t know what is happening because I was informed that
they changed their mind [concerning maintenance fee] and I believe they wanted me to
believe that they have not done what they should not have done. I am going to confirm
that I know it and will act accordingly [will now withdraw all remaining funds from my
account].

Reduction Step 16.3. We ignore information about mental states and just consider
mental actions which lead to these states. As many mental actions need to be
added that the mental states can be reconstructed with as low ambiguity (as high
accuracy) as possible. Moreover, these mental actions have to be consistent with
existing mental actions for the scenario, and with those substituting other mental
states for this scenario.

% here we use a naive case for believing because it does not lead to ambiguity
Representing the textual scenario, we break it into three parts to outline three
fragments:

• A recognize_pretend fragment;
• A know fragment;
• A confirm fragment.
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I asked what was happening [with my account].
They informed me what was going on [with my account].
I disagreed with what they informed me about.
They confirmed that nothing happened [with my account].
I asked why they believe I did not know the truth.
They explained that I did not know the truth because indeed nothing happened [with my

account].
I confirmed that I wanted to terminate the scenario.

We hypothesize that current mental state plus current and past physical state
constrain the plausible set of mental actions. The reader might expect us to comment
on the reason why the mental actions are more important than other components of
a scenario. The answer is, they are represented explicitly in verbal description much
more frequently than mental states. The mental states are usually partially drawn,
being mixed with physical actions and states in the text. At the same time, the former
can be extracted from text easier or be specified via a form, which will be discussed
toward the end of the paper.

Hypothesis 17 Mental actions constitute the most important information on a
multiagent conflict scenario and therefore serve as a basis for their comparative
analysis, learning, simulation and prediction. Scenarios can be represented as graphs
where the sequence and causal links are expressed by their edges (such as Fig. 4.13).

It reads:

I ask : : : – they informed me that : : :
I disagreed with that – but they confirmed that : : :
Since they confirmed that, I asked : : : – and they explained : : :
I confirmed something else : : :

Fig. 4.13 Graph
representation of a scenario

ask 

disagree

inform

confirm

explainask

confirm
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Definition 18 A communicative action is a functor of the form verb(agent, subject,
cause) where verb characterizes some kind of interaction between customer and
company in a complaint scenario (e.g., explain, confirm, remind, disagree, deny),
agent identifies either the customer or the company, subject refers to the information
transmitted or object described, and cause refers to the motivation or explanation for
the subject.

Thus, for example, a communicative action associated with some customer claim
such as “I disagreed with the overdraft fee you charged me because I made a bank
deposit well in advance” would be represented as disagree (customer, “overdraft
fee”, “I made a bank deposit well in advance”). Scenarios are intentionally sim-
plified as labeled directed graphs to allow for effective similarity matching among
them. Each vertex in the graph will correspond to a communicative action. An arc
(oriented edge) may denote either temporal precedence or an attack relationship
between two actions ai and ai. In the first case, we will distinguish between
consecutive actions which refer to the same subject from those which refer to
different subjects. Graphically, we will distinguish these situations by means of thick
arcs and thin arcs, respectively.

Definition 19 A complaint scenario is a labeled directed graph G D (V, A), where
V D faction1, action2, : : : ,actionkg is a finite set of vertices corresponding to
communicative actions, and A D Athick [Athin [ Acausal is a finite set of labeled arcs
(ordered pairs of vertices), classified as follows:

• Each arc (actioni; actionj) 2 Athick corresponds to a temporal precedence of two
referring to the same subject.

• Each arc (actioni; actionj) 2 Athin corresponds to a temporal precedence of two
actions referring to different subjects.

• Each arc (actioni; actionj) 2 Acausal corresponds to a causal link or an attack
relationship between actioni and actionj, indicating that the cause of actioni is in
conflict with the subject or cause of actionj.

The classes of mental actions have been adopted from linguistic and psycholog-
ical literature, including (Shardanand and Maes 1995; Mehrabian 1971).

The curve arcs denote a causal link between the arguments of communicative
actions, e.g., service is not as advertised ) there are particular failures in a service
contract, ask � > confirm.

4.3.4 Recognizing Plausible Scenarios

Given the initial sub-scenario, one can reduce the number of plausible final
consecutive sub-scenarios (shown in bold below). For example, for the two steps
below the following third and fourth step is possible (reasonable, consistent with
the expected discourse):
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request – deny responsibility
remind – disagree
bring attention – agree
explain – accept responsibility

We assume here that the subjects of the mental actions above are the same,
plaintiff’s actions are on the left and defendant’s (company) are on the right.
We can understand the main plot: additional information, which is the subject of
bring_attention, seemed to influence opponent’s decision to choose the action agree
after his action disagree.

It is worth mentioning that there is a special class of scenarios (jokes), where the
terminating sub-scenarios are on the edge of inconsistency with the preceding part.
As well as for complaints, the plots for jokes are strongly relying on mental states
of involved agents.

The following final sub-scenario would express the respective unsuccessful (for
a customer) attempts to provide necessary information (Fig. 4.14). This scenario is
still plausible.

bring attention – disagree
explain – deny responsibility

However, the scenario below does not seem to be produced by a rational plaintiff
(defendant’s actions are still reasonable):

agree – disagree
confirm – bring to attention

Agree above is marginally acceptable, but keep confirming something after being
disagreed again means that a complainant did not understand or pretends than he did
not understand that he was permanently disagreed.

As the reader may have noticed, not an arbitrary sequence of mental actions may
constitute a plausible part of a scenario. For example, the combination remind –
not_deny – disagree leads to the following advice: If you reminded something and it
was not denied, do not keep disagreeing – just continue bringing your point across.
An agent may disagree with the proposal of an opponent, disagreeing is a passive
action caused by an active action of an opponent. In an interaction step it needs to
follow such opponent actions as explain, request, encourage which is the opponent’s
intention to commit some action. Also, a passive action like disagreeing may be
associated with an active action at the same interaction step.

4.3.5 Communicative Actions and Similarity Between Them

In this section we consider a particular case of mental actions: communicative
actions and the Theory of Speech Act so that we can apply machine learning
to communicative actions. In this theory, dialogue, negotiation, conflict dispute
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remind_not_deny_disagree:-remindS(Case,S1),not denyrespT(Case, S1),  
disagreeS(Case,S1).

ignore_opponent_reminder:-remindT(Case,S1), remindS(Case,S1). 
“Opponent's position/statement is ignored”
lack_proper_explanation:-not_understandprobT(Case,S2), 

not explainS(Case,S2).
“Your point should be explained when your opponent does not understand it” 
lack_acknowledge_acceptance:-acceptrespT(Case,S3), 

( disagreeS(Case,S3) ; remindS(Case,S3 )).
“Please express respect to your opponent when he/she accepts responsibilities, rather 

than pushing your target even stronger.”  
s_expl_dagr_dagr:-explainS(Case,S4),disagreeT(Case,S4),  

disagreeS(Case,S4). 
“If your opponent has disagreed with (rejected) your explanation, do not keep 

disagreeing - explain your point better.”
t_expl_dagr_dagr:- explainT(Case,S4),disagreeS(Case,S4), disagreeT(Case,S4).
“If you have disagreed with the explanation of your opponent, it would be strange for 

your opponent to disagree with your reaction - he/she would rather provide other 
explanations.”

t_remind_not_deny_disagree:-remindT(Case,S1), not denyrespS(Case,S1), 
disagreeT(Case,S1). 

“If you are reminded something and it was not denied, do not keep disagreeing - just 
continue bringing your point across.”

agree_understand_problem:-agreeS(Case,S1), understandprobT(Case,S1).
“If you agreed with something and it is followed by your opponent having understood 

the problem - this is an inconsistent steps. To understand a problem, you opponent needs 
yourself to express it in one way or another but not to agree on it.”

cheat_agree:-cheatT(Case,S1), agreeS(Case,S1). 
“You are saying that you agreed with what you think your opponent were lying about. 

Confirm that this was the case.”
repetative_request:-featureS(_fs), findall(_m, ( member(_m,_fs), _mfull=..[_m,Case,S3], 

call(_mfull) ), _ms), len(_ms,_lms), _lms>1.
“As you indicate, yourself or your opponent have made repetitive request; make sure 

you intend to mention this.”

Fig. 4.14 The clauses expressing criteria of the scenario implausibility to generate warnings
for the complaint author/evaluator. The clause satisfaction initiates an associated textual advice.
Clauses are shown as they are implemented in Prolog (variables have the form ‘_’). The last clause
uses meta-programming to verify whether there is a double occurrence of a mental action in a
scenario

are forms of interactions between human agents. Elements of the language that
expresses these interactions are referred to as locutions, speech acts (Bach and
Harnish 1979), utterances, or communicative actions (we are going to keep using
the last term).

The foundation of the current theory of speech acts was developed by (Austin
1962) where he explores the performative utterances, aiming to prove that when
people speak, they are doing more than simply conveying information—they act.
A speech act is essentially a theory that asserts the claim that in saying something,
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we perform something. It is an action that is performed by means of language. An
example from the domain of customer complaints would be a performative act of
a judge during a hearing when s/he says “I now pronounce that the complaint is
solved.” Due to Austin’s designation of speech acts, sentences like this adopt a
notion of action. The judge’s sentence is not a report of the action; it is the action
indeed.

However, every sentence does not take on the same linguistic action. Austin dis-
tinguishes between three types of linguistic acts: the act of saying something, what
one does in saying it, and what one does by saying it. He labels them Locutionary,
Illocutionary, and Perlocutionary, respectively (Farrell 2006). A locutionary act
is simply saying something about the world, e.g. a declarative sentence such as
“The product does not work.” This sentence is not posing a question, promising,
or commanding anything. It simply states something about the world, containing
purely propositional content. This type of act is the most basic, and does not require
much more explanation.

The illocutionary act includes promising, questioning, admitting, hypothesizing,
etc. The locutionary act was simply the act of saying something, while the
illocutionary act is performed in saying something. For example, “A company
promises to support the product after it is sold” asserts more than simply stating
a sentence about the world. It includes an assertion that is performative in nature.
Illocutionary acts are very prominent in language, and are frequently in use in
complaint scenarios.

The third type of linguistic acts is perlocutionary ones. These are non-
conventional sentences that cause a natural condition or state in a person. These
acts de-emphasize the actual intentions, and focus on the effects on the hearer.
Acts of frightening or convincing depend on the response of another person. If a
perlocutionary act is successful, then it seems safe to say that an illocutionary acts
has successfully taken place.

Austin’s speech act theory has been fairly influential since its inception. There
have been certain improvements and clarifications made to speech acts that are
worth noting; in particular, (Searle 1979) development upon Austin’s insistence
such acts cannot perform two different ways. Searle shows that illocutionary acts
can act in two different ways.

Let us consider the following situation of a quarrel between two people, Peter
and Nick. By describing a situation of strong dissatisfaction with Nick’s behavior
(locutionary component) in a writing style of Peter that is designed to have the force
of a warning (illocutionary component), Peter may actually frighten Nick and make
him give in to his requests (perlocutionary component). We can analyze whether
Nick presents his communicative actions of herself and those of his opponent
consistently in terms of these components, which we are going to do by means
of machine learning.

Approximating scenarios of multiagent interactions, we follow along the lines of
communicative actions’ division into constatives and performatives.
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Send             Receive

Ask (offend ):
- explain
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- request

Respond (defend, offend)
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- agree
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- accept responsibility
- understand problem

uncooperatively :
- disagree
- deny responsibility
- do not understand problem
- threaten

An agent’s 
perception of an 
opponent’s action
- ignore
- cheat
- does not keep 
promise

Information 
transmission

Fig. 4.15 The classes of communicative actions of conflicting human agents

• Constatives describe or report some state of affairs such that it is possible to
assess whether they are false or true.

• Performatives, on the other hand, are fortunate or unfortunate, sincere or
insincere, realistic or unrealistic, and, finally valid or invalid, which is the focus
of the current study. Performatives address the attitude of an the agent performing
the linguistic act, including his thoughts, feelings, and intentions.

It turns out that it is much more efficient to automatically analyze the group of
performatives than that of constatives, because the former is domain-independent;
in case of complaints there is always a lack of information to judge on constatives
(Fig. 4.15).

To choose communicative actions to adequately represent an inter-human con-
flict, we have selected the most frequently used ones from our structured database
of complaints (Table 4.2, Galitsky and Peterson 2005).

A number of computational approaches have attempted to discover and catego-
rize how the agents’ attitudes and communicative actions are related to each other
in the case of computational simulation of human agents (Searle 1979). As we have
mentioned above, applying machine learning to the attitudes and communicative
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Table 4.2 The set of communicative actions from a typical complaint

Customer describes his own action Customer describes an opponent’s action

Agree, explain, suggest, bring company’s
attention, remind, allow, try, request,
understand, inform, confirm, ask, check,
ignore, convince, disagree, appeal, deny,
threaten

Agree, explain, suggest, remind, allow, try,
request, understand, inform, confirm, ask,
check, ignore, convince, disagree, appeal,
deny, threaten, bring to customer’s attention,
accept complaint, accept/deny
responsibilities, encourage, cheat

Table 4.3 Selected attributes of communicative actions, adapting speech act theory to our domain.
The attributes for allow are highlighted (mentioned in the example below)

Speech Acts Constatives Directives Commissives Acknowledgements

Agree 0 0 1 0
Accept 0 0 1 1
Explain 1 1 0 0
Suggest 0 1 1 0
Bring_attention 1 1 0 0
Remind 1 1 0 0

Try 0 0 1 0
Request 0 1 0 0
Understand 0 0 1 1
Inform 1 1 0 1
Confirm 1 0 0 1
Ask 0 1 0 0
Check 1 0 0 1
Ignore 1 0 0 1
Convince 0 1 1 0
Disagree 1 0 1 0
Appeal 0 1 0 1
Deny 1 1 0 0
Threaten 0 1 1 0

actions, we are primarily concerned with how these approaches can provide a unified
and robust framework for finding a similarity between the communicative actions.
The theory of speech acts seems to be one of the most promising approaches to
categorizing communicative actions in terms of their roles. Following (Bach and
Harnish 1979), we consider four categories of illocutionary communicative actions
with major representatives stating, requesting, promising and apologizing. Each
speech act is related to a single category only in the framework of the speech
act theory. For our purpose, each speech act is extracted from text automatically,
or is selected from a list by a user as a word, may belong to multiple categories
(Table 4.3).
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Fig. 4.16 The concept lattice for communicative actions adapting speech act theory to our domain.
Each communicative action does not have a unique set of attributes: calculation of similarity might
be inadequate

Now we can calculate the similarity between communicative actions as a set (an
overlap) of speech act categories they belong to. To estimate how fruitful the speech
act-theoretical approach is for calculating the similarities between communicative
actions, we build a concept lattice (Ganter and Wille 1999) for communicative
actions as objects and speech act categories as their features (Constatives, Direc-
tives, Commissives, and Acknowledgements). It the concept lattice, each node is
assigned a set of features and a set of objects. For each node, all features assigned to
nodes, assessable when navigating the lattice upwards, are satisfied by the objects
assigned to this node. In Fig. 4.16, we show either features or objects for each node.
For example, let us consider the node assigned with the object allow. Navigating the
edges up, we access the disagree and then Commissives and Constatives node, triple
suggest-convince-threaten node and then Commissives and Directives, and four-
tuple explain-bring_attention-remind-deny and then Directives. Hence the lattice
is showing that the object allow satisfies three out of four features Commissives,
Directives, and Constative (as we have specified in the Table 4.3, grayed row).

As the reader can see, this direct Speech Act – theoretical approach is inade-
quate for uniform coverage of communicative actions in conflict scenarios. Some
communicative actions (e.g. agree, try) are described by the selected features more
accurately, whereas suggest-convince-threaten and tuple explain-bring_attention-
remind-deny cannot be distinguished under this categorization at all. Hence four
features of the Speech Act theory are insufficient to differentiate between twenty
communicative actions which have been evaluated to be a minimal set to express
an inter-human conflict (Galitsky et al. 2008). Hence more attributes are needed to
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Fig. 4.17 The resultant concept lattice for communicative actions with adjusted definitions. Each
communicative action has a unique set of attributes

be taken into account to find an adequate means to compute similarities between
communicative actions.

We proceed to the solution which turned out to be the most robust and plausible
(Fig. 4.17). To extend the speech act–based means of expressing similarity between
communicative actions, we introduce five attributes each of which reflects a
particular semantic parameter for communicative activity (Table 4.4):

• Positive/negative attitude expresses whether a communicative action is a coop-
erative (friendly, helpful) move (1), uncooperative (unfriendly, unhelpful) move
(�1), neither or both (hard to tell, 0).

• Request/respond mode specifies whether a communicative action is expected to
be followed by a reaction (1), constitutes a response (follows) a previous request,
neither or both (hard to tell, 0).

• Info supply/no info supply tells if a communicative action brings in an additional
data about the conflict (1), does not bring any information (�1), 0; does not occur
here.

• High/low confidence specifies the confidence of the preceding mental state so that
a particular communicative action is chosen, high knowledge/confidence (1), lack
of knowledge/confidence (�1), neither or both is possible (0).

• Intense/relaxed mode says about the potential emotional load: high (1), low (�1),
neutral (0) emotional loads are possible.
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Table 4.4 Augmented attributes of communicative actions

Attributes
Communicative
action

Positive/negative
attitude

Request/respond
mode

Info supply/
no info supply

High/low
confidence

Intense/relaxed
mode

Agree 1 �1 �1 1 �1
Accept 1 �1 �1 1 1
Explain 0 �1 1 1 �1
Suggest 1 0 1 �1 �1
Bring_attention 1 1 1 1 1
Remind �1 0 1 1 1
Allow 1 �1 �1 �1 �1
Try 1 0 �1 �1 �1
Request 0 1 �1 1 1
Understand 0 �1 �1 1 �1
Inform 0 0 1 1 �1
Confirm 0 �1 1 1 1
Ask 0 1 �1 �1 �1
Check �1 1 �1 �1 1
Ignore �1 �1 �1 �1 1
Convince 0 1 1 1 �1
Disagree �1 �1 �1 1 �1
Appeal �1 1 1 1 1
Deny �1 �1 �1 1 1
Threaten �1 1 �1 1 1

Note that out of the set of meanings for each communicative action, we merge its
subset into a single meaning. This merge is performed, taking into account relations
between the meanings of the given communicative actions and those of the other
ones (Galitsky 2006).

Formal concept analysis (FCA, Ganter and Wille 1999) was used to characterize
the set of communicative actions in the context of our framework. In FCA, a (formal)
context consists of a set of objects G, a set of attributes M, and an indication of
which objects have which attributes. A concept is a pair containing both a natural
property cluster and its corresponding natural object cluster. A “natural” object
cluster is the set of all objects that share a common subset of properties, and a
“natural” property cluster is the set of all properties shared by one of the natural
object clusters. Given a set of objects G and a set of attributes M, a concept is
defined to be a pair (Gi, Mi) such that

1. Gi � G;
2. Mi � M;
3. every object in Gi has every attribute in Mi;
4. for every object in G that is not in Gi, there is an attribute in Mi that the object

does not have;
5. for every attribute in M that is not in Mi, there is an object in Gi that does not

have that attribute.
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Given a concept (Gi, Mi), the set Gi is called the extent of the concept, and the set
Mi is called the intent. Concepts can be partially ordered by inclusion: if (Gi, Mi)
and (Gj, Mj) are concepts, a partial order � can be defined, where (Gi, Mi) � (Gj, Mj)
whenever Gi � Gj. Equivalently, (Gi, Mi) � (Gj, Mj) whenever Mj � Mi. In general,
attributes may allow multiple values (many-valued attributes), characterizing many-
valued contexts. By applying so-called conceptual scaling, many-valued contexts
can be transformed to one-valued scaled contexts from which concepts can be
computed. The family of these concepts obeys the mathematical axioms defining
a lattice, and is called a concept lattice or Galois lattice.

So-called line diagrams are used in order to succinctly represent information
about intents and extents of formal context in a concept lattice. Nodes are circles that
can be labeled with (a) both attributes and objects; (b) attributes; (c) objects or (d)
none. In order to consider some distinguished labels, some nodes appear as circles
which are half-filled in their lower part (labelled with objects only), and nodes which
are half-filled in their upper part (labelled with attributes only). Nodes which are
empty circles have no particular labels. In order to provide a formal characterization
of the communicative actions in Sfreq in terms of their attributes a concept lattice was
obtained. Nominal scaling was applied on the first and second attributes (the third,
fourth and fifth attributes were already two-valued). As a result of this scaling, we
obtained nine two-valued attributes associated with different possible values of the
original five attributes: PosAtt (1), NegAtt (�1), Request (1), Respond (�1), InfoIn
(1), High_Conf (1), Low_Conf (�1), Intense (1), Relaxed (�1). It must be remarked
that some particular two-valued attributes, derived from the original attributes, are
not considered for building the resulting concept lattice shown in Fig. 4.17, as they
do not contribute strongly in distinguishing communicative actions from each other.
The resulting scaled context had nine two-valued attributes, resulting in the concept
lattice.

The ConExp software (Yevtushenko 2005) was used to construct and visualize
the concept lattice of communicative actions and their associated nine two-valued
attributes. Some selected nodes are provided with descriptions of the corresponding
“intents” and “extents” subscribed to show how certain communicative actions are
semantically related to each other. The concept lattice illustrates the semantics
of communicative actions, and shows how to cover different meanings in the
knowledge domain of customer–company interaction in complaint scenarios. The
concept lattice illustrates the semantics of communicative actions; it shows how the
choice of attribute-based expressions covers the totality of possible meanings in the
knowledge domain of interaction between human agents.

After scaling the many-valued context of communicative actions, descriptions of
communicative action are given by 9-tuples of attributes, ordered in the usual way.
Thus, vertex labels of generalizations of scenario graphs are given by intents of the
scaled context of communicative actions.

Before we proceed to the formal model of scenarios in terms of graphs, we
define a conflict scenario as a sequence of communicative actions, each of which
is a reaction to the previous communicative actions of opponents. This reaction is
constrained by interaction protocols by means of enumeration of valid scenarios
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Fig. 4.18 The resultant concept lattice for communicative actions with adjusted definitions. Each
communicative action has a unique set of attributes

where this protocol is assumed to be correct. Multiagent conflict is a scenario where
agents have inconsistent intentions (about states):

The scenario is defined as a sequence of communicative actions. Usually, if the
sequence of communicative actions of customer support is “adequate”, a complaint
does not arise. A conflict can be defined as a logical inconsistency. Our definition
of complaint scenario includes inconsistencies in both mental and physical spaces.

The actions which agents select are physical and mental. We consider the
special class of mental actions used for communications, and refer to them as
communicative actions (Searle 1979). To visually represent the communicative
actions agents use, we rely on concept lattices. We form attributes of communicative
actions according to our model and draw the concept lattice (Fig. 4.18, see Galitsky
and de la Rosa 2011 for more details).

4.3.6 Defining Scenario as Graphs

In order to provide a computational approach to represent complaints, we will define
the notion of complaint scenario, a graph-based formalization for representing
customer–company dialogues. In such scenarios we will distinguish a number
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of communicative actions, which from empirical evidence have proven to be
representative for characterizing different possible interactions between customer
and company in a complaint scenario. Such actions will correspond to vertices
in a graph, connected by means of temporal and causal relationships. Temporal
relationships formalize the order in which actions were advanced in a complaint
dialogue, whereas attack relationships help to identify conflicting situations.

To form a data structure for machine learning, we approximate an inter-human
interaction scenario as a sequence of communicative actions, ordered in time, with a
causal relation between certain communicative actions (more precisely, the subjects
of these actions). Scenarios are simplified to allow for effective matching by means
of graphs: only communicative actions remain as a most important component to
reflect the dialogue structure and express similarities between scenarios. Each vertex
corresponds to a communicative action, which is performed by either proponent, or
opponent. An arc (oriented edge) denotes a sequence of two actions.

In our model communicative actions have two parameters: agent name and
subject (information transmitted, a cause addressed, a reason explained, an object
described, etc.). Representing scenarios as graphs, we take into account both
parameters. Arc types bear information whether the subject stays the same. Thick
arcs link vertices that correspond to communicative actions with the same subject;
thin arcs link vertices that correspond to communicative actions with different
subject. The curve arcs denote a causal link between the arguments of mental
actions.

Let us consider an example of a scenario and its graph (Figs. 4.19 and 4.20).
The causal link here is [ask] (the service is not as advertised) [disagree] – failures
in a service contract (and, therefore, the service is not as advertised) [disagree] –
failures in a service contract (and, therefore, the service is not as advertised), and
also [requested] – (to send to my home) [reminded] them to mail it (requested a
thing and then reminded about it).

One of the most important tasks in assisting negotiations and resolving inter-
human conflicts is the validity assessment. A scenario (in particular, a complaint)
is valid if it is plausible, internally consistent, and also consistent with available
domain-specific knowledge. In case of inter-human conflicts or negotiations, such
domain-specific knowledge is frequently unavailable. In this book, we demonstrate
that a wide class of scenarios of various natures can be assigned to class of valid

Fig. 4.19 A sample complaint scenario
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Fig. 4.20 A graph
representation for scenario

or invalid based on communicative actions and relationships between their subjects
only. The accuracy of such classification is sufficient for deployment in decision-
support systems, where final judgment is. To provide a framework for learning
communicative actions, we need to select their attributes.

Note that first two sentences (and the respective subgraph comprising two
vertices) are about the current transaction, three sentences after (and the respective
subgraph comprising three vertices) address the unfair charge, and the last sentence
is probably related to both issues above. Hence the vertices of two respective
subgraphs are linked with thick arcs (explain-accept) and (remind-deny-disagree).

In formal conflict scenarios extracted from text there can be multiple communica-
tive actions per step, for example I disagreed : : : and suggested : : : . The former
communicative action describes how an agent receives a message (accept, agree,
reject, etc.) from an opponent, and the latter one describes the attitude of this agent
initiating a request (suggest, explain, etc.), or reaction to the opponent’s action.
Sometimes, either of the above actions is omitted in textual description of conflicts.
Frequently, a communicative action, which is assumed but not mentioned explicitly,
can be deduced. In this chapter for the sake of simplicity we will consider single
action per step, performing the comparative analysis of scenarios.

There is a commonsense causal link between being charged an unfair fee
and intention to have this amount of money back which is expressed by the arc
between remind and disagree. Semantically, arcs with causal labels between vertices
for communicative actions express the causal links between the arguments of
communicative actions rather than between the communicative actions themselves.

How would one handle commonsense reasoning patterns in our domain? We need
specific commonsense knowledge to link such statements as unfair fee with deposit
back. An ontology which would give us sufficient knowledge is not available and it
would be extremely hard and expensive to build for a variety of complaint domains.
Therefore, our data structure for machine learning just includes causal links (and
not background knowledge).
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I explained that my check bounced ( I wrote it after I made a deposit).
A customer service representative accepted that it usually takes some time to process 

the deposit. 
I reminded that I was unfairly charged an overdraft fee a month ago in a similar 

situation.
They denied that it was unfair because the overdraft fee was disclosed in my account 

information.
I disagreed with their fee and wanted this fee deposited back to my account.

They explained that nothing can be done at this point and that I need to look into the 
account rules closer.

Fig. 4.21 A scenario which includes communicative actions of a proponent and an opponent

Is this scenario plausible? It turns out that it is not. First of all, having the
background knowledge about banking, it is clear that the customer wrongly assumed
that the funds become available immediately after a deposit is made. However, it
is not really viable to store this information in a generic complaint management
system; therefore, we further research into the legitimacy of the observed sequence
of communicative actions. “Being in an attack mode (reminding) after a previous
attack (explaining) was accepted” does not look like a cooperative mood. Moreover,
keep disagreeing concerning the subject which has just being denied (speaking more
precisely, a commonsense implication of this subject) is not an adequate negotiation
strategy. On the other hand, if a similar scenario (in terms of the structure of
communicative actions) has been assigned by a domain expert as invalid, we would
want the machine learning system to relate the scenario Fig. 4.21 to the same class
even if there are no explicit reasons.

Hence our analysis of the domain of customer complaints shows that to relate
a scenario to a class without domain-specific knowledge, one needs to analyze a
sequence of communicative actions and certain relations between their subjects.
Otherwise, one would have to code all relevant domain knowledge which is well-
known to be an extremely hard problem and non-feasible for a practical application.

We proceed with the description of our scenario dataset used for classifier
training. This dataset contains two sets of complaint scenarios: showing a good
attitude of a complainant (consistent plot with proper argumentation, a valid
complaint) on the left, and a bad attitude of a complainant (inconsistent plot with
certain flaws, implausible or irrational scenarios, an invalid complaint) on the right
(Fig. 4.22).

Each scenario includes two to six interaction steps, each consisting of commu-
nicative actions with the alternating first attribute frequest – respond – additional
request or other follow upg. A step comprises one or more consequent actions with
the same subject. Within a step, vertices for communicative actions with common
argument are linked with thick arcs.

For example, suggest from scenario V2 (Fig. 4.22) is linked by a thin arc
to communicative action ignore, whose argument is not logically linked to the
argument of suggest (the subject of suggestion). The first step of V2 includes ignore-
deny-ignore-threaten; these communicative actions have the same subject (it is not
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Fig. 4.22 A fragment of the training set of scenarios

specified in the graph of conflict scenario). The vertices of these communicative
actions with the same argument are linked by the thick arcs. For example, it
could be ignored refund because of a wrong mailing address, deny the reason
that the refund has been ignored [because of a wrong mailing address], ignore
the denial [ : : : concerning a wrong mailing address], and threatening for that
ignorant behavior [ : : : concerning a wrong mailing address]. We have wrong
mailing address as the common subject S of communicative actions ignore-deny-
ignore-threaten which we approximate as

ignore(A1, S) & deny(A2,S) & ignore(A1,S) & threaten(A2, S), keeping in mind
the scenario graph. In such approximation we write deny(A2, S) for the fact that A2
denied the reason that the refund has been ignored because of S. Indeed, ignore(A1,
S) & deny(A2,S) & ignore(A1,S) & threaten(A2, S). Without a scenario graph, the
best representation of the above in our language would be
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Let us enumerate the constraints for the scenario graph (Galitsky and Perterson
2005):

Definition 20 In the scenario graph:

1. All vertices are fully ordered by the temporal sequence (earlier-later);
2. Each vertex has a special label relating it either to the proponent (drawn on the

right side in Fig. 4.20) or to the opponent (drawn on the left side);
3. Vertices denote actions either of the proponent or of the opponent;
4. The arcs of the graph are oriented from earlier vertices to later ones;
5. Thin and thick arcs point from a vertex to the subsequent one in the temporal

sequence (from the proponent to the opponent or vice versa);
6. Curly arcs, staying for causal links, can jump over several vertices.

Similarity between scenarios is defined by means of maximal common subsce-
narios. Since we describe scenarios by means of labeled graphs, we outline the
definitions of labeled graphs and domination relation on them (see, e.g., (Ganter
and Kuznetsov 2001). Given ordered set G of graphs (V,E) with vertex- and edge-
labels from the sets (ƒ−, � and (ƒE,�). A labeled graph � from G is a quadruple
of the form ((V,l),(E,b)), where V is a set of vertices, E is a set of edges, l: V ˆ ƒ− is
a function assigning labels to vertices, and b: E ˆ ƒE is a function assigning labels
to edges.

The order is defined as follows: For two graphs � 1:D ((V1,l1),(E1,b1)) and � 2:D
((V2,l2),(E2,b2)) from G we say that � 1 dominates � 2 or � 2 �� 1 (or � 2 is a
subgraph of � 1) if there exists a one-to-one mapping ®: V2 ! V1 such that it

• respects edges: (v,w) 2 E2 ) (®(v), ®(w)) 2 E1,
• fits under labels: l2(v�l1(®(v)), (v,w) 2 E2 ) b2(v,w) � b1(®(v), ®(w)).

This definition allows generalization (“weakening”) of labels of matched vertices
when passing from the “larger” graph G1 to “smaller” graph G2.

Now, generalization Z of a pair of scenario graphs X and Y (or their similarity),
denoted by X ˆ Y D Z, is the set of all inclusion-maximal common subgraphs of X
and Y, each of them satisfying the following additional conditions:

• To be matched, two vertices from graphs X and Y must denote communicative
actions of the same agent;

• Each common subgraph from Z contains at least one thick arc.

If the conditions above cannot be met then the common subgraph does not exist.
This definition is easily extended to finding generalizations of several graphs (e.g.,
see Ganter and Kuznetsov 2001; Kuznetsov 1999). The subsumption order � on
pairs of graph sets X and Y is naturally defined as X � Y :D X �Y D X.

Computing relation � 2 �� 1 for arbitrary graphs � 2 and � 1 is an NP-complete
problem (since it is a generalization of the subgraph isomorphism problem from
(Garey and Johnson 1979)). Finding X � Y D Z for arbitrary X, Y, and Z is generally
an NP-hard problem. In (Ganter and Kuznetsov 2001) a method based on so-
called projections was proposed, which allows one to establish a trade-off between
accuracy of representation by labeled graphs and complexity of computations with
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them. In particular, for a fixed size of projections, the worst-case time complexity
of computing operation � and testing relation � becomes constant.

4.3.7 Machine Learning of Conflict Scenarios

The following conditions hold when a scenario graph U is assigned to a class (we
consider positive classification, i.e., to valid complaints, the classification to invalid
complaints is made similarly, Fig. 4.23).

Similarity Condition 21.

1. U is similar to (has a nonempty common scenario subgraph of) a positive
example RC. It is possible that the same graph has also a nonempty common
scenario subgraph with a negative example R�. This is means that the graph is
similar to both positive and negative examples.

2. For any negative example R�, if U is similar to R� (i.e., U � R� ¤∅) then U �

R� � U � RC. This condition introduces the measure of similarity and says that
to be assigned to a class, the similarity between the unknown graph U and the
closest (in terms of �) scenario from the positive class should be higher than the
similarity between U and each negative example (i.e., representative of the class
of invalid complaints).
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explain

disagree

ask Ù explain
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appeal Ù disagree

deny Ù accept

accept Ù explain

I5 * U

ignore Ù deny
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0 0 0 0 0 0 0
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Fig. 4.23 A scenario with unknown label and the procedure of its classification



152 4 Formalizing Theory of Mind

This condition introduces the measure of similarity and says that to be assigned
to a class, the similarity between the unknown graph U and the closest scenario from
the positive class should be higher than the similarity between U and each negative
example (i.e., representative of the class of invalid complaints).

Condition 2 implies that there is a positive example RC such that for no R� one
has U � RC � R�, i.e., there is no counterexample to this generalization of positive
examples.

Let us now proceed to the example of a particular U in Fig. 4.23 on the top. The
task is to determine whether U belongs to the class of valid complaints (on the left
of Fig. 4.4) or to the classes of invalid complaints (on the right); these classes are
mutually exclusive.

We observe that V4 is the graph of the highest similarity with U among all graphs
from the set fV1, : : :V5g and find the common sub-scenario U � V4. Its only thick
arc is derived from the thick arc between vertices with labels remind and deny of
U and the thick arc between vertices with labels remind and allow of V4. The first
vertex of this thick arc of U � V4 is remind ^ remind D remind, the second is allow ^

deny D <0 0 0 1 0 0 0 > (U � V4 is calculated at the left bottom). Other arcs of U � V4

are as follows: that from the vertex with the label remind to the vertex with the label
<0 0 0 1 0 0 0>; the arc from the vertex with the label <0 0 0 1 0 0 1 > to the vertex
with the label remind; the arc from the vertex with the label <0 0 0 1 0 0 0 > the
vertex with the label <0 1 0 0 0 1 0>. These arcs are thin, unless both respective arcs
of U � V4 are thick (the latter is not the case here). Naturally, common subscenario
may contain multiple steps, each of them may result in the satisfaction of conditions
1) – 2) for the class assignment above.

Similarly, we build the common subscenario U � I5; I5 delivers the largest
subgraph (two thick arcs) in comparison with I1, I2, I3, I4. Moreover, U � V4 �

U � I5, this inclusion is highlighted by the ovals around the steps. Condition 2 is
satisfied. Therefore, U is an invalid complaint as having the highest similarity to
invalid complaint I5. We refer the reader to (Galitsky and Kuznetsov 2008) for the
further details and examples of classifications of graphs.

Having shown how a scenario can be related to class using Nearest Neighbor, we
proceed to more cautious classification framework which minimizes false negatives:
it would rather refuse to classify than provide a borderline classification. This feature
is crucial for the conflict resolution domain where a solution offered to the parties
must have an unambiguous and concise explanation and background. Moreover,
an approach to finding similarities between scenarios which is more sensitive to
peculiarities of communicative actions and conflict scenarios would deliver a higher
classification accuracy in our domain.

To perform machine learning with scenarios, we need to formalize them,
suggest a comparison framework and select a strategy of assigning a scenario to a
class (Table 4.5). Clearly, comparing scenarios as arbitrary ordered sets would lead
to a uniform treatment of more important and less important scenario steps and,
therefore, would compromise the accuracy. Traditional machine learning technique
(including Inductive Logic Programming) seems inapplicable due to a peculiar data
structure of scenarios, especially of complaint scenarios.
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4.3.8 Linked Sub-Scenarios

One of the most important information that a scenario comprises is its linked sub-
scenario. A sequence of mental states is referred as to linked if the meta-variables
of each mental meta-predicate of this sequence are instantiated by the same formula
W. A basic example here is the typical unit of an arbitrary discourse, I asked about
a feature of object and she responded, specifying this feature for the object. In this
case W D Feature(Object), where predicate Feature is uninstantiated at the time of
asking but instantiated at the time of answering:

‘!’ denotes the sequence of actions.
Let us now consider a more complex example of a linked sub-scenario, including

mental states and physical actions and states:

I deposited my child support check and they sent it back to me saying that they could not
deposit a business check into a personal account. It clearly states on the front it is child
support from Brazoria County and on the back that it is payable to me.

This fragment is represented as the background info part:

In this complaint sub-scenario, the mental predicates above (including physical
predicate deposit which plays here the role of initial mental predicate) have the term
check(child_support) as the value of metavariable W. Therefore, the scenario above
is a linked sub-scenario of the complaint which is based on the conflict of bank’s and
customer’s beliefs concerning a deposit of checks (issued by a particular institution).
Given a particular linked sub-scenario, finding a similar sub-scenario in another
complaint would mean that these two complaints are originated by a belief conflict
of the same structure. At the same time, the semantics of linking meta-variable
(check(child_support)) in our example identifies a particular physical parameter and
is too specific to judge on the conflict. Moreover, the physical parameter above is
independent on the plot of the scenario and may be combined (and serve as an
argument of a mental action) with an arbitrary scenario. This discussion provided
an additional justification of our mental action-based formal model of a scenario.

Let us continue with the example above; the complainant writes:

This is the second time in the last 3 months this bank has done this. The first time I went in
they had to pay me $150 in fees because of the error. Then I get an insufficient funds from an
automatic transfer that says the $2000 transfer couldn’t happen. Well the auto transfer is
for $20 and now the account is negative 1400 and some change. I hate these people. When
I went in the first time they did this, the manager said “Oh well stupid error” and thought
I didn’t hear her. I will be removing all funds from this incompetent bank and trying some
place else!
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Linked sub-scenario Linked       sub  -  scenario

Full scenario Full scenario

1

2

3

basis(Linked sub-scenario) basis(Linked  sub  -  scenario)

basis(Full scenario) basis(Full scenario)

4

5

6

Fig. 4.24 The order of the search for common mental actions and emotions for a pair of scenarios
(on the left and on the right)

As the reader observes, in this sample conflict the plot does not carry on with
the same physical predicate. Above is a rather chaotic and emotional enumeration
of previous events which do not form a linked sub-scenario that is well-suited for
complaint identification (matching with a similar sub-scenario).

Overall scenario above is a representative for the class of complaints Customer
believes company did not follow its rules. For the purposes of this study, the classes
of complaints are drawn based on the mental attitudes of complainants and their
opponents; linked sub-scenarios form the criterion of belonging to the class. Note
that a linked sub-scenario in our example does not have to occur in the beginning
of the whole scenario: its background may precede the essential part (linked sub-
scenario).

Hence, to find a similarity between two scenarios, we need to find their common
linked sub-scenario via the search for a match on predicate-by-predicate basis
(Fig. 4.24). If it is checked to be impossible, a linked sub-scenario of one complaint
is matched against the whole scenario of another one. If such the attempt fails, the
whole scenarios are tried to be matched against each other. If two scenarios do not
have common sequence of (linked) predicates, we perform their comparison as the
ordered sets of mental actions.

As the reader may feel at this point, the problem of finding a similarity for two
scenarios is not adequately reducible to the task of finding an intersection of the
set of mental predicates for each scenario, even if we consider additional scenario-
specific constraints above. Looking for intersections between the sets, which are
the sets of formulas (not arbitrary elements), we take advantage of the operation
of term anti-unification (Sect. 7.4.2, Reynolds 1970). In case of unary predicates
anti-unification turns into a set-theoretic intersection.

Given a pair of scenarios, anti-unification yields a third scenario that comprises
the common features (mental actions) of input scenarios. We intend our algorithm
for search of similarity (Fig. 4.24) to reveal as many common features as possible.

http://dx.doi.org/10.1007/978-3-319-39972-0_7


156 4 Formalizing Theory of Mind

4.3.9 Scenario as a Sequence of Local Logics

So far in this section we used an inductive approach to learning behavior of agents.
In this sub-section we attempt to simulate deductive properties of a developing
scenario. Each interaction step can be characterized by a set of mental conditions in
terms of knowledge, beliefs, intentions, emotions and others, as well as “physical”
conditions. Obviously, these conditions change when new interaction step occurs.
From the standpoint of deduction, the sequence of interaction steps for a scenario
is essentially non-monotonic: adding new steps (conventionally, adding new facts)
frequently leads to existing conditions on previous states do not hold any more.
We select such approach to non-monotonicity as local logics as a formalism
to represent development of scenarios where new interaction steps of agents
occur.

For the purpose of concept learning we were concerned with the structure of
communicative action, however for the deductive system we need some sort of
completeness for pre- and post-conditions of communicative actions. These can be
obtained as prepositions being extracted from text, or deduced from domain specific
rules like “early withdrawal D > penalty”, or from mental world-specific rules such
as “loss of money D > negative emotion”. In this section we treat propositions
irrespectively of their source.

In the formalism to be presented, situations are associated with mental states.
Multiple situations like though of being cheated on by an opponent, being mis-
informed, the plan to counter-attack being discovered are associated with the
state change communication topic and formulate a new request (This state can
be followed with communicative action remind followed by request, for example).
Propositions are interpreted as conditions on current mental states.

Definition 22 A Boolean classification (a Boolean logic without the relation j- for
sets of propositions (Barwise 1975; Barwise and Perry 1983)) A D < S, †, jD,
&, : > consists of a non-empty set S of situations, a set † propositions, a binary
relation “true in” j D on S x†, conjunction & and negation :. Boolean classification
satisfies the following conditions for conjunction and negation: s j D p1 & p2 iff s
j D p1 and s j D p2,

Boolean classification adopts the basic Gentzen sequent calculus approach to
logic, and � j- � means that the conjunction of the propositions in � entails the
disjunction of the propositions in� as a non-logical component of a formal system,
combined with any kind of logical component. A pair of sets of propositions <� ,
�> is called a sequent. For example,

<f“this book is great”ˆ“he enjoyed this book” & “this book covers math”ˆ“he
referred to this book preparing for math test” & “I recommend this book for
beginners”ˆ“Will suit a beginner reader well”g,
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fgood_for_students _ good_for_mathematicians _ : suitable for biologistsg is a
sequent for book reading recommendation. This kind of sequents can be obtained by
information extraction from text, where those sentence generalization expressions
are selected from text which gave non-trivial results (generalization score is above
threshold).

A Boolean local logic L D <A, j-, N > consists of a Boolean classification and
binary relation j- of inferability for a pair of sets of propositions, and a set of normal
situations N � S. Normal situations satisfy the following conditions:

Entailment: The relation j- satisfies all usual Gentzen rules for classical propo-
sitional logic, including identity a j- a, weakening � j- �)� , � 0 j- �, �0, and
global cut
� , †0 j- �, †1 for each partition <†0, †1 > of some set †0 )�j- �. Also

normal situations are those situations s such that:
for any �j- � and s j D p for all p2� D > s j D q for some q2�. By default,

situations are normal. The use of normal situations in a local logic L imitates
assumptions which are implicit background knowledge within L.

A local logic is sound if its every situation is normal. L is complete if

• for all sets of propositions

• then there is a normal situation s such that s j D p for every p2� and s j D :q for
every q 2�.

It is possible to introduce a partial order on a pair of logics L1 and L2 on a fixed
classification A: L1 < L2 iff:

• For all sets � , � of propositions, � j-L1 �)� j- L2 �, and
• Every situation which is normal in L2 is normal L1.

Given this formalism, we state that individual information extraction occurs
relatively to an implicit local logic. If either natural language expression or targeted
extraction (constraints or normal situations) changes, then there is a potential that
normal situations or constraints change respectively as well. This is how local logics
implement non-monotonicity.

We now take advantage of the theorem introduced in (Barwise & Seligman
1997).

The local logics on a given classification form a complete lattice under
ordering <.

Observation 23 Hence a given behavior scenario developing in time forms a
complete lattice. At each point in time, current scenario can be valid, invalid or
undetermined; validity assessment does not correlate with order on a sequence of
developing scenarios directly.
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4.4 Some Applications of Formalized ToM

4.4.1 Learning Conflicts Between Communities of Agents

It is worth explaining to CwA that communities of agents can be characterized by
“collective” communication actions in a similar way to individual agents. Hence
using the developed machinery, it is possible to represent the development of a
conflict between communities of agents, so that the whole community is represented
by a single agent, all the way towards a national-level and international conflict.
The problem of conflict resolution in this is of an enormous importance and has a
substantial educational value.

To demonstrate an example of a graph representation for a conflict involving
three groups of agents, we consider an analysis (Fang et al. 1993) of a nasty
groundwater contamination conflict. Elmira, a Canadian town draws its municipal
water from an underground aquifer. Ontario Ministry of the Environment (MoE)
discovered that the aquifer was contaminated by a carcinogen. Suspicion fell on
the Elmira pesticide products plant of Uniroyal Chemical Ltd. (Uniroyal), which
had a history of environmental problems. MoE issued a Control Order under the
Environmental Protection Act of Ontario, requiring that Uniroyal implement a
long-term collection and treatment system, and carry out any necessary cleanup
under Ministry supervision. Uniroyal immediately exercised its right to appeal.
Meanwhile, various interest groups formed and attempted to influence the process
through lobbying and other means. Of particular note was the Local Government
that took common positions in the dispute and, encouraged by the Ministry, hired
independent consultants. MoE’s objective was to carry out its mandate as efficiently
as possible; Uniroyal wanted the Control Order modified or rescinded; Local
Government wanted to protect its citizens and its industrial base.

We highlight the communicative actions used by the main groups of agents as
well as the options under the control of each decision maker. MoE controls the
option to modify the Control Order to make it more acceptable to Uniroyal (called
Modify in Table 4.6). Uniroyal can lengthen the appeal process.

(Delay), accept the current Control Order (Accept), or abandon its Elmira
operations (Abandon). Finally, Local Government can insist that the original
Control Order be applied (Insist).

Moving from the status quo (state 1) via the transitional non-cooperative
equilibrium (state 5) to the final cooperative equilibrium (state 8) in the Elmira
groundwater contamination dispute.

We now outline the original approach of the authors in treatment conflict as a
sequence of states with selections of options in cooperative and non-cooperative
equilibriums. Each of the nine feasible states is a possible scenario of this simple
model, and is represented by a column of Y’s and N’s. A Y indicates that Yes, the
option opposite the Y is selected by the decision maker controlling it, while an N
means No, the option is not taken. For example, state 8, the far right column in
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Table 4.6 A conflict between private and governmental entities

Decision Makers
and Options

MoE
1. Modify

2. Delay
3. Accept
4. Abandon

5. Insist

N

Y
N
N

N →

→

→
→

1 5 8

N

Y
N
N

Y

Y

N
Y
N

Y

Uniroyal

Local Givernment

State Number

Status Quo Noncooperative
Equilibrium

Cooperative
Equilibrium

Table 4.6, is the scenario where MoE modifies the Control Order (selects option 1)
and Uniroyal accepts this modification (chooses option 3), while Local Government
continues to support the original Control Order (selecting option 5).

We proceed to the problem of relating a conflict between communities of human
agents to a class of violent outcome and non-violent outcome. If a conflict at a given
development stage is similar to a number of conflicts which have been peacefully
resolved, then one can expect the same outcome. In this case an interference of
national or international communities is probably not required. However, if this
conflict is similar to the ones which have led to violence of any sort, an urgent
action may be required.

Obviously, because of a very reduced and sparse dataset of conflicts between
human communities, statistical approach would not be as helpful; rule based
methods providing adequate explanations for decisions are required. We believe that
a communicative actions-oriented knowledge representation machinery is adequate
in this domain; Nearest neighbor machine learning may need to be extended into a
more cautious one which would less likely deliver false negative.

We provide a brief example of an (abbreviated) textual description of a national
conflict and its graph-based representation (Fig. 4.25). An expert is expected to build
a graph representation manually using some kind of user interface.

4.4.2 Emotional Profile

We call emotional profile a formal representation of a sequence of emotional
states through a textual discourse. Emotional profile is extracted from textual
description of a conflict, where the e-mail author describes his/her interaction with
other individuals. Emotional profile consists of a sequence of emotional states of
interacting agents, where communicative actions are attached to these emotional
states.
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Reduce rent
request

Not to pay 
request

refuse

not 
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agree

requests
agree

demand

deny
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accept accept

propose

propose allow

President PC landlords tenants

Fig. 4.25 Conflict representation between communities of human agents

Intensity of linguistic expressions for emotions has been the subject of extensive
psychological studies (Kent and Nicholls 1977; Rouhana and Bar-Tal 1998); we
base our categorization of emotions and qualitative expression for emotion intensity
in these studies. We apply computational treatment to our observations in the
domain of customer complaints (Galitsky 2004) that emotions are amplified by
communicative actions. For example the expression I was upset because of him is
considered to express a weaker intensity of emotion than the expression He ignored
my request and I got upset with communicative actions request-upset. In our formal
representation of the latter case the communicative action ignore is substituted
into the emotion upset as the second parameter: upset(i, ignore(he, request(i,_))).
Emotional profile of a textual scenario includes one or more expressions in
predicates for emotions, communicative actions and mental states for each sentence
from this scenario mentioning emotional state. Moreover, we compute the intensity
of emotion for each such sentence.

Intensity of an emotion for a sentence depends on the following factors:

1. The category of emotion (e.g. satisfaction (value D 0), warning, distress, threat
(value D 1)), formed following the relevant psychological studies (Mehrabian
1995, Oatley and Jenkins 1996; Liu and Maes 2004);

2. Attachment of communicative action which amplifies the intensity of emotion by
providing explicit explanation of its cause;

3. Occurrence of multiple emotions per sentence.
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We have derived a numerical expression to calculate an emotional intensity for
each sentence taking into account the above factors (we will discuss it informally in
this chapter). Hence building an emotional profile as expression in predicates leads
to a quantitative expression for how the total intensity of emotions evolves through
the scenario. We call this numerical sequence an intensity profile.

To access the emotion level of the whole scenario, we track the evolution of the
intensity of emotions. If it goes up and then goes down, one may conclude that a
conflict occurred, and then has been resolved. A monotonous increase of emotion
intensity would happen in case of an unresolved conflict (dispute). Conversely, a
decrease in intensity means that involved parties are coming to an agreement. An
oscillating intensity profile indicates more complex pattern of activity, and in most
cases it reveals a strong emotional distress.

It has been confirmed by multiple studies (Kaplan 1981; Hecht 2003) that a
terrorist attacker has experienced a substantial emotional distress at some points
before committing a terrorist attack. Particularly, individuals who have run into
certain problems in their life such as broken relationship, family and marriage
troubles, employment difficulties, mental and physical illnesses, are approached
by agents of terrorist network with proposal for participation in an attack. There-
fore, if an individual from a category with a higher likelihood to belong to a
terrorist network is discovered to be in an emotional distress, some preventive
measures can be taken, including a meeting with a social worker, psychotherapeutic
counseling, etc. Therefore, if an individual with such distinguishing patterns can
be detected on the basis of email texts, some preventive measures can be taken
within a broad spectrum (from offering to provide psychotherapeutic counseling
to deviating police intelligence to follow him/her closer because of the potential
danger he/she represents). Hence, an early recognition of such patterns of emotional
distress is crucial as it provides the earliest warning of potential future terrorist
activity.

What kind of data is available to judge on a current emotional state of an
individual? One of the easiest ways is to follow a phone conversation and detect
emotional states from the pitch of voice. However, the most robust and detailed
analysis of emotional distress can be conducted given textual data. In this section,
we introduce the methodology of extraction of emotional profile from text (e-mails)
to provide an early notification of potential involvement of individuals from certain
categories in terrorist activity.

In this section, we introduce the idea of building emotional profile of an email
message to characterize the emotional distress of the author. Emotional profile is
a way to combine meanings of individual words in sentences and then to merge
expressions for emotions in these sentences for deriving a high-level characteristic
of emotional load of a textual message. It turns out that explicit expressions for
emotions are amplified by the words which are not explicit indications of emotions
but characterize interaction between involved agents (their communicative actions,
Searle 1979).

In the rest of this section, we present a number of examples for emotional profiles,
analyze their features and comment on the issues of how to extract emotional profile
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from text. Then we propose a machine learning framework, which relates emotional
profiles to the classes “No emotional distress” and “emotional distress exists” and
evaluate it using the dataset of textual customer complaints.

4.4.3 Analyzing an Email from a Would-Be Terrorist Attacker

As an example, we present a fragment of correspondence between a would-be
British suicide bomber (Fig. 4.26) and his relatives, who have been charged in
connection to failing to notify authorities of a potential terrorist attack. We believe
if a system, like described in the current paper, were available and could be applied
to the email below, an emotional distress would be detected and a terrorist attack
attempt could have been prevented.

We show expressions for emotions in bold and associated expressions for com-
municative actions or mental states in bold italic. As the reader observes, emotional

Fig. 4.26 Example of a email message where a detection of emotional distress could prevent a
would-be terrorist attack. On the left: selected fragments where emotions are shown in bold and
expressions which amplify them – in italic bold. On the right: emotion intensity profile, negative
to positive from left to right
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Fig. 4.27 A parse tree for the second sentence in Fig. 4.26

profile in this email is very peculiar. Primarily, there are very strong oscillations of
the emotional intensity. These oscillations are medium at the beginning of message,
stay negative at the middle portion of it and become very volatile towards the end of
the message.

There are multiple forms of expressions whose meanings can be classified as
communicative actions or mental states; this example is a good illustration for how
expressions indicating emotions are amplified. Also, one can see that a dependent
occurrence of emotions amplifies their individual intensity (someone is happy that
you are happy).

A parsing tree for the second sentence in Fig 4.26 is shown in Fig. 4.27.
Indications of emotions are shown in small ovals, we extract the words with explicit
meanings for emotion (firm, week, emotional) and the one which has a meaning
of emotion because of the particular way it occurs in the sentence (focus in a
passive voice). Emotions week, emotional are amplified by the expression no time
to be (shown by a larger oval) with the meaning I encourage you to be, which
is an imperative communication state. Natural language algorithms of extracting
emotions from text is beyond the scope of this book.

4.4.4 Reasoning with Emotional Profiles

We now proceed to the example where extracted emotions and communicative
actions are formalized (Fig. 4.28). Each sentence is represented individually;
emotions are predicates over agents, and communicative actions range over domain-
specific parameters
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I was surprised and requested so that they check my account.
It was disgusting that they ignored my request because no transaction has been agreed.
I did not confirm that I wanted to withdraw funds from my account because I was 

frustrated with them.
Being upset I explained that the balance was wrong for some reasons beyond their 

understanding.
Please do not deny responsibilities for what you have done to me.

not request(i, check(they)) &  surprise(i),
ignore(they,request(i,agree(transaction)))&disgusting(i),
not confirm(i, not want(i,withdraw)) & frustrate(i),
explain(i, understand(they, wrong(balance))) &  upset(i),
imperative(not deny(they, do(they, me)).

Fig. 4.28 A message describing interaction with opponents and its emotional profile

Indeed, a typical message with emotional distress contains a description of an
interaction with opponents (Galitsky and Tumarkina 2004).

Advanced treatment of text is required to build and analyze an emotional
profile. A keyword-based analysis for emotional entities by itself does not provide
a sufficient evidence to conclude that an e-mail is aggressive, contains signs of
distress, or a threat to someone. It is important to distinguish, for example “I am
afraid to say : : : ” and “I am afraid of something” (see Galitsky 2003 for more
examples). Hence, detailed syntactic analysis, followed by full-scale semantic and
pragmatic steps are required to obtain an adequate content for emotional profile. As
to the building of emotional profile itself, reasoning is required to handle various
patterns of relations between communicative actions and emotions.

Because of high logical complexity of natural language information extraction,
the accuracy of construction of emotional profiles is rather limited. Therefore,
additional logical means are required to find a consistent subset of extracted
emotions and communicative actions. We select the defeasible logic programming
(Garcia and Simari 2004) as an adequate reasoning means to handle unreliable
knowledge extracted from text. This rule-based approach supports rules with
exceptions. Analysis of emotional profiles allows judging on complaint validity,
argumentation, level of frustration, and aggressiveness of its author. In this proposal,
our focus is an accurate characterization of the last two parameters.

Emotions and communicative actions are extracted in the form of logic program,
which is considered as defeasible one when one piece of evidence concerning emo-
tional intensity is inconsistent with another piece of evidence. Such inconsistencies
arise when certain syntactic features of text are ignored due to their complexity.
For example, discrepancies with proper determinations of co-references between
sentences may lead to the following problems while building an emotional profile

1. His manners and other stuff pleased me (positive emotion in connection with a
person’s mental (and possessions?)).

2. I was fed up with his things (strong negative emotion in connection to some object
(material or behavioral ?) of (the same or different ?) person).
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3. I was appalled by his request to help him move his stuff (even stronger negative
emotion in connection to with (this or different ?) object of the same person
above (which appears to be a material object ?))

Hence there are inconsistencies between the first and the second, and between
the second and the third sentences. In accordance to the traditional logical artificial
intelligence, nonmonotonic reasoning needs to come into play to compensate for the
limitations of syntactic analysis. Such reasoning is expected to deliver a maximal
consistent set of expressions for emotions (speaking more precisely, consistent
parameters of these emotions). For our example, initially we obtain the expressions
for emotions with the following options for arguments:

After the implausible interpretations are defeated, we obtain the following:

4.4.4.1 How Well Can a Conflict Be Represented via Communicative
Actions?

In this section we use the Hocker-Wilmot Conflict Assessment Guide (Wehr 1979)
to observe which characteristics of an inter-human conflicts can be described by
our model, and which characteristics are not covered by it. We intentionally use
the treatment of conflict used by sociologists to abstract away from our particular
formalization.

The guide (Wehr 1979) is composed of a series of questions designed to focus
on the components of conflict; it can be used to bring specific aspects of a conflict
into focus and serve as a check on gaps in information about a conflict. We reduce
this series of questions for brevity and provide our brief answers in bold.

1. Nature of the Conflict

1. What are the “triggering events” that brought this conflict into mutual
awareness? Specific sequence of communicative actions and emotions like
got denied – got upset – share with public

2. What is the historical context of this conflict in terms of (1) the ongoing
relationship between the parties? Some communicative actions (CAs) and
References in subjects and (2) other, external events within which this
conflict is embedded? References in subjects.

3. Conflict elements:

1. How is the struggle being expressed by each party? Fully by CAs
2. What are the perceived incompatible goals? Fully by multiple subjects
3. What are the perceived scarce rewards? Rewards are mentioned explicitly

in subjects
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4. In what ways are the parties interdependent? Semantic of CAs implies
interdependence.

5. How are they interfering with one another? Semantic of CAs implies
interference.

6. How are they cooperating to keep the conflict in motion? Semantic of CAs
implies cooperations.

4. Has the conflict vacillated between productive and destructive phases? Indi-
cated by CA sequences

2. Styles of Conflict

1. What individual styles did each party use? Only as far as attitudes
2. How did the individual styles change during the course of the conflict?

Sometimes, mostly not.
3. How did the parties perceive the other’s style? Sometimes, mostly not.
4. In what way did a party’s style reinforce the choices the other party made as

the conflict progressed? This is exactly what is learned in terms of CAs.
5. Were the style choices primarily symmetrical or complementary? We learned

this in terms of CAs.
6. From an external perspective, what were the advantages and disadvantages of

each style within this particular conflict?
7. Can the overall system be characterized as having a predominant style? What

do the participants say about the relationship as a whole? Style is reflected as
an overall scenario structure.

8. From an external perspective, where would this conflict system be placed in
terms of cohesion and adaptability?

9. Would any of the other system descriptions aptly summarize the system
dynamics?

3. Power

1. What attitudes about their own and the other’s power does each party have?
Do they talk openly about power, or is it not discussed? Power is expressed as
an attribute of CA

2. What do the parties see as their own and the other’s dependencies on one
another? As an external observer, can you classify some dependencies that
they do not list? These dependencies are expressed in semantics of verbs
for CAs, but we do not treat that explicitly.

3. What power currencies do the parties see themselves and the other possessing?
Beyond our model.

4. In what ways do the parties disagree on the balance of power between them?
Do they underestimate their own or the other’s influence? Very superficial
treatment: semantics of verbs sometimes indicate relationships between
powers.

5. What impact does each party’s assessment of power have on subsequent
choices in the conflict?
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6. What evidence of destructive “power balancing” occurs?
7. In what ways do observers of the conflict agree and disagree with the parties’

assessments of their power?
8. What are some unused sources of power that are present?

4. Goals

1. How do the parties clarify their goals? Do they phrase them in individualistic
or system terms? This is expressed in NL and we differentiate: ‘I want’ vs
‘This is how we do it : : : ’.

2. What does each party think the other’s goals are? Are they similar or
dissimilar to the perceptions of self-goals? Expressed by the sequence of
CAs, like “if you warn me that : : : I deny [this or other subject]”.

3. How have the goals been altered from the beginning of the conflict to the
present? In what ways are the prospective, transactive, and retrospective goals
similar or dissimilar? This is sometimes, but not always represented via
CAs, for example where an agent transition from an inquiry to feeling of
revenge.

5. Tactics

1. Do the participants appear to strategize about their conflict choices or remain
spontaneous? It is usually hard to extract from textual description of a
conflict.

2. How does each party view the other’s strategizing? Some CAs like confirm
provide indication on how opponents’ strategies are anticipated.

6. Assessment

1. What rules of repetitive patterns characterize this conflict? Clearly indicated
by the sequence of CAs

2. Can quantitative instruments be used to give information about elements of
the conflict? Not in the proposed model

4.4.5 Evaluation of Adequateness of Representation

To demonstrate that the proposed representation language of labeled graphs is
adequate to represent scenarios of interactions between human agents in various
domains, we performed the evaluation of coding to graph/decoding from graph
and evaluate distortion of communicative action-related information. We conducted
the evaluation with respect to the criteria on how the suggested model based on
communicative actions can represent real-world scenarios including complaints,
conflict between communities of agents and emotional interactions.

Complainants had a task to read a textual complaint and draw a graph so
that another team member (a company representative) could comprehend it (and
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briefly sketch the plot as a text). A third team member (judge) then compared the
original complaint and the one written by the company representative as perceived
from the form. The result of this comparison was the judgment on whether the
scenario structure has been dramatically distorted in respect to the validity of a given
complaint.

It must be noted that less than 15 % of complaints were hard to capture by
means of communicative actions. We also observed that about a third of complaints
lost important details and could not be adequately restored (although they might
still be properly related to a class). Nevertheless, one can see that the proposed
representation mechanism is adequate for representing so complex and ambiguous
structures as textual complaints in most cases.

Note that in our approach the role of defeat relationships and causal links between
the subjects of communicative actions is to represent common features of scenarios,
and not to determine the validity of claims being communicated. Communicative
actions of one scenario are matched against those of another scenario, and attack
relationships between arguments are matched against those of another scenario,
irrespectively of the validity of these arguments.

Conducting the evaluation of adequateness in other domains, we split the
members of evaluation team into reporters, assessors and judges. Reporters rep-
resented scenarios as graphs, and assessors decoded the perceived structure of
communicative actions back into text. Finally, the judges compared the original
description (be it text or other media in the case of wireless interaction) with the
respective originals.

For the banks, one can track deviation of one dataset versus another, which is
10–15 % of the third set versus the first two sets. This is due to the lower variability
of scenarios, which makes it easier to represent and reconstruct it (classification
accuracy is comparable). Recognition for banking complaints is almost as accurate
as coding via graph (representation), but not the reconstruction of the structure of
interactions between complainants and their opponents.

Although it is possible to demonstrate the adequacy of representation language,
it is rather hard to obtain data for conflicts between communities of agents, so with
only one case presented in Fig. 4.29 one succeeded in understanding the discourse of
the conflict from the graph. Coding emotional profiles via graphs similar to Fig. 4.25
was not as expressive as in the case of complaints, and classification accuracy is
closer to the scenario reconstruction than to the scenario representation accuracy.
Indeed, the proposed language via communicative actions captures peculiarity of
emotional profiles in a lesser degree than the structure of complaint scenarios. We
were unable to evaluate the security assessment scenarios in real world; however we
obtained sufficient data to track the accuracy for wireless interactions. In terms of
representation it is as good as complaint scenarios, but the reconstruction (which
is the most important operation) accuracy is lower than for complaints, and the
accuracy of classification lies in between representation and reconstruction. In such
domain as emotional interaction there is much higher loss of information then in the
other domains, however proper classification (with providing background on why a
given scenario is related to a class) gives a little bit better results.
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A: Complainant What happened 
(A positions)

B: to whom A
complained

What  happened
(B positions)

� � ��
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(complained-asked
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satisfaction)

Good service 
(provided 

supporting argument
that service was good)

� �
Disagree-provided 
supporting argument that
service was bad

��
�
Agreed and suggested
compensation

� ��
Accepted

��
��
Promised to send
compensation

� ��
�

Reminded

��
��
Promised to send
again

Fig. 4.29 Iconic visualization of the logic of conflict deliberation
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Hence for an average number of almost 19 scenarios per dataset, almost 80 %
can be represented via labeled graphs, about 70 % reconstructed from graph without
major loss of the conflict structure, and 60 % both correct representation and
reconstruction. The classification accuracy of relating to one out of two classes is
close to the reconstruction accuracy. Note that the setting of the Nearest Neighbor
classification is different from random classification that gives 50 % for two classes.

4.4.6 Visual Representation

Besides the graph-based representation of scenarios, we propose a more intuitive,
descriptive iconographic approach, which builds the visual representation given the
graph formalization. Figure 4.29 shows how logic of complaint deliberation can be
visualized using an iconographic approach described in (Kovalerchuk and Schwing
2005) that goes beyond graph visualization. This approach visualizes a result of
action in a generalized form and avoids direct visualization of verbs that express
abstract actions such as complained and disagree. The iconographic visualization
produces iconic sentences. The first sentence, shown in the first row in Fig. 4.29,
clearly visualizes a conflict. Proponent A sees a bad service (black square) and his
opponent B sees a good service (white square). The line under the white square
indicates that B provided support for his/her view. The second iconic sentence
reveals that the conflict seems has been resolved about service when A provided
support for his/her claim about bad service (both A and B see black squares).
Now B added another positive element visualized as a triangle – a promise to send
compensation. The forth iconic sentence shows that conflict reemerged but now
about the subject represented by a triangle (about sending compensation).

4.5 Discussions and Conclusion

In this Chapter we combined the best of two worlds, ToM of psychologists,
neuroscientists and philosophers and multiagent systems of computer scientists.
The former is an extensive collection of experimental observations and theoretical
accounts for how humans think about thoughts of themselves and others, and the
latter is an insight into how human and automated agents can actually do that.
The former world misses the consistency, plausibility and lacks the implementation
details, whereas the latter world would benefit from an implementation of a broader
set of communicative actions and an extensive set of experimental observations
about the mental states and actions.

Psychologists treat various communicative actions differently; there are distinct
models for pretending, believing and wanting. Computer science puts forward a way
to systematically treat mental states and actions within a unified framework. All
communicative actions are given multiple definitions in the same format, for each
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meaning. As a result, a better structured and compact representation of mental world
than the original ToM is obtained, suitable for both teaching CwA and designing
intelligent agents for operating in the mental world. Formalizing ToM, the major
finding is that the mental entities do not just randomly coexist in the mental world,
but instead form a basis of knowledge-belief-intention, so that most of them can be
defined in this basis, including emotions.

To formally represent the theoretical note of theory-theory, we used a meta-
theoretic approach. Then communicative actions can be defined as metapredicates,
and it becomes convenient to cover a multitude of meanings by such definitions.
Hence basic and derived metapredicates become units of a linguistic model of the
mental world. Both logical and linguistic models are suitable to be taught to CwA
as we will demonstrate in Chap. 8.

In this Chapter we have discussed the applications of modal logic for reasoning
about mental world. Clearly, a lot of observations about the multiagent behavior
can be deduced from the axioms; however the set of theorems does not constitute
a basis to enumerate a set of consecutive mental states. We conclude that for the
generic implementation of reasoning simulation is required, which is implemented
as en exhaustive search in the space of possible behaviors. It has been observed
in this study that the simulation for realistic mental states for a few agents is not
computationally intensive. Simulation is the second way of interpretation for the
Theory-of-Mind, along with theory-theory one.

The theory, models and architectures of intelligent agents and ToM are based BDI
approach. Although this functions well for single agents it has been long recognized
that this approach falls short for multiagent systems. It lacks appropriate social
aspects to make natural interaction possible. The original concept for intelligent
agents was based on a (simple) idea of how people reason about actions. (Dignum
et al. 2014) proposed to go back to the foundation of BDI and to acknowledge
that people are in the core social beings. People don’t function as rational agents
with the addition of some “sociality” modules to make them aware of other people.
Rather people are social at the base and this sociality pervades all our reasoning,
motivation, and any other aspect of our behavior. The authors proposed a new set
of core cognitive elements to replace the BDI approach and discuss the paradigm
of a social landscape. They also aim at a radical change in the way the community
creates social agents and believe that the new approach incorporates previous work,
such as BDI. Their claim is that deliberation about actions and BDI are certainly a
part of how agents cope with a dynamic world, but are not the core part of social
agents that are part of a social world interacting with other agents and humans in a
natural way.

Having formalized individual communicative actions, we then proposed a com-
putational model on how to represent interactions such as conflicts between humans
via a structure of their communicative actions. We then introduced a machine
learning approach suitable to tackle such structures to relate a formalized conflict
scenario to a class. It has been developed and evaluated in one domain (customer
complaints), and then used as a knowledge representation means in other domains
of distinct natures. The number and structure of classes depend on a domain, but the

http://dx.doi.org/10.1007/978-3-319-39972-0_8
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criteria expressed by sequences of communicative actions have been shown to be
relevant for expressing commonalities between scenarios.

The representation language is that of labeled directed acyclic graphs with
generalization operator on them. For machine learning, the scenarios are represented
as a sequence of communicative actions attached to agents; these actions are
grouped by subjects. Scenario discourse is represented by subject change and brings
in additional structure to the scenario, together with causal links between these
subjects of communicative actions. Argumentation defeat relationships between the
subjects of communicative actions (as a specific case of causal link) are coded in the
graph and used by machine learning as well.

We explored the role of communicative actions in representing various kinds
of conflicts in multiagent systems and discovered that proper formalization of
communicative actions is essential to judge on conflicts. Having conducted the
comparative evaluation of classification accuracies in multiple domains, we came
to conclusion that a graph-based communicative action-focused approach is one of
the most adequate for automated learning how to classify conflicts and predict their
outcomes.

Based on speech act theory, we designed the set of attributes for communicative
actions and showed how the procedure of relating a complaint to a class can
be implemented as Nearest Neighbor learning machinery. The approach to learn
scenarios of inter-human interactions (encoded as sequences of communicative
actions) is believed to be original on one hand and universal on the other hand. We
believe that rather few computational approach has been applied to such problem
as understanding customer complaints, and the other domains where mining for
communicative actions seem to be useful have not been tackled computationally
either.

Overall, there has been a strong interest to computational issues of mental
attitudes over the last few decades. A series of studies have addressed reasoning
about emotional and mental states, building emotion-enabled automated agents,
emotion recognition from text, facial image and speech. Emotions are considered
as an important component of intelligence and its models which involve the mental
world. The universal formal model of emotion is one of the most difficult problems
on the way to build an automated agent that demonstrates the behavior, perceived
by humans as emotional one (El-Nasr and Skubic 1998; Sloman 1999). In this
book we formalized emotions in a way suitable for teaching CwA and verified our
formalization in a number of applied domains where emotions play a specific role.
We believe the current paper is one of the first addressing the problem of using the
sequence of emotional states to improve the accuracy of extraction of information
about multiagent conflict.

Extracting and parameterizing human attitudes from text has found a variety
of applications, (including behavior modeling and demographic profiling) and a
number of computational techniques have been deployed. (Liu and Maes 2004)
implement a generic framework for processing a corpus of personal texts and
estimating the affect of the text at the sentence and concept level. Concepts,
topics, and episodes are extracted from text and associated with their respective
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affective valence scores; each < concept, affective valence score > pair constitutes
a single exposure of an attitude. The analysis of each personal text yields many
attitude exposures, which accumulate in an affective memory system. The affective
memory system has a reflexive component, in which repeated attitude exposures are
required to form a stable attitude, a method that follows the classical conditioning
in psychology.

We believe the current book is one of the first attempts targeting machine learning
in the domain with such complex structure as inter-human interactions described
in natural language. Our approach extends the expressiveness of representation
language for agents’ attitudes, using twenty communicative actions linked by a
concept lattice. It can be applied to an arbitrary domain including inter-human
conflicts, obviously characterized in natural language.

The evaluation of the model shows that it is an adequate technique to handle
complex objects (both in terms of knowledge representation and reasoning). This
includes communicative actions of multiagent interactions. The Nearest Neighbors
approach was found suitable to relate an inter-human conflict scenario to a
class. Evaluation using the dataset of formalized real-world complaints showed a
satisfactory performance. The proposed method for formal representation of conflict
scenarios allows their classification as well as teaching to CwA.
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Chapter 5
Theory of Mind Engine

Having presented intuitive ToM and formalized it in previous two Chapters, we now
build a ToM engine that is supposed to reproduce reasoning and behavior associated
with ToM-capable humans in some approximated form. We will enable this engine
to be ToM-competent: it should be capable of correctly answering questions in ToM
scenarios. To obtain correct answers, ToM engine needs to properly infer the mental
states (who knows what, who wants what) that include these answers. How can we
assure that the ToM engine completes all such exercises and question properly?

We require the ToM engine to derive a complete sequence of mental states,
given a ToM task (which we refer to as initial mental state). We then expect such
completeness to reproduce rationality and intelligence in reasoning in the mental
world. This feature of completeness can be achieved not only because of the limited
number of entities describing the manifold of activities in the mental world, but
also because these entities can be defined in a basis of just three mental actions,
knowledge, belief and intention.

Once ToM engine is designed, we will evaluate it with a number of various
scenarios in mental world. We refer to the ToM engine as a natural language
multiagent mental simulator, NL_MAMS.

Kaiser and Shiffrar (2009) write that PwA tend to view other people and objects
alike. It is as if they view the world through a lens devoid of emotion. People and
objects appear to hold the same level of significance. In this chapter we design the
lens through which everything exists in the mental, emotional world only.

5.1 The Task of NL_MAMS

The NL_MAMS inputs formal or natural language descriptions of initial mental
states of interacting agents. It outputs deterministic scenarios of plausible, rational
behaviors of these agents in the mental world. The NL_MAMS is capable of
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analyzing and predicting the consequences of mental and physical actions of
actions (Galitsky 2002, 2013). The output of the NL_MAMS is the sequence of
mental formulas expressing the states that are the results of the committed actions
(behaviors) chosen by these agents.

Obviously, we cannot reproduce the richness and variability of the real mental
sub-world of the real world by our ToM engine. To properly frame the capabilities
of the ToM simulator, we specify the available library of behaviors for each agent to
choose. To reproduce certain scenarios and certain ToM tasks, we define a minimal
set of behaviors providing successful solutions to these tasks. The scope of the ToM
engine (the totality of generated scenarios) is determined by a library of behaviors
loaded into the system. This library contains definitions of mental entities such as
deceive, so that an NL_MAMS agent can chose it if its preconditions can be satisfied
at a given state and this action leads to most desired or least undesired reachable
states.

The NL_MAMS can be viewed from the multiple perspectives:

A planner in the mental world. Given a current state and constraints in the form of
implausible or irrational agents’ actions, build a plan of actions to satisfy these
constraints.

A simulator of the mental world. Given the set of constraints for allowed actions
give, simulate an activity of an agent searching for a best action. An agent first
searches through all possible actions of his opponents according to his knowledge
about their beliefs, and then searches through his own options having found those
of opponents.

A game player in the mental world. The simulator settings could be reduced to the
game-theoretic ones if the mutual beliefs of agents are complete or absent, and
intentions are uniform (a trivial case of multiagent scenario, Rosenschein and
Zlotkin 1994).

A prediction engine in the mental world. Given previous initial mental states and
their outcomes, or sequences of mental states, the system learns from them and
predicts the outcome for an unknown initial mental state. This engine can also be
viewed as a machine learning or induction one.

A reasoning engine about the mental world. An axiomatic system for a given ToM
session includes the initial mental states and behavioral library of definitions of
mental entities as axioms. Theorems include deduced mental actions and mental
states which form a sequence. If mental state s1 is inferred relying on action a1

that is in turn inferred relying on state s0, then s0, a1 and s1 are ordered in time
correspondingly.

Since the NL_MAMS possesses definitions of mental entities, it is capable of
representing natural language expressions that include mental entities as mental
formulas. Words for physical states and actions are merged and form parameters
of these entities. Therefore we assign to the NL_MAMS the capability of under-
standing natural language messages from its user and other agents. The NL_MAMS
extracts the expressions, which mention explicitly or assume implicitly mental states
and actions of involved agents.
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Modeling of multiagent interaction takes into account possible ambiguity of
messages that is inherent in a natural language dialog. For each mental entity
extracted from text, such as inform, the NL_MAMS forms a disjunction of mental
formulas for each meaning of this entity

inform1(A,B,S) [ inform2(A,B,S) [ inform3(A,B,S) according to multiple clauses
for inform.

The NL_MAMS imitates the multiagent behaviors that are caused by possible
misunderstanding of one agent by another because of the ambiguity of mental
entities. Under the search of optimal action or reaction, the set of meanings for
received entities is (exhaustively) analyzed with respect to avoiding the least wanted
state (assuming this state may be achieved as a result of a particular understanding
of a message). In this book we will not touch upon the natural language component
of the NL_MAMS and refer the reader to (Galitsky 2003) for the description
of message understanding issues in mental domains and sample applications of
question answering.

5.2 Simulating Reasoning About Mental States

Over the last three decades, intelligent software systems have been assisting humans
in a wide range of their activities including information seeking, shopping, educa-
tion, negotiation, etc. However, a major bottleneck for penetration of such system
into these domains is understanding human factors involved in respective activities.
A personalized software system must be capable of modeling mental attitudes
of users including their intentions, knowledge, and beliefs. Moreover, software
systems need to be competent to handle various behavior forms of users’ proponents
and opponents, associated with systems’ functionality, such as pretending, lying,
offending, and forgiving.

In this chapter we build a generic simulation environment for reasoning about
mental attitudes. We intend this environment to be integrated as a component with
a behavior-prediction software in a particular domain where understanding mental
attitudes of users and/or prediction of their mental states is required (Winograd and
Flores 1986; Shoham 1993; Wooldridge 2000). In particular, it is important in the
domains of internet auction, where understanding intentions of sellers and buyers
is a key. A combination of the reactive and the deliberate approaches to multiagent
architecture is used in this study to approximate the decision making of conflicting
human agents communicating using rather extensive vocabulary of speech acts.

Intelligent software and web services are expected to be taking into consideration
multiple static human factors including age, gender, education, location, social
background, etc. (Yu et al. 2003; Li et al. 2003). In this Chapter we focus on
dynamic human factors such as beliefs and intentions of human agents which are
fairly important for a system to keep track of while assisting a user. Moreover, in
addition to such mental attitudes as knowledge, belief, desire, and intention, we treat
more complex mental states and actions such as pretending, cheating, offending,
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forgiving, explaining etc. Our simulation framework is independent of the user
interface or the way mental attitudes are obtained from a user; they may be extracted
from text (Galitsky 2003) or specified via a form explicitly (Galitsky 2006).

Reasoning about mental attributes and behavior patterns is an important compo-
nent of human intellectual activity. Quite a few formalisms have been suggested to
reproduce the peculiarities of human reasoning in the way of logical calculi. In these
calculi the laws of “mental world” are encoded via axioms, and derived theorems
are expected to describe the states and actions of agents in the mental world. It has
been comprehended a few decades ago that staying within the bounds of classical
logic, it is hard to represent the certain phenomenology of human reasoning. Non-
classical logics have enabled artificial intelligence to model reasoning of agents in
time and space, in the conditions of uncertainty and inconsistency, and reasoning
about the behaviors of each other. Particularly, the modal logics are quite successful
means to represent the notion of knowledge, belief and intention in connection to
the other (“physical”) properties of the real world (Fagin et al. 1996). However,
nowadays there is still a lack of complex real-world examples, based on a software
implementation of non-classical calculi.

In recent years an attention to formal modeling of various forms of human
reasoning and mental behavior has strongly risen, particularly in connection with
software applications in business and educational domains. A series of phenomena
in human reasoning have been represented in such computational approaches as
reasoning about action (Shanahan 1997), knowledge, space and time, nonmonotonic
and counterfactual reasoning, etc. as well as in user modeling. Nevertheless,
a generic computational framework for reasoning about mental states which is
suitable for software applications is yet to be developed (Walton and Krabbe 1995;
d’Inverno et al. 1998; Olivia et al. 1999; Tamma et al. 2005).

Our intention is to construct a framework to simulate human reasoning in the
mental word in as detailed way as possible (compare with Shoham 1993; Sloman
2000). Building the practical systems which model the mental world (Galitsky
2003), we have been evaluating whether a pure axiomatic reasoning delivers
sufficiently rich number of theorems to adequately describe the mental states of
agents. We tend to believe that a simulation-based (procedural, reactive) approach
rather than a deductive reasoning-based one is suitable to express the laws of mental
world and to apply them to produce as realistic scenarios as possible for practical
applications. The main goal of the desired system is obtaining a set of consecutive
mental states, which are expected to follow the initial mental state that is given. We
look for a solution to this problem which is as close to the natural behavior (from
the experts’ viewpoint) as possible.

We have already verified that the simulation approach is applicable in a variety of
domain of various natures (Galitsky 2003). In this Chapter we present in details the
implementation and evaluation of NL_MAMS, analyze how the library of behaviors
affects the functionality of the simulator, and outline its application domains and
integration with other reasoning and machine learning components.
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To proceed from the partial cases of multiagent systems, where the reasoning-
based approach proved successful, towards the generic implementation, we will
attempt to address the following issues:

• Rather weak subset of commonsense laws of mental world is expressible via
assertions between modalities;

• Too few theorems are deducible from the axioms for modalities as laws of mental
world to describe its phenomena in detail;

• Attempts to build sound and complete (in logical sense) formalizations of mental
world are associated with the drop of the expressiveness of resultant language:
only a subset of observed mental states can be reproduced;

• Representing mental entities as independent modalities moves the modal logic-
based approach away from the natural language, which is capable of merging the
multiple cohesive meanings in a single lexical unit for mental entity;

• Implementation of reasoning as a first-order theorem proving is inefficient; also,
it seems to be hard to directly take advantage of the practical limitation on the
complexity of mental formulas.

• First-order logic (particularly, modal and lambda calculi) is oriented to handle
certain phenomena of natural language such as quantification and especially
language syntax-semantic connections (e.g. Montague grammars). At the same
time, it is harder to adjust these calculi (furthermore, their model theories) to
the peculiarities of ambiguity in mental natural language expressions, processing
derived mental states and actions.

Analyzing these limitations, one may come to conclusions that the mental world
is quite different from physical world in terms of how the reasoning is organized.
Since 1980s, a number of control architectures for practical reasoning agents have
been proposed; however, most of them have been deployed only in limited artificial
environments, and very few have been accepted for the field-tested applications.

To mention the current applications of reasoning about knowledge which are
based on modal logic, these are communication protocols and reliability, multiagent
scheduling and temporal constraint satisfaction.

Hence the following developments to be presented in this chapter need to occur:

1. Using simulation of decision-making rather than representing it as a pure
deduction (see e.g. Bousquet et al. 2004);

2. Describing the multiagent interaction, ascend from the level of atomic actions of
agents to the level of behaviors;

3. Limiting the complexity of mental formulas;
4. Following closer the natural language in describing the mental world, using a

wide range of entities (this has been explored with respect to acceptance by a
multiagent community by Lara and Alfonseca (2000));

5. Taking advantage of approximation machinery. We express an arbitrary mental
entity through the basis knowledge-belief-intention (informing, deceiving, pre-
tending, reconciling etc., Galitsky 2006);
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6. Using a hybrid reasoning system combining simulation of decision-making with
the set of typical behaviors specified as axioms

7. Increasing the expressiveness of representation language by means of using an
extensive set of formalized mental entities beyond belief and desire.

5.3 Implementation of Simulation

Decision-making of agents in our settings is primarily concerned with choice of
actions to achieve desired states. Generally speaking, agents have immediate and
long-term goals of mental and physical states, and sometimes explicit intentions of
actions.

5.3.1 Choosing the Best Action Considering Yourself Only

Let us first consider an action selection algorithm in a trivial case, where an agent
does not consider possible actions of others. Of particular importance to our interests
are systems that allow agents to learn about and model their own teammates and
then use that knowledge to improve collaboration. Kaminka and Frenkel (2005)
presents a technique that allows one agent (a coach) to predict the future behavior of
other agents (its own team and the opponent team) in order to coordinate activities
by observing those agents and building a model of their behavior. Observations
are translated into a time series of recognized atomic behaviors, and these into
subsequences that characterize a team (although not necessarily a single agent).
Kaminka and Tambe (2000) investigated just how much monitoring of another agent
is sufficient for an agent to be an effective teammate.

To choose the best action, each agent considers each action it can currently
perform (Fig. 5.1). Firstly, each agent selects a set of actions it can legally perform
at the current step (physically available for the agents, acceptable in terms of the
norms, etc.). Such an action may be explicitly wanted or not; also, this action may
belong to a sequence of actions in accordance with a form of behavior that has been
chosen at a previous step or is about to be chosen. In the former case, the agent may
resume the chosen behavior form or abort it.

Having a set of actions that are legal to be currently performed, the agent applies
a preference relation. This relation is defined on states and actions and sets the
following order (1 is preferred over 2–5, 2 is preferred over 3–5, etc.):

1. Explicitly preferred (wanted) action
2. The action that leads to a desired state that is not current.
3. Action that eliminates an unwanted state that is current.
4. Action that does not lead to an unwanted state that is not current.
5. Action that does not eliminate a wanted state that is current.
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Find an action that
can be performed
at this time

Assume the chosen
action has been
committed

Estimate how
wanted/ unwanted
is the current state

Estimate how
wanted/unwanted
is the resultant
state

Compare the
number of wanted
/ unwanted
features for the
current and
resultant states

Explicitly wanted
actions

Choose the form of behavior:
· commit physical action
· share information
· conceal information
· ask to obtain information
· ask to commit an action
· ask to share information
· ask to conceal information
· cheat to achieve
· suggest to perform
· follow a suggestion
· decline a suggestion, etc

Action is a valid
mental formula

or

State/Action preference order
· Explicitly preferred
· Action that leads to desired state that is not current
· Action that eliminates unwanted state that is current
· Action that does not lead to unwanted state that is not current

Choose the best action in accordance to the
preferences

Initial mental state

Continue or
change behavior

Fig. 5.1 The chart for the choice of action, involving own agent capabilities and world knowledge
(simplified case)

In our representation language the sequence of preference conditions is as
follows:

Agent’s actions to select from can be atomic or compound. A compound
action which includes a mutually-dependent typical sequence of actions is called
a behavior (Sect. 4.3). A compound action of a given agent may include actions of
other agents and various intermediate states, some of which the agent may want to
avoid. The agent decides either to perform the action delivering the least unwanted
state or action of another agent, or to do nothing. If there are multiple possible
actions which do not lead, in the agent’s belief, to unwanted consequences, this

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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Fig. 5.2 The single-agent algorithm for search of the most favorable action. Comments to the code
(courier font) start with ‘%’

agent either chooses the explicitly preferred action, if there is an explicit preference
predicate, or the action whose choice involves the least consideration of the beliefs
of other agents.

Hence the agent A has an initial intention concerning a ChosenAction or
State, assesses whether this condition currently holds, then selects the preferred
ChosenAction, assumes that it has been executed, deduces the consequences, and
finally analyses whether they are preferential. The preference, parameters of agents’
attitudes and multiagent interactions may vary from scenario to scenario and can be
specified via a form.

Before an action can be assumed, NL_MAMS needs to check that a potential
action is a valid mental formula (Sect. 4.2). A valid mental formula is neither an
axiom (such as an agent knows what it knows) nor implausible formula (such as
literally viewing someone else’s mental state).

A resultant state comprises one or more explicitly wanted or unwanted states;
the agent performs the comparative analysis of preferences on a state-by-state basis.
Figure 5.2 presents an algorithm for the search of the most favorable action as a
simple logic program for the case of a single agent.

Hence in the simplified model without simulating decision-making of others,
the agent performs the exhaustive search through all currently legal actions for all
possible consequences. For each such action, the agent assumes he has executed it
and estimates the consequences.

5.3.2 Choosing the Best Action Taking into Account Action
Selection Analysis of Others

We start with the premise that humans use themselves as an approximate, initial
model of their teammates and opponents. Therefore, we based the simulation of
the teammate’s decision making on the robot’s own knowledge of the situation and
its decision process. To predict the teammate’s choice of actions in a collaborative

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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strategy, we modeled the human as following the self-centered strategy. The result
of the simulation is made available to the base model by inserting the result into the
“imaginal” buffer of possible opponents’ actions. The availability of the results of
the mental simulation facilitates the agent’s completion of its own decision making.
The effect is that the robotic agent yields to what it believes is the human’s choice.
While this simple model of teamwork allows us to demonstrate the concept and the
implementation of the simulation of the teammate, we proceed to the simulation
mode which uses the collaborative strategy recursively.

The high-level algorithm for the choice of a most favorable action (Fig. 5.3),
taking into account decision-making of the opponents, is presented below as a logic
program (Fig. 5.4). Note that in addition to Fig. 5.2 we have the predicate

assumeOtherAgents(Agent, OthersActions) which is preceded by the predicate.

Find an action that 
can be committed 
at this time

Assume the chosen 
action has been 
committed

Estimate how 
wanted/ unwanted 
is the current state

Estimate how 
wanted/unwanted 
is  the resultant 
state

Compare the 
number of wanted 
/ unwanted 
features for the  
current and 
resultant states

Explicitly wanted 
actions

Choose the form of behavior:
· commit physical action
· share information
· conceal information
· ask to obtain information
· ask to commit an action
· ask to share information
· ask to conceal information
· cheat to achieve
· suggest to perform
· follow a suggestion
· decline a suggestion, etc

Action is a valid 
mental formula

or

State/Action preference order
· Explicitly preferred
· Action that leads to desired state that is not current
· Action that eliminates unwanted state that is current
· Action that does not lead to unwanted state that is not current

Choose the best action in accordance to the preferences

Initial mental state

Continue or
change behavior

Involve own knowledge of others’ 
knowledge

Find available 
action

Assume the chosen 
action has been 
committed

Estimate how 
wanted/ unwanted 
is the current state

Estimate how 
wanted/unwanted 
is  the resultant 
state

Compare the 
number of wanted 
/ unwanted 
features for the  
current and 
resultant states

Explicitly 
wanted 
actions

Choose the form of behavior:
· commit physical action
· share information
· conceal information
· ask to obtain information
· ask to commit an action
· ask to share information
· ask to conceal information
· cheat to achieve
· suggest to perform
· follow a suggestion
· decline a suggestion, etc

Action is a 
valid 
mental 
formula

or

State preference order
· Explicitly preferred
· Action that leads to desired state that is not 

current
· Action that eliminates unwanted state that is 

current
· Action that does not lead to unwanted state that is 

not current

Choose the best action in accordance to the 
preferences

Obtain actions of 
others , putting myself 
in their position
(similar architecture, 
see Fig… )

Assume the chosen action of others 
have been committed

Actually commit the action and see if the resultant state is as 
expected (after the other agents have committed their actions)

Learn:
Chosen action 

Fig. 5.3 The chart for the choice of action involving simulation of the choice of action by other
agents. The model of learning within our framework is depicted on the bottom by dotted lines
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involveKnowledgeOfOthers(Agent): the agent’s perspective of knowledge and
intentions of its opponents needs to be invoked before this agent simulates the choice
of the most favorable actions by each of these opponents.

5.3.3 The Library of Available Behaviors

We have discovered that the totality of mental entities can be expressed in the basis
want- know-believe (Galitsky 2003). The clauses for pre-conditions of behaviors
(as aggregated mental actions) we define in this section indeed contain these
predicates. The head of each clause is the predicate generateAction(Agent,
GeneratedAction, History) which returns the second argument.

We present the clauses for behaviors in details to introduce a flavor of how to
define mental entities in the basis of want- know-believe in a procedural manner,
based on the current mental state and the history of mental actions History. Note
that we take a strong advantage of meta-programming to express a wider set of
meanings and to achieve a higher level of abstraction. For brevity we merge know
and believe in the clauses below most of times.
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The diagram Fig. 5.5 depicts relations between mental actions. Suggesting is a
partial case of asking, asking and suggesting may have a goal to initiate_action.
Cheating is a partial case of informing with untruthful information, which may
or may not have a goal of initiating an opponent’s action. Both informing and
cheating may form responding, all these mental actions may serve the purpose of
initiate_action. Committing a physical action may also be following advice.

As to the causal links, usually asking and sometimes informing causes respond-
ing, suggesting may cause following it (follow_advice), cheating and initiation of
action may cause committing of this (physical) action.

5.4 Evaluation of NL_MAMS

In this section we assess the performance of the NL_MAMS with respect to a
number of characteristics to make a judgment about its educational value for CwA.

A practical commonsense reasoning system such as NL_MAMS can be charac-
terized in terms of the following parameters:
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Fig. 5.4 The predicate availableAction (From Fig. 5.2) will be the focus of our considerations of
behavior forms in the following section

inform

cheat

ask

suggest

initiate_action

respond

ask

suggest

initiate_action

inform
respond

cheat

commit_ 
physical_action

follow_
advice

follow_
advice

commit_ 
physical_action

Fig. 5.5 The relations between the behaviors
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1. Correctness. To evaluate the correctness of the NL_MAMS, we compare the
scenarios built by NL_MAMS with those built by human experts. The adequacy
of a reasoning system like NL_MAMS to the real mental world can be evaluated
by means of a representation of a set of scenarios of multiagent interaction
(focused on mental attitudes) collected from a variety of domains.

2. The coverage of possible behaviors. To evaluate the coverage of real-world
scenarios, we collect the dataset from various domains. For this dataset, we verify
that NL_MAMS’s reasoning can link the initial mental state, mentioned in a
scenario from this dataset, with the final mental state from that scenario. The
link is implemented via the library of behaviors; and our evaluation of coverage
is indeed an estimate of how the encoded set of behaviors covers the totality of
real-world scenarios with respect to the resultant mental states.

3. Scenario complexity. To evaluate the highest complexity of scenarios the
NL_MAMS can handle we vary the number of behaviors of various agents
combined in a single scenario. Maximum complexity is the number of behaviors
such that the correctness of obtained scenarios dramatically falls when this
number is incremented. In other words, if a scenario complexity exceeds this
number, there is a significant deviation of scenarios generated by the NL_MAMS
from those natural for human experts, given the same initial mental states.

4. The expressiveness of representation language. Evaluating the expressiveness
of representation language, we are concerned with the information lost when
scenario representation is converted from the natural to the formal language.
Importance of the lost information is estimated taken into account the caused
deviation of resultant mental states. The information is usually lost because
the number of meanings of mental entities explicitly represented as behaviors
is obviously lower than respective number of meanings in a natural language
description of a scenario of inter-human interactions. Evaluation of the expres-
siveness of representation language is tightly connected with natural language
information extraction focused on mental entities presented in Galitsky and
Kuznetsov (2008). We will not conduct the evaluation of expressiveness in
this book, but mention that the NL_MAMS’s vocabulary includes the generic
template for physical actions and rather extensive set of lexical units and
synonyms for the common-usage mental attributes.

For the purpose of estimating the parameters (1)–(3) above we form two
following datasets of textual scenarios to be represented by the NL_MAMS:

(a) The scenarios that were suggested to illustrate certain peculiarities of reasoning
about mental world (frame problems, defaults, circumscription, argumentation,
belief updates, reasoning about knowledge, time and space, reasoning in legal,
educational, medical domains, etc.). Seventy-two such scenarios have been
collected over the duration of NL_MAMS project (over 7 years). There are
no special criteria for inclusion to this dataset except that the mental states and
actions should be explicitly mentioned.

(b) The uniform set of multiagent conflict scenarios (textual complaints) obtained
and subject to manual formal representation from the public complaint database
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(e.g. PlanetFeedback.com). Complaints describe interaction between a com-
plainant and company representatives; these conflicting scenarios are mostly
occurring in a mental space. Fifty-eight banking complaints has been obtained
and converted into formal representation (Galitsky and Kuznetsov 2008) to
serve as the evaluation dataset. Complaint selection was random in terms of
content: all banking complaints submitted within a month that describe at least
4 steps of interactions (pairs of communicative actions) between the involved
parties.

The role of the dataset (a) which is fairly diverse is to compare the performance
of NL_MAMS with other systems in mental as well as non-mental reasoning.
Also, most of the scenarios from this dataset are accompanied with their formal
representations. This dataset is used as a basis to estimate the correctness and
coverage by behaviors, since existing formal representations allows unambiguous
comparison of the original and NL_MAMS-based representations.

We use the dataset (b) of customer complaints to estimate the coverage with
higher accuracy than the former dataset and to estimate scenario complexity, since a
high number of scenarios for each complexity are available. Since we used a super-
set of the dataset (b) to evaluate our scenario learning framework for communicative
actions only (Chap. 3), we also use it for correctness evaluation based on a specific
class of plausible and implausible scenarios. NL_MAMS is expected to build
plausible (valid) scenarios only, and not build implausible (invalid) scenarios.

Although NL_MAMS is a prediction system, we evaluate a plausibility of results
rather than a prediction accuracy: the real mental world is too rich and diverse
to be predictable in terms of the proposed model. Although the precision can be
satisfactory, the recall of NL_MAMS is really low. We expect the NL_MAMS to
yield at least a single plausible scenario of multiagent interaction; we do not target
yielding the totality of possible resultant mental states.

5.4.1 Evaluation of Correctness

We used the dataset (a) above formed by compiling examples found in the logical
AI literature to evaluate the correctness. For each formalized scenario, NL_MAMS
was fed with the initial mental state (explicitly mentioned in these scenarios). We
verified whether the NL_MAMS can yield the sequence of further mental states
from this scenario. If a given scenario required adding a new form of behavior, the
respective clause for this behavior was added.

The results of the correctness evaluation are shown in the Table 5.1. The first
column presents an origin of a scenario, and the second column contains a number
of scenarios for each group. The third column shows the number of scenarios of
each origin, where it is necessary to add a clause for a new behavior or alter an
existing clause, given the behavior library before this evaluation. The fourth column
enumerates some of the behaviors for each group of scenarios that have to be

http://dx.doi.org/10.1007/978-3-319-39972-0_3
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Table 5.1 Evaluation of correctness

Origin of a scenario:
reasoning domain

Number
of
scenarios

Number of
scenarios where
new behavior has
to be added

Required additional
forms of behavior
(selected examples)

Number of scenarios
where the correct
representation was
achieved

Modal logic, BDI
model (e.g.
Wooldridge 2000)

15 6 Changing mind,
giving up, advising
other to give up

11

Reasoning about action
(e.g Reiter 1993)

16 12 Change action
parameters

13

Default reasoning (e.g.
Gabbay 1999)

18 6 Changing mind 12

Argumentation (e.g.
Weigand and de Moor
2004)

13 4 Defeating previous
statement, breaking
a loop in actions,
threaten

9

Other multiagent
models (negotiation,
auction, coalition
formation, assistance)
(e.g. Olivia et al. 1999)

10 3 Agree, disagree,
confirm, deny

9

Total 72 31 (43 %) 54 (75 %)

added to reproduce them. We observed that the scenarios requiring a modification
of the behavior library constitutes 43 % of the total number of scenarios. Finally,
the fifth column presents the number of scenarios for each group that allowed
correct representation (with or without a modification). We observed that 75 % of
the total number of scenarios was subject to correct representations. In other 25 % of
cases, either the underlying reasoning was too complex, or initial mental states were
lacking the information necessary to correctly derive consecutive mental states.

In addition to the above evaluation we observed that in most cases the agents’
behavior that is generated by the NL_MAMS is perceived by its users and assessors
as a sequence of natural and expected choices. If it is not the case, the NL_MAMS
backs its scenario up by providing the motivation and the protocol of exhaustive
search through the lists of available actions at each step. A user might disagree
with the selected form of behavior, but she will at least understand the motivations.
Furthermore, handling manifold of meanings caused by the necessity to represent
NL input increases system flexibility and makes it closer to the real world in
imitation of human reasoning and human behavior.

5.4.2 Evaluation of Coverage

As a result of the evaluation of correctness, the behavior library has been extended
(trained) to accommodate atypical behaviors from the dataset (a). Evaluating the
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Table 5.2 Evaluation of the behavioral coverage of scenarios

Training, 72 scenarios from
logical AI literature Test, 58 complaint scenarios

Form of behavior # of scenarios % of scenarios # of scenarios % of scenarios

Perform own physical
action

70 97 57 98

Achieving desired state of
another agent

21 28 29 50

Informing 14 19 23 40
Updating belief while being
informed

5 7 17 29

Forming mistrust 7 9 32 55
Asking to gain knowledge 29 39 19 33
Answering 18 24 14 24
Generating suggestion 26 35 21 36
Following suggestion 14 19 18 31
Avoiding
sharing/suggesting not to
inform

12 16 13 22

Cheating to achieve an
action

17 23 5 9

New forms of behavior – – 14 19

Note that a particular behavior form may occur in a scenario more than once. The bottom row
depicts the number of cases that require a modification of the behavior library

coverage, we assess how frequent an occurrence of each behavior form is in the
complaint dataset (b) which did not participate in the training of the behavior forms.
In this section we conduct the evaluation of the accumulated behavior library and
overall system performance.

We observed that the trained behaviors adequately cover the test domain
(Table 5.2). All clauses for behaviors that were obtained in the domain of randomly
accumulated scenarios were employed in forming the sequence of consecutive
mental states in the test domain. Conversely, to explain a rational multiagent
behavior of proponents and opponents in complaint scenarios in 81 % of cases,
it is sufficient to use accumulated clauses for behaviors. The remaining 19 % of
complaint scenarios the NL_MAMS failed to reproduce, relying on the accumulated
library of behaviors and its simulation machinery. Each scenario contains on average
3.2 forms of behavior in the training dataset and 4.3 forms of behavior in the test
dataset.

Clearly, formal descriptions of the behavior of complainants and their opponents
in more detail would benefit from additional complaint-specific behavior patterns.
However, we revealed that increasing the complexity of the formal descriptions
of textual scenarios does not make them more consistent, because the majority
of intermediate mental states are not explicitly mentioned. Hence we come to the
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conclusion that the formed library of behaviors is sufficient to provide an adequate
(most consistent) description of multiagent interactions between a complainant
and his opponents. And since customer complaints domain is a source of fairly
complex examples of conflicts in mental world, we can expect the NL_MAMS to
satisfactorily perform in other, simpler domains.

Note that our evaluation is by no means intended to predict the behavior of
scenario agents; instead, we try to include all necessary information in the initial
mental state so that the scenario is generated as a respective sequence. The problem
of prediction the consecutive mental states under a lack of information is posed
differently (Galitsky 2006) and requires machine learning and reasoning about
actions (Galitsky et al. 2009) components in addition to NL_MAMS (Sect. 7.4).

5.4.3 Evaluation of Complexity

The complexity of scenarios the NL_MAMS can handle significantly exceeds that
of the textual information on mental attributes of human and automatic agents
comprehensible by a user. We observe that the NL_MAMS’s performance is much
higher than the humans’ performance in spite of the fact that reasoning about
mental states is natural and frequent task for a human user. To characterize the
computational tractability of the suggested approach, we take into account that at
each step NL_MAMS considers about 30 available behavior forms for each agent.

In the process of multiagent communication and while behavior decision-
making, the NL_MAMS analyses the formulas of complexity (the number of nested
mental predicates) below four (Sect. 4.2). For the totality of all well-written mental
formulas the system recognizes whether a formula is an axiom, meaningful or
meaningless expression (Galitsky and Kuznetsov 2008). For an arbitrary set of such
formulas as an initial condition for NL_MAMS, it either finds a contradiction or
synthesizes the scenario of multiagent behavior.

We used the dataset (b) of formalized complaints and its extension by longer
scenarios to estimate how the correctness of representations depends on scenario
complexity, measured as a number of behavior forms. We observed that the
maximum complexity of the scenarios NL_MAMS can handle reliably is 4 behavior
forms. Exceeding this number, the correctness of generated scenarios falls to as low
as 52 % for 5 behavior forms and to just 34 % for 6 behavior forms. The results show
that when a scenario contains 5–6 behaviors, the NL_MAMS is frequently unable
to represent its last one-two mental states towards the end. Instead, it significantly
deviates from what an expert would think of a natural behavior of participating
agents (Table 5.3).

To analyze how nested expressions for mental states and actions are represented
by the NL_MAMS, we assessed the correctness of scenarios representation group-
ing scenarios by the maximum number of nested mental actions or states in a
scenario (Table 5.4). One can see an abrupt drop in the correctness of scenario
representation when the complexity of nested expressions exceeds four.

http://dx.doi.org/10.1007/978-3-319-39972-0_7
http://dx.doi.org/10.1007/978-3-319-39972-0_4
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Table 5.3 Estimating the
maximum complexity of
scenarios for NL_MAMS:
number of behavior forms

Number of behavior forms
per scenario

Correctness of scenario
representation, %

2 85
3 80
4 75
5 50
6 35

Table 5.4 Estimating the
maximum complexity of
scenarios for NL_MAMS:
number of behavior forms

Maximum number of nested
mental actions or states in a
scenario

Correctness of scenario
representation, %

1 85
2 75
3 80
4 60
5 30
6 25

As to the expressiveness of NL_MAMS’s representation language, one can
estimate its sensitivity to a deviation of meanings of mental entities presenting initial
conditions. We formulate the sensitivity statement for the NL_MAMS as follows:

Sensitivity Hypothesis For any two mental formulas � and �0 for respective
entities specifying initial mental states, there exist two initial mental states of s
and s’ yielding different scenarios. � 2 s and �0 2 s0 are such that the simulator
forms distinct multiagent scenarios s ! s1, : : : ,sn and s0 ! s1

0, : : : ,sk
0. Therefore,

NL_MAMS is capable of taking into account the difference between any two mental
formulas (or two distinct mental entities) while building a sequence of mental
states.

The conclusion of our assessment is that the NL_MAMS is suitable for assistance
with rehabilitation of CwA reasoning.

5.5 Accompanying Reasoning Systems and Application
Domains

The main conjecture of the evaluation section above is that NL_MAMS is good
at exactly what it is expected to do: yielding a plausible sequence of mental states
given the initial one. However, to take into account additional information about
the agents, previous experience and cases involving these agents, their particular
circumstances, features of the physical environment, etc., it is important to involve
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other reasoning components. Integrating the NL_MAMS simulation with other
reasoning methodologies including deductive, inductive and abductive is necessary
for processing mental attitudes together with domain-specific knowledge (compare
with Stein and Barnden 1995).

Table 5.5 enumerates the accompanying reasoning components and presents
the sample chunks of knowledge from the domain of customer complaints. These
components have been implemented in the system for conflict resolution (Sect.
4.3), which heavily relies on mental states and communicative actions of involved
parties (Galitsky et al. 2009). The complaint domain is use to demonstrate the upper
bound of the complexity of the mental world as a subject of reasoning. For autistic
rehabilitation, a hybrid reasoning system is required to support a broader set of
scenarios with a substantial diversity of physical states and actions.

To demonstrate the universality of our approach to reasoning about mental
attitudes, we enumerate the other problem domains where NL_MAMS has been
deployed or used for simulation or knowledge representation:

• Solving constraint satisfaction problem in the environment of conflicting human
and automatic agents (scheduling for the broadcasting industry);

• Training of negotiation and other decision-making skills; querying the works of
literature using mental states of their characters (Galitsky 2004);

• Automatic synthesis of scenarios (e.g. for Internet advertisements);
• Analysis and classification of the characters of fairy tales;
• Modeling mental states of investors for market predictions;
• Extracting mental states of participating agents from text; understanding cus-

tomers’ complaints;
• Extraction of the mental behavior patterns from the wireless-based location

services data;
• Simulating the relationships between economic agents.

5.6 HCI Issues of Autistic Training

The user interface of NL_MAMS allows the user to input description of scenarios
via plain English. The form (Fig. 5.6) shows an example in which a user specified a
scenario (the Sally Anne story from (Baron-Cohen et al. 1985) in English. This user
then pressed the button [Load (translate into formal expressions)].

The result of pressing this button is the mental formulas seen in the combo box.
The combo box allows users to highlight parses they like and to edit those that
need refinement – in the case of inaccuracies in formal representations. Although a
beginning user would not be able to notice such inaccuracies, we know from prior
experience that CwA who spent significant time with NL_MAMS are able to refine
them. In fact, we have found that experienced users are able to skip the English to
formal logic translation step and enter their scenario descriptions directly in formal
logic notation.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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Fig. 5.6 The NL_MAMS user interface for rehabilitation of autistic reasoning (advanced sce-
nario). This exercise is one of the easiest for autistic trainees; it introduces the simplest connection
of “not seeing ! not knowing”

Once the user feels ready, he or she can press the [Run Simulation] button.
This will cause the simulation to run. The results of running the simulation are the
candidate answer to the question “What will happen next?” The results of running
the simulation can be seen in the bottom of Fig. 5.7. There the user can see that in
this case a two-step plan was generated. Most frequently, 3–5 steps are generated,
and sometimes up to 8–10 steps. Each step is depicted in via its formal logic notation
and via an automatically generated English rendering of that step.

In Table 5.6 we show the rules from our theory of mind library that fired in the
process of running the simulation. Note that the rules may fire recursively. Some
fired based on the initial states and others fired on intermediate results.

In our example we use a first-order Sallie-Ann test scenario, which is focused
on the axiom “not seeing leads to not knowing”. To be able to approach the
application of this axiom, a number of general knowledge-related axioms should
be applied, including a particular case of searching (with a specific pre-condition
for our scenario), as well as generic axiom for an informing behavior. Notice a
meta-predicate epistemic_trans which links uninstantiated expression Query with
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Fig. 5.7 The NL_MAMS user interface for rehabilitation of autistic reasoning (advanced mode).
This exercise is fairly complicates for autistic trainees; it can be challenging for adults to suggest
an appropriate conflict resolution strategy

its instantiated version QueryProposition (this instantiation occurs when the body
of the respective clause is called).

The user can select the subset of formulas specifying the initial mental state to
monitor how the resultant scenario is changed. The system visualizes the semantic
relationships between mental entities, a single physical entity and the agents
involved. The parameters of NL_MAMS are specified using the form Fig. 5.8.

5.7 Other ToM-Related Systems

In the last two decades, interest in the formal modeling of various forms of human
reasoning and in simulation of mental behavior has risen strongly. A series of
phenomena in human reasoning have been reflected in such approaches as reasoning
about actions and knowledge, nonmonotonic reasoning, etc. Modal logic-based
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Fig. 5.8 Specifying the parameters of agents involved: attitude and reasoning capabilities. Varying
these parameters, a rehabilitation specialist may adjust NL_MAMS to reproduce mental reasoning
of a particular trainee

and situation calculus–based approaches have become the most popular in formal
modeling of mental attitudes (McCarthy 1995; Fagin et al. 1996; Wooldridge 2000).
However, these approaches had to be extended for the purpose of creation of an
educational software that possesses such the capabilities.
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Traditionally, representation of the laws of the mental world is developed via
axioms (for example, an agent knows what it knows (Fagin et al. 1996)). The axiom–
based approach delivers rather limited set of theorems to describe the mental world
realistically. Furthermore, the axiom–based approach does not solve the general
problem of obtaining the totality of possible mental states, given an initial mental
state. We believe this general problem needs to be solved for the desired educational
software: we want the children to be capable of reasoning starting from an arbitrary
mental state.

Just a limited number of consecutive mental states can be yielded in a first-
order system where meanings of knowledge, belief and intention are expressed
as formal modalities. The task of analysis of real-world conflicts between human
agents, which is formulated in NL and involves the words for various mental states,
actions and emotions, requires at least solving the problem above. We believe that
merging the declarative (laws of mental world), procedural (simulation of an agent’s
choice of action) and machine learning (taking into account previous experience)
components is required adequately to reproduce the phenomenology of human
reasoning about mental attitudes (Galitsky 2003). In this chapter, we have evaluated
that the above is true (for the first two components) in the particular domain of
rehabilitation of such reasoning.

In the Sect. 4.2 we have introduced the methodology of how to cover (to
approximate) the totality of mental actions by building definitions in the basis want-
know-believe. In this Chapter it has been subject to an experimental evaluation,
assuming that if the model is adequate, it can be taught to a wide variety of trainees.

Why did we select the particular knowledge representation formalism for
reasoning about mental attitudes? We believe that the general approach to reasoning
about actions, the situation calculus and its implementation for reasoning about
dynamic domains (e.g. GOLOG, (Levesque et al. 1997)) is adequate for reasoning
about physical actions, but lacks the expressiveness to operate with mental actions.
Situation calculus is relevant expressing the effect axioms (how the mental actions
result in mental states) but has an insufficient means to determine a possible mental
action, given a mental state (see e.g. Shanahan 1997)). The reason is that when
an automatic agent chooses an action in a mental world, there are a much higher
number of explicit and implicit input parameters than when a robot makes a plan
concerning its actions in a physical world.

Rather than stating that the mental world is more complex than the physical
world, we proposed that a smaller number of facts in a mental world have much
more complex structure of causal links, and the very nature of these links is quite
different from other reasoning domains. Indeed, our training methodology takes
advantage of the compactness of entities of the mental world, focusing on the skill
to build links between these entities.

We demonstrated that reasoning about mental world can be implemented via
exhaustive search through the possible behaviors, evaluating achieved mental
states. Generic representation of reasoning about mental world may be viewed as
augmentation of logical axioms to perform reasoning about a particular domain
(represented by means of applied axioms). Therefore we follow along the line of

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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classical axiomatic method stating that the same set of logical axioms is sufficient
to perform reasoning in an arbitrary domain. In this book we observed that the set
of behaviors observed in one domain can be applied in an intact form to another
domain with different physical axioms to produce adequate multiagent scenarios.

For an arbitrary set of mental formulas as an initial condition for NL_MAMS,
it either finds a contradiction or synthesizes the scenario of multiagent behavior.
NL_MAMS’s vocabulary included the generic template for physical actions and
rather extensive set of lexical units and synonyms for the common-usage mental
entities. Also, it is worth mentioning that although each natural language has its own
peculiarities of reasoning about mental attributes, replacing one natural language by
another does not affect the suggested model for the mental world, as far as our
experiments indicated.

In this book we have discussed the applications of modal logic for reasoning
about mental world. Clearly, a lot of observations about the multiagent behavior
can be deduced from the axioms; however the set of theorems does not constitute
a basis to enumerate a set of consecutive mental states. We conclude that for the
generic implementation of reasoning simulation is required, which is implemented
as an exhaustive search in the space of possible behaviors. It has been observed
in this study that the simulation for realistic mental states for a few agents is not
computationally intensive.

Similar to the traditional settings of multiagent systems and the BDI model,
both an initial mental state and the one to be predicted are specified in terms of
intentions, knowledge and beliefs. However, the implementation of prediction is
based on the defined behaviors as means to transit from one state to another. This is
in contrast to the traditional approach where the pre-conditions of mental actions and
mental states as effects of these actions are formulated in terms of a rather limited
number of entities for mental states including intentions, knowledge and beliefs.
Obviously, using a wider set of mental entities to express behaviors, leveraging the
machinery of deriving these behaviors from the basis, delivers much richer set of
mental states than the traditional approach. In other words, going beyond the basis
dramatically increases the expressiveness of the representation language for mental
actions, making the formal description of multiagent interaction scenarios adequate
to apply to the real world.

Simulation-type approaches have been successfully applied to reasoning about
mental attitudes: they follow the idea to eliminate layers of belief operator in order to
simplify the reasoning and representation steps compared to what would be needed
in modal logic-based reasoning about mental states. In our approach, reasoning by
agent A about agent B’s belief is carried out by standing in B’s shoes and applying
B’s own reasoning process directly to B’s supposed beliefs, much as if they were
A’s own beliefs, in order to conclude what B might believe. In other words, our
“simulation” is conducting reasoning within an alleged belief space of B, where the
reasoning process is similar to what A would herself use if B’s beliefs had been in
A’s own belief space.

In terms of how a society of agents can be characterized in terms of their
mental states, the proposed approach can be characterized as a low-level and
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detailed (without a loss of information). As examples of higher level description
of multiagent societies which involve mental states it is worth mentioning (Buzing
et al. 2005) who showed that the pressure to cooperate leads to the evolution
of communication skills facilitating cooperation. At this lower level, logic-based
simulation comes into play rather than numerical simulation; aggregation of agents
to express their attitudes and attributes quantitatively does not seem to be a plausible
solution. Another example of a higher level multiagent model would be a social
dilemma of (Axelrod 1984), where decisions that seem to make perfect sense from
each individual’s point of view can aggregate into outcomes that are unfavorable
for all (Galan and Izquierdo 2005). Cooperative norms treat multiagent interactions
at a more general level than our study, where individual communicative actions are
selected. The NL_MAMS predicts the behavior in much narrower sense and in much
more concrete manner than, for example, than the systems implementing the Theory
of Reasoned Action and Theory of Planned Behavior (Ajzen and Fishbein 1980).

Building the environment for a low-level simulation involving basic verbalized
attitudes and behavior forms of agents, we do not enable them with ability to learn,
provide argumentation, or other higher level forms of behavior (Chesñevar et al.
2000; Stone and Veloso 2000). This is for the sake of more accurate evaluation
of how basic mental actions and states can yield the real-world forms of behavior.
However, the proposed simulation framework and representation language, which
are logic-based, can accommodate more complex forms of behavior at a higher level
of generality.

There are two types of application domains of the NL_MAMS beyond the autistic
rehabilitation. Primarily, these are domains where simulation of beliefs of human
agents is required (e.g. analysis buyers’ behavior at e-commerce site). Another
important type of NL_MAMS is a HCI setting where prediction of possible mental
states of software users is essential (e.g. educational domain) simulation of human
agent is necessary. Mental attitudes of a human agent constitute one of the most
important components of the human factors any software system is expected to be
aware of, and especially a personalized assistant. However, design and architecture
of NL_MAMS follow the pragmatic purpose of being a generic efficient component
of a wide range of large-scale systems, in particular, customer relation management
(CRM) ones. Therefore, we don’t target to build a computational model of the
human cognitive process, unlike, for example, ACT-R approach (Anderson 1993)
developed and used by cognitive psychologists.

NL_MAMS targets both cooperation and conflict domains. For the former,
general models of teamwork and collaboration within AI include: STEAM and
TEAMCORE (Tambe 1997), SharedPlans (Grosz and Kraus 1996) and COLLA-
GEN (Rich and Sidner 1996). For a broad overview of teamwork in multiagent
systems the reader is recommended (Stone and Veloso 2000).

There is a series of multiagent systems where agents are designed to implement
emotions (Breazeal 1998). Also, a number of formalisms have been developed
that handle the notion of emotion quite adequately (see e.g. Oatley and Jenkins
1996; Parameswaran 2001; Scheutz 2001). However, the target of our model for
mental world, that includes emotions of participating agents, is quite different. As
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we experimentally discovered, to stimulate the emotional development of autistic
trainees, the interface of the rehabilitation system does not have to display the
emotional behavior explicitly; instead, the canonical explanation of the strict rules
for emotions is required. We have learned from our experimental studies that when
children start better operate with basic entities of knowing and believing and then
proceed to the derived entities like deceiving and pretending using NL_MAMS,
the further step to more complex mental and emotional behavior frequently comes
easier and quite naturally.

Simulating the cognitive processes of another agent requires maintaining multi-
ple worlds where epistemic states of individual agents can be loaded. The problem
spaces in Soar (Rosenbloom et al. 1993) and alternate worlds in Polyscheme
(Cassimatis 2005) are good examples for such capabilities, but most cognitive
systems do not have such a mechanism. Soar’s problem spaces facilitate subgoaling
and have been used to anticipate opponent’s behavior in the game of Quake (Laird
2001). Polyscheme’s worlds are a general construct and allow for instantiation
and manipulation of hypothetical, counterfactual, and even stochastic simulations.
The alternate worlds in Polyscheme have been used to model spatial perspective-
taking and theory of mind (Bello and Cassimatis 2006). The concept of simulating
the cognitive processes of another agent (Trafton et al. 2013) suggested that an
important consideration in designing an architecture for integrated intelligence, is
how well the system works with a person. When a system uses representations and
processes similar to a person’s, it will be able to collaborate with a person better
than a computational system that does not. Furthermore, such a system will be
more compatible with human expectations of reasonable behavior, and thus more
accommodating to the human. Kennedy et al. (2008) showed how the integration
of mental simulation of a teammate within an embodied computational cognitive
model can improve performance of the robotic teammate.

5.7.1 Commonsense Psychology System

Psychologists need to explicitly spell out a conceptual system of commonsense
psychology. Smedslund (1989) is arguing that some knowledge engineering needs
to be done in order to identify the implicit commonsense theories that people
have of mental states and processes. What is remarkable about Smedslund and his
research is that he has done two things that set him apart from other theorists in
this area. First, he has attempted to execute this knowledge engineering task himself
on a reasonably large scale, authoring a library of the concepts, definitions, and
axioms of commonsense psychology that he calls “Psychologic” (Smedslund 1989).
Second, he has attempted to validate the contents of this library of commonsense
psychological knowledge by studying the degree to which people within and across
cultures are in agreement about the truth of this knowledge. Smedslund describes
Psychologic as follows:
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“Psychologic is a project of explicating the implicit conceptual system of psy-
chology embedded in ordinary language, or in other words, the basic assumptions
and distinctions underlying our ways of thinking and talking about psychological
phenomena. Psychologic identifies 22 primitive terms whose meanings are taken to
be self-evident, namely terms for psychological states (aware, feel, want, belief,
understand, strength), for temporal relationships (when, after, before, now), for
action (act, talk, can, try, ability, difficulty, exertion), normative values (right, wrong,
good, bad), and a term for people (person). Psychologic elaborates these primitive
terms through 43 definitions, which take the form illustrated by the following
examples, where the notation “D df” is taken to mean “is by definition equal to”.

Definition 1.2.3 “Intentional” D df “directed by a preference for achieving a goal.”

Definition 1.2.8 “X is relevant for achieving a goal G” D df “taking into account
increases the likelihood of achieving G.”

Definition 3.3.15 “Two wants are compatible” D df “Acting according to one of the
two wants can be combined with acting according to the other.”

Using these definitions, Psychologic presents 56 axioms to describe the concep-
tual relationships that exist between these terms, as in the following examples:

Axiom 3.5.1 The strength of P’s belief X is directly proportional to P’s estimate of
the likelihood that X is the case.

Axiom 4.1.1 P’s feeling follows from P’s awareness of the relationship between P’s
wants and P’s beliefs.

Axiom 5.3.15 All understanding depends on relevant pre-understanding.

Although the language of Psychologic is intended to be expressed by these
primitive terms only, definitions, and axioms, the contents of Psychologic as a
conceptual system are really elaborated in the statements that can be seen as direct
consequences of this conceptual system. These consequences are presented in the
form of 108 theorems, listed with short proofs written in English, and an additional
135 corollaries that are viewed as direct consequences of the axioms and theorems.
Examples of each are as follows:

Theorem 1.2.10 P takes into account what P takes to be relevant for the achievement
of P’s goal.

Theorem 3.3.17 If the wants W1 and W2, are compatible, then they combine in
such a way that W1 & W2 > W1 and W1 & W2 > W2.

Corollary 3.5.2 If P’s belief A is stronger than P’s belief B, then P’s estimate of the
likelihood of A is higher than P’s estimate of the likelihood of A.

Corollary 3.7.3 Every person reflectively believes in the possibility of his or her
nonexistence.
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Smedslund’s project has received a substantial amount of criticism within his
own field, with detractors tending to outnumber advocates. Given the fair amount
of discussion and academic debate of Smedslund’s research that exists within this
corner of the field of psychology, it is remarkable that this research remains so
isolated from the other fields across the cognitive sciences that have a direct interest
in commonsense psychology.

Smedslund draws no connection between his work and ongoing research on
Theory of Mind in philosophy, to research on the acquisition of Theory of Mind in
developmental and social psychology, or to work in the formalization of common-
sense knowledge within the field of AI. At the same time, Smedslund’s project has
not received attention within these other fields. One should confirm that Smedslund
advanced the inter-disciplinary connections between logic and psychology, given
the degree to which each of these academic fields is isolated from each other.

5.7.2 A Symbolic Production-Based System

To better understand how engineering ToM Systems work, in this section we
describe ACT-R is a hybrid symbolic/sub-symbolic production-based system. Mod-
ules in ACT-R are intended to represent relatively specific cognitive faculties such
as declarative (fact-based) and procedural (rule-based) memory, visual and auditory
perception, vocalization, and time perception. Buffers in ACT-R make up the
working memory of a cognitive model. Some modules fill their buffers in response
to the changes in the environment and all modules fill their buffers in response to
explicit procedural requests. Like many production systems, ACT-R continuously
matches production conditions against the working memory (buffers), selects a
single production to fire, and then executes specified buffer changes and module
requests which eventually result in updates to relevant buffers.

The project (Kennedy et al. 2008) embodied ACT-R on a human-scale robotic
platform suited to use in indoor environments. It carries the sensors and provides
onboard computing support for the multimodal sensing, navigation, and output.
With ACT-R/E, Trafton et al. (2013) have extended the ACT-R architecture with
rudimentary spatial reasoning (spatial module), localization and navigation faculties
(“moval” module), and modified the visual, aural, and vocal modules to use actual
robot sensors as shown in the architectural diagram in Fig. 5.9.

ACT-R architecture facilitates running additional cognitive models simultane-
ously. An ACT-R model consists of declarative and procedural memory and an
initial goal. The ability of ACT-R to spawn a new model from within a running
model allows cognitive system developers to represent and manipulate a mental
model of another agent. To allow the base cognitive model to continue running while
the simulation occurs, two models can run synchronously at the production-level.
The flexibility of fixing the declarative memory and productions of the simulated
mental model to a subset of the original model’s allows the system to consider
hypothetical and counterfactual situations.
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Fig. 5.9 ACT-R/E architecture (From Trafton et al. 2013)

5.8 Discussion and Conclusions

In this Chapter we constructed the engine which navigates through the mental world,
operates with its language and makes decision on how the citizens of the mental
world need to be tackled with. The functioning of this engine is an existential
proof that a computational ToM exists and that it is sustainable, adaptable and
intelligent as observed by external observers. ToM engine in the form of NL_MAMS
is evaluated with respect to correctness, coverage and complexity, and can be
integrated with other reasoning components and with machine learning, to perform
both reasoning and cognitive tasks.

We demonstrated that reasoning about mental world can be implemented via
exhaustive search through the possible actions and behaviors, evaluating achieved
mental states. From the standpoint of axiomatic method, which combines pure
(logical) axioms of inference with domain-specific (applied) axioms, generic rep-
resentation of reasoning about mental world may be viewed as an augmentation of
the former. Therefore we follow the classical axiomatic method stating that the same
set of logical axioms is sufficient to perform reasoning in an arbitrary domain. In our
case, the same axioms of the mental world (considered a pure, logical component)
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can be applied to an arbitrary physical world. In this chapter we have verified that the
set of behaviors observed in one domain can be applied in an intact form to another
domain with different physical axioms to produce adequate multiagent scenarios.

For an arbitrary set of mental formulas as an initial condition for NL_MAMS,
it either finds a contradiction or synthesizes the scenario of multiagent behavior.
NL_MAMS’s vocabulary included the generic template for physical actions and
rather extensive set of lexical units and synonyms for the common-usage mental
entities. Also, it is worth mentioning that though each natural language has its own
peculiarities of reasoning about mental attributes, replacing one natural language by
another does not affect the suggested model for the mental world.

There are two aspects of NL_MAMS’s contribution to the theory of mind
training. Firstly, it introduces a new conceptual framework for treating mental
entities in a way which the trainees are frequently ready to accommodate. The
second aspect which seems to be more important for training practice is that
NL_MAMS allows a much more persistent, consistent, and efficient approach
because as a computer system, NL_MAMS can repeat exercises and vary them as
many times as a trainee wishes. Moreover, a computer system is a more appealing
interaction subject than a human peer in the case of autism.

It is worth mentioning that irrespectively of the capabilities of a particular child
in mental reasoning and irrespectively of the NL_MAMS capabilities of delivering
intuitive scenarios, the user interface of NL_MAMS kept the children attention quite
tightly. Usually, it is rather hard to keep autistic trainees focused on any particular
task; various means need to come into play to achieve such a focus, unless a relevant
user interface is designed.
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Chapter 6
Reasoning Beyond the Mental World

Whereas for CwA reasoning about mental world is the key for they successful
adaptation to the real world and development, other limitations of reasoning are
needed to be addressed as well. We focus on various forms of reasoning and
rationality and conclude which reasoning features need to be learned and in which
form.

6.1 Mental vs Physical World

Mental-physical distinction is considered a fundamental cornerstone of ToM, and
one that is not explicitly taught by parents or teachers. The test for this distinction
involves the child listening to stories in which one character is having a mental
experience (e.g., believing that the rain will start) whilst a second character is
having a physical experience (e.g., getting wet from this rain). The experimenter
then asks the subject to judge which operations the two characters can perform
(e.g., which character can stroke the dog?). Whilst 3–4 year old normal children
can easily make these judgments, thereby showing their good understanding of the
differences between mental and physical entities and events, CwA have been found
to be significantly impaired.

In the literature on autism, mental and physical worlds are usually considered
from distinct standpoints in terms of children capability to reason about them.
Baron-Cohen et al. (2001) define folk psychology as comprising both low-level
social perception, and higher-level social intelligence.

Low-level here broadly refers to skills present in human infancy (Johnson 2000).
These include being able to judge:

1. if something is a human agent, animal or neither (Premack 1990);
2. if another person is looking at you or not;
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3. if another individual is expressing a basic emotion (Ekman 1992), and if so,
what type.

4. if engaging in shared attention, for example by following gaze or pointing
gestures (Mundy and Crowson 1997; Tomasello 1988);

5. showing concern or basic empathy at another’s distress, or responding appropri-
ately to another’s basic emotional;

6. being able to judge an agent’s goal or basic intention (Premack 1990).

Higher-level here refers to skills present from early childhood and which
continue to develop throughout the lifespan. These include the following:

1. Attribution of the bread spectrum of mental states to herself and others, including
pretense, deception, belief (Leslie 1987);

2. being able to recognize and respond appropriately to complex emotions, not just
basic ones (Harris et al. 1989);

3. being able to link such mind-reading to action, including language, and therefore
to understand and produce pragmatically appropriate language (Tager-Flusberg
1989);

4. using mind-reading not only to make sense of others’ behavior, but also to predict
it, and even manipulate it;

5. having a sense of what is appropriate in different social contexts, based on what
others will think of our own behavioral conduct;

6. having empathic understanding of another mind. This understanding includes the
skills involved in normal reciprocal social relationships and in communication.

According to (Baron-Cohen et al. 2001), folk psychology domain is quite
focused and narrowly defined with the focus of understanding the mental world and
social causality between its inhabitants. At the same time, folk physics comprises
both low-level perception of physical causality, and higher-level understanding of
physical causality. Low-level here refers broadly to skills present in early human
learning of th e physical world, such as the perception of physical causality (Leslie
and Keeble 1987) and expectations concerning the positions, speeds and other
properties of physical objects. Higher-level here refers to skills present from early
childhood and which continue to develop throughout the lifespan, the entities related
to mechanics (Karmiloff-Smith 1992). Similarly to folk psychology, folk physics is
not expected to rely on a single cognitive process.

Both mental and physical domains:

1. are aspects of our causal cognition and are associated with causal links;
2. are acquired and/or developed in a universal way,
3. show little if any cultural variability,
4. have a specific but universal ontogenesis,
5. are adaptive,
6. may be open to neurological dissociation.

Baron-Cohen et al. (2001) employed the model that the human brain has evolved
in at least two independent directions of cognition: folk psychology and folk
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physics. In the extreme case, severe autism may be characterized by a total lack of
folk psychology (and thus “mindblindness”). Autism spectrum conditions come by
degrees, so different points on the autistic spectrum may involve degrees of deficit in
folk psychology (Baron-Cohen 1995). In CwA who have no accompanying mental
disability (having intelligence in the normal range), the child’s folk physics would
develop not only normally, but even at a superior level. AS children were functioning
significantly above their mental age in terms of folk physics, but significantly below
their mental age in terms of folk psychology.

Impaired folk psychology, together with superior folk physics in AS might be
partly the result of a genetic liability. This is because autism appears to be heritable
(Gillberg 1991), and because there is every reason to expect that individuals with
such a cognitive profile could have been selected for in hominid evolution. Good
folk physics would have possess important advantages in using tools and hunting
skills.

Different computer systems operate in physical and mental worlds, including
multiagent systems. Control systems, device drivers and auto-pilots are examples of
the former world, whereas search, recommendation, decision-support and customer
care systems need to simulate and take into account user intent and mental worlds
of their users (Galitsky et al. 2009).

6.1.1 Autistic Generalization

Although children with ASD can be guided to make a generalization from parts to
whole, they have difficulty with inference making at the abstract level. Preschool
CwA can categorize animate and inanimate objects based on surface features
(Johnson and Rakison 2006). CwA tend to rely on explicit rules only to support
inductive inferences such as an entity that have legs versus things that have wheels.
These explicit rules lead them to make some inappropriate categorizations such
as classifying a table as an animal. CwA are unable to perform a metareasoning
task (Sect. 4.1.3) to decide when it requires the information on a prototype or
some kind of abstract representation. For example, it is hard to CwA to formulate
features of animate and inanimate objects that would distinguish these objects
beyond surface appearances. CwA are delayed in the process of concept formation,
performing more like infants than typically developing children of the same
preschool age. However CwA sometimes rely on inductive reasoning to form
categories, although they did not always attend to all the defining attributes. This
suggests that CwA may rely on their ability to focus on details that are salient to
them, ignoring other attributes that matter. Hence CwA may benefit from guided
concept formation that calls attention to those attributes that distinguish one concept
from another.

Abstract reasoning skills are particularly critical for reading comprehension,
especially when reading narrative text. Reading expository text, such as a set of rules
or directions, or descriptions of processes, requires less abstraction than reading

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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narrative, where readers engage cognitive processes to infer character’s traits, draw
conclusions, and identify causal attributes. CwA typically prefer expository text,
such as science texts. This may be because they find narrative text especially
challenging because it required abstract and social reasoning patterns (Randi et al.
2010).

6.2 Reasoning, Cognitive Science and Rationality

Autistic individuals, along with machine intelligence systems, are considered less
rational reasoners compared to control. In this section we treat in depth the issue of
rationality and explore the directions rationality of CwA can be intervened.

Traditionally, rationality is taken to be a defining characteristic of human nature:
“man is a rational animal,” apparently capable of deliberate thought, planning,
problem-solving, scientific theorizing and prediction, moral reasoning, and so forth.
“Rational” means here a rational discourse where an agent wants to arrive at justified
true belief. This definition of rationality is from an era oriented toward theory.
A pragmatically oriented definition extends this concept of rationality to actions.
“Rational agency” can be defined (MIT Encyclopedia of Cognitive Science) as a
coherence requirement:

agent must have a means-end competence to fit its actions or decisions, according to its
beliefs or knowledge representations, to its desires or goal-structure.

Without such coherence there is no agent. The main condition here is fit that has
a logical load. If an action is performed which is not part of a plan derived to achieve
a given goal, there is no fit. In this sense checking the weather before getting online
and logging on to the network is irrational, as well as first plugging out the power
unit of a modem.

CwA are capable of making decisions, applying knowledge available to them
and based on available beliefs, achieve their desires. For example, by bursting into
tantrum and crying to make his mother give him some chips. His action of crying
fits to the desire of getting chips, which would be hard to achieve otherwise.

At the same time, CwA are simplest such rational agents in terms of amount of
knowledge and structure and depth of beliefs, due to their special cognitive skills.

Judged by these standards, reasoning of CCs, not just CwA in the laboratory is
very poor and irrational (as shown by the seminal experiments of (Wason 1968)
for logic and (Kahneman and Tversky 1972) for probability), and it has therefore
been said that humans, both PwA and controls are actually not rational in the
sense defined above. The objective is to make the reasoning of CwA as rational
as possible.

Wason describes the students in his experiments showing irrationality of human
thinking.

The old ways of seeing things now look like absurd prejudices, but our highly intelligent
student volunteers display analogous miniature prejudices when their premature conclu-
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sions are challenged by the facts. As Kuhn has shown, old paradigms do not die in the
face of a few counterexamples. In the same way, our volunteers do not often accommodate
their thought to new observations, even those governed by logical necessity, in a deceptive
problem situation. They will frequently deny the facts, or contradict themselves, rather than
shift their frame of reference.

Stanovich (1999) discussion of rules governing reasoning introduces a distinction
between normative, descriptive, and prescriptive rules. We give brief characteriza-
tions of the three kinds, followed by representative examples.

• Normative rules: reasoning as it should be, ideally. These rules should be taught
to CwA in its original form

– Modus tollens: :q, p ! q/:p
– Bayes’ theorem: P(D j S) D P(SjD)P(D)/P(S).

• Descriptive rules: reasoning as it is actually practiced. These should be explained
to CwA as being used by other people, so that CwA can better understand
them. CwA are also encouraged to apply these rules if normative rules are not
applicable.

– Many people do not endorse modus tollens and believe that from :q, p ! q
nothing can be derived.

– In doing probabilistic calculations people do not do normalization and assume
P(D j S) D P(S j D). For example, estimating a probability of a disease given
a set of symptoms, specialists neglect the base rate, the one occurring among
healthy people.

• Prescriptive rules result from taking into account our bounded rationality, i.e.,
computational limitations (due to the computational complexity of classical
logic, and the even higher complexity of probability theory) and storage limi-
tations (the impossibility of simultaneously representing all factors relevant to a
computation, say, of a plan to achieve a given goal). Prescriptive rules should be
taught to CwA for approximation of what can be derived in the real world.

– The classically invalid principle :q, p^r ! q/:p ^:r is correct according
to closed–world reasoning, which is computationally much less complex
than classical propositional logic, and helps with memory issues when
implemented in a computer.

In terms of these three kinds of rules, Stanovich distinguishes the following
positions on the relationship between reasoning and rationality:

Human reasoning competence and performance is actually normatively correct. What
appears to be incorrect reasoning can be explained by such maneuvers as different task
construal, a different interpretation of logical terms, etc.

Actual human performance follows prescriptive rules, but the latter are in general
(and necessarily) subnormal, because of the heavy computational demands of
normatively correct reasoning. The performance of actual human reasoning still
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does not reach prescriptive standards, which are themselves subnormal; and this
is a significant potential improvement area for rehabilitation of autistic reasoning.

In the life of CC, reasoning happens infrequently in everyday life, and mainly in
schools. And for CC the true rationality is adaptiveness in taking quick decisions
that are optimal given constraints of time and energy. On the contrary, we expect
CwA who acquired reasoning skills and axioms as a result of training to reason
intensively behaving in everyday life. Even though adaptation capabilities of CwA
are rather limited, learned rules are supposed to compensate for it and still maintain
acceptable behavior. Hence the role of learning and applying rules is higher for CwA
compared with CC.

Interpretation of formal symbols is of high importance in reasoning. But even
if interpretation is important, and interpretations may differ from person to person,
people may reason in ways that are inconsistent with their chosen interpretation.
From a methodological point of view this means that if one uses a particular
interpretation to explain something, one must have evidence for the interpretation
that is independent of this “something”. Stanovich’s scheme is predicated on the
assumption that reasoning is about following rules from a fixed, given set, say
classical logic, rules that should apply always and everywhere. For if there is no
given set of rules which constitutes the norm, and the norm is instead relative to a
“domain,” then the domain may well include the cognitive constraints that gave rise
to the notion of prescriptive rules, thus promoting the latter to the rank of norm.

Piaget’s logicism (Piaget 1953) tells that the acquisition of formal-deductive
operations is due to cognitive development. Piaget was the first to show that
preschool children are not capable of applying classical predicate logic; they
need to grow older to do that. This is in contradiction with Wason’s selection
task, a striking deviation from classical logical reasoning. Piaget’s work can
be considered as undermining the role of logic as an inference mechanism. A
further criticism concerned the alleged slowness of logical inference mechanisms,
especially when search is involved, for example when backtracking from a given
goal. The production system of Newell and Simon only includes modus ponens
rule, allowing fast forward inference process, but the other forms if inference are
substantially slower.

A few decades back the production systems were used and explore the manipu-
lation of mental representation. Logicism is one central characterizing of production
system models which is followed in this book’s rehabilitation strategy. As pro-
duction systems involve, perception and action are added to production systems to
approach active learning (Sect. 7.3). Modern production systems preserve Logicism
and follow the sense-think-act cycle. At the same time, Piaget theory of cognitive
development accepts the idea that Logicism is founded upon actions in the world.
From both computational and experimental observations one can see that human
cognition is based on sense-think-act and sense-act chains. The external world starts
to play more important role in the cognition; some researchers argue that cognition
is mediated by a set of cognitive agents (Minsky 2006). Then the process of thinking
is not just application of logical rules but instead a combination of sense-think-act
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and sense-act chains which interact with the real world to solve problems (Wilson
and Dupuis 2010).

If logical laws were like physical, empirical laws about psychological events,
they would have to be approximate, preliminary and subject to refinement, like
all laws in natural science. But logical laws are exact and unassailable, hence
they cannot be empirical. Psychologism about logical laws also leads to skeptical
relativism: as we observe in CwA, different people reason according to different
logical laws, so that what is true for one person may not be true for another – truth,
however, is absolute, not indexed to a person.

Stenning and van Lambalgen (2008) analyzed several tasks on which autistic
people are known to fail, such as the false belief task and the box task, and find
that these tasks have a common logical structure which is identical to that of the
suppression task (McKenzie et al. 2011). This leads to a prediction for autistic
people’s behavior on the suppression task. Both adolescents with ASD and typically
developing controls were presented with conditional reasoning problems using
familiar content. The task relies on both valid and fallacious conditional inferences
that would otherwise be suppressed if counterexample cases are brought to mind.
Such suppression occurs when additional premises are presented, whose effect is
to suggest such counterexample cases. In this study (Stenning and van Lambalgen
2008) predicted and observed that this suppression effect was substantially and
significantly weaker for autistic participants than for CC. The authors conclude
that CwA are less contextualized in their reasoning, a finding that can be linked
to research on autism on a variety of other cognitive tasks.

6.3 Autistic Probabilistic and Counterfactual Reasoning

Probabilistic inference and conditioning calculates the conditional probabilities of
dependence between states. If event A only correlated with event B dependent on
event C, then C defeats A as a cause of B (Gopnik et al. 2001). Counterfactual and
subtractive reasoning is focused on predicting mental states which are dependent on
facts known to be false. Studies of typically developing children have shown strong
associations between false belief and subtractive reasoning tasks (Harris et al. 1996;
Peterson and Galitsky 2004).

Counterfactual version of the false belief task has been proposed by Riggs et al.
(2000). This task was intended to show that difficulties in counterfactual reasoning
cause unsuccessful performance in the false belief task. In each condition, a false
belief state task and a corresponding physical state task in the same domain were
constructed. For example, the following image of the Maxi task was constructed: a
child, a mother-doll and an experimenter are in a kitchen. The child sees that there
is a chocolate in the fridge. The mother-doll now bakes a chocolate cake, in the
process of which the chocolate moves from fridge to cupboard. The experimenter
now asks the child: Where would the chocolate be if mother hadn’t baked a cake?
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The structure of answers is highly correlated with that on the false belief task.
Before the cut-off age of four, the child answers: ‘in the cupboard’; afterwards, she
answers ‘in the fridge’. There is no ToM involved in answering correctly; instead
one needs insight into the commonsense reasoning inertia of the world: states only
change when they are affected by actions, explicit causes. It is unclear what causes
the younger child to answer ‘in the cupboard’: a simple failure to apply inertial
reasoning can bring the response ‘it could be anywhere’, due to the events that could
have happened in this alternative world.

Answers such as this would be yielded by applying causal reasoning without
closed world reasoning for occurrences of events. The answer ‘in the cupboard’
more likely reflects a failure to apply causal reasoning altogether, turning instead to
a “default” response. In one out of three of (Riggs and Peterson 2000) experiments
the false belief task was considerably more difficult for the children than the
counterfactual task, since ToM reasoning is the hardest for CwA.

Peterson and Bowler (2000) demonstrated this issue by comparing CwA, CC
and children with severe learning problems’ performance on false belief tasks and
counterfactual tasks. CC showed high correlation on these tasks, but a dissociation
turned out to be obvious in both CwA and children with severe learning problems.
For all children, the majority of those who failed the counterfactual task also failed
the false belief task, due to the fact that the counterfactual reasoning domain is
necessary for the false belief domain. Three-quarters of the typically developing
children who completed the counterfactual task also pass the false belief task,
but these ratios go down in the other groups: sixty % in children with learning
difficulties, 44 % CwA. The authors suggest that one factor is the necessity to
‘generate’ Maxi’s false belief, whereas in the counterfactual task the false statement
is given. The authors also show the correlation of this feature with other supposed
failures of the ability to generalize in autism (Sect. 6.4), such as the difficulty of
spontaneous recall compared to cued recall. In the false belief task the CwA and
CC have to see the relevance of Maxi’s not observing the crucial event to perform
the computation. In the counterfactual task all the ingredients are given, and only an
inertial computation is necessary.

In terms of CwA education, our conclusion is that the axioms of inertia need to
be taught for both mental and physical worlds.

The understanding of emotions based on counterfactual reasoning was studied
(Begeer et al. 2014). Children were presented with eight stories about two characters
who experienced the same positive or negative outcome, either due to their
own action or by default. Relative to the comparison group, children with high-
functioning autism spectrum disorder were poor at explaining emotions based
on downward counterfactual reasoning (i.e. contentment and relief ). There were
no group differences in upward counterfactual reasoning (i.e. disappointment and
regret). In the comparison group, second-order false-belief reasoning was related
to children’s understanding of second-order counterfactual emotions (i.e. regret and
relief), while children in the high-functioning autism spectrum disorder group relied
more on their general intellectual skills.
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All scenarios involved two characters who experienced the same outcome (i.e.
both either achieve or do not achieve what they desire). For the target character, a
counterfactual alternative was available that would have resulted in a better (upward)
or worse (downward) outcome. In the simple stories, emotions were yielded by
demonstrating that the target character nearly achieved a positive or negative
outcome. The near attainment of the outcome was intended to yield disappointment
(when a positive outcome was avoided) or contentment (when a negative outcome
was avoided). In the second-order emotion stories, a target character always made
an active decision that led to the avoidance of a positive or negative result. This was
intended to yield regret or relief. At the end of each story, children were reminded of
the outcome and of the critical element of the story that differentiated the characters
involved. Following this, children were asked whether one character would feel
“better,” “worse,” or “the same” about the results compared to the other character
and explain why.

6.3.1 Example Relief Story and Questions

Bill and Pete are going on a school trip. They are allowed to choose between going
on a sports day in the playing fields or to a kids’ museum. Bill wants to go to the
museum. Pete chooses the sports day. When the teacher asks them what they chose,
Bill says he wants to go to the museum. Pete changes his mind and also says he
wants to go to the museum. On the day of the trip, it is pouring with rain. Children
who chose to go to the sports day in the playing fields have to stay at school.

Questions Who is happier about choosing the museum, Bill, who chose the
museum right away, or Pete, who changed his mind, or do you think they are both
equally happy? Why?

6.3.2 Example Regret Story and Questions

Miriam and Susan go to the same school. Miriam usually takes the bus. Susan
usually goes on her bike. Today, Susan decides to take the bus. Both Susan and
Miriam are waiting at the bus stop but the bus does not come, and they have to wait
a long time for the next bus. They both arrive at school very late.

Questions Who is more annoyed with being late for school, Miriam, who usually
takes the bus, or Susan, who usually goes by bike, or do you think they are both
equally annoyed? Why?
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6.4 Autistic Planning and Adjustment of Action to a New
Environment

Current studies of autistic reasoning overlooked such aspect of reasoning as
operating beyond strict rule-following. Everyday reasoning requires more than
applying literal rules since most all rules are associated with exceptions. Most rules
in the real life are defeasible and can be modified as new information comes. For
example, we put on our own shoes to go out and assume it will fit. However, we will
withdraw this assumption if it turns out that someone put a small ball in the shoe.
Since one has to adjust a conclusion when the context changes, some flexibility in
reasoning is required to handle cases with exceptions.

Although reasoning about the physical world of autistic patients is corrupted in a
lesser degree than reasoning about mental world (Galitsky 2002), it still has serious
limitations and needs to be substantially improved. Various reasoning domains that
are the subjects of explorations in traditional logical Artificial Intelligence, such as
space, time, and probabilities are explored in the context of autism. It turns out that
each of these domains is affected of autistic development in one way or another.
In this section we focus on autistic way to adjust actions to a new environment,
employing a formalism of default logic (Brewka et al. 1995; Bochman 2001).
The finding here is that while people with autism may be able to process single
default rules, they have a characteristic difficulty in cases where multiple default
rules conflict. Even though default reasoning is intended to simulate the reasoning
of typical human subjects, it turns out that following the operational semantics
of default reasoning in a literal way leads to the peculiarities of autistic behavior
observed in the literature (Peterson and Galitsky 2004).

6.4.1 Triangulation Structure

We first introduce the concept of triangulation by way of an illustrative scenario:

Arthur habitually follows a route to school which involves walking straight down a
particular pavement. One day this pavement is blocked by a puddle. Should Arthur walk
straight through the puddle, or walk round it?

What Arthur needs to do in this example is to depart temporarily from his
standard route to school, in response to a passing circumstance. He does not need
to jettison or revise this standard route: tomorrow, when there is no puddle, he can
follow it without interference. But today his actions need to reflect a compromise
between the standard route and the additional circumstance. This structure can be
represented as follows. The basic unit of knowledge (in this case, the standard route
to school) we call the source (S). The default, usual, normal action (such as walking
straight ahead) that can be performed when the source is as usual, or considered in
isolation, is called the generic action (G). The additional factor (the presence of a
puddle) that indicates a modification, adjustment of this norm, we call the context
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(C). And when the context causes us to select an adjustment of the generic action G
(to walking round the puddle), we call this a triangulated action (T). Thus we have
the following structure:

S: the standard route to school
G: walk straight
C: today there is a puddle in the way
T: walk round it.

In such situations two separate perspectives, the source and the context, bear
on the same issue of action. The agent is thus faced with the cognitive task of
coordinating these demands, in a process of practical reasoning which we call
triangulation:

S, so do G, but C, so do T

This kind of task can be encountered by any cognitive system, whether natural or
artificial, but our present concern is with people with autism. We therefore turn to a
series of tendencies found in autism, in each case using the triangulation structure
identified above to analyze an illustrative example. This serves two purposes:

1. It reveals a pattern common to some of the tendencies found in autism, thus
advancing our conceptualization of the syndrome.

2. It provides a systematic basis for computer support which allows users to
navigate and experiment with these structures.

It is worth emphasizing from the outset that we are dealing here with tendencies:
people with autism do not follow these patterns all of the time (and people without
autism do not always avoid them). Rather the point is that where these tendencies
do occur, their structure can be identified.

6.4.2 Triangulation Cases

Case 1: Performance of Routines People with autism show an inflexible relation-
ship with routines. On an occasion when it seems that the best thing is to alter,
abbreviate or terminate the performance of a routine, the person with autism may
step through a standard procedure in a manner which is ‘rigid’, ‘formal’, ‘obsessive’,
or ‘ritualistic’ (Kanner 1943, DSM C). A typical example follows.

Arthur’s routine for getting up in the morning takes 30 minutes and involves a shower,
washing, drying and brushing his hair, eating a breakfast of muesli, toast and tea, and
brushing his teeth for 2 minutes. He begins this at 8.00 am, so as to be ready for the school
bus at 8.32 am. One day, when Arthur is in mid-routine, his mother receives a phone call
saying that the school bus will arrive 10 minutes early, so she tells this to Arthur through
the bathroom door. Should Arthur continue to enact his routine as usual, or should he omit
or accelerate parts of it so as to catch the bus on time?

We have here a routine which is perfectly reasonable, but an occasion on which
an adjustment is needed. One solution, for example, would be to omit breakfast,
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and eat a sandwich on the bus instead. (Another solution would be to do everything
more quickly than usual.) This gives the following pattern of reasoning:

S: the usual routine
G: enact it all as usual
C: but today time is short
T: omit part of it

The inflexibility found in autism in this regard consists in a tendency to choose
the generic action (G) rather than the triangulated action (T) in such structures. The
routine is enacted in a manner that is unresponsive to special circumstances: faithful
to one perspective rather than two. Furthermore, the person may become upset and
agitated when asked to adjust, indicating that this is not easy to do. This is not to say
that routines are bad, or that this one is in need of revision. Routines serve as labor-
saving devices, and this one promotes hygiene, nourishment and dental care. Rather,
the problem in the example scenario is that the routine and its goals constitute one of
two frames of reference, and a compromise is needed. Again, this is not to say that
accommodation of a second perspective is necessarily a good thing: Arthur might
have decided that he is tired of being messed about by an unreliable bus service and
so he will let things go wrong. However, in the cases typically seen in autism the
second perspective is not rationally rejected, but is simply unengaged.

Case 2: Informing We now turn to another area of the symptomatology of autism
in which, despite superficial differences, the same structural features operate.
Among the communication difficulties found in autism are tendencies to over-
inform. That is, where only part of a story is relevant to a particular audience or
topic of conversation, the person with autism may nevertheless recite the story
from beginning to end and in all its detail. (Equally, where expansion and extra
explanation are needed, there is a tendency in autism to under-inform). There can
be many reasons for editing the telling of a story: perhaps only part of a story is
relevant to the current conversation, perhaps the audience was present during most
of events described, perhaps one of the audience becomes visibly upset as we start
to tell the story. There follows an illustrative example:

Earlier in the year, Arthur took a trip in which he travelled by bicycle from York to London,
visiting museums along the way, and on arriving in London he happened to eat a hamburger.
One day, Arthur meets some people who ask him about the quality of hamburgers in London.
Should he tell the whole story of his trip, or just the part about the hamburger?

The story of Arthur’s trip is a data structure whose default execution is step-
by-step recitation starting at the beginning. This might be just what is needed, for
example when recording it in a diary. However in the present context what is needed
is a compromise in which the part about the hamburger is selected and the rest only
briefly mentioned, as follows.

S: the story of my journey
G: tell it exhaustively from beginning to end
C: but we are talking about hamburgers
T: tell that part only
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The over-informing found in autism consists in a tendency to choose G rather
than T in such structures. One point which this characterization brings out is that this
tendency concerns the use of knowledge rather and simply its existence (Peterson
and Bowler 2000). In our example, Arthur knows the story of his trip, and he knows
that he has been asked about hamburgers: what is missing is a coordinated response
to the two. This tendency may cause trouble, since the capacity to adjust the pre-
sentation of information is central to communication, rhetoric and tact, all of which
show deficit in autism. No general value judgment is forthcoming here: whether we
prefer the charm of smooth talking to a grave and comprehensive recitation of facts
will vary from case to case. However, as above, in the cases typically seen in autism
the grave recitation is due to insulation rather than judgment.

Case 3: Tunnel or Jump In conversation, CwA tend either to ‘tunnel’ on one sub-
ject, or suddenly to ‘jump’—change the subject—destroying narrative coherence.

S: a new subject occurs to me
G: change the subject to this
C: but the conversation’s theme is : : :
T: stick to the theme

Case 4: Interpretation of Ambiguity Homonyms are the words in written form that
have two (or more) meanings with different associated pronunciations. Autistics are
unreliable in choosing the one that is indicated by sentence context.

S: ‘tear’ can mean X or Y
G: take either
C: but the sentence context indicates Y
T: use Y

There is a class of social interactions that involve our predicting and/or explaining
the actions of other participants, but in which the relevant predictions and explana-
tions seem to develop without us having to attribute propositional attitudes. These
social interactions rest on what social psychologists call “scripts” (“frames” in
artificial intelligence), that is, complex information structures that allow predictions
to be made on the basis of the specification of the purpose of some social practice
(for example, eating a meal at a restaurant), the various individual roles, and the
appropriate sequence of moves.

Case 5: Social Scripts Brittleness & amalgamation of exceptions

Arthur is told not to speak to strangers in the street. Some policemen address him, and he
ignores them and gets into trouble.

S: ignore strangers in the street, and these are strangers
G: ignore them
C: but these are policemen
T: talk to them.

Case 50: Social Scripts 2

Arthur was taught a conversation routine involving sitting near a person and nodding. He
got on the underground late at night, entered a carriage with just one old lady in it, and
began his routine. She panicked.
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S: this is my conversation routine
G: do it
C: but this is an old lady and she looks frightened
T: stop

Case 6. Executive Function People with autism show poor performance on clinical
tests of executive function (Sect. 2.5.2). In the experiment on the proper timing of
actions, the participant is asked to grab a marble from a box, after pushing a switch.

S: grab the marble
G: do it now
C: the switch needs to be pushed first
T: do it (grab the marble) afterwards

Autistics show ‘pre-potency’ (in relation to C). In the Wisconsin Card Sort Test
they show ‘perseveration’ (in relation to C): they carry on doing something after it
has stopped serving its purpose.

Case 7: Generalization There exist situations in which the main point or purpose
is not stated explicitly, and so constitutes an implicit context.

Arthur is asked by his father to empty all the waste paper baskets in the house. When he has
finished, his father asks why he has not emptied two receptacles. Arthur replies that these
are bins, not baskets.

Once the context has been detected it can be applied as follows.

S: I am emptying baskets, and these two are bins
G: ignore them
C: but the goal is to remove rubbish, and they contain rubbish
T: empty them too.

In several of the cases given so far, the context serves to narrow our range of
actions, causing us to omit certain possibilities or at least select a partial case of
them. In the above case the opposite is true: apprehension of the context broadens
our understanding of the situation and extends our range of actions.

Case 80: Controlling the Scope of Actions

Arthur is found pulling up flowers on the north side garden. His mother says ‘please don’t
do that’. So Arthur then goes to the south side of the garden and carries on pulling up
flowers there.

The main point or objective here was not stated explicitly by Arthur’s mother.
Unless Arthur detects it or makes a guess at it, it will seem reasonable to do as he
does.

S: I am no longer on the north side of the garden, and here are some flowers
G: pull them up
C: but the point of the previous request was to preserve the flower beds in the garden
T: don’t pull them up.

Case 8: Alternative Contexts Another case in which we need to project possible
contexts is when we try to think of alternative uses for an object. In which new
contexts could the object serve a useful function?
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Arthur is asked ‘think of lots of uses for a brick’. He refers to standard examples, as
indicated by the definition of a brick, rather than connecting with alternative contexts so
as to give alternative uses.

S: bricks are for building
G: give examples of building
C: but I need an ashtray (imagined), and bricks have appropriate indentations
T: give example of ashtray

Case 9: Suppression of Irrelevant Details A common occurrence in autism is that a
person focuses on insignificant or non-functional details in a situation. These can
be parts or aspects of objects or situations that would normally be regarded as
inconsequential (American Psychiatric Association 2000). This inconsequentiality
is not an inherent feature of the detail in question, but rather a relation with a context;
it is determined by seeing that the detail is not relevant to the purpose or function
expressed in the context. The detail may be inherently interesting, but from the
perspective of the context it is not. The context says ignore such details, we have
a job to do. Therefore, what we need to do (in the current situation) is to subtract
or ignore the detail in question. The question is the usual one: S may be correct or
interesting, but given C what do we do about it now?

Arthur usually has a blue cup for water. When presented with a green one, he refuses to
drink at all.

S: my usual cup is blue, and this one is green
G: refuse it
C: but the point is to drink water, and it’s OK for drinking
T: accept it (i.e. the colour is unimportant to C)

Arthur gets upset when a minor change is made to the arrangement of furniture in his room.

S: the arrangement of my room has been slightly changed
G: worry about this
C: but the functions of my room are : : :
T: don’t worry (i.e. the change is unimportant to C)

During a car trip to LA, Arthur gets upset because his underwear is not exactly as usual,
and wants to return to where his usual ones are bought. [from Rain Man]

S: my underwear is different from usual
G: worry about this
C: but our purpose is to drive to LA
T: forget it for the moment

Case 10: Subtraction One aspect of learning is that we refine our knowledge by
removing non-functional elements from our knowledge-structures. In the situation
in which we initially encounter something there may be details which are inessen-
tial, and so we need subsequently to remove these.

Arthur first hears the word ‘impolite’ pronounced as ‘im-pol-ite’. Thereafter he always
pronounces it this way. What is odd about this?
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Here the data structure is a correct record of the initial experience (as usual the
problem in autism is not simply one of truth or accuracy). However, subsequent
context indicates that an element in the data structure is nevertheless in appropriate.

S: pronunciation as ‘im-pol-ite’
G: use this
C: frequent experience of hearing alternative pronunciation as ‘impolite’
T: subtract the non-functional element

It is likewise notable that autistic routines may have non-functional ‘extras’ that are
maintained despite being non-functional.

Case 11: Dealing with Open Structures There are cases in which a cognitive system
is provided at one time with a data structure (or database) that is incomplete, and
at a later time with the details required to fill its open slots. The usual approach is
to treat this as an issue of time: we have some of what we need now, and we look
out to get the rest later, completing our decision ‘on the fly’. This is problematic in
autism, where such open structures can evoke anxiety due to their indefinite nature.

S: this is currently an incomplete structure
G: worry
C: the gaps will be filled tomorrow
T: use it when they are filled

6.4.3 Discovering Commonalities Between the Triangulation
Cases

We proceed with the discussions of how the cases are inter-related. There are many
differences between the cases examined above. Some involve understanding of other
people while others do not. Some involve language while others do not. Some make
greater call on imagination (cases 7 and 8) than others. Our point however is that
they are variations on a theme in the following sense:

1. each case presents a task which is of a type well known to present difficulty in
autism;

2. each task can be analyzed as a triangulation task;
3. in these terms, the tendency found in autism is a tendency to produce the

‘generic’ rather than the ‘triangulated’ response.

This analysis serves as a tool for understanding: the moment when we identify
a triangulation structure and its elements can be the moment when we understand
another person’s actions, the moment when we say oh, that’s where he is coming
from. The analysis serves as a basis for a computer-based therapeutic facility, since it
identifies a common structure which people with autism need practice in navigating.
Below, we will provide a more formal analysis of the triangulation structure.

The source in the structure gives us a generic or standard action; the context
indicates how, when, where or with whom to perform the action, what to change,
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repeat or omit, when to stop, or whether to do it at all; and the cognitive system
needs to work out in each case what the nature of this adjustment should be. These
adjustments fall into two broad categories, narrowing and widening of the actions
performed, and in each case above there is an established tendency in autism not to
make the relevant adjustment.

We attempt to cover these eleven scenarios by five well-known deficiencies of
autistic reasoning described in the literature:

1. Non-toleration of novelty of any sort (cases 1, 9, 11).
2. Incapability to change plan online when necessary (cases 1, 2, 5, 6, 11).
3. Easy deviation from a reasoning context, caused by an insignificant detail (cases

2, 3, 4, 5, 50, 8).
4. Lack of capability to distinguish more important from less important features for

a given situation (cases 2, 7, 9, 10).
5. Inability to properly perceive the level of generality of a feature appropriate for

a given situation (cases 2, 4, 7, 8, 10).

Note that each deficiency covers multiple cases, and each case is covered by two
or more deficiencies. Also, these deficiencies of reasoning can be distinguished from
reasoning about mental attitudes, which are usually corrupted in a higher degree in
case of autism (Baron-Cohen 2000).

6.4.4 Building a Bridge Between Triangulation and Default
Reasoning

Default reasoning is intended as a model of real-world commonsense reasoning
in cases which include typical and non-typical features and situations. A default
rule states that a situation should be considered as typical and an action should
be chosen accordingly unless the typicality assumption is inconsistent. We observe
that autistic intelligence is capable of operating with stand-alone default rules in a
correct manner most of times.

When there is a system of conflicting default rules, the formal treatment
(operational semantics) has been developed so that multiple valid actions can be
chosen in a given situation, depending on the order in which the default rules are
applied. All such actions are formally accepted in such a situation, and the default
logic approach does not provide means for preference of some of these actions over
the other ones. Analyzing the behavior of people with autism, we will observe that
unlike the controls, CwA lack the capability to choose the more appropriate action
instead of a less appropriate. In this respect we will illustrate that the model of
default reasoning suits autistic subjects better than controls.

Default reasoning is a particular machinery intended to simulate how human
reasoning handles typical and atypical features and situations. Apart from reasoning
about mental attitudes which is essential in presenting autism, we apply default
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reasoning to conceptualize a wide range of phenomena of autistic reasoning pre-
sented in Chap. 2, taking advantage of the experience of computer implementation
of default reasoning. Peculiarities of autistic reasoning can then be matched against
the known possibilities of malfunctioning of artificial default reasoning systems.

In this Chapter we argue that the inability to use default rules properly leads to
certain phenomena of autistic reasoning identified in existing experimental studies.
Conducting research of human reasoning in AI, the phenomena of autistic reasoning
are of particular interest, since they help us to locate the actual significance of formal
models of default reasoning. At the same time, we expect this study to shed light on
how autistic reasoning may be improved by default reasoning-based rehabilitation
techniques.

Abstract default logic distinguishes between two kinds of knowledge: the usual
formulas of predicate logic (axioms, facts) and “rules of thumb” (defaults, Antoniou
1997). Corrupted reasoning may handle improperly either kind of knowledge, and
we pose the question which kind may function improperly in autistic reasoning.
Moreover, we consider the possibility that an improper interaction between the facts
and rules of thumb may be a cause for corrupted reasoning.

Default theory (Brewka et al. 1995) includes a set of facts that represent certain,
but usually incomplete, information about the world; and a set of defaults that cause
plausible but not necessarily true conclusions (for example, because of the lack of
a world knowledge or a particular situation-specific knowledge). In the course of
routine thinking of human and automatic agents some of these conclusions have to
be revised when additional context information becomes available.

Let us consider the traditional example quoted in the literature on nonmonotonic
reasoning:

One reads it as If X is a bird and it is consistent to assume that X flies, then
conclude that X flies. In the real life, if one sees a bird, she assumes that it flies as
long as no exceptions can be observed.

Exceptions are the potentially extensive list of clauses implying that X does not
fly. It would be inefficient to start reasoning based on exceptions; it should be first
assumed that there are no exceptions, then verified that this is true and then proceed
to the consequent of a default rule.

A penguin (the bird which does not fly) is a novelty (it is atypical). Conventional
reasoning first assumes that there are no novelties (there is no exception) and then
performs the reasoning step, concluding that X flies. If this assumption is wrong

http://dx.doi.org/10.1007/978-3-319-39972-0_2


6.4 Autistic Planning and Adjustment of Action to a New Environment 233

(e.g. X-novelty is taking place) then the rule is inapplicable for penguins and it
cannot be deduced that X flies. It is quite hard for autistic reasoning to update this
kind of belief because it handles typical and atypical situations in the same manner,
unlike the default rule machinery suggests. It is quite computationally expensive
to handle typical and atypical situations similarly, because a typical situation is
compact and most likely to occur, and an atypical situation comprises an extensive
set of cases (clauses) each of which is unlikely to occur.

Having outlined the triangulation reasoning pattern, we proceed to a formal
treatment of such structure using default logic. The components of triangulation
structure can be represented as a pair <classical rule, default rule>. If the state S
occurs, action G is to be performed. Hence we have a rule

However, if C occurs in addition to S (serves as a context of S)

We simulate autistic reasoning as a formal system where the top rule above
always works, and the bottom rule fails either as a stand-alone one or as a com-
bination of some rules with mutual dependence. In accordance to our methodology,
a hypothetical autistic reasoning system would then always be capable of producing
G but sometimes fails T due to a computational problem of deriving T. We have
initially described this problem as enumeration of 11 cases, and then as five higher-
level phenomena of autistic reasoning.

6.4.5 Handling a Single Default Rule by Autistic Reasoning

Let us now consider the above examples from the perspectives of five deficiencies.
Unlike normal subjects, and similar to software systems, autistic subjects can hardly
tolerate the
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Table 6.1 Capabilities in revising beliefs and adjusting to new environments

A child knows that birds fly. The child sees observes that penguins do not fly
Child updates the list of exceptions for not
property flying

Child adds new rule that penguins do not fly

The flying default rules stays intact It is necessary to update the existing rule of
flying and all the rest of affected rules

The process of accepting new exceptions is
not computationally expensive

This process takes substantial computational
efforts and, therefore, is quite undesirable and
overloading

Observing a novelty and remembering
exceptions is a routine activity

Observing a novelty is stressful

This default rule schema is read as follows: when there is a Usual_intention, and
the assumption that

Additional_features_of_env_do_not_change_routine is consistent, then it is OK
to Follow_usual_routine. There should be clauses specifying the situations where
this assumption fails:

This clause (assumption) fails because of either external reasons or internal ones,
and the list of potential reasons is rather long.

In the following Table 6.1 we compare the features of default reasoning for a
CC (on the right) and a CwA, once new observation becomes available and beliefs
change.

A good example here is that the autistic child runs into tremendous problems
under deviation in an external environment which typical cognition would consider
to be insignificant.

We proceed to the deficiency of Incapability to change a plan online when neces-
sary. A characteristic example is that of an autistic child who does not walk around
a puddle which is blocking her customary route to school, but rather walks through
it and gets wet as a result. This happens not because the autistic child does not
know that she would get wet stepping through a puddle, but because the underlying
reasoning for puddle avoidance is not integrated into the process of reasoning. Let
us consider the reasoning steps a default system needs to come through.

Initial plan to follow a certain path is subject to application (verification) by the
following default rule:
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Here we consider a general case of an arbitrary area to pass by, Area D puddle
in our example above. The rule sounds as follows: If it is necessary to go across an
area, and it is consistent to assume that it is normal (there is nothing abnormal there,
including water, mud, danger etc.) then go ahead and do it. A control individual
would apply the default rule and associated clause above to choose her action, if the
Area is normal. Otherwise, the companion default rule below is to be applied and
alternative AreaNearBy is chosen.

Note that formally one needs a similar default rule for the case when something
is wrong with AreaNearBy: abnormal(AreaNearBy). A control individual ignores it
to make a decision with reasonable time and efforts. On the contrary, autistic child
keeps applying the default rules, finds herself in a loop, gives up and goes across the
puddle.

In other words, autistic reasoning literally propagates through the totality of
relevant default rules and runs into the memory/operations overflow whereas a
normal human reasoning stops after the first or second rule is applied. Therefore
it is hard for CwA to make a choice appropriate for a given context (Fig. 6.1).

Fig. 6.1 A child is selecting
a direction of movement
towards one of two helpers
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What are the peculiarities of how autistic children apply a newly acquired rule?
First of all, they do their best in applying it; however, they follow it literally. Let us
consider the following example:

An autistic girl was advised by her parents not to speak with strangers in the street. On one
occasion a policeman approached the girl and started asking questions, but was ignored by
her. In spite of his multiple attempts to encourage the girl to communicate, they failed and
he became upset.

After the parents were told about the incident they suggested that the girl should not
have treated policemen as a stranger. They also confirmed that the girl new who policemen
were. The girl required that she needed the new explicit rule overwriting the initial one that
a policeman was not a typical stranger and should have been treated differently.

On the basis of the analysis presented here, this anecdote could be given the
following interpretation.

1. The subject is doing her best to follow the rule, and readily accepts new rules
2. The girl did know that the approaching man was a policeman, but she did not

know him as a person, therefore she categorized him as a stranger in the context
of the behavioral rule.

3. In this situation the girl was familiar with who policemen are, as she knew that
policemen should not be ignored.

4. However, she was not able to handle a policeman as an exception in the rule for
stranger.

5. If she had had the explicit rule for how to respond to strangers who are policemen
then she would have followed it.

We conjecture that the girl had sufficient knowledge of the subject and was
capable of applying the rules, taken separately. What she was not able of doing
was to resolve a conflict between considering the same individual as a stranger and
as a policemen in the context of decision whether to communicate or to ignore.

Usually, strangers do not fall into a special category; however, exceptions are
possible:

Indeed, the girl is likely capable of identifying the categories of persons above,
but not in the context of a stranger rule. The latter is an opposing rule to the one for
handling exceptions:

If the parent would incorporate the rule above into the default rule explicitly, then
it is likely that the girl would treat the policemen properly.
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6.4.6 Handling Conflicting Default Rules

In this section we proceed to the situation where there are multiple (conflicting)
default rules, and the results of their execution depend on the order these rules are
applied. Here we propose an informal description for such situations, introducing
operational semantics for default reasoning.

The main goal of applying default rules is to make all the possible conclusions
from the given set of facts. This is the bottleneck for autistic reasoning: a
child may come to a single conclusion without being aware than other solutions
may be as valid. A control subject is usually capable of identifying the totality
of conclusions and of applying some kind of preference criteria to select a
more appropriate one. Presenting the operational semantics, we bear in mind
that in contrast to controls, autistic reasoning follows it literally. Following the
operational semantics of default reasoning in case of conflicting rules provides
conclusions similar to what autistic subjects produce, because both lack the
machinery to apply preference and select a more adequate solutions, taking into
account circumstances which are neither expressed by facts nor rules in the default
system.

What is the nature of conflict under operational semantics? If one applies only
one default, we can simply add its consequent to our knowledge base. The situation
becomes more complicated if we have a set of defaults because, for example, the
rules can have consequents contradicting each other or, a consequent of one rule can
contradict the justification of another one. In order to provide an accurate solution
we have to introduce the notion of extensions : current knowledge bases, satisfying
some specific conditions.

Suppose D is a set of defaults and W is a set of facts (our initial knowledge
base). Let� be an ordered subset of D without multiple occurrences (it is useless to
apply the default twice because it would add no information). We denote a deductive
closure (in terms of classical logic) of � by In(�): W [ fcons(ı)jı2�g. We also
denote by Out(�) the set f: j 2 just(ı), ı2�g. We call�D fı0, ı1, : : : ga process
iff for every k ık is applicable to In(�k), where �k is the initial part of � of the
length k.

Given a process �, we can determine whether it is successful and closed. A
process � is called successful iff In(�)\Out(�) D∅. A process � is called closed
if � already contains all the defaults from D, applicable to In(�).

Now we can define extensions. A set of formulae E � W is an extension of the
default theory < D, W > iff there is some process � so that it is successful, closed,
and E D In(�).

Let us consider an example of a lost toy; a child needs to decide on which action
to choose. Let us suppose that W is empty and D is the set of
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These rules describe a situation when children toys are normally not assumed to
be lost if not immediately seen, but, if it’s consistent to assume that the toy has been
taken by someone, then it is worth searching for.

After we have applied the first rule, we extend our knowledge base by not
toy_lost(X):

The second rule is not applicable to In(fı1g). Therefore the process �D fı1g

is closed. It is also successful, so In(fı1g) is an extension. Suppose now we now
apply ı1 first:

The rule ı1 is still applicable now, so fı2g process is not closed. Let us apply ı1

to In(fı2g):

Now In(fı2,ı1g) \ Out(fı2,ı1g) ¤∅ so fı2, ı1g is not successful and fsearch(X,
toy_lost), not toy_lost(X)g is not an extension. This comes in accordance with our
intuitive expectations, because if we accept the later statement to be a possible
knowledge base, then we conjecture that the toy will be searched always, not only
when we suspect that it has been taken by someone.

However, if there are two extensions (possibilities for actions), then more
than one action are deemed formally legitimate. In a real-life situation, normal
individuals, unlike autistic ones, possess additional machinery to select appropriate
actions. On the contrary, autistic children, if capable of using default rule, follow the
above methodology literally. They therefore may choose an action inadequate from
the perspective of control subjects, but nevertheless correct from the perspective of
formal default reasoning.
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Due to literal following of the operational semantics, autistic children have
significant difficulties understanding natural language sentences and reacting to
commands including multiple ambiguous words. Analyzing combinations of mean-
ing, autistic reasoning may produce formally valid but inadequate (from the
viewpoint of control subjects) representations.

We conclude this section by the training example we have been using in the
autistic rehabilitation Center “Our Sunny World” (Moscow, Russia). The exercise
teaches autistic children to operate with multiple possible interpretations of natural
language expressions. Indeed, autistic children have problems understanding situa-
tions where there are multiple ambiguous words in a query and the totality of overall
meaning for a sentence is a combination of meanings of these words. Let us consider
the following expression (in Russian):

The first ambiguous word, ÍapÕËÐa, has two following meanings:

1. A work of art, a painting;
2. A set of events observable at a certain time.

The meanings of the second word, cocÕoâÐËe (normalized), are:

2.1. Monetary assets of an individual;
2.2. Mental and physical state of an individual.

The respective default theory has four extensions with the following meanings:

1.1–2.1. This painting made him forgot about his poverty/wealth;
1.2–2.1. This accident made him forgot about how poor/rich he was;
1.1–2.2. This painting made him ignore his feeling unwell;
1.2–2.2. This accident distracted him from his thoughts.

The children are demonstrated that all above meaning are valid; however, some
of them are more appropriate than others in a certain context. This is also the case
under disambiguation for question answering (Galitsky 2003).

An easier training example which was attempted by eleven children with autism
is depicted at Fig. 6.2. The focus of this exercise is to develop the capability of
changing plans online. The user interface represents a decision-making procedure
in changing environment via list boxes.

Another form of nonmonotonic reasoning is a closed world assumption. It is
based on the statement that is true is also known to be true (Antoniou 1997).
At the same time, what is not currently known to be true, is false. Stenning and
van Lambalgen (2008, 2012) identified a number of areas to which closed world
reasoning is applicable, each time in slightly different form:
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What is happening

What is happening What would you do?

What would you do?

Please collect the plates

A person keeps eating

A person is done eating but there is still some for

I am following my standard rout t
Walk around the paddle

Go straight

Go back

Go straight

There is a puddle

There is space to walk aro

The shoes are average

There is an angry dog beh

Don’t collect a plate and bring more

Do it now

Fig. 6.2 A form to train adjustment of actions

1. lists, sequences, in space and time, train schedules, airline databases, : : : ;
2. diagnostic reasoning and abduction;
3. analogical reasoning;
4. arbitrary deduction;
5. unknown preconditions and post-conditions;
6. causal and counterfactual reasoning;
7. attribution of beliefs and intentions.

PwA have difficulties with at least items (2), (3), (5)–(7). CwA are pre-occupied
with lists, in the sense that they feel lost without lists, such as timetables to organize
daily activities; they have great difficulty accommodating unexpected changes to the
timetable, and try to avoid situations such as holidays in which rigid schedules are
not applicable. One may view this as an extreme version of closed world reasoning,
sometimes even applied in inappropriate circumstances. But before one concludes
from this that PwA are good at closed world reasoning to the point of over-applying
it, one must carefully distinguish several components of closed world reasoning.

On the one hand, there is the inference from given premises which reduces to a
computation of the minimal model of the premises and checking whether a given
formula holds. Non-monotonic reasoning also involves ‘pre-processing’ the given
situation or discourse, that is, encoding the law-like features of a situation in a
particular type of premises.

Laws and regularities always allow exceptions, and a skill to handle exception
is required based on identifying and encoding the relevant exceptions, and knowing
when “enough is enough”. CwA appear to perform significantly worse than CC
doing that, although they behave normally with respect to the non-monotonic
inferences themselves.
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6.5 Discussion and Conclusions

In this Chapter we focused on the reasoning domains of the secondary impor-
tance for CwA after the mental world. As we explore the deviation between
the conventional (rational, adult) reasoner from the one of the young children,
irrational, autistic, we are getting closer to the nature of reasoning about the physical
world, choice of action, non-monotonic, probabilistic and counterfactual domains.
Whereas in the domain of reasoning about mental world one can localize the exact
axioms that are missing, the general observation in other reasoning domains is
that CwA cannot achieve the required level of complexity to behave and act in the
real world. In these domains just learning particular axioms is necessary but not
sufficient and more general operations including certain metareasoning patterns, like
operations on defaults, are required.

It is well known that it takes significantly less amount of data for a human to learn
than for a computer to learn. In machine learning, approaches like deep learning,
relying on a high volume datasets and high speed computing, are becoming more
available and popular. For CwAs with hyper-sensitivity a capability to maintain
high volume of data and perform high efficiency computations may potentially
approach deep learning-like architectures for learning from vast data. At the same
time, inductive learning from a limited set of examples is a most typical way control
humans acquire knowledge.

In this chapter we used default logic to provide a framework for understanding
of the elusive phenomena of autistic reasoning. Our thesis is that difficulty arises
in autism specifically in those situations where an appropriate default rule should
be applied, or conflicts between two default rules are to be resolved. This model of
autistic reasoning provides a relatively precise tool for understanding some of the
phenomena of autism and autistic behavior. Our model provides an explanation on
how the five major problems in autistic reasoning outlined in Chap. 2 and Sect. 6.4.3
arise:

1. Non-toleration of novelty of any sort, because it requires update of the whole
commonsense knowledge, since it is not adequately divided into typical and
atypical cases, norms and exceptions;

2. Incapability to change plan online when necessary, because it requires substantial
computational efforts to exhaustively search the space of all possibilities;

3. Easy deviation from a reasoning context, caused by an insignificant detail,
because there is an extremely high number of issues to address at each reasoning
step; each such issue is seemed to be plausible and there is no proper feature
selection mechanism present;

4. Lack of capability to distinguish more important from less important features for
given situation, because feature importance is mainly measured in the context of
being a justification of a default rule.

5. Inability to properly perceive the level of generality of features appropriate for a
given situation is due to the problem of estimating which generality of a given
feature is most typical, and which is less typical to be applied as a justification of
a default rule.

http://dx.doi.org/10.1007/978-3-319-39972-0_2
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We observed that a loss of reasoning efficiency due to improper use of default
rules leads to a wide range of decision-making problems reflected in behavioral
characteristics of CwA. To teach children how to overcome their decision-making
problems, we developed a set or exercises encouraging default reasoning in a
number of environments (Chap. 8). We will evaluate how the learners transfer
acquired default rules from artificial to real world situations, which is more feasible
task for the target category of children with autism than forming new rules to
match the real world environment. This step requires the learners to be capable of
transferring acquired reasoning patterns from simulation to real world environment
and their application to real-life objects. The evaluation of the developed set
of exercises has shown that performance of children with autism in real-world
situations can be dramatically increased (Sect. 8.9.3).

Therefore, having an artificial environments for teaching children with autism
and other mental illnesses how to adjust their actions in specific domains is
beneficial. An alternative to this of postponing such training to the mental age when
learners can be expected to form new rules in the real world independently would
delay the overall development of learners and therefore seems unacceptable.

Exploration of the peculiarities of autistic reasoning is an emerging area involv-
ing logic, linguistic, psychology and philosophy has been conducted by van
Lambalgen and Smid (2004). The ideas in this area have just started to contribute
to design of rehabilitation software for autistic children, and the current book is
one of the first linking these areas. Pijnacker et al. (2008) investigated inference
patterns which can be revised as new informaticon is coming. The authors used
a behavioral task to investigate conditional reasoning and its suppression. In the
suppression task (Sect. 2.5.1, McKenzie et al. 2011) a possible exception was
made salient, which could prevent yielding a conclusion. This study confirmed
our finding (Galitsky and Peterson 2005) that CwA experience difficulties with
yielding conclusions in the environment of exception. This is due to the fact that
CwA require a flexibility in thinking to adjust to the context, which is frequently
not present. Similar to our earlier studies, Pijnacker et al. (2008) hypothesized that
CwA experience difficulties handling exceptions in reasoning sessions, and also
discussed the neural underpinnings of reasoning in autism. Conditional reasoning is
a high-order cognitive process involving such components as linguistic processing,
information access in long-term memory, maintaining and manipulating verbal
information in working memory, attention and inhibition of responses. Some of
these components belong to executive function (Sect. 2.5.2). Executive functions
are possibly regulated by frontal lobes. Studies including (Goel and Dolan 2004)
investigated the neural basis of reasoning and found that frontal-temporal and
frontal-parietal networks are involved in deductive reasoning.

The model presented here applies techniques of logic to an issue of psychology,
and so raises the issue of the relation between the two. Logic is the study of
reasoning, and psychology is the study of the mind and behavior, and so one
might expect a consonant relationship between the two, since minds (the subject of
psychology) use reasoning (the subject of logic) to arrive at decisions, beliefs, and
actions. Since the end of the nineteenth century, however, there has been a tendency

http://dx.doi.org/10.1007/978-3-319-39972-0_8
http://dx.doi.org/10.1007/978-3-319-39972-0_8
http://dx.doi.org/10.1007/978-3-319-39972-0_2
http://dx.doi.org/10.1007/978-3-319-39972-0_2
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for work in logic to focus on a particular type of reasoning: one that constitutes a
small fraction of the range used in real life. This is ‘monotonic’ reasoning, in which
a conclusion, once inferred from a premise, will not be altered or retracted in light
of further evidence.

Our interest to non-monotonic reasoning is motivated by the fact that it is in
this area that people with autism show difficulty. Monotonic reasoning patterns,
as found for example in arithmetic, seem to be much less problematic in autism
(excluding reasoning about mental worlds). This monotonicity is reflected in what
has become a standard definition of valid deduction in logic: X follows from Y if it
is impossible that Y be true and X false. It would be inadmissible that Y is accepted
and X rejected, even given further evidence.
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Chapter 7
Autistic Learning and Cognition

Boris Galitsky and Igor Shpitsberg

Having explored how reasoning works in mental and physical worlds, and how it can
be broken in humans and artificial systems, we now focus on the domains tightly
connected with reasoning: automated learning and cognition. In these domains,
autistic and engineering learning systems experience substantial difficulties, and we
will attempt to understand their nature.

We first describe the peculiarities of autistic cognition and introduce the concept
of active learning. We then informally describe the autistic active learning system
and explain the appearance of the features of autistic cognition. After that we
introduce the active learning system Jasmine that is intended to simulate the normal
vs autistic cognition and describe the respective cognitive pathways. Finally, we
present our experiment with forming and updating hypotheses in Jasmine setting
by humans and outline the deductive system for reasoning about action based on
an extension of Jasmine, demonstrating how such hybrid reasoning domain can
possible be implemented in the brain and in a robot.

7.1 Autistic Cognition

Autistic peripheral vision is significantly more developed than the central, frontal
vision, unlike the vision of CC. Peripheral vision is a part of vision that detects
objects outside the direct line of vision. For instance, when one reads a word on
a page, she is using her central vision, but it is her side vision that tells her if the
word is at the beginning or end of a sentence, or at the top or bottom of a page.
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The peripheral vision also tells one where to look if someone enters the room or
if a car is approaching from the side. Most people are not aware of the limitations
that would exist without peripheral vision, because they are constantly moving their
eyes in order to focus with the central vision.

The difference between central and peripheral vision becomes apparent when
one understands the visual function of the eye. The eye works like a camera with
two lenses – the cornea at the front of the eye and the natural crystalline lens behind
the pupil. The cornea is responsible for about three quarters of the eye’s focusing
power, while the natural lens adjust the image before it is send on the retina at the
back of the eye. Central vision is relatively weak at night or in the dark, when the
lack of color cues and lighting makes cone cells far less useful. Rod cells, which
are concentrated further away from the retina, operate better than cone cells in low
light. This makes peripheral vision useful for seeing movement at night. Since CwA
try to perceive the real world with this deficient cognitive system, they mostly hear
reflected sounds, and their vision is based on peripheral perception.

Children with autism often have a difficult time answering the question of
“Where is it?”. Many of the self-stimulatory behaviors that are seen as the problem
in CwA are actually the children’s own solutions to a problem that they are having.
Behaviors such as toe walking, hand-flapping, and rocking back and forth are a
child’s solution to his problem of answering the question of “Where is it?” in his
environment. Children with autism often have a difficult time understanding where
something is in space, where they are in space and where things are in relation to
themselves (Fig. 7.1).

Another vision problem that leads to repetitive/stereotyped behaviors in children
with autism is the poor integration of central visual detail and peripheral visual

Fig. 7.1 Recognizing a
person in an unusual outfit
requires substantial deviation
from learned patterns and
multi-modal perception
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detail. Some people with autism have difficulty understanding the whole because
they only seem to notice the part. For example, a child may look at a picture of a
garden and focus in on one of the trees, but not understand that there are many other
trees in the picture that make up the garden.

Crossing a busy street, a person who can combine central and peripheral visual
detail will understand that there are many cars driving by, and that crossing the
street before all the cars have passed would be dangerous. At the same time, CwA
whose limitations are in using central and peripheral information simultaneously
may get stuck on the blue road sign across the street. The child may seem to only
notice the blue road sign and will ignore the cars going by. This is the reason why
a child may not seem to notice the cars even though it is obvious to the frightened
and upset parent.

Face recognition is another day-to-day activity that is affected by poor integration
of central and peripheral visual detail. Some people with autism may tend to lock
into one part of the face instead of seeing the whole. They will see a nose, an
ear or a chin, but not be able to combine this information into forming the entire
face. It is like taking pieces of a jigsaw puzzle and spreading them apart rather than
placing them all together. Separating the individual pieces makes it more difficult
to understand and consistently recognize the picture. Consequently, some children
with autism may not be able to consistently recognize even their primary caregiver.

One of the important building blocks in developing social interaction is a skill
called joint attention (Sect. 2.5.7, Mundy and Crowson 1997). Joint attention is the
ability to look at the same thing at the same time as another person through the
use of eye contact and gestures. CwA often have poorly developed joint attention.
In particular, children with autism often have a greater deficit in Initiating Joint
Attention. The purpose of it is to share interests with others. Naturally, one of the
behaviors associated with autism is the lack of spontaneous sharing of likes and
dislikes with others.

The ability to perform Initiating Joint Attention is controlled in the brain by four
areas, one of which is the Frontal Eye Fields (FEF). In clinical studies that take
pictures of the brain during social situations, the part of the brain that is shown
to be the most consistently active is the FEF. These pictures of the brain provide
neurologic evidence that the FEF and the functions that it is responsible for plays an
important role in social interaction.

The FEF is responsible for starting eye gaze movements, fine eye movements
and visual attention. Eye gaze movements, or the ability of the brain to accurately
move the eyes to an object of interest, is important for joint attention. In turn, joint
attention is important in developing social skills. Vision, therefore, plays a vital role
in social interaction because eye movements and subsequent visual attention affects
the development of joint attention. Children later diagnosed with autism were more
likely to repeatedly spin and rotate objects. They were also more likely to explore
objects in unusual ways, like glancing sideways at them or starting intently at them
for prolonged periods.

The study (Kennedy Krieger Institute 2009) examined patterns of movement
as CwA and CC learn to control a novel tool. The findings suggest that CwA
learn new actions differently than typically developing children do. As compared

http://dx.doi.org/10.1007/978-3-319-39972-0_2
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to their typically developing peers, children with autism relied much more on their
own internal sense of body position (proprioception), rather than visual information
coming from the external world to learn new patterns of movement. Furthermore,
researchers found that the greater the reliance on proprioception, the greater the
child’s impairment in social skills, motor skills and imitation.

The study findings also provide support for observations from previous studies
suggesting that autism may be associated with abnormalities in the wiring of the
brain; specifically, with overdevelopment of short range white matter connections
between neighboring brain regions and underdevelopment of longer distance con-
nections between distant brain regions. The findings from this study are consistent
with this pattern of abnormal connectivity, as the brain regions involved in propri-
oception are closely linked to motor areas, while visual-motor processing depends
on more distant connections.

7.2 Active Learning in Computer Science

Traditionally, machine learning has focused on the problem of learning a task from
labeled examples only. In many applications, however, labeling is expensive while
unlabeled data is usually ample. This observation motivated substantial work on
properly using unlabeled data to benefit learning, and there are many examples
showing that unlabeled data can significantly help. There are two main frameworks
for incorporating unlabeled data into the learning process.

The first framework is semi-supervised learning (Zhu 2005), where in addition to
a set of labeled examples, the learning algorithm can also use a (usually larger) set
of unlabeled examples drawn at random from the same underlying data distribution.
In this setting, unlabeled data becomes useful under additional assumptions and
beliefs about the learning problem. For example, transductive SVM learning (Yu
et al. 2006) assumes that the target function cuts through low-density regions of
the space, while co-training assumes that the target should be self-consistent in
some way. Unlabeled data is potentially useful in this setting because it allows one
to reduce the search space to a set that is a-priori reasonable with respect to the
underlying distribution.

The second setting, which is the basis of our model for autistic cognition, is active
learning. Here the learning algorithm is allowed to draw unlabeled examples from
the underlying distribution and ask for the labels of any of these examples. The hope
is that a good classifier can be learned with significantly fewer labels by actively
directing the queries to informative examples. One approach is to collect random
samples, and another to collect samples which are believed to improve recognition
accuracy.

Active learning is typically defined by contrast to the passive model of supervised
learning (Fig. 7.2). In passive learning, all the labels for an unlabeled dataset
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Fig. 7.2 Active learning among the supervised learning family of methods

are obtained at once, while in active learning the learner interactively chooses
which data points to label. The great hope of active learning is that interaction can
substantially reduce the number of labels required, making learning more practical.
This hope is known to be valid in certain special cases, where the number of
labels needed to learn actively has been shown to be logarithmic in the usual
sample complexity of passive learning; such cases include thresholds on a line, and
linear separators with a spherically uniform unlabeled data distribution (Dasgupta
2005). Many earlier active learning algorithms, have problems with data that are not
perfectly separable under the given hypothesis class. In such cases, they can exhibit
a lack of statistical consistency: even with an infinite labeling budget, they might
not converge to an optimal predictor (Dasgupta et al. 2007).

Human learning to recognize the features of external world is active learning by
nature. It would be hard to explain the problem of autistic cognition relying on the
traditional supervised learning framework, since both CC and CwA have the same
external world that contains the fixed training set to operate. We hypothesize that by
breaking the framework of active learning, CwA deviate from CC in their cognitive
process resulting in faulty recognition system.

Active learning is also used for recommendation systems. The totality of human
users then becomes an environment where a learning system picks the elements
of its training set. There is an opinion that an active learning from users can be
bothersome, intrusive process, but if the items presented to the user are interesting,
then it could be both a process of discovery and of exploration. Some recommender
systems provide a “surprise me!” button to motivate the user into this explorative
process, and indeed there are users who browse suggestions just to see what there
is without any intention of buying. Exploration is crucial for users to become
more self-aware of their own preferences (changing or not) and at the same time
inform the system of what they are. If not properly trained, an active learning-based
recommender system may “behave” badly and provide irrelevant results.
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7.2.1 Performance of an Active Learning Systems

The performance of active learning is usually assessed in terms of how much data
is required to reach some given performance. This is compared to achieving the
same performance by learning from randomly sampled data from the same set
of unlabeled data (Olsson 2008). However, only taking the amount of data into
consideration is not always appropriate. When some types of data is less available
and is harder for a user to annotate, or when the acquisition of certain types of
unlabeled examples is expensive, the cost of learning is expressed differently. It is
necessary to model the cost of learning as associated with other characteristics of
the data and the annotation scenario than simply the total amount of data.

A cost model should reflect the constraints currently in effect; for instance, if
annotator time is more important than the presumed cognitive load put on the user,
then the overall time should take precedence in the evaluation of the plausibility of
the method under consideration. If on the other hand a high cognitive load causes the
users to produce annotations with too high a variance, resulting in poor data quality,
then the user situation may have to take precedence over monetary issues in order to
allow for the recruitment and training of more personnel. Using a scale mimicking
the actions made by the user when annotating the data is one way of facilitating a
finer grained measurement of the learning progress.

7.2.2 Monitoring, Assessing and Terminating the Learning
Process

The monitoring, assessing and terminating of the active learning process go hand
in hand. The purpose of assessing the learning process is to provide the human
annotator with means to form a picture of the learning status. Once the status
is known, the annotator has the opportunity to act accordingly, for instance, to
manually stop the active learning process. The purpose of defining the stopping
criterion is slightly different than that of assessing the learning process. A stopping
criterion is used to automatically terminate the learning process, and ideally the
realization of the definition, e.g., the setting of any thresholds necessary, should not
hinder nor disturb the human annotator.

It should be remembered that there is a readily available way of assessing the
process, and thus also to be able to manually decide when the active learning
should be stopped; to use a marked-up, held-out test set on which the learner is
evaluated in each iteration. This is the way that active learning is usually evaluated in
experimental settings. The drawback of this method is that the user has to manually
annotate more data before the annotation process takes off. As such, it clearly
counteracts the goal of active learning and should only be considered a last resort.

A very common way of monitoring how an active learner behaves is by plotting
a learning curve, typically with the classification error or F-score along one axis,
commonly the Y-axis, and something else along the other axis. The X-axis is usually
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Fig. 7.3 The chart for active learning loop

indicating the amount of data seen – depending on the granularity of choice for that
particular learning task it can be for instance tokens, named entities, or sentences –
or the number of iterations made while learning. The purpose of a learning curve
is to depict the progress in the learning process; few variations of how to measure
progress exist, and consequently there are few differences in how the axes of a graph
illustrating a learning curve are labeled (Fig. 7.3 on the top-right, Olsson 2008).

7.3 Active Learning and Autistic Development

To demonstrate why a human learning system needs to learn, we employ a paradigm
of an active learning system that is rewarded for successful recognition of input
stimulus of the real world. Not just the system should be capable of learning, but it
needs to decide on which elements of the external world to use to form a training
set. In both CC and CwA learning has to be functional, and active, otherwise CwA
would not be capable of learning at all.

7.3.1 Hyper-sensitivity

We hypothesize that a root cause of autistic cognition is hyper-sensitivity to input
stimuli (Chap. 2). To build as simple model as possible and to observe how many
features of autistic behavior can be covered by this model, we select only a single

http://dx.doi.org/10.1007/978-3-319-39972-0_2
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deficiency. We then assume that the rest of active learning functions properly and
will observe that just the hyper-sensitivity feature of the learning system leads to a
broad range of resultant autistic features.

Each child is born with certain perception capabilities. Each child is expected to
receive information in a way that fits her perception capabilities. If a child can see so
much, can perceive a certain amount of visual information, then he should be able to
process this amount; otherwise the receiving mechanism gradually becomes weaker
and weaker. If he can get a certain amount of tactile information, then he expects
a corresponding amount of touching. The same is true for any kind of feeling: if
a child can feel that much, she is capable of processing that much emotional and
feeling-related information.

In autism, the very process of perception of a signal of any sort is discomfort,
because an amount of typical real-world amount of information exceeds their
perception capabilities due to CwA’s hyper-sensitivity. In CC, 80 % of stimuli
perception activity leads to positive experience (when stimuli do not exceed
perception capabilities), and 20 % – to negative. A CC makes a choice based on
perceived stimuli, orienteers in exploration. CC decides for herself: “I will pursue
80 % and will avoid 20 %.” If the amount of positive experience associated with
exploration exceeds the one for the negative, active world exploration proceeds.
Otherwise, if negative experience and failures prevail, then exploration stops and the
child chooses a mechanism to avoid exploration (Fig. 7.4). CwA and children with
Down syndrome, cerebral palsy, and other mental illnesses experience substantial
negative experience from the perception process. Because of the hyper-sensitivity
of their perception they fail up to 95 % of perception tasks and succeed in only 5 %.
Therefore their interaction with the external world is formed in a way to minimize
negative experience.

Hyper-sensitivity leads to a failure to learn to recognize stimuli properly, since
the system can only learn to recognize patterns with extremely high similarity (as

Fig. 7.4 Protecting themselves from the stimuli of the real world
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we will show below). This failure leads to a negative experience associated with
learning, and as a result CwAs do not investigate the world for the sake of pleasure.
Instead they fence themselves from it.

For both CC and CwA, everything that is not recognized is considered dangerous.
CwAs tend to consider all new stuff potentially dangerous. For CC clear thought is
attractive, but in case of autism a clear thought may cause too strong feeling and can
become unattractive. So CwA tries not to fully comprehend anything but instead
stays in some proximity to a full understanding of some stimuli or some concept.

7.3.2 Autistic Adaptation

Humans are usually very good at adapting to environments. The human body readily
responds to changing environmental stresses in a variety of biological and cultural
ways. We can acclimatize to a wide range of temperature and humidity. When
traveling to high altitudes, our bodies adjust so that our cells still receive sufficient
oxygen. We are also constantly responding in physiological ways to internal and
external stresses such as bacterial and viral infections, air and water pollution,
dietary imbalance, and overcrowding. This ability to rapidly adapt to varying
environmental conditions has made it possible for us to survive in most regions
of the world. Humans live successfully in humid tropical forests, harsh deserts,
arctic wastelands, and even densely populated cities with considerable amounts of
pollution. Most other animal and plant species are restricted to one or relatively few
environments by their more limited adaptability.

To adapt, children try to learn. To learn how to learn, there is a genetic mechanism
on how to learn most important skills and patterns to recognize. An amount of
information coming from the outside world is huge, so we cannot process it all. We
select something with a high repetition frequency, primary value for learning. This is
phylogenetically set in a way that we learn repetitive events. It does not make sense
to learn patterns that do not re-appear because there is no practical value in this kind
of knowledge. Only when one learns the patterns that will need to be recognized in
the future, one gets reward.

7.3.3 Active Inductive Learning of CwA and CC

If the human learning system exists in a framework of a fixed training sets and
not an active learning, a motivational structure of learning would be outside of the
system and it is unclear why a human would learn at all and how to reward one for
successful learning results. In an active learning system we have a notion of reward
for a successful recognition session, so a human agent learns, explores the external
world so that later he would be rewarded for this, having successfully completed a
recognition or prediction task.
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In active learning of CC, most of times the exploration experience is positive.
A child views, hears, touches, tastes a new object, memorizes its images in various
modalities, and next time before perceiving this or other similar object, this child
knows what to expect and then confirms his expectations. This happens in most
exploration scenarios, unless this child encounters something too hot or cold, sharp
or heavy, too bright, smelling bad or tasting bad.

When a child touches a cup of hot coffee and burns his hand, she resets his
learning session and tries again after some time. After a certain number of attempts
she forms and memories a rule from the data “brown water and smoke ! hot water,
may burn me”

“no smoke above the glass ! will not burn me, safe to touch and explore”. To
form these rules, this child follows the rule of induction, finding the commonalities
between the cups where she burns and the ones she does not burn. To form the
adequate training set for this induction, it is necessary to diversify these sets,
selecting as distinct cups as possible. To form these rules properly, the child should
operate in a feature space with limited dimension (size, temperature, shape, and
color).

CC’s adaption follows the steps:

• Touch a hot cup
• Feel pain – reset (cry)
• Touch it again, until experience is formed and memorized.

Whereas CC takes everything and some day takes a hot cup with smoke, burns
himself and eventually is capable of generalizing and avoidance as a result of this
generalizing, CwA burns himself from everything, so everything is avoided. Active
inductive learning is based on the skill to generalize experimental observations.

Being a hyper-sensitive, and possessing higher systemizing skills, a child with
autism would be operating in a much higher dimensional feature space (shape of
the bottom, shape of handles, shape of cracks, reflection of light, a small bug on a
surface, etc). Then it is much harder to form a rule for cold/hot cup because there are
too many features involved. Forming invalid, too specific hypotheses, CwA keeps
burning his hand, and is overall getting a negative exploration experience. CwA
nevertheless keeps exploring, and keeps receiving strong stimuli in the very high
dimensional space where it is almost impossible to form correct decision rules.
Therefore, CwA keeps receiving negative rewards for his recognition results in the
real world.

Why do CwAs, having their negative exploration experience re-occurring, keep
exploring? When a normal adult encounters an unpleasantly strong stimulus such
as very loud noise or very bright light, she knows it will end soon so no reason
for distress. On the contrary, CwA does not know that receiving strong stimuli is
something abnormal, and he does not expect different kinds of stimuli, so he keeps
receiving them in spite of negative rewards, attempting to minimize these negative
rewards.

For both CC and CwA, switching attention mechanism allows avoidance of a
negative experience. As CC keeps switching to new stimuli instead of focusing
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Fig. 7.5 Teaching proper
orienteering in space and
switching attention

on one and exploring it, he avoids negative exploration experience. For CC a
mechanism to explore prevails, but protective mechanism of avoidance is sometimes
necessary. And for CwA avoidance becomes a norm (Fig. 7.5).

Let us consider normal and autistic development for children in educational
environment. Unlike exploring the real world in early childhood, educational
environment is usually explicitly rewarding: a teacher expresses compliments to
students upon successful completion of exercises. In normal education, CC starts
first grade with optimism because he have been receiving compliments so far.
She starts learning with high interest because she believes that she is going to be
successful, and she will keep hearing compliments. Sometimes she is not interested
in her actual achievements but instead concerned with how her peers and the teacher
estimate and value them.

On the contrary, if CC gets an unkind teacher who is always negative in assessing
his results, he does some exercises well and some not so well, and he gets negative
comment for the latter. His motivation for study goes down, and he stops receiving
pleasure from the learning process. His thinking tends to avoid problems; instead he
focuses on what he likes, like after-school activities.

With a friendly teacher, CwA can enjoy a school environment. Interacting with
the real (hostile for CwA) world or with an unfriendly educational environment,
CwA would continue his autistic development.

7.3.4 Learning Repetitive Patterns

In the conditions of hyper-sensitivity and overly strong stimuli, CwA is only capable
of recognizing a pattern that is extremely close to an element of the training set. A
typical case of high-similarity stimuli is repetitive events.
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As an example of such stimuli in visual space, let us consider recognition of
(1) child’s mother and (2) repetitive TV commercials. Since the perceived image of
mother’s face varies more significantly (facial expression, face position, condition of
illumination) than the perceived image of TV commercials (which are broadcasted
over and over again; they essentially the same stimuli), the latter turns out to be
a preferred type of stimulus that drives the child development. At the same time,
the former stimuli can be filtered out as being too strong (due to its variability and
therefore higher recognition efforts). A partial case of stimuli with high similarity
is repetitive stimuli, which go through the whole path of autistic development.
All children select to use most repetitive stimuli among the other stimuli for their
training sets; however, autistic children only select most repetitive stimuli and do
not proceed beyond them. As a result of this initial problem, CwA stop exploring
human behavior and complex behavior of physical objects. Having stopped their
explorations, they do not communicate properly with their mothers and other
humans because it requires recognition of patterns with a broader range of features.

Usually, most repetitive events for a baby are mothers’ behavior. She is always
nearby, always saying “hi”. Babies get used to their mothers as a typical envi-
ronment, so they accept the belief “I need to adopt to my mothers, learn to
recognize her.” Children from orphan houses have on average lower intellect (Ghera
et al. 2009) because at the very beginning they don’t have a source of repetitive
objects to learn from, and “learning to learn” occurs much slower. A mother
is a calibrating instrument for the building of learning mechanism for a child.
Considering re-appearance of the mother as the repetitive event, a baby builds its
learning mechanism to properly recognize if an approaching object is the mother or
not. The baby develops an adaptation rule that is essential for pattern recognition:”If
I do too many false positives, increase the threshold. Otherwise, if I do too many
false negatives, decrease the threshold.”

Mother’s reappearance has its own accuracy in terms of new positions, illumina-
tion, sounds and frequency, which becomes the set of patterns for a child to optimize
her recognition threshold. The mother would never say “hi” in exactly the same
way, so the baby should be able to deal with some level of deviation, recognizing
the sound. Intonation is different; the mother holds the baby in different ways,
wears different clothes, smells differently, etc. The baby can recognize patterns with
substantial deviation.

Usually the baby looks for most repetitive events and finds his mother. In the case
with a huge amount of advertisement, repetitive things on radio and TV, machines
roar in the same way, noise from appliances and images can trigger the choice of the
learning source of the best repetitive pattern. After that, the baby stops recognizing
the events which have lower precision in their repetition, and looses the skills to do
it. Then the mother is rejected because she is too different in appearance.

Repetitions are natural for CC as well, CC repeats the same movement or
perception activity, but then proceeds to the exploration of the world to change it
and make it better for him. CC applies already developed recognition mechanisms,
tuned and tested in repetitions. At the same time, CwA remains in the phase of
receiving primary feelings. The role of repetition is not tuning but a reproduction
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of the same familiar pleasant feelings. By self-stimulation (stereotypy) CwA form
feeling directly. Unlike CC playing with a ball, a CwA avoids catching it and passing
it over to another player. Instead, CwA would just hold and squeeze a ball. For a
CwA the willingness to change the world to make it better is reduced to maintaining
it in a current, familiar form, since there is a lack of positive experience in exploring
and recognizing it.

7.3.5 Stereotypy

In case of autism, there is a failure to determine what is a repetitive event and what
is not. CwA consider repetitive only the events that repeat with ideal frequency.
Tremendous volume of external information does not make it into CwA. CwA stops
perceiving whole stimuli of real world and only captures elements of these stimuli.
This is because the whole stimuli do not fit into the narrow gap formed by autistic
cognition trained on the fully repetitive training sets. CwA start to perceive objects
and events by their small parts. In these parts, repetitions are most accurate.

At the age of 18 months CwA with their available perception mechanism
encounter a necessity to perceive stimulus as a whole. Then the whole pattern
is formed not at the level of causal links between parts, like CC, but instead at
the level of unordered sets of these parts. CwA are now getting used to perceive
individual parts. When it is necessary to perceive the whole object, CwA attempts
to combine these individual parts. CwA continues perceive elements, but not the
whole stimulus. CwA want to perceive the world as a whole, but lack a mechanism
to do that.

In terms of multi-modal perception, visual, speech and auditory patterns are
perceived separately and are not coordinated (Figs. 7.6 and 7.7). In autistic brain
sensory integration does not occur (Bogdashina 2005). Multi-modal integration is
based on amplification of stimuli, but it is unwanted for CwA, since stronger stimuli
cause negative feeling. Neither binocular vision nor binaural hearing is developing.
Whereas for CC vision prevails, it is not the case for CwA where hearing is more
important, since sound is not as intense as light and its perception is associated with
fewer failures.

Making efforts to protect themselves from stimuli which are too strong, CwA
develop a mechanism to filter out these strong stimuli (which are also more
informative) and perceive weaker ones, less informative, but with a higher similarity
with each other. Due to the hyper-sensitivity, a child with autism is over-selective to
the stimuli of external world. We attempt to simulate the phenomenology of early
development of autistic cognition as a choice of perception mode in the conditions
of hyper-sensitive sensory system:

1. A child selects, or capable of, recognizing humans such as parents and relatives,
which requires multimodal perception, classification of rather distinct images



258 7 Autistic Learning and Cognition

Fig. 7.6 Example of
avoidance behavior

Fig. 7.7 Stereotypy in children with autism

into a single class, and is then capable of further emotional and mental develop-
ment. Selecting to recognize the subjects of the mental world leads to a normal
adaptation.

2. A child selects to recognize highly repetitive artificial stimuli such as TV
advertisement, smartphone images and sounds, passing by cars, and other
subjects of the physical world with extremely high similarity. Being forced to
recognize the subjects of the physical world only leads to autistic adaptation.
Autistic adaptation implies the avoidance behavior to ignore stimuli other than
highly repetitive ones (Fig. 7.8).
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Fig. 7.8 Movement and
perception of space in autistic
development (Sunny World
2013)

Human and machine intelligence both experience a pleasure from predictability.
Control children like to play games, which reflect the world, but reduce its
representation to a structured of a limited complexity. Playing games, CC can
tolerate a broad range of variability, and wide spectrums of variations are allowed.

On the contrary, CwA will play in a game with zero variability; their doll would
say the same expression in the same way. No diversity in behavior can be handled
within the comfort zone of CwA. Whereas CC play with many little cars, CwA
would arrange cars in rows: they can only handle a simple element of repetition
that is familiar, and therefore rewarding. The range of deviation for repetition is
different between CwA and CC: under hyper-sensitivity a totally novel signal is
almost like pain.

Stereotypy or self-stimulatory behavior refers to repetitive body movements
or repetitive movement of objects being held by an individual. This behavior
is common in many individuals with developmental disabilities and those who
experienced institutional care (Bos et al. 2011); however, it appears to be more
common in autism. In fact, if a person with another developmental disability exhibits
a form of self-stimulatory behavior, often the person is also labelled as having
autistic characteristics.

Stereotypy includes repetitive or ritualistic body movements, posture, or utter-
ance that serves no social function (Rapp et al. 2004). Stereotypies may be simple
movements such as body rocking, or complex, such as self-caressing, crossing and
uncrossing of legs, and marching in place. Often children with autism engage in
these repetitive, restricted, and stereotyped patterns of behavior. Stereotyping is
caused by sensory deprivation and lack of afferentation. Stereotypic behaviors can
take many unusual forms.
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Stereotypy is a natural consequence of autistic adaptation. CwA’s cognition is
unable to recognize real stimuli of the world and therefore recognizes auto-created,
stereotypical patterns, to be rewarded as an active learning system. CwA follows
an “easier” way of perception, considering only very similar patterns coming as
a sequence. Then this child is deprived of mental and emotional development due
to his incapability to perceive humans and their mental attitudes (Shpitsberg 2005;
Galitsky and Shpitsberg 2015).

Not only CwA demonstrate feature of autistic adaptation, learning the external
world. Blind persons sometimes develop self-stimulation, as well as Down syn-
drome (due to a mental retardation) and cerebral palsy (due to the inability to hold
subjects). In all these cases, to get a reward for successful recognition (having
a defective recognition system), CwA are forced to pose themselves recognition
problems they are capable of handling via stereotypy, creating artificial patterns to
recognize.

Notice that if a machine learning system is fed with very similar elements of
the training set, it will have a problem of recognizing even very similar objects
to the training ones. Moreover, it will be unable to recognize the ones with
significant deviation from the elements of the training set, therefore the whole
learning capability will be lacking. To be rewarded, such learning system would
need to find input stimuli that are alike to be able to recognize them. At the same
time, to avoid unsuccessful recognitions, the learning system would need to do
without complex stimuli, especially those requiring multiple modality signals to be
recognized (visual, auditory, tactile; Fig. 7.9). Selectively blocking of a particular
modality allows avoiding a stimulus that is too strong (for a machine learning
system, too different to what has been in the training dataset). Hence we conclude
that a hyper-sensitivity may lead to a condition where links between perception
system for various modalities are not reinforced and therefore become dysfunctional
at the next steps of autistic development.

Fig. 7.9 Visual and tactile
multi-modal perception
(Sunny World 2013)
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Because autistic sensory and behavior control mechanisms does not fit the
real world, children with autism experience failures after failures, forming their
behavioral experience, unlike control children which are fairly successful at learning
these control mechanism from real world. This is true for autism as well as other
disorders, such as tonic regulation under cerebral palsy.

The only way of successful learning from the real world is permanent confir-
mation that the learned control patterns are adequate to the real world. The control
patterns are further advanced and adjusted to changes in the real world if the learner
feels a success of newly formed control patterns.

Under normal development, based on success in her own investigative experi-
ence, a child builds an adaptive model of behavior. This model is oriented to the
consecutive investigation of the real world and successful adaptation. All behavioral
forms target receiving various feeling of the real world, and as a result various forms
of communication with this world develops, including speech. Also, the experience
of social interaction is gained.

Under anomalous development, a child experiences a constant discomfort inter-
acting with the real world. There are many reasons for this: a child with autism
cannot grab an object, mentally retarded child cannot understand what an adult
wants from him, and a child with autism experiences discomfort from interaction
with another person or an object from the real world. Such a child rebuilds his
adaptation mechanisms so that feelings come from his internal world, not the real
world. This child satisfies his natural desire in feelings by means of stimulus he
forms himself. In this case he pleases himself by the successful feelings at the
both tactile/sensory and intellectual levels. In the case of infantile type of mental
development of children with cerebral palsy we encounter an extensive and saturated
world of phantasies. This world of phantasies is intended to replace the negative
sentiments associated with the perception of the real world. As a result, the behavior
of such child becomes “autistic”. The desire to receive feelings from the real world
is replaced by the desire to receive feelings that are formed by this child “directly”,
without physical means. In this case the self-stimulation (stereotypy) of a child with
autism, mental retardation and cerebral palsy can be similar.

The purpose of stereotypy is to assure the comfort feelings in the conditions
when the feelings from the real world are impossible. Under such development
scenario it is impossible to form an adequate adaptation system for the real world.
We refer to this scenario as dis-ontogenesis; under this scenario the demand to
develop communication skills is minimal down to the total lack of the necessity
to communicate.

We suggest the anomaly occurs in the process of early formation if sensory
system (before the age of 1.5–2 years), and afterwards, as a result of usage of the
improperly formed sensory system, “sensory stereotypy”.

Self-stimulation can be of “reinforcing” as well as “substituting” natures,
depending on how a child is focused on the feature selection process and his
capability on combining stereotypical and arbitrary activities. Hence a child with
autism stops at an “autistic” self-regulation mechanism as most adaptive for him.
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Stereotypy can involve any individual sensing modality or cover all modalities.
For vision, CwA may staring at a light, do repetitive blinking, move his fingers
or the palm in front of his eyes, or do hand-flapping. For the auditory modality,
CwA can be tapping ears, snapping fingers, or making vocal sounds. In the tactile
space, a child may rub the skin with her hands or with another object, or scratch.
Vestibular rocking, placing body parts in her mouth and licking as taste stereotypy,
and sniffing people as smell stereotypy are all examples in other sensory modalities.
The stereotypy behavior can take the form of mouthing objects, hand flapping, body
rocking, repetitive finger movements, nonfunctional or non-contextual repeated
vocalizations. Other forms include toe walking, spinning objects, requiring order
and predictability in routines, immediate or delayed echolalia (repeating things that
others have said), running objects across one’s visual field, or dropping items and
watching them fall.

According to our model, recognition of visual, auditory, tactile, taste and smell
patterns occurred with the training set of extremely high, repetitive similarity. As a
result the recognition system in all these modalities can only successfully recognize
repetitive or same stimuli, and self-stimulation is necessary to feed the recognition
system with patterns which can be recognized successfully. Psychological theories
confirm that self-stimulation is exhibited to calm a person, to adapt her in her
hypersensitive state. Since the environment is too stimulating and the person is in
a state of sensory overload, he engages in these behaviors to block-out the over-
stimulating environment; and his attention becomes focused inwardly.

Alternatively, there is a popular opinion that due to some dysfunctional system
in the brain, the body calls for stimulation. CwA engages in this form of behaviors
to excite or arouse the nervous system. One specific theory states that these
behaviors release beta-endorphins in the body (endogeneous opiate-like substances)
and provides the person with some form of internal pleasure (Sandman and Kemp
2011). It has been also shown that stereotypic behaviors interfere with attention and
learning. Interestingly, these behaviors are often effective positive reinforcers if a
person is allowed to engage in these behaviors after completing a task.

There are many possibilities to reduce or get rid of stereotypic behaviors,
such as physical exercise. Also, providing a CwA with alternative, more socially-
appropriate, forms of stimulation helps such as chewing a gum instead of biting her
hand. Drugs are also used to reduce these behaviors; however, it is not clear whether
the drugs actually reduce the behaviors explicitly by providing internal arousal or
indirectly (e.g., slowing down one’s overall motor movement).

Self-stimulation is normal process for CC and adults. A man restores his
psycho-emotional balance by receiving a sensory input which is expected. These
self-stimulation activities must be accurate, totally predictable, ideal: a person
first expects certain feeling and then receives it, being awarded by a positive
recognition experience. For different people this may involve smoking, eating
sweet, biking, solving a math problem etc. When smoking, it has to be the same
cigarette, because all feelings need to be predictable. Humans need to receive
known feelings, old feelings, familiar feelings, since new feelings require too many
computational/recognition resources. Self-stimulation requires high accuracy: the
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patterns should be exactly the same: for example, smoking and coffee together
works well since remembered by association stimuli. And this pleasure can be
associated with any sensory modality.

Self-stimulation can be based on rhythms, stem self-stimulation, reverse breath-
ing, swallowing, rocking. Also, higher-level self-stimulation includes attaching
palm to mouth to strengthen the sound, repeating text. Since a necessity to receive
similar feeling is physiologically necessary for all humans, auto stimulation is
common, but CC spend a fifth part of their time on self-stimulation and the rest
on exploration, and CwA vice versa.

7.3.6 Ignoring Important Features

When one observes the behavior of a child with autism 2–3 year old, it is the second
stage of the development process. At this second stage, a child tries to interact with
the real world based on the anomalous sensory system built on the first stage. This
first stage is primarily oriented at the protection of unknown stimulus and at finding
familiar stimulus that can be understood.

Two factors lead to this: broken mechanism of interaction with the real world,
and decrease of the threshold of affective discomfort caused by this interaction. In
other words, the latter factor is connected with the increased sensitivity to sensory
signals.

Control children learn to recognize objects of the real world correctly because:

1. improving the technique of focusing at an object, relying on the skills of
ignorance of secondary, noisy information.

2. the coordination of sensory signals from various systems and the analysis of
various properties of objects being recognized.

Under autistic development, since the majority of sensory signals is perceived as
redundant, the child is forced to learn the process of ignoring, decreasing the volume
of these signals. As a result, a child with autism learns to avoid the stimuli that are
intended for him.

Instead of systematic development and improvement of sensory systems in the
direction of better understanding of the real world, a child with autism develops
a mechanism to ignore signals from the real world. At the same time, a child with
autism develops his sensitivity of the signals that carry minimal sensory information.
Instead of the frontal direction, which carries important stimuli, a child with autism
perceives the peripheral visual and auditory signals. All bright and powerful stimuli
are ignored: eye contacts are avoided, and a child is crying when petted. Sensory
mechanisms are built in a way to perceive a minimum of sensory information
and nevertheless represent somehow the real world. Hence the capability to merge
different sensory systems (visual, auditory) is lacking, binocular vision and binaural
auditory systems are not being developed.
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Peripheral vision as a way to protect from overwhelming signals has always
existed, even in medieval times. One of the examples can be a “puzzled look” of
Mona Lisa of Leonardo da Vinci. We hypothesize that it is due to the fact that
she uses peripheral vision. If one looks at the painting, it is visible that the face is
oriented not along the pupils, but deviates from it. This is typical for people with
autism.

If one looks at how an autistic child is tracking a hand of an adult ringing a bell, it
is noticeable that this child either watches or hears, but does not do it simultaneously.
A merge of sensory stimulus of a child with autism occurs only in the process of
the formation of self-stimulation. This process, being fairly intense, is intended to
distract the child from other stimuli of the real world.

In fact, the possibility to use a merged perception helps us interact with the
external world successfully, building behavioral strategies capable of embedding
us in this world. The feature of selectivity of perception, formed by a child with
autism spontaneously, to decrease the intensity of the sensory input, leads to the
lack of capability of perception of the real world and interaction with it.

Recent studies of autism also show a high capability of children with autism
to ignore object in the domains they are not interested in. A child with autism
concentrates on an object with high intensity and ignores background objects
situated very near it. In case of control, such concentration decreases slowly as the
objects are further away from the focus of attention.

One can hypothesize that to implement the mechanism of ignoring objects a
child with autism develops and improves the fixation mechanisms. This mechanism
achieves maximum annihilation of background objects by the property of the object
she is being focused on. A child with autism selects less informative sensory features
and directions in the real world as preferred, and at the same time develops the
stimulus substitution mechanism, substituting unknown (as possibly dangerous)
stimulus with the ones well known, his own (stereotypy). The mechanism of fixation
plays the key role in this feature selection process.

In his further life, when the (intense) period of feature selections is over, a child
continues to learn the real world with less intensity, relying on his specifically
built sensory system. Peripheral sensory directions advance, and the real world is
perceived by means of discreet signals, which are correlated neither within a single
sensory mode nor synthesizing different signal modalities. Stereotypy occupies a
key position in the sensory system of a child with autism, being “reinforcing”
and “substituting”. The substituting sensory signals almost completely replace the
external ones, and reinforcing assure a stable self-perception, preventing to perceive
real external stimuli.

A part of active learning is perceiving pleasant stimuli and avoiding unpleasant
ones. When most people come across a pleasant scent, such as a nice perfume
or freshly baked cookies, they typically take a good long sniff. While walking
next to a dumpster, however, a person would most likely shorten his incoming
breaths, minimizing the intake of the unpleasant odor. At the same time, CwA don’t
make this natural adjustment like other people do. In fact, children with autism
continue right on sniffing in the same way, no matter how pleasant or awful the
scent (Pedersen 2015)
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7.3.7 From Hyper-sensitivity to Stereotypy
of an Engineering System

People with autism suffer from difficulties in learning social rules from examples,
however many remediation strategies have not taken this into account. Therefore
an appropriate remediation strategy is to teach not simply via examples (via
inductive learning) but instead to teach the appropriate rules (via deduction). The
cognitive learning skills of children with autism from the standpoint of active
inductive learning are analyzed. We start with the hyper-sensitivity that leads to
the broken links between perceptions of different modalities, lack of adequate
capability to perceive real world stimuli, which then leads to auto stimulation
and autistic cognition. We propose an architecture for a software active learning
system which behaves in a similar way, going through the same cognitive steps.
The commonalities in deficiencies of autistic and software active learning systems
are analyzed. We hypothesize that the autistic learning system, starting with just
a hyper-sensitivity feature without other deficiencies, can potentially evolve in a
faulty inductive learning system, deviating stronger and stronger from a normally
developed systems at each iteration of the learning process. This chapter confirms
that the autistic cognitive process is plausible in terms of an abstract computational
learning system.

We summarize this section in the chart for the sequence of step towards autistic
cognitive development (Fig. 7.10).

Not just humans can evolve into autistic cognition. A number of poorly designed
engineering intelligent systems can recognize only patterns that are very similar to
the ones being trained.

Hyper-
sensitivity

Recognizing 
only patterns 
very similar   
to samples

Preference in se-
lecting repetitive 
stimuli of high 
similarity

Avoidance 
recognizing 

the mother and 
peers

Preference in 
recognizing 
physical objects 
over mental

Ignoring & avoiding 
strong, important patterns 
and focusing instead on 
weak, unimportant

Inability to link 
different modality, 
like visual and au-
ditory

Stereotypy to 
achieve successful 
recognition

Fig. 7.10 Steps in autistic cognitive development
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One such engineering domain is security: because the system architects intend to
avoid false positive in as much degree as possible, they configure the system to issue
alerts only for the patterns very similar to which has been identified as true attack
or intrusion. False positive is any normal or expected behavior that is identified as
anomalous or malicious. This can fall into several categories:

• An application not seen in the training stage of an anomaly detection system will
likely trigger an alert when the application attempts to run.

• A signature can be written too broadly and thus include both legitimate and
illegitimate traffic.

• Anomalous behavior in one area of an organization may be acceptable while
highly suspect in another. As an example NetBIOS over TCP/IP traffic is normal
in a Windows LAN environment but not generally expected on the Internet.

Since it is hard to find real-life positive sets, the creators of security systems
demonstrate their functionality on a very limited set of examples. Only these
examples are then demonstrated, so from our view what is happening is self-
stimulation. Usually active learning is impossible in the security domain.

Another domain where a poorly designed system can only function if self-
stimulation mode is search and recommendation. A number of conversational
customer support agents can only repeat very closely the dialogues introduced by
the creator. Once there is a deviation from such dialog, the system behavior starts
being totally meaningless, and it can learn nothing from user inputs.

We share two examples of customer support agents of financial institutions who
function in the mode close to stereotypy (Fig. 7.11).

Table 7.1 shows the delivery log: initially the steps are consecutive but then they
evolve into stereotypy with obvious repetitive patterns. It looks like the system
cannot get rid of stereotype patterns here, but in reality the agent’s reasoning is
normal and it is reluctant to do the delivery.

7.4 Hybrid Active Learning System Jasmine

Having described the autistic cognition, its development and its features, we
proceed to formalizing them. We demonstrate how a hypersensitive technical system
developing in an active learning framework can evolve into an autistic cognition
mode. We describe a software learning system Jasmine configured to imitate the
cognitive development of CC and CwA. Originally Jasmine was designed to support
learning in a number of domains which require learning explainability: not just a
correct classification or prediction needs to be made, but also it needs to be explained
in terms of which samples and which rules were employed in the decision (Galitsky
and Spitsberg 2006).

The foundation of learning and cognition is an inductive reasoning pattern. If
we want to recognize the mother or distinguish her from other people, we want to
find a common feature shared by at least two appearances (or sound, or touch) of
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Eric P.: Hi, my name is Eric P.. How may I help you?
Boris : This money transfer was not approved. If you were charged for this money transfer,
you will be automatically refunded.
Boris : Can you please check my account and help me to select another option?
Eric P.: I would be happy to help you with that.
Boris : I have valid bank accounts and debit cards
Eric P.: Unfortunately, it's not always possible to authenticate everyone electronically to 

allow a credit card payment.
Eric P.: We can offer an alternative with our WU® Pay service:
Eric P.: We will e-mail you a bill for the amount of your money transfer, and you pay using 

your bank's online bill pay service.
Eric P.: Once we receive your payment, your money transfer will be completed. 
Boris : ok, I can do that
Eric P.: We apologize for any inconvenience.
Eric P.: Is there anything else I can help you with today?
Boris : can you do this email?
Eric P.: Please clarify and restate your question.
Boris : can you please send me email for bill pay information?
Eric P.: Once you have selected WU Pay as the "Pay With" option and clicked the 

SUBMIT button, the RECEIPT screen will provide instructions on how to fund the Money
Transfer.
Boris : ok, I will try that
Boris : are you an automated agent?
Eric P.: After choosing WU® Pay, you'll receive a bill by email.
Eric P.: Is there anything else I can help you with today?
Boris : can you please answer my previous question?
Eric P.: What question Boris?
Boris : are you an automated agent?
Eric P.: No sir
Boris : It is my right as a customer to know if I am served by an automated or 

human agent, right?
Eric P.: Yes it is
Boris : which financial institutions can I use to do auto bill pay option?
Eric P.: You pay on your bank's website using online bill pay (just like paying other bills).
Boris : ok, thanks, no more questions
Eric P.: Is there anything else I can help you with today?
Boris : no, thanks

Boris : Can you please reactivate my card which I am trying to use in Nepal?
CS Rep: We value you as a customer… We will cancel your card… New card will be 

mailed to your California address.

Boris : Can you please give your candy to my daughter who is hungry now and is about 
to cry?

CwA: No, my mom told me not to feed babies. Its wrapper is nice and blue. I need to 
wash my hands before I eat it.

Fig. 7.11 Two dialogues with agents where it is hard to judge whether it is a human or software
agent (on the top) and a CwA

the mother. This feature should not be present for other patterns (father, siblings,
friends, nurses). The principle of induction states that a commonality of features
between the patterns (such as mother appearance, with the same haircut and smell
of perfume) causes the target feature (the object being the mother). This principle is
referred to as the direct method of agreement.
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Table 7.1 A log of activity for mail delivery showing the system evolving in an “infinite” loop

Sunnyvale,
CA, United
States

03/22/2016 9:09 P.M. The receiver has moved. We’re attempting to
obtain a new delivery address for this
receiver./We’ve contacted the receiver to
request additional information

03/22/2016 5:16 P.M. The receiver has moved. We’re attempting to
obtain a new delivery address for this receiver

03/22/2016 6:43 A.M. Destination Scan
Sunnyvale,
CA, United
States

03/21/2016 3:44 P.M. The delivery change was completed./The
address was corrected

03/21/2016 3:40 P.M. The delivery change was completed./The
package is being held for a future delivery date

03/21/2016 3:39 P.M. The street number is incorrect. This may delay
delivery. We’re attempting to update the address

03/21/2016 11:24
A.M.

A delivery change for this package is in
progress./We’ve rescheduled this delivery

Sunnyvale,
CA, United
States

03/15/2016 5:15 P.M. The street number is incorrect. This may delay
delivery. We’re attempting to update the
address/We’ve contacted the receiver to request
additional information

Sunnyvale,
CA, United
States

03/14/2016 7:55 P.M. The street number is incorrect. This may delay
delivery. We’re attempting to update the
address/We’re unable to contact the receiver

03/14/2016 2:34 P.M. The street number is incorrect. This may delay
delivery. We’re attempting to update the address

03/14/2016 3:34 A.M. Destination Scan
Sunnyvale,
CA, United
States

03/11/2016 2:50 P.M. The delivery change was completed./The
package is being held for a future delivery date

03/11/2016 2:50 P.M. The delivery change was completed./Your
delivery has been rescheduled for the next
business day

03/11/2016 2:49 P.M. Incomplete address information may delay
delivery. We are attempting to update this
information

03/11/2016 1:33 P.M. A delivery change for this package is in
progress./We’ve rescheduled this delivery

Sunnyvale,
CA, United
States

03/10/2016 11:49
A.M.

Incomplete address information may delay
delivery. We are attempting to update this
information./We’ve contacted the receiver to
request additional information

03/10/2016 4:20 A.M. Destination Scan
03/10/2016 2:55 A.M. Arrival Scan

Oakland, CA,
United States

03/10/2016 2:08 A.M. Departure Scan

Oakland, CA,
United States

03/09/2016 5:24 P.M. Arrival Scan

Louisville, KY,
United States

03/09/2016 3:42 P.M. Departure Scan
03/09/2016 12:58 P.M. Origin Scan

United States 03/08/2016 10:23 P.M. Order Processed: Ready for UPS
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If two or more instances of the phenomenon under investigation have only one circumstance
in common, the circumstance in which alone all the instances agree, is the cause (or effect)
of the given phenomenon (Mills 1843).

We will explore how a hyper-sensitivity to cognition of an arbitrary phenomenon
leads to faulty recognition capabilities although the direct method of agreement
holds.

7.4.1 A Reasoning Schema

Jasmine is based on a learning model called JSM-method (Anshakov et al. 1989,
in honor of John Stuart Mill, the English philosopher who proposed schemes of
inductive reasoning in the nineteenth century). JSM-method to be presented in this
section implements Mill’s direct method of agreement stating that similar effects
(associated features, target features) are likely to follow common causes (attributes),
as well as abduction in the form of explainability. We use the Explanation-based
Learning framework to introduce our reasoning schema. Within this framework JSM
attempts to solve the problem of inductive bias, a means to select one generalization
over another. Like for CwA, it is hard for an automated learning system to find a
proper generalization level, making decisions in the real world.

The task of Jasmine is to predict or recognize a target feature (mother or not
mother, eatable or not eatable) given observable features (such as color and texture
of hairs, smell of perfume or vinegar, sound of steps or cutting material under
question). These features are observed in the objects of a training set so that a target
feature of new, unknown object can be recognized or predicted (Galitsky 2007).

Given the features of objects of a training set, we intend to obtain an expression
for the target feature that includes all positive examples and excludes all negative
examples, given some initial formalized background knowledge. For the human
learning, it can be a genetically set or previously acquired (learned) knowledge,
in the form of generalization from training set objects.

In the Explanation-based Learning setting such expression for the target feature
is a logical consequence of background knowledge and training dataset; however,
this condition is not always viable in a domain of human learning from with exper-
imental observations. Explanation-based Learning is designed to generalize form a
single example; however, in human learning domains one would prefer more reliable
conclusions from multiple observations. These multiple observations (examples)
may introduce inconsistencies; and the desired machine learning technique should
be capable of finding consistent explanations linking possibly mutually inconsistent
observations with the target feature.

Within Jasmine first-order language, objects are atoms, and known features and
the target feature are the terms which include these atoms. For a given target feature,
a term for a feature of an object can be as follows:
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• Positive
• Negative
• Inconsistent
• Unknown

An inference to obtain this target feature (satisfied or not) can be represented as
one in a respective four-valued logic (Anshakov et al. 1989). The predictive machin-
ery is based on building hypotheses in the form of clauses where target_feature(O)

is to be predicted, and features 1, : : : ,feature n2features are the features the target
feature is associated with; O ranges over objects.

Desired separation is based on the similarity of objects in terms of features they
satisfy (according to the direct method of agreement above). Usually, such similarity
is domain-dependent. However, building the general framework of inductive-based
prediction, we use the anti-unification of formulas that express the totality of
features of the given and other objects (our features (causes) do not have to be
unary predicates; they are expressed by arbitrary first-order terms). We assume the
human learning to be as general and flexible as this operation of anti-unification, to
be introduced.

Figure 7.12 is an example of a learning setting, where features, objects, the target
feature and the knowledge base is given. We keep using the conventional PROLOG
notations for variables and constants.

features([e1, e2, e3, e4, e5, e6, oa1, oa2, ap1, ap2, ap3, ap4, f1, f2,  
cc4, cc5, cc6, cc7, cb5, cb7]). %% Features and target features

objects([o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14,  
o15, o16, o17, o18]). 

target_feature [cb5]).
%% Beginning of knowledge base

e1(o1). oa1(o1). ap1(o1). ap3(o1). f1(o1).  cc5(o1). cb5(o1).
e1(o2). oa1(o2). ap1(o2). ap3(o2). f1(o2).  cc5(o2). cb5(o2).
e2(o8). oa2(o8). ap2(o8). ap1(o8). f1(o8).  cc5(o8). cb5(o8).
e3(o10). oa1(o10). a3(o10). ap2(o10). f1(o10). cc4(o10). 
e3(o11). oa1(o11). a3(o11). ap2(o11). f1(o11). cc4(o11). cb5(o11). cb7(o11).
e4(o16). oa1(o16). a1(o16). ap1(o16). f1(o16). cc5(o16). cb5(o16). 
e5(o17). oa1(o17). a4(o17). ap2(o17). f1(o17). cc6(o17). cb7(o17). 
e6(o18). oa1(o18). a1(o18). ap2(o18). f1(o18). cc4(o18). cb7(o18). 

%% End of knowledge base
unknown(cb5(o10)).

Fig. 7.12 A sample knowledge base for high-level mining of protein sequence data
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In a numerical, statistical learning similarity between objects is expressed by a
number. In deterministic, structured learning with explainability of results similarity
is a structure. Similarity between a pair of objects is a hypothetical object which
obeys the common features of this pair of objects. In handling similarity Jasmine
is close to Formal Concept Analysis (Ganter and Wille 1999, Section 4.3.5), where
similarity is the meet operation of a lattice (called concept lattice) where features
are represented by unary predicates only. For the arbitrary first-order formulas for
objects in Jasmine we choose the anti-unification of formulas which expresses
features of the pair of objects to derive a formula for similarity sub-object. Below
we will be using the predicate

similar(Object1, Object2, CommonSubObject ) which yields the third argument
given the first and the second arguments.

The reasoning procedure of Jasmine is shown in Fig. 7.13. Note that the
prediction schema is oriented to discover which features cause the target feature and
how (the causal link) rather than just searching for common features for the target
feature (which would be much simpler, six units on the top). The respective clauses
(1–4) and sample results for each numbered unit (1–4) are presented in Fig. 7.13.

Let us build a framework for predicting the target feature V of objects set by
the formulas X expressing their features: unknown(X, V). We are going to predict
whether V(x1, : : : , xn) holds or not, where x1, : : : , xn are variables of the formula
set X (in our example, X D cb5(o10), x1 D o10).

We start with the raw data, positive and negative examples, rawPos(X, V) and
rawNeg(X, V), for the target feature V, where X range over formulas expressing
features of objects. We form the totality of intersections for these examples (positive
ones, U, that satisfy iPos(U,V), and negative ones, W, that satisfy iNeg(W,V), not
shown):

(7.1)

Above are the recursive definitions of the intersections. As the logic program clauses
which actually construct the lattice for the totality of intersections for positive and
negative examples, we introduce the third argument to accumulate the currently
obtained intersections (the negative case is analogous):

http://dx.doi.org/10.1007/978-3-319-39972-0_4


272 7 Autistic Learning and Cognition

Finding the totality of 
intersections between features 
of all objects (positive)

Finding the totality of 
intersections between features 
of all objects (negative)

Among the above 
intersections, select  those 
which de scribe only positive 
objects

Among the above 
intersections, select those 
which describe only 
negative objects

Form positive hypotheses 
from the above intersections

Form negative hypotheses 
from the above intersections

Instantiate 
positive 
hypotheses by 
objects

Obtaining objects 
with unknown target 
which satisfy both 
positive and 
negative hypotheses 
(remain unknown )

Instantiate 
negative 
hypotheses by 
objects

Obtaining objects with 
unknown target which 
satisfy positive  hypotheses

Obtaining objects with 
unknown target which 
satisfy negative  hypotheses

Remaining objects with unknown 
target: inconsistent  prediction

1

2

3

4

Add obtained prediction into domain theory 
as defeasible clauses and attempt to resolve 
inconsistencies

Fig. 7.13 The chart for reasoning procedure of Jasmine

As one can see, there is a “symmetric” treatment of positive and negative
examples and hypotheses: Jasmine uses negative examples to falsify hypotheses that
have counter-examples. On the contrary, a simplified Explanation-based Learning
uses only positive examples and can be viewed as just the “left half” of Figure : : : .

To obtain the actual positive posHyp and negative negHyp hypotheses from the
intersections derived above, we filter out the inconsistent hypotheses which belong
to both positive and negative intersections inconsHyp(U, V):

(7.2)
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Here U is the formula expressing the features of objects. It serves as a body of
clauses for hypotheses V :- U.

The following clauses deliver the totality of objects so that the features expressed
by the hypotheses are included in the features of these objects. We derive positive
and negative hypotheses reprObjectsPos(X, V) and reprObjectsNeg(X, V) where X
is instantiated with objects (V is positive and negative respectively). The last clause
(with the head reprObjectsIncons(X, V)) implements the search for the objects to be
predicted so that the features expressed by both the positive and negative hypotheses
are included in the features of these objects.

(7.3)

Two clauses above (top and middle) do not participate in prediction directly; their
role is to indicate which objects deliver what kind of prediction.

Finally, we approach the clauses for prediction. For the objects with unknown
target features, the system predicts that they either satisfy these target features, do
not satisfy these target features, or that the fact of satisfaction is inconsistent with
the raw facts. To deliver V, a positive hypothesis has to be found so that the set of
features X of an object has to include the features expressed by this hypothesis,
and X should not be from reprObjectsIncons(X, V). To deliver :V, a negative
hypothesis has to be found so that a set of features X of an object has to include
the features expressed by this hypothesis and X is not from reprObjectsIncons(X,
V). No prediction can be made for the objects with features expressed by X from the
third clause,

(7.4)

The first clause above (shown in bold) will serve as an entry point to predict (choose)
a given target feature among a generated list of possible target features that can be
obtained for the current state. The clause below is an entry point to Jasmine if it is
integrated with other applications and/or reasoning components



274 7 Autistic Learning and Cognition

Predicate loadRequiredSamples(As) above forms the training dataset. If for a
given dataset a prediction is inconsistent, it is worth eliminating the objects from
the dataset which deliver this inconsistency. Conversely, if there are an insufficient
number of positive or negative objects, additional ones are included in the dataset.
A number of iterations may be required to obtain a prediction, however the iteration
procedure is monotonic and deterministic: the source of inconsistency/insufficient
data cases are explicitly indicated at the step where predicates reprObjectsPos
and reprObjectsNeg introduced above are satisfied. This is the solution to the so
called blame assignment problem, where by starting at the erroneous or inconsistent
conclusion and tracking backward through the explanation structure, it is possible
to identify pieces of domain knowledge that might have caused an error or
inconsistency (Galitsky 2007).

When the set of obtained rules posHyp and negHyp for positive and negative
examples (together with the original domain theory) is applied to a more extensive
(evaluation or exploration) dataset, some of these rules may not always hold. If
at the first run (1–4) Jasmine refuses to make predictions for some objects with
unknown target features, then a repetitive iteration may be required, attempting
to use newly generated predictions to obtain objects’ target features which are
currently unavailable. The arrows on the right of Fig. 7.13 illustrate this kind of
iterative process.

For example, for the knowledge base Fig. 7.12 above, we have the following
protocol and results (Fig. 7.14).

Hence cb5(o10) holds, which means that the sequence o10 has the length of loop
of 5 amino acids.

7.4.2 Computing Similarity Between Objects

The quality of Jasmine-based prediction is dramatically dependent on how the
similarity of objects is defined. Usually, high prediction accuracy can be achieved if
the measure of similarity is sensitive to object features which determine the target
feature (explicitly or implicitly). Since most of times it is unclear in advance which
features affect the target feature, the similarity measure should take into account
all available features. If the totality of selected features describing each object is
expressed by formulas, a reasonable expression of similarity between a pair of
objects is the following. It is a formula which is the least common generalization of
the formulas for both objects, which is anti-unification, mentioned in the previous
section. Anti-unification is the inverse operation to the unification of formulas in
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1. Intersections 
Positive: [[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],
[ap1(_),f1(_),cc5(_)],[ap1(_),f1(_)],[oa1(_),f1(_)], [oa1(_),ap1(_),f1(_),cc5(_)],
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)],[e3(_),ap2(_),f1(_)],[e4(_),oa1(_),ap1(_),
f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Unassigned examples:

2. Hypotheses
Positive:[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],[ap1(_),f1(_),cc5(_)],   
[ap1(_),f1(_)],[oa1(_),f1(_)],[oa1(_),ap1(_),f1(_),cc5(_3B60)], 
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)], [e3(_),ap2(_),f1(_)],
[e4(_),oa1(_),ap1(_),f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Contradicting hypotheses: []

The clauses for hypotheses here are: 
cb5(X)>-e1(X),oa1(X),ap1(X),ap3(X),f1(X),cc5(X);ap1(X),f1(X),cc5(X);ap1(X),f1(X).
cb5(X)>- not ( oa1(X),ap2(X),f1(X),cb7(X)).   Note that all intersections are turned into 
hypotheses because there is no overlap between positive and negative ones    

3. Background (positive and negative objects with respect to the target feature cb5)
Positive:
[[e1(o1),oa1(o1),ap1(o1),ap3(o1),f1(o1),cc5(o1)],[e1(o2),oa1(o2),ap1(o2),ap3(o2),f1(o2

),cc5(o2)], 
[e2(o7),e3(o7),oa2(o7), ap1(o7),ap2(o7),f1(o7),cc5(o7)],
[e2(o8),e3(o8),oa2(o8),ap1(o8),ap2(o8),f1(o8)],
[e3(o11),oa1(o11),ap2(o11),f1(o11),cc4(o11),cb7(o11)],[e4(o15), 

oa1(o15),ap1(o15),f1(o15),cc5(o15)], 
[e4(o16),oa1(o16),ap1(o16),f1(o16),cc5(o16)]] 
Negative: 
[[e5(o17),oa1(o17),ap2(o17),f1(o17),cc6(o17),cb7(o17)],[e6(o18),oa1(o18),ap2(o18),f1(

o18),cc4(o18),cb7(o18)]] 
Inconsistent: []
4. Prediction for cb5 (objects o10)
Positive: [[e3(o10),oa1(o10),ap2(o10),f1(o10),cc4(o10)]]
Negative:[]              
Inconsistent: []
Uninstantiated derived rules (confirmed hypotheses)
cb5(O):- e3(O), oa1(O),ap2(O), f1(O), cc4(O).

Fig. 7.14 The Jasmine prediction protocol. Steps are numbered in accordance to the units at
Fig. 7.15

logic programming. Unification is the basic operation which finds the least general
(instantiated) formula (if it exists), given a pair of formulas. Anti-unification was
used as a method of generalization; later this work was extended to form a theory of
inductive generalization and hypothesis formation.

For example, for two formulas p(a, X, f(X)) and p(Y, f(b), f(f(b))) their anti-
unification (least general generalization) is p(Z1, Z2, f(Z2)). Conversely, unification
of this formulas, p(a, X, f(X)) D p(Y, f(b), f(f(b))) will be p(a, f(b), f(f(b))). Our logic
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Fig. 7.15 The clauses for logic program for anti-unification (least general generalization) of two
formulas (conjunctions of terms). Predicate antiUnify(T1, T2, Tv) inputs two formulas (scenarios
in our case) and outputs a resultant anti-unification

programming implementation of anti-unification for a pair of conjunctions, which
can be customized to a particular knowledge domain, is presented in Fig. 7.15.

Although the issue of implementation of the anti-unification has been addressed
in the literature, we present the full code to have this book self-contained. In a
given domain, additional constraints on terms can be enforced to express a domain-
specific similarity. Particularly, certain arguments can be treated differently (should
not be allowed to change if they are very important, or should form a special kind
of constant). A domain – specific code should occur in the line shown in bold.

There are other Jasmine-compatible approaches to computing similarities except
the anti-unification. In particular, it is worth mentioning the graph-based approach
of finding similarities between scenarios (Sect. 4.3.6). The operation of finding the
maximum common subgraphs serves the purpose of anti-unification in such the
domain. This operation was subject to further refinement expressing similarities

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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between scenarios of multiagent interaction, where it is quite important to take into
account different roles of edges of distinct sorts.

Novice users of Jasmine are advised to start building the similarity operation
as an intersection between objects’ features (unordered set of features) and obtain
an initial prediction. Then, when the explanations for predictions are observed, the
users may feel that less important features occur in these explanations too frequently,
and anti-unification expression should be introduced so that less important features
are nested deeper into the expressions for objects’ features. Another option is to
build a domain-specific Prolog predicate that computes unification, introducing
explicit conditions for selected variables (bold line in the Fig. 7.15).

7.4.3 Normal and Autistic Development Pathways for Jasmine

For a benchmarking face recognition problem, we select a feature of a face and form
a sample recognition knowledge base.

An image can be represented as a set of vectors where each vector contains gray
levels of a sub-image (this is usually referred to as local representation) (Fig. 7.16).
Also a feature set can be obtained by varying the size and position of each type
of Haar-like features. Object detection using Haar feature-based cascade classifiers
is an effective object detection method proposed by (Viola and Jones 2001). A
Haar-like feature considers adjacent rectangular regions at a specific location in
a detection window, sums up the pixel intensities in each region and calculates
the difference between these sums. This difference is then used to categorize
subsections of an image. For example, let us say we have an image database with
human faces. It is a common observation that among all faces the region of the eyes
is darker than the region of the cheeks. Therefore a common Haar feature for face
detection is a set of two adjacent rectangles that lie above the eye and the cheek

Fig. 7.16 vector based local representation for image features
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Fig. 7.17 Haar approach to extracting features from images

Fig. 7.18 Nose types and respective templates for extracting features from images

region. The position of these rectangles is defined relative to a detection window
that acts like a bounding box to the target object (the face in this case) (Fig. 7.17).

Besides the Haar approach, there is a number of templates for image features
used to recognize the whole pattern like a human face. These templates can be
averaged image areas for a nose, ears, or cheeks. For each feature (part of a
face) there are multiple templates corresponding to each type, such as nose type
(Fig. 7.18). Hence these features have multiple values.
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To summarize, feature extraction from an image occurs as follows:

1. All templates are formed in advance.
2. For a given image (object), each template is applied in the way of computing

similarity between the pixels of an image and this template. The template is
positions in all locations in an image to identify the first feature and then in a
number of restricted locations once the first feature is identified. For example,
once a nose area is identified we position each mouth template below to compute
pixel similarity with the image.

3. A maximal consistent number of templates is applied and a maximum number of
types of features is identified.

4. For an image o we obtain the list of expressions for the feature type, such as

This way we form an element of a training set or an unknown image object to be
recognized. Then Jasmine machine is applied in the way described above.

Imagine now that multiple observation of the mother images gave the following
training set:

And multiple observations of the father

As we build intersections between these observations (pair-wise anti-
unifications) we observe that these intersections are distinct for the mother and the
father. There is a totally different situation if the number of features are extremely
high and the number of samples is the same: this is the case of hyper-sensitivity:
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Mother:

Father:

The reader can see that given a limited number of samples with specific, detailed
information yields an empty expression in intersection for both the mother and the
father. Since the learning system is unable to find commonalities for each class, it
is unclear whether these classes are distinct in terms of these samples. Statistical
approach to learning would not work either since the training dataset is so limited.
And CwAs do not have many years to collect a richer dataset that would match the
learning dimension since they are growing and expectations from the recognition
system are increasing as well.

In case of hyper-sensitivity, when the representation is rich but the number of
stimuli in real life is limited, a learning engine is unable to build a rule to recognize
the mother since all here appearance are distinct. The only way to build a rule now
is to intersect each of these formulas with itself. The resultant rule is going to be
very specific and only appearance of the mother in certain location, posture and
illumination conditions.

Under normal sensitivity, a face can be recognized for multiple angles (Figs. 7.19
and 7.20).

But with hyper-sensitivity, only the same position is recognizable, and only the
recognition areas can be varied.

Finally, we present the overall architecture of the active learning system which is
evolved into autistic adaptation under hyper-sensitivity (Fig. 7.21).
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Fig. 7.19 Face recognition at various angles

Fig. 7.20 Showing selecting an area at an image, extracting features from it, and then deciding
whether it is a face or not. When the system is hypersensitive, it forms very high number of patterns

7.5 Exploring Forming and Updating Hypotheses in Human
Learning

Our accumulated experience of teaching autistic children how to behave properly
has contributed to the design of a rule-based machine learning system which auto-
matically generates hypotheses to explain observations, verifies these hypotheses
by finding the subset of data satisfying them, falsifies some of the hypotheses by
revealing inconsistencies and finally derives the explanations for the observations
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Fig. 7.21 Active learning loop

by means of cause-effect links if possible. This is an active learning system in a
sense that samples are selected by the learning system to minimize the number of
negative samples.

A hungry subject is suggested to eat cookies from the ten plates (Fig. 7.22). The
subject is notified that some cookies are added an unpleasant taste in accordance
to some rule that is not disclosed. The subject is required to eat all cookies with
good (expected) taste and state that the rest of cookies are altered. For the purpose
of verification, a subject is encouraged to formulate the formed rule when done with
cookies.

When a trainee tries all cookies one-by-one, she discovers that cookies from
plates 1,3,5,6,7,10 are normal and those from plates 2,4,8,9 are added an unpleasant
taste (Fig. 7.23). The objective of this experimental environment is to come up with
an algorithm of forming, confirming and defeating hypotheses such that the least
number of cookies with unpleasant taste is eaten. This environment approximates
the real world where human attempt to optimize their behavior. Since it is hard to
make CwA act in an artificial environment, this experiment is designed to involve
children who are hungry at the beginning of the experimental session. Since children
are eager to satisfy their appetite they don’t need to be motivated to participate in
cookie-eating session and they genuinely attempt to avoid altered cookies.
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Fig. 7.22 The environment for active learning and hypotheses formation as seen by a subject

Fig. 7.23 Labeled samples

A good way to do it, invented by some children, is to find the common property
of all good cookies and that of the bad cookies. These common properties should not
overlap between positive and negative sets. Applying inductive procedure to positive
and negative examples turns out to be a good advancement of both inductive logic
programming and explanation-based learning (these methods generalize positive
examples only).

A subject is expected to start with simple hypothesis such as “where there is a
fork, the cookie is normal or altered” or “where there is a knife, the cookie is normal
or altered”. Once a new cookie is encountered, the current hypothesis can be updated
or removed in favor of the new one. One of the proper session is shown in Table 7.2
where we start with the hypothesis that a fork is associated with a normal cookie,
then update this hypothesis adding “no knife” clause. Then the subject discovers
that ‘fork’ is a redundant condition and continues acquiring new samples till she has
to transition to “no single knife” instead of “no any knife” condition. Jasmine is
capable of producing a similar learning session.

The experimental results of hypotheses formation for six subjects are shown
in Table 7.3. Only one out of six subjects produced an optimal scenario (on the
bottom).
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Table 7.2 The log of hypotheses forming and revising session

Sample Hypothesis formed as a result of given sample Altered

1 Fork ➔ normal
10 Fork ➔ normal
2 Fork –knife ➔ normal Yes
3 –knife ➔ normal
4 –knife ➔ normal Yes
7 –knife ➔ normal
5 –knife ➔ normal
6 –one knife ➔ normal
8 Predicted Yes
9 Predicted Yes

Table 7.3 Results of the experiment on forming and operating with hypotheses

Subject
Successful
completion

Order of object testing (starting
with 1 and finishing with 10) Additional remarks

Masha Z – 5 7 2 6 1 No rule is formulated
9 3 8 10 4

Lena B – 4 9 7 8 6 Some attempt to state a rule. Two last
altered cookies are determined
correctly, but was helped with
advices3 5 2 10 1

Valya V – 7 6 1 9 10 No rule is formulated
5 4 3 8 2

Alina Z – 6 5 9 10 4 Failure to formulate a rule; ate all
cookies including altered3 8 2 7 1

Serge T – 1 3 5 8 6 A wrong rule is suggested: no
cutlery – no alterations; also, forks –
no alterations. Multiple hypotheses
were evaluated but neither is correct9 4 7 10 2

Sofia S C 1 10 2 3 4 Independently achieved the correct
rule7 5 6 8 9

The experiments have indicated that selected high-functioning autistic subjects
are the best and most precise means to judge on human intelligence from the
perspective of algorithmic decision making. CC strategy selection behavior would
be rather multi-dimensional: they would involve information about cookies, intent
of an experimenter, the role of cutlery and their inter-relations with cookies, etc.

7.6 Deductive Reasoning About Actions

In this section we introduce a reasoning engine about generic actions based
on deductions. Analyzing its limitations, we will keep in mind that CwA with
developed deduction but limited induction experience similar difficulties (Chap. 6).

http://dx.doi.org/10.1007/978-3-319-39972-0_6
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A series of formalisms, developed in the logic programming environment, have
been suggested for reasoning about actions in robotics applications. Particularly, the
system for reasoning about dynamic domains, GOLOG, suggested in (Levesque
et al. 1997), has been extended by multiple authors for a variety of fields.
Involvement of sensory information in building the plan of multiagent interaction
has significantly increased the applicability of GOLOG (Lakemeyer 1999).

However, a deduction-based logical framework is still not well suited to han-
dle the multiagent scenarios with lack of information concerning the actions of
opponent agents, when it is impossible to sense them (acquire additional features
online). A strong progress in the efficient implementation of reasoning about action
in many ubiquitous applications has been achieved; however such implementations
deal with explicit set of pre-conditions and effect axioms. Clearly, the formalism
of reasoning about actions does not target situations with uncertainty such as
multiagent conflict scenarios, where full knowledge reflects only the perspective of
a particular side. In particular, uncertainty is often unavoidable in medical practice,
where additional techniques are applied to GOLOG, including Bayesian networks
(Levesque and Pagnucco 2000). A series of GOLOG extensions have been built for
processing information from noisy sensors for applications in robotics (Bacchus et
al. 1999), as well as a theoretical framework concerning situation calculus operating
in probabilistic conditions.

Incomplete knowledge about the world is reflected as an expression for non-
deterministic choice of the order in which to perform actions, non-deterministic
choice of argument values, and non-deterministic repetition. These settings are
adequate for the selected robotics applications, where the designer uses a particular
approximation of the external world. In a general setting, an agent that performs
reasoning about actions is expected to learn from the situations, where the actual
sequence of actions has been forced by the environment to deviate from the initially
obtained plan, using the current world model.

A generic environment for reasoning about actions is not well suited for handling
incomplete data, where neither totality of procedures, nor action preconditions, nor
successor state constraints are available. Evidently, situation calculus by itself does
not have a sufficient predictive power and needs to be augmented by a learning
system capable of operating in the dynamic language. Abstraction of reasoning
about action in the way of GOLOG assumes that action preconditions, successor
state expressions and ones for complex actions are known, or at least that the
respective probabilities can be estimated.

However, scenarios of multiagent interactions cannot be efficiently handled by
the traditional deterministic machine learning (an attribute value learning system),
because of the high dimension, sparseness of the feature space and a lack of an
important body of commonsense knowledge. A knowledge discovery system that is
based on inductive logic programming or similar approaches is insufficient, taken
alone, because it is incapable of performing necessary commonsense reasoning
about actions and knowledge in accordance to heuristics available from domain
experts. Neglecting this knowledge would dramatically decrease the extent of
possible predictions. Also, a generic knowledge discovery system is not oriented
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Fig. 7.24 Illustration for the merging reasoning about action-based and learning-based machinery
for performing the prediction of future (or unknown) actions in dynamic domain. On the top:
reasoning about action, in the middle: machine learning, on the bottom: our hybrid approach that
is the results of merge between the two above

to handle dynamic kinds of data, which include such a complex structure of
interdependencies as multiagent scenarios. Therefore, we intend to merge reasoning
about action-based deductive and learning-based inductive systems to form the
environment to handle dynamic domains with incomplete information (Fig. 7.24).
Teaching CwA, one should clearly communicate that these two forms of reasoning
should be merged, having explained stand-alone reasoning about action and stand-
alone deterministic machine learning (Sect. 7.4).

We outline two basic methodologies for predicting the future action or a set of
possible actions:

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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1. By means of reasoning about actions. Following this methodology, one specifies
a set of available basic and combined actions with conditions, given a current
situation, described via a set of fluents. These fluents in turn have additional
constraints and obey certain conditions, given a set of previous actions. Action
possibilities, pre-conditions and successor state axioms are formulated manually,
analyzing the past experience. This methodology can fully solve the problem if
the complete formal prerequisites for reasoning about actions are available.

2. By means of supervised learning of the future action from the set of examples.
Given a set of examples with a sequence of actions and fluents in each, a
prediction engine generates the hypotheses of how these fluents are linked to
future actions. Resultant hypotheses are then applied to predict these future
actions. Such kinds of learning require the actions and fluents to be explicitly
specified, as in the methodology of reasoning about actions. However, the
learning itself is performed automatically. This supervised learning methodology
is worth applying in a stand-alone manner if neither explicit rules for agents when
to perform an action nor action pre-conditions are available.

Our experience in the implementation of reasoning in the selected application
domain demonstrates that the above methodologies are complementary. The fol-
lowing facts contribute this observation:

• Almost any prediction task, particularly in a deterministic approach, is some
combination of manually obtained heuristics and automatically extracted fea-
tures, which characterize an object of interest;

• If an attempt is made to predict all actions using learning, the problem complexity
dramatically increases and, therefore, the accuracy of any solution under possible
approximation drops.

• On the other hand, if an attempt is made to explicitly construct the required
totality of pre- and post-conditions of actions for the deductive settings, we
run against a frame problem that may need a unique solution for a specific
situation (Shanahan 1997). Moreover, some other difficulties are associated with
the search of inference (building of a plan), not assisted by the considerations
involving the past experience.

• Considering a sequence of actions in a dynamic domain, the longer this sequence
is, the more inductive reasoning comes into play relatively to the deductive one.

Note that above considerations are valid when the choice of action does not occur
in a pure mental world, i.e. the world where the situations are described in terms
of belief, knowledge and intention (Sect. 4.2). Choosing an action that is to be
performed in a given mental state occurs in accordance to quite different laws, unlike
ones for physical states we are talking about in this report.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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Fig. 7.25 Overall architecture of the system for prediction of a consecutive action in a multiagent
conflict

7.6.1 The Architecture of a Hybrid System

Hence we choose the GOLOG and Jasmine environments for deterministic rea-
soning about action and inductive machine learning respectively because of their
flexibility and power (Fig. 7.25). Using the above approaches to illustrate our
methodology, we keep in mind that our architecture of merging deductive and
inductive components is independent of the choice of particular formalism and
better models real-world domains than these approaches taken separately.

Overall architecture of the system for prediction of a consecutive action in a
multiagent conflict is presented in Fig. 7.25. The natural language information
extraction unit (on the left) provides the deductive component (on the top right)
with the extracted actions. If the reasoning about action component determines a
lack of information concerning the opponent agent, the inductive component (on
the bottom right) is initiated. The inductive component loads the set of accumulated
complaints for the given company (its name is extracted by NL component) and
predicts the following action given the state, obtained by the reasoning about action
component. If the multiagent scenario is rather complex, the simulation by means
of NL_MAMS is required to predict the following mental state. The units with bold
frame are the focus of this chapter.
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7.6.2 Merging Deductive and Inductive Reasoning About
Action

Based on the motivations, which were presented in the Introduction, we have the
following methodology to predict an action of an agent in an environment where we
do not have complete information on this agent. If we are unable to derive the actions
of this agent given the preconditions of his actions and successor state axioms to
sufficiently characterize his current state, learning-based prediction needs to come
into play. Instead of just taking the current state into account, as reasoning about
action would do, learning-based prediction takes into account the totality of previous
actions and states. It is required because there is a lack of knowledge about which
previous actions and situations affect the current choice of action.

Situation calculus is formulated in a first-order language with certain second-
order features (Reiter 1993). We briefly repeat our definitions from Sect. 4.2. A
possible world history that is a result of a sequence of actions is called situation.
The expression Do(a,s), denotes the successor situation to s after action a is applied.
Also, situations involve the fluents, whose values vary from situation to situation and
denote them by predicates with the latter arguments ranging over the situations,

Effect axioms express the causal links between the domain entities. We refer the
reader to (Levesque et al. 1997) for the further details on the implementation of
situation calculus.

As one can see, the methodology of situation calculus is building a sequence of
actions given their pre- and post-conditions. To choose an action, we verify that the
preconditions are dependent on the current fluents. After an action is performed, it
affects these fluents, which in turn determine the consecutive action, and so forth.
In the traditional situation calculus pre- and post-conditions are manually coded. In
this work we use machine learning to acquire pre-conditions of actions from each
complaint. However, since our current complaint representation stores actions but
not intermediate states, here we do not learn action post-conditions.

The frame problem (Shanahan 1997) comes into play to reduce the number of
effect axioms that do not change (the common sense law of inertia). The successor
state axiom resolves the frame problem:

where 	 f
C(ŷ, a,s) (	 f

��(ŷ, a,s)) is a formula describing under what conditions
doing action a in situation s makes fluent f become true (false, respectively) in the
successor situation Do(a,s).

http://dx.doi.org/10.1007/978-3-319-39972-0_4
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GOLOG extends the situation calculus with complex actions, involving, in
particular, if-then and while constructions. Macros do(ı, s, s’) denotes the fact that
situation s’ is a terminating situation of an execution of complex action ı starting in
situation s. Here we present the case of complex actions performed by an agent with
intentions and beliefs. If a1, : : : , an are agents’ actions, then

• [a1: : : : : an] is a deterministic sequence of actions. We know that an agent may
only perform actions in a given order either because of external constraints or
because of her intentions.

• [a1# : : : # an] is a non-deterministic sequence of actions for an agent, any
sequence of actions is plausible, given our knowledge about intentions of this
agent.

• ifCond(p) is checking a condition expressed by p by an agent. This is the case of
an explicit condition for agent’s choice of action; the condition is available for
the reasoning system.

• star(a), nondeterministic repetition.
• if (p, a1, a2), if-then-else conditional, applied by an agent in accordance to our

knowledge of his rules.
• while(p, a1, a2), iteration.

We proceed to the GOLOG interpreter. The last line below is added to the
conventional GOLOG interpreter to suggest an alternative choice of action by means
of learning from the previous experience, if the other options to determine the
following action are exhausted:

The last clause with the body predict_action_by_learning(A, S), yielding action
A at the state S, can be thought of as an online acquisition of facts of action
possibilities, (poss(A,S)).

Figure 7.26 depicts the problem of finding a plan as a theorem-proving in
situation calculus.

Axioms jD (9 ı,s) Do(ı, S0, s) & Goal(s), where plan Goal(s) is synthesized as
a side effect while satisfying Goal. In our case planning is reduction the number of
possible actions of an opponent.
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Fig. 7.26 Methodology for deriving a plan in the settings of situation calculus. To predict an action
of an opponent agent, we simulate the planning process for this agent to plan his future actions

Below we present the samples of post-condition (effect, successor state) axioms
for fluents unsatisfied, disinformed and company_untrusted:

7.7 Discussion and Conclusions

How can performance of such systems as inductive logic programming and
explanation-based learning be improved by taking into account observations con-
cerning operations with hypotheses by children with autism? We will outline the
experimental settings and observations.

Adjustment of action technique teaches CwA that his actions carry meaning
and elicit a response from her peers. Also learning adjustment of actions increases
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CwA’s receptive language (its understanding) as well as expressive language skills.
The following items summarize the teaching methodology for the adjustment of
actions:

Meanings should be necessarily attached to CwA language. The caregiver’s
language needs to be adjusted for the purpose of learning: it needs to be simplified,
spoken slowly, and important words need to be stressed. Receptions, visual cues
and gestures help as well. Also, the language should be tailored around CwA focus
of interest, and CwA’s language needs to be expanded by the trainer. Focused
stimulations need to be provided: the same words, phrases and gestures should be
repeated up to 20 times per days for all suitable situations.

We attempted to design a plausible machine learning system that shows two
forms of behavior, when operating in an active mode of auto selecting the elements
of the training set:

1. normal mode, where new features from the real world form the training dataset
and form the basis for its proper recognition

2. autistic faulty mode, where the active learning evolves to the set of irrelevant
features and although the learning sessions occur, the system is not capable of
recognizing the real world.

Hence given the operational learning system, once it becomes hypersensitive
in an active learning mode, it displays the number of features inherent to autistic
cognition:

• Broken multi-modal links
• Stereotypy
• Blocking the strong stimuli of the real world
• Distinguishing important from unimportant features.

We proposed a concrete design of a machine learning system reproducing the
phenomenology of the studies of children with early autism. In our future studies we
will attempt to form the methodology of rehabilitation of autistic cognition, based
on the model built in this Chapter.
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Chapter 8
Rehabilitating Autistic Reasoning

Having outlined what are the deficiencies of autistic reasoning on one hand, and
what kinds of reasoning and learning is required to control the behavior on the other
hand, we proceed to how the issues of autistic reasoning can be cured. We will
dive into a broad range of technique improving autistic reasoning, both computer
training-based and human training-based. These techniques are the conjecture of
the reasoning deficiencies we defined formally or computationally in the previous
chapters. The goal of reasoning rehabilitation is twofold: teach CwA to think
soundly and judge righteously about various aspects of life, and properly chose and
control behavior based on reasoning and rationality (Fig. 8.1).

8.1 Training Environment

A few versions of the web-based user interface for NL_MAMS have been developed
for a number of environments, including describing of mental states of scene
characters. A variety of interface components were designed for specifying mental
states, including natural language and drop-down box-based.

The one-to-one rehabilitation strategy (NL_MAMS – independent), conducted
by a member of rehabilitation stuff, includes the following components:

• direct introduction of the basic mental entities want-know-believe using real-
world examples;

• explanation of derived mental entities using the basis want-know-believe;
• introduction of the derived mental entities by means of real-world examples;
• conversations that heavily rely on a discourse with mental focus;
• conversations that are based on a pictorial representation of interaction scenarios

(Figs. 8.3 and 8.6);
• involving the trainees into actual interactions with other children and asking them

to verbally represent these interactions;

© Springer International Publishing Switzerland 2016
B. Galitsky, Computational Autism, Human–Computer Interaction Series,
DOI 10.1007/978-3-319-39972-0_8

295



296 8 Rehabilitating Autistic Reasoning

Fig. 8.1 Therapy should leverage available skills such as tolerance to height and fast motion

• encouraging the parents and rehabilitation personnel to demonstrate a special
awareness of mental entities in the real world (Galitsky 2000; Galitsky 2001)

• “picture-in-the-head” and “thought-bubbles” techniques, using “physical” repre-
sentation of mental attitudes (Swettenham et al. 1996, Fig. 8.3).

NL_MAMS-based training is intended to assist in all of the above components.
Initially a trainer shows how to represent mental states from the above components
via NL_MAMS, and discusses yielded scenarios with a trainee. The plausibility and
appropriateness of actions yielded by NL_MAMS require special attention from
trainees. Then the trainer specifies other initial mental states and asks a trainee to
come up with plausible scenarios originating from these mental states.

After a certain number of demonstrations, the trainees are encouraged to use
NL_MAMS independently, applying it to real-world mental states the trainees have
experienced, as well as abstract mental states. Trainees are presented with both
natural language and structured input and output of NL_MAMS, and they are free
to choose their favourite way of user interface.

Trainees are children with high-functioning autism 6–10 years old, selected so
that they are capable of reading simple phrases and communicating mental states in
one or another way.

An exercise introducing the mental action of offending and forgiving is depicted
at Fig. 8.2. This is a partial case of NL_MAMS training of yielding a scenario given
an initial mental state: it is adjusted to the definition of offending. Expected resultant
scenario is just the actions of offending or forgiving with appropriate parameters
for agents and subjects of these actions. These parameters are specified via drop-
down boxes; their instances are expected to show the trainees how to generalize the
instances of offending or forgiving towards different agents. Also, multiple ways
to express these generalizations are shown: friend, parent, brother/sister, they/them,
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Fig. 8.2 The form to introduce a mental entity (here, to offend and to forgive). After an entity is
explained via examples and verbal definition is told, a trainee is suggested to choose the proper
basic entities with negations when necessary to build a definition

Fig. 8.3 A visualization of interaction scenario: a situation with conflicting goals (on the left). The
children are asked the questions about who is hiding where, who wants to find them, and about their
other mental states. On the right: “picture-in-the-head” and “thought-bubbles” techniques are used,
based on “physical” representation of mental attitudes

he/she, him/her etc. After the trainees learn how to derive a single-step scenario for
a fixed mental action, they are given tasks to compose a scenario with two or more
mental actions they have already learned (Fig. 8.3).

8.1.1 Short-Term and Long-Term Training Settings

We performed the NL_MAMS-assisted training and its evaluation at two levels:
short-term and long-term. The short-term approach includes the theory of mind
training with and without NL_MAMS for two groups of 12 autistic children of
similar mental age and IQ. The evaluation is based on passing the set of tests
including the seeing-leads-to-knowing (first-order) and Sally-Anne false belief
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Fig. 8.4 Developing such complex skills as using a photo-camera and doing a performance require
integral rehabilitation strategy and a substantial support

(second-order) ones so that a uniform coverage of mental states and actions (up
to the order three) is evaluated. In the short-term approach we performed a limited
evaluation of the skills transfer from artificial situations to real life ones, but did
not analyze how the training affected the socials skills of trainees. The short-
term approach is utilized for the purpose of evaluation of theory of mind teaching
efficiency, and the control group is subject to the NL_MAMS-assisted rehabilitation
after the evaluation. The advantage of the short-term approach is that it is possible
to ignore other factors affecting the theory of mind performance of both groups.

The long-term approach is applied over 3 years, where manual and NL_MAMS-
assisted teaching of the theory of mind is combined with rehabilitation strategies
of various natures. The goal of our long-term approach is to teach theory of mind
reasoning not just for the reasoning skills per se, but also for improvement of social
behavior (Figs. 8.4 and 8.5). Therefore, the evaluation criteria are based on tests of
decision-making in the real world as well as tests of reasoning and choosing actions
in artificial situations (below we include the quantitative results for the latter).

When our training occurs over a relatively long period, it is important to verify
whether performance improvement is simply due to natural development and other
rehabilitation procedures over that time. For this reason a control group with neither
one-to-one nor NL_MAMS-based training, matched for mental age, IQ and severity
of autism, was subject to examinations at the beginning and the end of the set
long-term training period. The control group was selected from another autistic
rehabilitation center, where there is a lack of human resources to provide a focused
theory of mind training by rehabilitation personnel.
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Fig. 8.5 Assisted discovery of unknown objects

8.2 Exercising Scenarios

There are two children, A and B, who are subject to detection and/or training of
the corrupted reasoning about mental states and actions. Correct answers follow
the question, wrong answers are enumerated in the parenthesis, where presented
(Fig. 8.6).

8.2.1 Mental State of Another Person

There is a table in a room with two boxes on it. The experimenter (E) is keeping
a token in his hands. Child A is in the room, and child B is outside the room. E is
asking A:

1) You see the token in my hands. Do you know which box I am going to put the token to?
A: I don’t know that box/nobody knows. (A is confused: I don’t know the answer).

2) E: As you see, I put the token into the left box. Do you know, where B will look for the
token: in the right box, in the left one or in both boxes?

A: In both boxes. (In the left box, where the token actually is).
3) E: And do you know where the token is?

A: I know where is the token.
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Fig. 8.6 A bubble-thought approach to introduction of mental states

4) E: Does B know where the token is? If we ask him, what would he respond:
A: I don’t know where the token is. (I know where it is. I know it is in the left box).

5) E: If we ask B about his opinion, do you (A) know whether B knows where the token
is?

A: B knows that I know that he does not know where the token is. (B knows where
the token is, B does not know where the token is, B knows that I know where the token
is, B knows that I know that B knows where the token is.)

6) E: Can we achieve a situation, when B will know where the token is?
A: Yes, we can tell him or show him (A is confused: I don’t know).
B enters the room. Now all the questions are repeated; B’s responses, predicted by

A, are actually evaluated.
7) E, After A showed (or told) B the location of the token: How do you (B) think, did A

know whether you knew the location of the token while out of this room?
B: A knew that I did not know where the token is.

8) E, interrupting B: what do you (A) think, what will B say?
A: B will say that B knew that I knew that he B did not know where the token was.

9) E: Now you (B) know where the token is, because A have shown you. Do you think he
(A) wanted you to know where the token was?

B: Yes, A wanted myself (B) to know where the token is.
10) E: Do you (A) know whether B knows that you (A) wanted him (B) to know where the

token was?
B : Yes, I know that I wanted B to know where the token was.
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8.2.2 A Wrong Mental State

1) E: Now I want to tell you the following. I believe, that B still does not know where the
token is. Who is wrong: myself (E) or B?

A: You are wrong telling us that B still does not know where the token is. (B is wrong,
now he does know where the token is).

8.2.3 Mental State Transmission

This is a mirror test to the mental state of the other person one.
E keeps the blank piece of paper. A is next to E, and B is in the other room.

1) E: I am going to plot a geometric sketch on a piece of paper. I’m about to start the
drawing. Do you know what I am going to draw; do I know, if myself knows what will
be drawn?

A: I don’t know, and you do.
E finishes the picture.

2) E: Now you know, what I’ve drawn. Does B know that?
A: B does not know what is drawn.

3) E: How can you let him know what is drawn?
A: Either show him or tell him (describe the picture).

4) E: You mentioned two ways of letting B know about this picture. Do both these ways
require your knowledge of what is actually drawn?

A: No, to show him, I do not necessarily have to know (have seen) the picture. To
describe the picture, I have to know its content. (Yes, I have to know the picture content
for both telling and showing).

5) E: If we call B into the room and ask him if he knows what is on the paper, what would
he (B) respond? What would he respond if we ask him after we show him the picture?

A: Before we show him (B) the picture, he will tell that he does not know what it is
about. After we show or tell him (B) about the picture, he will tell he knows it.

6) E: if we ask B concerning his opinion, do you (A) know that he (B) does not know what
this picture is about right now, before we informed him about the picture?

A: B knows that I know that he does not know the drawing. (A is confused: I don’t
know. B does not know that I know that he does not know. B does not know that I don’t
know that he knows).

7) E: I guess, I want your friend to know what is on the picture. Is it true? If so, does B
know that you wanted to let him know about the picture? Does B know that you want
him to know the picture?

A: I’m not sure. After I informed him about the picture, he would know that I wanted
him to know what is on the picture. I don’t know if he (B) knows that I want him to know
the picture.

Thereafter E calls B in and asks A to actually inform B about the picture. All the
questions above are posed for B as B’s prediction of mental state of A.
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8.2.4 Temporal Relationships Over the Mental States. To
Forget and to Recall

There are the toys on the table: a bear, a fox and a rabbit. Experimenter is asking the
child about his/her mental states.

1) E: As you see, the bear is watching the rabbit. Does the bear know that the rabbit is on
the table?

A: Yes, The bear knows that the rabbit is on the table.
2) E: Now the rabbit leaves the table. The bear knows that the rabbit is not on the table

any more. Does the bear know that the rabbit was on the table before?
A: Yes, he knows that he was on the table before.

3) E: Then, after a while, when the fox asks the bear if the rabbit had been on the table, the
bear is saying that the rabbit has not been there. Trusting the bear, what do you think,
does the bear know that the rabbit was on the table?

A: The bear does not know that the rabbit was on the table.
4) E: OK, the bear forgot that the rabbit was on the table. Does the rabbit know that he

earlier knew that the rabbit had been on the table?
A: No, the rabbit does not know that he earlier knew that the rabbit had been on the

table.
5) E: Now the fox wants the bear to recall that the rabbit has been on the table. What will

she do?
A: She (the fox) will tell the bear that the rabbit was on the table, and that the bear

has seen him there.
6) E: Then, assuming, that the bear trusts the fox, what is the knowledge of the bear?

A: Now the bear knows that the rabbit was on the table.
7) E: OK, so the bear recalls that the rabbit was on the table. Does the bear know

that before the recollection he did not know that the rabbit had been on the table?
Analogously, does the bear know that he(bear) knew that the rabbit had been on the
table, while (bear) was watching the rabbit?

A: Yes, the bear knows that he did not know that the rabbit has been on the table, as
well as the bear knows that he knew that the rabbit has been on the table while watching
the rabbit.

8.2.5 Pretending

There is a table, and a book on it. The experimenter teaches the child A to pretend
that it is soap.

1) E: As you see, there is a book on the table. Do both of us know that it is a book?
A: Yes, both of us know that it is a book.

2) E: Now let us pretend that it is soap. Both of us will still know, that it is the book.
However, if I ask you, what that is, what will I respond?

A: You respond that it is soup.
3) E: If you ask me, what is on the table, what will I respond?

A: That there is soap on the table.
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4) E: When one asks you if you know what is on the table, what will you respond?
A: I do know what is on the table.

5) E: Now let us stop pretending. Both of us still know that this is actually a book. If one
asks me what is on the table, what will I respond?

A: You will respond that it is the book.

8.2.6 Exercising Results

Twenty autistic children of the age 4–18 participated in the testing and training and
20 control children of the age 8 participated in the testing.

Note that the questions above cover the majority of mental formulas complexity
1–4, involving want and know (believe is identified with know for simplicity). The
manifold of tested mental state achieves the real world complexity. Therefore, the
trained children are expected to behave properly in the real conditions, if they are
able to transfer artificial mental states to the real ones.

Each question with the mental formula complexity below three was successfully
answered by every control child.

– Each question of complexity 4 was failed by at least one autistic kid.
– For each question the autistic child failed, it was possible to perform training

such that the question is successfully answered after fifth attempt.
– If to replace the mental states by physical states, the questions will be easier

answered by the autistic children, than the questions above. It will not make a
significant difference with the control children.

8.3 Construction of Mental Formulas

Teaching the exhaustive set of mental formulas in a labor-intensive yet efficient way
towards a proper reasoning about mental world. Starting from the simplest formulas
for intention, a caregiver proceeds to complex mental states involving contradicting
beliefs (Table 8.1). The codes for mental formulas are in seven columns on the left.

Once the totality of mental formulas is acquired by a trainee, he can proceed to
formalizing a scenario. Given a story (essay, anecdote), he is expected to formalize
it via mental formulas and feed into NL_MAMS (Fig. 8.7).

Once the totality of mental formulas is explored and CwA is capable of
formalizing some simple scenarios, the trainer can proceed to more complex mental
entities (Figs. 8.7 and 8.8). The definitions of more complex mental concepts: to
offend, to forgive and to reconcile are as follows.
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Table 8.1 Encoding for the approach of building the mental formular for the exaustive set of
mental formulas

Not Want Not Know Not Believe Embed
Definitions of the con-
structed expressions

Semantic
comments

1 1 want (Agent,
do(Agent, Action))

Agent wants to
commit an action

1 2 want (Agent,
do(DAgent, Action))

Agent wants another
agent to commit an
action

1 2 2 want(Agemt, know
(Agent, What)):-
(believe(Agent, know
(KAgent, What)),
ask(Agent, KAgent,
What))

Agent wants
(himself) to know

2 3 1 3 believe (Agent,
want(WAgent, know
(Wagent, What))):-
prefer(Agent,
tell(Agent, Wagent,
What), Other Action)

Believe that other
agent wants to know

2 3 1 3 believe (Agent,
inform(WAgent,
KAgent, What)).
believe(Agent,
want(WAgent, know
(KAgent, What))):- not
know (KAgent,
want(WAgent, know
(KAgent, What))),
inform(Agent, KAgent,
ask(KAgent, WAgent,
What))

Believe that
someone wants to
know - > inform
believe that someone
else wants the third
person to know

2,4 3 1 4 believe(Agent,
want(WAgent, know
(KAgent, want(Agent,
What))):-
believe(Agent,
inform(WAgent,KAgent,
want(Agent, What)))

Believe that
someone else wants
the third person to
know what I want

8.4 The Literature Search System

Once a trainee is familiar with mental formulas and is capable of forming simple
scenarios from it, he should proceed to formulating questions in the mental world. A
rich and extensive domain in the mental world is the one of the fictional characters
in a narrative work of art (such as a novel, play, television series or film). In this
section we propose a reasoning exercise based on formulating queries and searching
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Fig. 8.7 NL_MAMS processing a joke, formalized by a trainee

for works of literature (WOL). This is the most computational intelligence-
intensive application in HCI domain among other assistive technologies, along with
NL_MAMS.

The methodology and abstraction of such search are very different from those
for database querying, keyword-based search of relevant portions of text, and
search for the data of various modalities (speech, image, video etc.). Clearly, the
search that is based on mental attributes is expected to be semantically accented:
using just the author or title name is trivial. Also, using temporal (historical) and
geographical circumstances of the characters reduces WOL search to the relatively
simple querying against the relational database of WOL parameters.

Focusing on the mental component of WOL plots is rewarding from the
prospective of building the compact and closed (in terms of reasoning) vertical
natural language question-answering (Q/A) domain. It is important that a user is
aware of the lexical units and knowledge that is encoded in a domain to ensure
the robust and accurate Q/A system. Division of the commonsense knowledge
into mental and non-mental (physical) components introduces a strict and explicit
boundary between the “allowed” and “not allowed” questions, that is a key to
success of NL Q/A application in the field of education (Galitsky 2000).
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Unintentional offend is based on the lack of knowledge that the offending action 
do(Who, Action) is unwanted:

offend( Who, Whom,  Action ) :- want(Who, Action),  
not want(Whom, Action),
not know(Who, not want(Whom, Action)), 
do(Who, Action).               

To be forgiven, the offender has to demonstrate that the offense is indeed unintentional. 
It is necessary for the offender Who to inform Whom that Who would not do that Action if
Who knew Whom did not like (want) it.

forgive( Whom, Who, Action) :-
offend( Who, Whom,  Action ),
inform(WhoElse, Whom, 

not know(Who, not want(Whom, Action)) ),
believe(Whom, (know(Who, not want(Whom, Action))®

not do(Who, Action)  )).
If Who is unable to convince Whom (to make him believe) that the offend was 

unintentional, the other agent Counselor is required to explain the actual situation to Whom:
reconcile( Counselor, Who, Whom,  Action ) :-

offend( Who, Whom,  Action ),             
not forgive( Whom, Who, Action),
explain(Counselor, Whom, 

believe(Whom, (know(Who, not want(Whom, Action))®
not do(Who, Action)   )).

Fig. 8.8 A trainee writes a formal definition for cheating followed by its definition in plain words
(Russian)

What is the role of mental states of fictional characters in the classification and
schematization of the works of literature? We have built the dataset of WOLs, which
includes the manually extracted mental states of their characters. We collected as
many WOLs as it was necessary to represent the totality of mental states, encoded by
logical formulas of the certain complexity (Galitsky 2002). Below are the features
of this dataset:
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1. As a rule, the main plot of a WOL deals with the development of human
emotions, expressible via the basic (want-know-believe) and derived (pretend,
deceive, etc.) mental predicates. A single mental state expresses the very essence
of a particular WOL for the small forms (a verse, a story, a sketch, etc.). When
one considers a novel, a poem, a drama, etc., which has a more complex nature,
then a set of individual plots can be revealed. Each of these plots is depicting its
own structure of mental states that is not necessarily unique. Taken all together,
they have the highly complex forms, appropriate to identify the WOL.

2. Extraction of the mental states from a WOL allows us to clarify psychological,
social and philosophical problems, encoded by this work. The mental compo-
nents, in contrast to the “physical” ones are frequently expressed implicitly and
contain some forms of ambiguity.

3. The same mental formula may be a part of different WOLs, written by the
distinguishing authors. Therefore, it is impossible to identify a certain WOL or
author when we take into consideration just a single mental formula. However,
the frequency of repetition of certain mental formulas shows us the importance
of the problem raised by a WOL.

4. The sets of mental formulas are sufficient to identify a WOL. The possibility to
recognize a certain author according to a collection of mental states of his or her
WOLs is beyond our current considerations.

8.4.1 Architecture and Implementation

We enumerate the tasks that have to be implemented for the literature search system
based on the scenario reasoning settings

1. Understanding a natural language query or statement (Galitsky 2003). This unit
converts a NL expression in a formalized one (mental formula), using mental
metapredicates and generic predicates for physical states and actions.

2. Domain representation in the form of semantic headers (Galitsky 2000), where
mental formulas are assigned to the textual representation (abstract) of WOLs.

3. NL_MAMS-supported reasoning that builds the hypothetical mental states,
which follow the mental state, mentioned in the query. These generated hypo-
thetical mental states will be searched against WOL knowledge base together
with the query representation (in unit 5).

4. Synthesis of all well-written mental formulas in the given vocabulary of basic
and derived mental entities.

5. Matching the mental formula, obtained for a query against mental formulas,
associated with WOLs. We use the approximate match in case of failure of the
direct match.

6. Synthesis of canonical NL sentence based on mental formula to verify if the
query was properly understood.
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Figure 8.9 presents the chart for interaction between the respective components
(1)-(6) of the WOL search system. Suggested system architecture allows two
functioning options: WOL search and extension of WOL dataset. When a user
wishes to add a new WOL to the current dataset, mental formulas associated with
text are automatically build by unit 1 and are multiplied for semantically different
phrasings by Unit 3.

Rather complex semantic analysis (unit 1) is required for exact representation of
input query: all the logical connectives have to be properly handled. Unit 3 provides
the better coverage of the WOL domain, deductively linking mental formula for a
query with mental formulas for WOLs. Unit 4 is based on NL_MAMS to handle the
totality of all mental formulas, representing the real-life situations.

We rely on NL_MAMS to extract the plausible mental formula from the totality
of all well-written mental formulas, represented via metapredicates. In addition,
introduction of the classes of equality of mental formulas are required for the
approximate match of mental formulas (Unit 5) that is also inconsistent with the
traditional formalizations of reasoning about knowledge and belief. NL synthesis
of mental expression (Unit 6) is helpful for the verification of the system’s
deduction. A trainee needs this component to verify that she is understood by
the system correctly before starting to evaluate the answer. NL synthesis in such

Input Query

NL query
understanding

WOL database

Answer

Pre-designed
mental formulas
(semantic
header) :-
output(WOL
abstract)

2

Building translation
formula

Multiagent mental
simulator

Building consecutive
mental states

Exact formula
match

Synthesis of simplified mental formula
for the control of query understanding

Enumeration of all
well-formed mental
formulasApproximate

formula match

1

3

5 4

6

Fig. 8.9 The chart of the WOL search and mental reasoning system
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strictly limited domain as mental expression is straightforward and does not require
special considerations. Note that semantic rules for the analysis of mental formulas
require specific (more advanced) machinery for complex embedded expressions and
metapredicate substitutions.

The special question-answering technique for the weakly structured domains
has been developed to link the formal representation of a question with the formal
expression of the essential idea of an answer. These expressions, enumerating the
key mental states and actions of the WOL characters, are called semantic headers
of answers (Galitsky 2000). The mode of knowledge base extension (automatic
annotation), where a customer introduces an abstract of a plot and the system
prepares it as an answer for the other customers, takes advantage of the flexibility
properties of the semantic header technique.

The mode of knowledge base extension (automatic annotation), where a trainee
or a caregiver introduces an abstract of a plot and the system prepares it as an answer
for the other trainees, takes advantage of the flexibility properties of the semantic
header technique.

To summarize, The WOL architecture is as follows. NL query that includes
mental states and action of WOL characters is converted into mental formula (1).
Multiagent mental simulator (3) yields the set of mental formulas, associated with
the query to extend the knowledge base search. Obtained formulas are matched (5)
against the totality of prepared semantic headers (mental formulas) from the WOL
database (2). If there is no semantic header (mental formula attached to text) in
the dataset component that satisfies the mental formula for a query, the approximate
match is initiated. Using the enumeration of all well-formed mental formulas (4), the
system finds the best approximation of the mental formula for a query that matches
at least single semantic header (mental formula for an answer) (Fig. 8.10).

How would a person pretend to another person that she does not want that person to know 
something?

When would a person want another person not to pretend that he does not know something?
When would a character pretend about his intention to know something?
Why would a person want another person to pretend about what this other person want?
How can a person pretend that he does not understand that other person does not want?
Is it easy for a person to believe that another person does not pretend what she wants?
How can a person believe that another person might pretend that he wants something?
She wanted to believe that he pretended that he was not a prince.
Can she believe that he does not pretend that he committed the murderer of her spouse because of 

his love to her?
A person believes that the husband does not want him to love his wife.
A wife wishes not to confess to her husband that she was not faithful.

Fig. 8.10 Sample questions for the literature search



310 8 Rehabilitating Autistic Reasoning

WOL search system allows a literature fan to extend the
knowledge base with the new favorite story or novel and to
specify the major ways of accessing it (asking about it). This
toolkit processes the combination of the answer (an abstract of a
story, introducing the heroes and their interactions) and a set of
questions or statements (explicitly expressing the mental states
these interactions are based on).
When does a person
pretend about her
intention to know
something?

Domain extension code:

The Carriage of holly gifts
by P. Merimee
An old-aged king wants to learn from
his secretary if the young girl he loves
is faithful to him. The secretary is
anxious to please the king...

pretend(person, other_person, want(person, know(person,Smth)))
:- do201.

Add to Knowledge Compile Knowledge base

Ask

do201:-output ($The Carriage of holly gifts... $).
Domain is compiled. Ask a question to the updated domain

                                           Now you can ask the questions for the
domain extension as well as for the base domain, varying the
phrasings.

Fig. 8.11 Autistic child learns the mental interaction with the characters (participants of the
scene), using suggested system

8.4.2 HCI Aspects and Query Examples

Interaction with the literature characters is demonstrated to be a novel educational
and entertainment area, appealing to adults as well as to children, interacting with
the characters of the scenes in NL (Fig. 8.11). Since the players are suggested
to both ask questions and share the literature knowledge, the system encourages
the cooperation among the members of the players’ community. In the demo we
have built, the system only recognizes the questions and statements, involving
the terms for mental states and actions. This way we encourage the players to
stay within a “pure” mental world and to increase the complexity of queries and
statements we expect the system to handle properly. Observing the game players, we
discovered that they frequently try to obtain the exhaustive list of WOLs, memorize
the querying results and enjoy sharing WOL plots with the others.

The demo encourages the users (players, students) to demonstrate their knowl-
edge of classical literature, from medieval to modern, asking questions about the
mental states of the characters and compare the system results with their own
imagination. The system stimulates the trainees to extract the mental entities, which
can be formalized, from the totality of features of literature characters. After an
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Fig. 8.12 A scene that is a subjects of questions about mental states

answer is obtained, it takes some efforts to verify its relevancy to the question. It
takes a little variation in the mental expression to switch from one WOL to another.
More advanced users are offered the option of adding new WOL. For mental
intervention (particularly, autistic children) certain visualization aids are useful in
addition to the WOL search system (Fig. 8.12, Galitsky 2000).

Examples of questions the children may ask the system about, while watching
the scene, are shown in Fig. 8.10. Involving more and more complex mental states
helps the playing children to develop creativity and imagination of thinking, as well
as the communication skills of understanding other’s mental states.
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8.5 The Action Adjustor Training System

Having acquired various reasoning patterns, regrettably, CwA experience difficul-
ties transferring these patterns from one domain to another, from home to street
environment, from behavior while on holiday or in the class etc. Therefore, although
the default reasoning patterns per se are formulated as domain-independent, the
same patterns have to be repetitively introduced in each domain.

Adjustment of action can be initiated in a pre-verbal age. It is important to
give meanings to CwA actions. Some CwA do not yet use their behavior for
communication with others, but a parent or trainee can respond to CwA behavior
as if it were a communication. It teaches her that her actions have meanings. For
example, if CwA makes sounds without an intent to communicate anything, a parent
should respond as if the sounds have a goal, such as a request for some objects. The
caregiver should then pronounce “here it is, the toy” and give it to CwA. Also, if
CwA reaches up in the air without any intent or associated meaning, react as if he
wants to be picked up. Attach a meaning to CwA’s play even if she handles a toy
in an unusual or odd way. If a child arranged toy animals in a row, a trainer can say
“You arranged your animals in a Zoo”.

Teaching children with autism proper reasoning patterns concerning selection
of actions in a context should be conducted in all domains one would expect to
make children’s behavior more adequate. Hence a separate component for each
behavioral domain is required, including home, school, outdoor, sports and other
activity. We build a sample interactive form for the “going to school” domain,
keeping in mind that similar forms are required for different domains. In the future
we expect such forms will be developed (possibly, built by automated tools) by a
number of educational content providers.

The generic interactive form that includes two exercises is shown at Fig. 8.13.
The form specifies the initial conditions and default actions (drop-down boxes on
the left) and also current circumstances with adjusted actions (drop-down boxes
on the right); actions are chosen by trainees. Selecting the items on the left,
trainees imitate respective sequence of (changing) circumstances/contexts, and the
appropriate action adjustment (correct action) should be selected on the right. The
link between the selections on the left and those on the right is implemented via
default rules.

In Fig. 8.14 we present two interactive forms for organizing a party (on the
top) and a route to school (on the bottom). The initial state is randomly set. Then

Fig. 8.13 Interactive form to train the adjustment of action to representation change
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1

4

Please collect the plates

A person is done eating

Wait till a person is finished eating

A person is done eating but there is still some food on the plate Don't collect a plate and bring more food

I am following my standard route to school

There is a puddle 

Walk around the paddle

There is space to walk around

The shoes are inexpensive

There is an angry dog on the way back

Go straight

Go back

Go straight

What is happening What would you do?

What is happening What would you do?

Fig. 8.14 Two interactive forms for training selection of actions

the trainee needs to select an appropriate action in response to the auto-selected
circumstances. Alternatively, the trainee can select these circumstances herself to
browse through all possibilities. Once the choice is done, the system corrects the
selection if the choice was erroneous.

8.6 Emotional Remediation

It is hard for CwA to recognize facial expressions of different emotions. Children
who have trouble interpreting the emotional expressions of others are taught
about emotional expressions by looking at pictures of people with different facial
expressions or through identifying emotional expressions of others in structured
exercises. CwA are missing an intuitive, almost automatic sense of another person’s
affect (Fig. 8.15). This is the feature people rely on to appreciate an emotional state
of a peer. In other words, understanding of emotions of other people is supposed
to happen very rapidly through a personal, non-logical, emotional reaction. One
can often respond to the person’s affect before it even consciously accepted. Thus,
we flirt back, look embarrasses, puzzled or display anger as part of our intuitive,
affective response. Once we have experienced, at the intuitive level, the other
person’s emotional signal, we can also reflect on it in a conscious and deliberate
manner. People may determine that other people are unhappy angry, or puzzled
and to do that they are relying on their own affective response, not just on facial
expression of an opponent (Fig. 8.16).
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Fig. 8.15 Attempting to cause positive emotions without scaring

Fig. 8.16 Classes of emotions (Hergott 2016)

During a regular course of events, such as attending a cocktail party or trying to
establish relationships with other children at a birthday party, there is a high volume
of affect signals being exchanged. If a child or adult consciously tries to figure out
each separate one, they will be doomed to failure and confusion.
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Therefore, the way to help CwA to recognizing and learn affect signals is to
provide him or her extra practice in experiencing and reading those signals. A trainee
should start in rather simpler social situations involving lots of reciprocal, affective
interactions, initially with one-on-one caregiver and other children. After that CwA
should gradually proceed towards more complex situations with other people.

It is not enough to teach child recognize emotions on a computer game. A trainee
must proceed talking about emotions in real-world interactions (Fig. 8.15). Since
CwA cannot learn this affect on their own; they must be guided. The “practice”
needs to involve the personal inner experiences of someone else’s affect, as well as
one’s own, in a series of reciprocal interactions. Similarly, children who have theory
of mind problems are often provided with cognitive exercises involving figuring out
other people’s perspectives, rather than working at the primary level of affective
signaling, which is often compromised and at the core of these children’s problems.

Our experience in rehabilitation tells that children with autism or Asperger’s
Syndrome are not able to learn to feel their own and someone else’s affect and,
therefore, can only learn to read facial expressions through pictures or perform
theory of mind tasks in a conscious, deliberate manner (Fig. 8.15).

Although a number of research suggests the opposite, with a program focusing on
relating and affect cueing, the majority of children made progress in understanding
and showing emotions (Greenspan and Wieder 1998). In general, the missing piece
in many intervention programs is a lack of understanding of the developmental steps
involved in acquiring certain cognitive, social, and emotional skills (Fig. 8.17).
By understanding these steps, which often involve transformations of affect,
intervention strategies can help the child master the critical foundations for cognitive
and social skills.

Fig. 8.17 Children express distinct emotions observing something that causes a surprise
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Greenspan (1997) worked with children on their skills to interact by means
of affective gestures. The first step was simple interaction scenarios including
back and forth negotiations (Rosenschein and Zlotkin 1994) such as put a book
on the table or get a hat. The author found that CwA can mostly achieve a
continuous flow of affective interaction. As children are involved in interactions,
their repetitive, idiosyncratic, un-reciprocal and stereotypical forms of behavior
were altered. They begin using their gestures, available language and thinking skills
in a more purposeful, creative and abstract manner.

For children who start this training at age eight, they need a number of years to
develop the basic capability for reciprocal affective gesturing since this skill was
omitted at the appropriate age. When this training starts at earlier age, CwA develop
these skills more quickly and fully (Greenspan and Wieder 1998). Many children
benefit from a balanced intervention program which involves both spontaneous
reciprocal affective interchanges and problem solving training with certain structure.
When goals are posed in a semi-structured way, the training needs to be offered
in a way that initiates enthusiastic affect and a continuous flow of back and forth
interaction while solving a problem. An example of such semi-structured problem
would be teaching a child to “open” in the context of his trying to open the door to
get his favorite toy that has been deliberately placed behind the door.

8.6.1 Emotions in Conversational Agents

Computers need to be programmed emotions from scratch to display affect in
response to some stimuli. The area of affective computing (Picard 1997) is
the design of computational devices proposed to exhibit either innate emotional
capabilities or that are capable of convincingly simulating emotions. With CwA, we
target both these directions, giving them rules to reason about emotions as a part of
the mental world on one hand, and teach them direct rule when it is appropriate to
express a given emotion.

A more practical approach for the case of computers, based on current techno-
logical capabilities, is the simulation of emotions in conversational agents in order
to enrich and facilitate interactivity between human and machine. While human
emotions are often associated with surges in hormones and other neuropeptides,
emotions in machines and CwA should be associated with states associated with
progress (or lack of progress) in autonomous learning systems, or cognitive
development. In this view, affective emotional states correspond to time-derivatives
(perturbations) in the achieved recognition accuracies of an arbitrary learning
system. Both computer scientists and CwA teachers pose the question on how far
can their subjects go in terms of doing a good job handling people’s emotions
and knowing when it is appropriate to show emotions without actually having the
feelings.

Marvin Minsky, one of the pioneering computer scientists in AI, relates emotions
to the broader issues of machine intelligence, stating in his book “The Emotion
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Machine” that emotion is “not especially different from the processes that we call
‘thinking’ (Minsky 2007). He explains that the distinction between emotions and
other kinds of thinking is rather vague. His main argument is that emotions are
“ways to think” for different “problem types” that exist in the world. The brain has
rule-based mechanisms, implemented as switches or selectors, that initiate emotions
to tackle various tasks. Minsky’s approach backs up our intervention strategy based
on the rule-based assistance with understanding and reproducing emotions.

In his book “Descartes’ Error” (Damasio 2004) argued that, thanks to the
interplay of the brain’s frontal lobe and limbic systems, our ability to reason depends
in part on our ability to feel emotion. Too little like too much of this system would
cause bad decisions. The simplest example: It is an emotion – fear – that controls
one’s decision not to go into a forest in the dark at night to avoid wolves. Most AI
experts aren’t interested in the role of emotion, preferring to build systems that rely
solely on rules. Another AI pioneer John McCarthy believes that we should avoid
affect in computational models, arguing that it isn’t essential to intelligence and, in
fact, can get in the way. Others, like Aaron Sloman, think it’s unnecessary to build
in emotions for their own sake. According to Sloman, feeling will arise as a “side
effect” of interactions between components required for other purposes. In terms of
our model of the mental world, once mental states are properly trained, emotions
will follow since they obey similar definition framework.

Picard (1997) believes that computers should be designed to take into account,
express and influence users’ feelings. From scheduling an appointment to picking a
spouse, humans follow their intuition and listen to their gut feelings. According to
Picard, computers that are not capable of understanding and generating emotion are
like an autistic ski resort service guy who says, “I remember you! You’re the dude
who gave me a bad tip.”

The pragmatics of autistic intervention of emotional development helps to
resolve the disagreement between Picard and her opponents. On one hand, inter-
actional approach to affective computing adopts a notion of emotion as constituted
in social interaction. This is not to neglect the fact that emotions have neural aspects,
but it is to confirm that emotion is “culturally grounded, dynamically experienced,
and to some degree constructed in action and interaction”. When a CwA is taught to
choose an action, once it affects other people or a feeling of himself, a rule needs to
be introduced for an associated emotion. When you either step into a puddle or go
around, in addition to physical results of either action CwA needs to be explained
the feeling of the mother once she observes the pair of wet shoes.

Also, the interactional approach does not seek to enhance the affect-processing
capacities of computer systems. Rather, it seeks to help people to understand and
experience their own emotions, which is important for CwA. Furthermore, the
interactional approach accordingly adopts different design and evaluation strategies
than those described by the Picardian research program. Interactional affective
design supports open-ended, inter-individual processes of affect interpretation.
It recognizes the context-sensitive, subjective, changing and possibly ambiguous
character of affect interpretation. Interactional approach considers these efforts to
make sense of emotions and that it may be difficult to formalize affect.
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Fig. 8.18 A training to properly express emotions

Picard and her followers pursue a cognitivist measuring approach to users’
affect, while the interactional followers prefer a pragmatic approach that views
(emotional) experience as inherently referring to social interaction (Boehner et al.
2007). While the Picardian approach focuses on human-machine relations, the goal
of the interactional affective computing approach is to facilitate computer-mediated
inter-personal communication. And while the Picardian approach is concerned with
the measurement and modeling of the neural component of the emotional processing
system, interactional affective computing considers emotions as complex subjective
interpretations of affect, arguing that emotions instead of not affect are at stake, from
the point of view of technology users.

Picard uses the state transition diagram to simulate transitions between emotions.
The state (here: interest (I), distress (D), or joy(J)) of a person cannot be observed
directly, but observations which depend on a state can be made (Fig. 8.19). The
Hidden Markov Model shown here characterizes the probabilities of transitions
among three “hidden” states, (I,D,J), as well as probabilities of observations
(measurable eccentric forms, such as features of voice inflection, V) given a state.
Given a series of observations over time, an algorithm such as (Viterbi’s 1967) can
be used to computer the sequence of states which provide the best explanation for
observations. These diagrams should be used as an educational aid for trainers to
explain how one emotion can grow into another (Fig. 8.18).

For example, if one is interested in something, but is denied access or infor-
mation, she transitions into distress. Once the access is granted or information is
obtained, she can further transition to joy. These transitions can also be illustrated
by modifying an schematic image of an agent, an animal or a human (Sect. 8.6.5).
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Fig. 8.19 State transition diagram to simulate transitions between emotions (from Jain and Asawa
2015)

This probabilistic algorithm is good to teach a machine to recognize emotions,
but for a teaching a CwA a deterministic rule-based approach is necessary, like
always show a joy once you satisfied your interest, not randomly. In general,
random, probabilistic behavior, as observed by others, as associated with autism
and therefore needs to be cured. Even if deterministic system does not behave as
close to a natural emotional system as a probabilistic one, it is still a step forward in
terms of teaching CwA.

Although most computer models for imitating mental activity do not explicitly
consider the limbic response, a surprisingly large number implicitly consider it.
(Werbos 1994) explains that his original idea of the backpropagation learning
algorithm, extensively used in training artificial neural networks, was inspired by
trying to mathematically translate an idea of Freud. Freud’s model began with the
idea that human behavior is governed by emotions, and people attach emotional
energy to things Freud called “objects.”

According to Freud’s theory, people first of all learn cause-and-effect associa-
tions; for example, they may learn that “object” A is associated with “object” B at a
later time. And his theory was that there is a backwards flow of emotional energy. If
A causes B, and B has emotional energy, then some of this energy flows back to A.
If A causes B to an extent W, then the backwards flow of emotional energy from B
back to A will be proportional to the forwards rate. That really is backpropagation....
If A causes B, then you have to find a way to credit A for B, directly. : : : If you
want to build a powerful system, you need a backwards flow.”

What are the cases that arise in affective computing, and how might we proceed,
given the scenarios above? Table 8.2 presents four cases:

I. Most computers and some CwA fall in this category, having rather limited affect
recognition and expression. Such computers and humans are neither personal
nor friendly.
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Table 8.2 Four categories of affective computing, focusing on expression and recognition.
Another question can be posed whether a system can act based on emotion, having a capability
to express it (on the bottom)

Computer Cannot express affect Can express affect

Cannot perceive affect I. II.
Can perceive affect III. IV.
Can act based on emot. j : : :

II. This category aims to develop computer voices with natural intonation and
computer faces (perhaps on agent interfaces) with natural expressions. When
a disk is put into a laptop and its disk-face smiles, users and peers may share its
momentary pleasure. Of the three categories employing affect, this one is the
most advanced technologically, although it is still in its infancy. This case is also
represented by CwA which need to be trained to perceive affect and emotions.

III. This category enables a computer or a CwA to perceive your affective state,
enabling it to adjust its response in ways that might, for example, make it a
better teacher and more useful assistant. It allays the fears of those who are
uneasy with the thought of emotional computers, in particular, if they do not
see the difference between a computer expressing affect, and being driven by
emotion.

IV. This category maximizes the meaningful communication between human and
computer, potentially providing truly “personal” and “user-friendly” comput-
ing. It does not imply that the computer would be driven by its emotions. This
is the goal of emotional rehabilitation of CwA.

Also it is worth adding the rows “Computer can/can’t induce the user’s emotions”
as it is clear that computers already influence our emotions, the open questions are
how deliberately, directly, and for what purpose.

It has to be clearly explained to a CwA what is the difference between feeling,
emotion and affect. Feelings are personal and biographical, emotions are social,
and affects are pre-personal (Shouse 2005).

We can define a feeling as a sensation that can be recognized given the previously
accumulated training set (of feelings). It is personal and biographical because
every person has a distinct training set of previous sensations. An infant does not
experience feelings because he lacks such training set. At the same time, parents
are confident that their children have feelings (which are indeed affects) and express
them regularly.

An emotion is a display of a feeling, a means to show feeling to the public.
Unlike feelings, the display of emotion can be either genuine or fake (Oatley and
Johnson-Laird 1987). We broadcast emotions to the world:

1. an expression of our internal state;
2. in order to fulfill social expectations.
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Infants do display emotions although they do not have a training set to experience
feelings. The emotions of the infant are direct expressions of affect.

CwA need to be explained that for a given feeling, there are multiple way
to express respective emotion. When feeling D ‘upset’ the emotion 2 f‘yell’,
‘throw object’, ‘tantrum’, ‘being quiet’, ‘drop into tears’, ‘complain’g. A caregiver
should give an example first and then make a trainee display one emotion after
another, given a particular feeling. Also, CwA needs to be capable of recognizing
genuine (sincere, real) emotions versus fake (cheating, pretending, trying to impress
someone with her specific feeling to achieve a goal).

Affect can be defined as the body’s way of preparing itself for action in a given
circumstance by adding a quantitative dimension of intensity to the quality of an
experience.

An affect is a non-conscious experience of intensity; it is a moment of unformed
and unstructured potential. Affect cannot be fully realized in language, and it is
outside of consciousness). The body has a grammar of its own. CwA need to
be trained to imitate affect by their bodies, and differentiate it from emotions.
According to (Massumi 2002), affects include coordinated responses involving the
facial muscles, the viscera, the respiratory system, the skeleton, autonomic blood
flow changes, and vocalizations that together produce an analogue of the particular
gradient or intensity of stimulation influencing the person’s body.

8.6.2 Tuning Emotional Response

Children should be capable of defining emotions and telling a caregiver about a time
they feel, experience this emotion. A definition of a particular emotion needs to be
provided if a child is unable to produce an appropriate explanation. A trainer must
ensure that the children are aware of the meaning of each term referencing emotion
as they are asked to discuss their personal experience.

An important class of exercises targeting reasoning that supports understanding
and expressing emotions is recalling a prior personal experience. High-functioning
individuals with autism also seem able to discuss experiences with simple emotions
but usually have trouble with more complex or self-conscious emotions such
as pride and embarrassment. The form-based approach where a child picks a
combination of himself or his proponent or opponent in the mental state, is fruitful
(Fig. 8.20, Galitsky and Shpitsberg 2015). In the rightmost column the trainees are
to give example of cases from their personal experience.

Whereas simple emotions are associated with distinct facial expressions, exhibit
little cultural variation in antecedents or expression, and are typically recognized
and understood relatively early in development, self-conscious emotions necessarily
involve complex attribution processes relying on later developmental achievements,
such as the capacity for reflecting upon experiences and evaluating them in relation
to sociocultural norms and expectations, as well as the appraisals of others (Lewis
et al. 2010, Fig. 8.21). According to Cooley 1902)
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proud I

with

person
you person's action
he person A's action towards person B
they myself

embarrassed I my action
you my action towards person B
he
they

Fig. 8.20 A form for being proud and being embarrassed

Fig. 8.21 This drawing depicts the looking-glass self. The person at the front of the image is
looking into four mirrors, each of which reflects someone else’s image of this person

the thing that moves us to pride and shame is not merely mechanical reflection of ourselves,
but an imputed sentiment, the imagined effect of this reflection upon another’s mind.

When the children are unable to recall a personal experience, a trainer describes
a scripted personal experience of her own involving the term in question, followed
by the prompt “Have you ever felt that way?” Once children began their accounts,
however, such advising should be limited to requests for elaboration and clarification
in response to children’s excessive pauses, trailing off, and incoherent remarks.
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There are two kinds of issues in understanding and expressing emotions while
children recount their emotional experience:

1. Involving inappropriate contexts, actions and events that, without further expla-
nation, would not typically elicit the emotion/or non-emotion in question (e.g.,
“I was embarrassed once time when I was asked to assist with carrying a bag”).

2. Involving episodes that would tend to elicit feelings of appropriate sentiment
polarity but did not contain sufficient details or explanation for distinguishing
the specific emotion/non-emotion from the feeling expressed in language by a
verb of the same class (feelings with the similar patterns). (e.g., “I was proud
when I received an acceptance letter in the mail”).

These issues are cured by learning correct, concise definitions of emotional
entities.

Only describing unambiguously evocative contexts (e.g., “I was not happy when
my parents took my brother instead of me to watch a movie”) and/or that include
explanations clarifying the reasons the particular actions or events were associated
with the feeling in question (e.g., “I felt proud when I earned an award for running
fast”) can be considered as successful understanding of emotion.

8.6.3 Autism and CwA Expression of Feelings

Despite many difficulties, CwA can acquire social skills over a period of time, given
appropriate intervention. Attempting to teach people with autism about emotions
using conventional strategies, such as trying to make them understand a viewpoint
of another person, is rarely successful. A more concrete approach is required.

In this chapter we present a method to teach CwA to understand and acknowledge
the thoughts and feeling of others via social stories. These short stories describe
scenarios that enable individuals to improve their understanding of themselves and
others. These stories prompt both children and adults to ask questions about other
people and attempt to recognize that different people may think differently.

If one distinguish a child’s capacity for deep, joyful relating from the capacity for
affective, reciprocal interchanges, one can observe that CwA are capable of the full
range of warmth, love, and closeness. This intimacy is relatively easy to observe
in families who focus on promoting relaxed interactions for hours and hours and
attending to all the subtle ways the children have of showing their intimacy. In
the review of 200 cases, over half the children evidenced a deep rich capacity for
intimacy and over 90 % showed a continuing growth in this pattern (Greenspan and
Wieder 1998) (Fig. 8.22).

When teaching individuals with autism about emotions, it is important to
describe each feeling pictorially, using pictures with clear outlines, and with
minimal detail. Relate the emotion to what can be seen, such as facial expression or
body language.
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Fig. 8.22 Stimulation via novel unfamiliar patterns to enhance tolerance to unexplored feelings

Manipulative
Gesture

Communicative
Gesture

Communication

Gestural
Interface

Natural
Manipulation

Fig. 8.23 Applications of gestural interface for HCI. Unlike the gestures in a natural environment,
both manipulative and communicative gestures in HCI can be employed to direct manipulations of
objects or to convey messages

8.6.4 Teaching Gestures

CwA need to be taught gestures as an efficient way of communication.
The taxonomy that seems most appropriate within the context of HCI was

recently developed by (Quek 1995). A slightly modified version of the taxonomy
is given in Fig. 8.24 and Fig. 8.23. All hand/arm movements are first classified into
two major classes: gestures and unintentional movements.

Gestures themselves can have two modalities: communicative and manipulative.
Manipulative gestures are the ones used to act on objects in an environment
(object movement, rotation, etc.) Communicative gestures, on the other hand, have
an inherent communicational purpose. In a natural environment they are usually
accompanied by speech. Communicative gestures can be either acts or symbols.
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Hand/Arm Movements

Unintentional MovementsGestures

Manipulative Communicative

Acts

Mimetic Deictic Referential Modalizing

Symbols

Fig. 8.24 A taxonomy of hand gestures for HCI. Meaningful gestures are differentiated from
unintentional movements. Gestures used for manipulation (examination) of objects are separated
from the gestures which possess inherent communicational character

Fig. 8.25 Using gestures for communication

Symbols are those gestures that have a linguistic role. They symbolize some
referential action (for instance, circular motion of index finger may be a referent
for a wheel) or are used as modalizers, often of speech (“Look at that wing!” and
a modalizing gesture specifying that the wing is vibrating, for example). In HCI
context these gesture are one of the most commonly used gestures since they can
often be represented by different static hand postures (Fig. 8.25).

CwA have trouble reading body language, which makes it increasing difficult for
them to interact with others. The good news is that it is possible to learn how to read
body language through practice and role-playing.

Noticing the signals that people send out with their body language is a crucial
social skill. A few of CwA can read it naturally, but most of us are notoriously
oblivious. Fortunately, with a little extra attentiveness, you can learn to read body
language, and with enough practice it can become second nature.
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Body language often encompasses (a) how our bodies connect with material
things (e.g., pens, cigarettes, spectacles and clothing), (b) how we position our
bodies, (c) how we touch ourselves and others, (d) our breathing, (e) our closeness
to – and the space between – us and other people and how this changes, (f) our eyes –
especially how our eyes move and focus, and (g) our facial expressions. Being able
to “read” body language therefore helps us greatly to understand ourselves better,
understand better how people might be perceiving our own non-verbal signals, and
know how people feel and what they mean.

Here are the tips for reading body language:

1. A clenched fist can indicate anger or solidarity.
2. A thumbs up and thumbs down are often used as gestures of approval and

disapproval.
3. Blinking is natural, but you should also pay attention to whether a person is

blinking too much or too little. People often blink more rapidly when they are
feeling distressed or uncomfortable. Infrequent blinking may indicate that a
person is intentionally trying to control his or her eye movements. For example,
a card player might blink less frequently, because he is purposely trying to
appear unexcited about the hand he was dealt.

4. Clasping the hands behind the back might indicate that a person is feeling
bored, anxious, or even angry.

5. Closed posture involves keeping the obscured or hidden often by hunching
forward and keeping the arms and legs crossed. This type of posture can be
an indicator of hostility, unfriendliness, and anxiety.

6. Crossed arms might indicate that a person is feel defensive, self-protective, or
closed-off.

7. Crossed legs can indicate that a person is feeling closed off or in need of privacy.
8. Dilated pupils mean that the person is interested. Keep in mind, however, that

many substances cause pupils to dilate, including alcohol. So a CwA should not
do a mistake of having a few drinks for attraction.

9. If people purposely touch their feet to yours, they are flirting!
10. If someone mimics your body language, this is a very genuine sign that they

are trying to establish a communication channel with you. Try changing your
body position here and there. If you find that they change theirs similarly, they
are mirroring.

Substantial interest in gestural interface for HCI is stimulated by a vast number of
potential applications. Hand gestures in connection with human-computer interface
can simply enhance the interaction in “classical” desktop computer applications by
replacing the computer mouse or similar hand-held devices. Hand gestures can also
replace joysticks and buttons in the control of computerized machinery or be used
to help the individuals with special needs and physically impaired to communicate
more easily with others. Nevertheless, the major impulse to the development of
gestural interfaces has come from the growth of virtual environments (Uras and
Verri 1995). Hand gestures in natural environments are used for both manipulative
actions and communication. However, the communicative role of gestures is limited,
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since hand gestures tend to be a supportive element of speech (with the exception of
deictic gestures, which play a major role in human communication). Manipulative
aspect of gestures is fairly important for HCI. Some applications have emerged
recently that take advantage of the communicative role of gestures.

8.6.5 Modifying Emotions in an Image

A set of exercises where CwA is asked to modify a schematic image or a photo to
substitute an emotion turned out to be fairly fruitful. Modifying certain areas in an
image, CwA learn that emotions are expressed by a number of facial features. This
helps them to eventually learn to recognize these facial features and then emotions
in the real world.

Using a touch-pad or a mouse for drawing emotion-related features helps to
develop a tactile reinforcement with visual perception of emotion. A trainee should
select features in an image and modify them to convert a sad face into a happy one
and other way around. The eyes and the mouth can be altered, using rotations or
mirror mappings, or having their elements re-positioned (Fig. 8.26).

These exercises demonstrate that emotions are instant states, not permanent,
and external factors can change them. They also help to understand pre- and post
conditions of actions which change emotions, and resultant emotional states.

Fig. 8.26 Demonstrating that emotions can change and can be affected from outside
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8.7 Teaching Hide-and-Seek Game

One of the important steps in learning the mental world is the hide-and-seek game.
This game requires a substantial reasoning about mental states and actions, in both
rule-based mental and emotional domain. A child needs to understand the pre- and
post-conditions for searching as a desire to identify where the peers are located. A
concept of hiding needs to be explained as an opposite desire of not being found.
Children need to be aware that searching may lead to finding, and hiding – to not
being found. If one does not search then nobody can be found, and if one does
not hide she will be found immediately. It is a game of deception, which requires
acknowledgment that other people may have different beliefs. Therefore, many
CwA avoid it and/or are not capable of participating in it. Playing hide-and seek
requires understanding and handling third-order mental states such as “I know that
he wants me not no know where he is”.

In the emotional space, a hide-and-seek player is expected to express appropriate
emotions when he finds another child, or when he is found by someone else. A rule
should be taught that an emotion is appropriate when there was a desire and at the
given moment it succeeds. Some emotional expressions are suitable when a child is
hiding, he is being looked at but not found.

Another import skill is to conceal yourself in an environment. A child needs
to be taught to position himself in the location of a seeker and track his potential
gaze to avoid being found. A seeker needs to be able to close his eyes and count
to a predetermined number while the other players hide. After reaching the number
(such as reaching 10 or 20) the seeker attempts to say, “Ready or not, here I come!”
and then to locate all concealed players (Fig. 8.27).

Training starts with identifying hide-and-seek players in an image with schematic
depiction of playing characters. CwAs are encouraged to use a touch-pad to track
the gaze with their fingers. Children are asked questions about the role of players,
who is doing what, who desires what, and who is seeing whom.

After CwA trainers are capable of recognizing players at an image, a trainer can
proceed to similar tasks on the photos of children playing hide-and-seek (Fig. 8.28)
and ask similar questions:

Once CwA are prepared to play hide and seek, having completed the exercises, a
trainer can attempt to involve them in an actual game, first indoor and then outside.
To play a role of a seeker or to hide, a CwA needs to be accompanied by a trainer,
and a role of an opponent can be performed by a parent, sibling or another trainer.
The trainer needs to hide together with CwA and explain her the goal of hiding and
the object they are hiding behind.



8.7 Teaching Hide-and-Seek Game 329

Fig. 8.27 The hide-and-seek training starts with schematic depiction of a seeker and two
concealed players

What game do the children play?
Which objects from the environment are used to be hiding behind? 
Do those who hiding want the seeker to find them?
Does the seeker want to find those hiding?
Do the hiding children see the seeker? Do they know where he is?
Does the seeker see the hiding children? Does he know where they are? 
Why does the seeker have to close his eyes?

Fig. 8.28 After CwA is confident with schematic depiction of hide-and-seek game, a trainer can
proceed to photos. The seekers close their eyes and are counting
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Fig. 8.29 An older trainee finding a direction using GPS (on the left). Some young adults become
fairly skillful once the introduction to orienteering with GPS is completed (on the right)

8.7.1 Orienteering Exercise

For most children, orienteering is the next logical step after the hide-and-seek game.
However, some children are good at orienteering even if their emotional skills for
hide-and-seek are rudimentary and they cannot play independently.

The reason orienteering is not too hard for CwA is that no reasoning about
other human is required. CwA usually memorizes the commands and navigation
of GPS menus in no time. CwA needs to associate what GPS is showing with
what is observed in the real world (Fig. 8.29). Doing that, formulating, adjusting
and rejecting of hypotheses of such association is required, based on hypotheses
management exercise Sect. 7.5.

The main focus of how orienteering activity supports reasoning is hypotheses
management. Looking at a GPS, the child obtains the direction to and distance to
the goal. Then observing the landscape, the child selects an object such as a tree and
forms an estimate for how far it is from this tree to the goal (Fig. 8.30).

Once the tree is reached, CwA observes her position relative to the goal and
possibly updates the hypothesis on where she was relative to the goal. CwA now
needs to form a new hypothesis on which direction in the landscape to chose and
which position relative to the goal to expect, and proceeds towards the goal.

What this exercise teaches is the skill to maintain hypotheses, revise it when
appropriate, and expect it to be wrong again and again. This is opposite to a
conventional autistic reasoning which sticks to a given hypothesis once it is formed.
After that, CwA will be reluctant to revise this hypothesis, and an observation that
it does not fit the real world would be very stressful and unproductive: CwA would
give up on the exercise.

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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Fig. 8.30 A trainee is being helped to link the GPS indication with the real world spatial
references. An orienteering map (on the right) may assist in this activity

8.8 Language Improvement

For language development, a trainer is recommended to use a language that
is insignificantly more complex than the current language of a child. Once a
given round of training is completed, the trainer should observe how the child
communicates on his own. Once the previous trainer level of language is achieved,
it can be taken to the next step.

In a CwA does not use words yet, a caregiver should try to model stand-alone
words. If single words are used by a child, then the trainer can use two-word phrases.
Once the level of two word phrases is achieved, the trainer can proceed to a simple
phrase-based speech, followed with the one with descriptors, and then move towards
the speech with complex phrases and compound sentences.

Some CwA can imitate long phrases but do not use them on their own without
hearing them first. In this case, the trainer is expected to increment the complexity
by one element such as an extra word, new word, actions, descriptions, attributes
etc. This should be added to a spontaneous communication of CwA. It is advised to
simplify the language grammar (“give candy” instead of “please give this candy to
your sister”).

Speech rate should be slowed down. Then it is easier for the child to learn the
important words. These important words should also be stressed. To increase the
teaching efficiency, the trainer should use the same language over and over. Specific
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important words should be repeated, such as physical and mental actions. Visual
cues like gestures support the language learning as well. A caregiver should point
to an object, animate or inanimate, introducing its name and referring to it. This
is critical for nonverbal CwA. Also, it is worth talking about the objects CwA is
paying attention to; this will increase the chance the child would borrow the trainers’
language for his experience. It can be achieved by a parallel talk and self-talk. The
caregiver should comment on, or describe during the process of CwA is seeing,
hearing or doing. The trainer’s language should be linked to CwA language to be
meaningful. A selective set of actions should be chosen for commenting, since an
information overload needs to be avoided. For example, when CwA is feeding a
stuffed dog, he should say “dog” pointing towards it, or “dog eat”. For self-talk, a
trainer should talk about what she is doing while CwA watches; short, repetitive
sentences should be used.

A caregiver can expand on child’s own language by focusing new words or more
appropriate grammar or syntax. By adding new terms, the caregiver revises and
completes CwA speech and adds information at the same time. When CwA is saying
“toy” the trainer can say “give toy”, “push toy”, “feed toy”.

8.8.1 Reading Comprehension

There is a growing body of literature guiding the teaching of reading comprehension
including (McNamara 2009) who describes the intervention methodologies linked
to theories of readers’ cognitive processes. Given the wide variety of strengths
and weaknesses exhibited by children on the spectrum, it seems reasonable that
reading comprehension interventions targeted for typically developing children who
struggle with the complexities of reading comprehension may also benefit children
with ASDs. Poor comprehenders are typically adept at phonological processing and
word recognition, but are less skilled at handling semantic representations. CwA
may focus on word recognition and neglect semantic processing.

Cartwright (2006) described cognitive flexibility exercises, which classroom
teachers, parents, and intervention professionals could use to assist children in
developing reading-specific cognitive flexibility. The exercises consist of word sorts,
in which readers are asked to sort a set of word cards, first based on phonological
rules, such as initial consonant sounds, and then again, based on semantic categories,
such as foods and non-foods.

“Meaning-focused” remediation such as collaborative learning activities in
which peers quizzed each other on vocabulary and factual recall or played games
based on reading materials turned out to be efficient. Instructional approaches that
consist of reviews and rote activities focus on practicing skills, including anaphoric
cuing and reciprocal questioning, rather than learning skills to build the framework
for the cognitive processes involved in reading for meaning.

Trainees are encouraged to read passages under four conditions: answering
pre-reading questions, completing sentences, identifying anaphoric references, and
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reading only. In the anaphoric cuing procedure, students were given a passage with
the anaphora or “shortcuts” underlined and they were asked to choose the correct
referent, given three choices listed under the underlined “shortcut.” Anaphoric cuing
significantly increased students’ understanding of the passage.

In the other set of exercises, CwA are taught to generate and respond to questions,
using a story map framework. CwA increase the frequency of unprompted question
generating and responding from the beginning to the end of the intervention.
CwA require substantial prompting when generating and responding to inferential
questions in comparison with stating facts from the story. This learning strategy
relied on peer-tutoring or cooperative learning, giving CwA children an opportunity
to develop their language skills in a social setting.

In teaching the oral language skills CwA should be taught to identify materials
out of which common objects were made. Given common objects, such as a shirt,
a paper napkin, or a leather shoe, the children need direct instruction that included
modeling of correct responses, signals to cue students, choral student responses,
and correction procedures for incorrect and non-responses. The caregiver can begin
instruction using actual objects, then use representations (pictures), and finally move
instruction to the abstract stage using words only. Ganz and Flores (2009) concluded
that students increased their expressive language skills, based on an increasing
number of correct responses to probes posed throughout instruction. The researchers
also reported that some students spontaneously used language skills at home and at
school, asking others to identify objects made of different materials. This study is
significant in that it demonstrates that CwA can be guided to more abstract uses of
language through direct instruction (Randi et al. 2010).

8.9 Evaluation of Training

In this section we describe our assessment of exercises in the short-term and long-
term training settings.

8.9.1 Short-Term Evaluation

We present the results of the short-term evaluation in Table 8.3. The training
exercises are categorized by the complexity of mental formulas for the entity to
be taught. For each category, the reasoning skills were assessed before and after
training (Fig. 8.31), with NL_MAMS assistance for one group (12 children) and
without such assistance for the control group (10 children). Other than NL_MAMS-
specific, the same set of exercises was offered to both groups. All children from both
groups were registered with the same rehabilitation center.

Four task categories are shown: from first to fourth order (in accordance
to how the complexity/intentionality of mental formulas has been specified,
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Table 8.3 Evaluation of the short-term theory of mind training with and without NL_MAMS

Task category

Mental entity for the task

Autistic one-to-one
training with
NL_MAMS, 12
children, %

Autistic one-to-one
training without
NL_MAMS, eight
children, %

Impact of
NL_MAMS, %
of improvement

Before After Before After
First-order 22 69 21 62 6.2
Knowing an object and
its attributes

25 67 25 75

Not see – > not know 17 58 25 50

Intention of others 25 83 13 62

Second order 14 61 17 54 37.2
Informing 17 58 25 62

False belief 8 58 13 50

Questioning 17 67 13 50

Third-order 8 33 7 22 31.2
Pretending 8 17 13 17

Deceiving 0 17 0 17

Offending 8 33 0 17

Forgiving 8 50 13 33

Reconciling 17 33 13 17

Explaining 8 50 0 33

Fourth-order 13 33 13 25 32
Resolving a conflict 8 33 17 17

Negotiating 17 33 8 33

Overall improvement of
theory of mind skills due
to using NL_MAMS, %

27.5

Fig. 8.31 Computers help to maintain trainee attention while doing reasoning skills assessment
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Sects. 4.2 and 5.6). For each test exercise, a trainee is either assigned a pass
or not, and the percentages of passed trainees are specified (shown in italic).
Averaged percentages for groups are shown in normal font. The last (sixth) column
indicates how the relative percentage of successful exercises is higher for the
NL_MAMS-assisted training than for an unassisted training. It is calculated as

We select the experimental and control groups such that there is an insignificant
deviation in initial ToM reasoning capabilities of the children from both groups
(<4 % in spite of the different sizes of each group). We naturally observe that
children’s performances both before and after training are lower for the higher
order of involved mental formulas (and respective task complexities) for both
experimental and control groups. Unsurprisingly, theory of mind training is more
fruitful for second-order than for the first order. However, the efficiency of training
then drops for third and fourth orders. One can see that using NL_MAMS for first-
order tasks is not as important as for higher-order tasks that require memorizing and
operating with a larger amount of data. Overall, NL_MAMS improves the results of
training by about a third in a short-term setting.

8.9.2 Long-Term Evaluation

The results of the long-term evaluation are shown in Table 8.4. The same evaluation
exercises and result computation schema are used as in the short-term cases. We
managed to conduct the long-term evaluation study with nine out of twelve children
who were the subject of the short-term training (Fig. 8.32). The control group
included ten children from another rehabilitation center.

We observe a similar natural phenomenon that handling of more complex mental
expressions is harder. However, unlike the short-term evaluation where NL_MAMS
has contributed almost equally to second-, third- and fourth-order mental formulas,
in the long-term case one observes the following. Theory of mind training has
improved the second-order performance by more than twice, and then the third- and
fourth-order performance by more than eight times, compared with control group.

Overall performance in the long-term setting is improved by almost 40 % due
to theory of mind training and by 280 % due to other forms of training and
other reasons (judging on the control group, observed in the age range of 6–9,
7–10, : : : , 10–13). 40 % may seem not as significant in respect to 280 % as a
quantity, but it has a tremendous value as a portion of world knowledge, in terms
of behavioral and emotional development of a child with autism. Moreover, we see
that high-order mental formulas that are important for handling mental world indeed
require NL_MAMS to be properly trained, as both long-term and short-term studies
suggest.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_5
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Table 8.4 Evaluation of the long-term theory of mind training for the experimental and control
groups

Task category

Mental entity for the task

Autistic one-to-one
training with
NL_MAMS, nine
children, %

No theory of mind
training, ten children

Impact of
NL_MAMS-
assisted theory of
mind training, % of
improvement

Before After 3 years Before After 3 years
First-order 29 89 26 74 7.8

Knowing an object
and its attributes

33 78 22 67

Not see ! not know 22 100 22 67
Intention of others 33 89 33 89

Second order 18 74 18 63 17.5
Informing 22 67 11 67

False belief 11 78 22 56

Questioning 22 78 22 67

Third-order 11 48 13 35 62.0
Pretending 11 44 11 33

Deceiving 0 33 11 22

Offending 11 44 11 56

Forgiving 11 67 22 33

Reconciling 12 33 11 22

Explaining 11 67 11 44

Fourth-order 17 62 17 38 63.2
Resolving a conflict 11 56 22 33
Negotiating 22 67 11 44

Overall improvement of
theory of mind skills
due to using
NL_MAMS-assisted
and other forms of
rehabilitation of mental
reasoning, %

37.5

8.9.3 Evaluation of Intervention of Adjustment of Actions

To evaluate our methodology presented in this book, we observe the results of
training triangulation structures of adjustment of actions (Sect. 6.4) to CwA.
Triangulation structures are used to approach a proper application of default rules
to handle properly the situations when it is important to adopt an action to an
environment.

In the Table 8.4 we compare the trainees’ performance completing the tasks they
have been trained with, as well as new tasks of a similar complexity. Moreover,

http://dx.doi.org/10.1007/978-3-319-39972-0_6
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Fig. 8.32 Two trainers are interacting with a boy from different sides

we evaluate how the trainees perform applying learned reasoning patterns to real-
world situations. The real time performance is evaluated before the training for each
category of learners occurs.

This exercise does not validate whether the learners understood the decision
making properly because it is expected to be easy just to memorize how to complete
them.

1. Performance completing the exercises which have been introduced earlier
verifies how learners can reproduce the decisions which have been shown to
them earlier.

2. Performance completing the exercises with similar rules in a new domain
demonstrates how learners are able to either memorize the patterns (rather than
details of the offered contexts) of adapting an action to context or to apply them
independently, having understood these patterns.

3. Performance completing the exercises with new rules in a new domain assesses
learners’ ability to form (invent) new rules on how to adopt an action to an
environment.

4. Observing correctness of decision-making in similar real-world situations we
can judge on how the learners can apply the skills developed in computer-
assisted exercises on default reasoning to the real world environment. This step
requires the learners to be capable of transferring acquired reasoning patterns
from simulation to real world environment and their application to real-life
objects. In this study we do not evaluate how the learners form new rules in
the real world environment as this task is proved to be too hard for the audience
of trainees.

5. As a baseline for our experiments, we assess the Correctness of decision-making
in a similar real-world situations without training.
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Our testing environment includes 20 exercises used for both training and evalu-
ation (second column), 20 exercises using the same logic and structure in a distinct
domain, 20 exercises for different domains and 20 imitations (or reproductions)
of real world environments. A drop-down box-based exercise is considered as
completed correctly if more than 80 % of choices are correct, when the exercise
is run multiple times with different (randomly generated) initial conditions.

Naturally, each evaluation step is more complex than a previous one to complete:
we observe the monotonic decrease of the rate of completion for all three categories
of learners. For learners from both autistic and other mental disorder groups the
performance is declining faster that that of controls.

For the autistic group of learners similar rules in a new domain is the hardest
step, and for the group of other mental disorders decision-making in similar real-
world situations is the hardest step; however it may not characterize these groups
with respect to their overall skills of the real world abstraction.

On average autistic individuals perform about 5 % below individuals with other
mental disorders for the first task, 2 % for the second task, 9 % for the third and
fourth tasks but outperform the children with other mental disorders who did not do
any training. This suggests that the case of autism indeed requires harder learning
efforts.

The chart for the overall exercise completion is shown in Fig. 8.33. Four data
points correspond to the columns 2,3,4 and 5 in Table 8.5. One can see that CwA
and other mental diseases with comparable mental age complete exercise similarly
compared to CC.

Completion of action adaptation exercise
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Fig. 8.33 The chart for exercise performance for the tasks (2)–(3)
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Table 8.5 The dynamics of trainee’s development
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A_Subject1 80 75 60 35 5
A_Subject2 85 60 55 45 15
A_Subject3 75 60 45 30 25
A_Subject4 80 65 55 40 10
A_Subject5 85 70 50 35 5
A_Subject6 80 65 55 45 15

avg 80.8 65.8 53.3 38.3 12.5
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M_Subject1 95 60 55 45 15
M_Subject2 85 55 55 55 20
M_Subject3 80 65 60 35 5
M_Subject4 80 70 55 40 15
M_Subject5 85 75 65 35 10
M_Subject6 85 70 60 45 5

M_Subject7 85 75 60 40 10
avg 85.0 67.1 58.6 42.1 11.4

C
on

tro
ls

 

C_Subject1 90 85 75 75 60
C_Subject2 95 90 80 70 65
C_Subject3 95 85 85 65 65
C_Subject4 90 85 90 80 70
C_Subject5 85 90 85 75 70
C_Subject6 95 90 80 75 65

avg 91.7 87.5 82.5 73.3 65.8

8.10 Discussion and Conclusions

There is no well-accepted medical treatment for autism, but it has become increas-
ingly clear that early behavioral intervention is highly beneficial for autistic children
(Green 1996; Jensen and Sinclair 2002; Galitsky 2005). Indeed, some experts argue
that intensive behavioral intervention can even lead to normal behavior of autistic
trainees (McEachin et al. 1993). So far, attempts to explain how a behavioral
treatment can possibly eliminate autistic deficiencies were not very successful. It
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is still unclear why these treatments are successful in some cases but not in others
(Lovaas 1987). Since a majority of experts consider behavioral intervention as the
only approach to compensatory learning (see, e.g., Frith 2001; Howlin 1998), the
claims of possible cures remain controversial.

We analyzed the results of assistance to individuals with autism in reasoning
about mental world and other domains. This assistance is provided by a natural lan-
guage multiagent simulator of mental states (NL_MAMS), introduced in Chap. 5. It
assists in the tasks that are the hardest for autistic reasoning: operating with mental
states and actions. Autistic patients are trained to perform a number of reasoning
exercises.

We performed the simulator-assisted training and its evaluation at two levels:
short-term and long-term. The short-term approach includes the theory of mind
training with and without the simulator for two groups of autistic children of similar
mental age and IQ. The evaluation is based on passing the set of tests including
the seeing-leads-to-knowing (first-order) and Sally-Anne false belief (second-order)
ones so that a uniform coverage of mental states and actions (up to the order three)
is evaluated. In the short-term approach we perform a limited evaluation of the
skills transfer from artificial situations to real life ones, but do not analyze how
the training affects the socials skills of trainees. The short-term approach is utilized
for the purpose of evaluation of theory of mind teaching efficiency, and the control
group is subject to the simulator-assisted intervention after the evaluation.

The long-term approach has been applied for over a decade, where manual and
simulator-assisted teaching of the ToM is combined with intervention strategies of
various natures. The goal of our long-term approach is to teach theory of mind
reasoning not just for the reasoning skills per se, but also for improvement of social
behavior. Therefore, the evaluation criteria are based on tests of decision-making
in the real world as well as tests of reasoning and choosing actions in artificial
situations.

Educational approach we have developed here may sound too theoretical when
compared with other approaches to learning (see e.g. Fry et al. 1999). Instead
of teaching by explaining, showing examples, imitating or suggesting a hands-on
experience, autistic trainees are taught formal entities, and automated reasoning
software is used as a means to introduce these entities. As only the definitions of
mental attitudes and links between them acquired by an autistic trainee, the further
steps of applying the axioms to real-world situations are conducted in a conventional
manner.

An educational strategy with a clear focus on mental states may seem as
an exaggeration when it is applied to conventional students. However, there is
a strong deviation in how people are capable of performing this task. Certain
professions, including business and legal specialties, are quite demanding in this
respect. Although average students do not require an intensive reasoning therapy
concerning mental states as autistic trainees do, they may need some improvement.
Building the educational strategy for autistic children where mental attitudes are
crucial, the current study sheds a light on how this strategy may be applied to
improvement of decision-making and negotiation skills in general higher education.

http://dx.doi.org/10.1007/978-3-319-39972-0_5
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We have discovered that various kinds of emotions are built up at different speeds
for the same trainees. As we learned from our intervention practice, training of each
kind of emotion and mental reasoning should be conducted starting from the earlier
ages, because for each mental task there is an age when this task becomes adequate
to the current trainee’s understanding of the mental world. Therefore, the training
NL_MAMS-based toolkit is assumed to be suggested starting from the age when a
trainee is able to read, till the full (possible) mental recovery in terms of interaction
with other people.

In this chapter we evaluated how the learners transfer acquired default rules from
artificial to real world situations, which is more feasible task for the target category
of children with autism than forming new rules to match the real world environment.
Therefore, having an artificial environments teaching children with autism and other
mental illnesses how to adopt their actions in specific domains is beneficial. An
alternative to this of postponing such training to the mental age when learners can
be expected to form new rules in the real world would delay the overall development
of learners and therefore seems unacceptable.

Using the literature domain for training to reason about the mental world takes
advantages of the variety of plots, appealing and entertaining environment and rather
complex mental states of literature characters. We believe such kind of training is
essential for business, military, legal, psychological and other professional fields,
which require rapid orientation and reaction in emergent situations with inconsistent
goals and beliefs of opponents and customers. The system encourages the users
(players, students) to demonstrate their knowledge of classical literature, from
medieval to modern, asking questions about the mental states of the characters and
compare the system results with your own imagination. The system stimulates the
trainees to extract the mental entities, which can be formalized, from the totality of
features of literature characters. After an answer is obtained, it takes some efforts to
verify its relevancy to the question. It takes a little variation in the mental expression
to switch from one work of literature to another.

We proceed to the comparison of other computer-assisted intervention technolo-
gies with the one based on default reasoning. Multiple technologies have been
suggested for mental intervention, including a variety of virtual environments (Sik-
Lnyi and Tilinger 2004), and the interactive tool for browsing and recognizing
emotional expressions. These computer-based tools assist the development of a
wide spectrum of behavioral and cognitive skills. However, this chapter is teaching
default reasoning while choosing an action. The goal of this study is to build
an intelligent reasoning-based intervention system that is at least capable of
reasoning on its own, in contrast to the approaches mentioned above which are
the infrastructures for providing access to various media. Dautenhahn and Werry
(2004) discuss the potential of using interactive environments with a special focus
on autonomous, mobile robots in autism therapy. Being a promising intervention
strategy, it might be too expensive to help the majority of families with autistic
children even in the Western Europe, US and Japan.
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Fig. 8.34 A high-level chart depicting the classes of autistic difficulties, their instances and
available training apps

There is a huge number of applications available to assist in autistic development,
but none of them targets reasoning directly (Coppin 2012, Fig. 8.34).

The objective of CwA intervention is to make them adaptable. A trainer must
accept CwA whoever he is, understand what are the weaknesses and what are the
strengths. The trainer should then ground rehabilitation on the features of strength.
Improving adaptation mechanisms, a member of intervention personnel should not
fight with self-stimulation. Instead, the trainer should attempt to form activity and
interaction mechanism with the external world more universal and stronger.
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Chapter 9
From Reasoning to Behavior in the Real World

This is the final chapter of the book. We now know a lot about how reasoning and
cognition works in control children and perfect engineering systems. We have also
explored the mechanism of corruption for reasoning and learning, and how it affects
the behavior. Based on our findings and hypotheses of this mechanism, we outlined
the reasoning rehabilitation strategy. And in this chapter we are making a last stop of
this journey: what kind of behavior we can expect as a result of our remediation, and
what we have observed in the children who have completed the training presented
in the previous chapter.

9.1 Origination of Autism

While the specific causes of autism are not known, an etiological framework, shown
in Fig. 9.1, has been traced out that leads from genetic and possibly environmental
factors, through neurobiological development and cognitive functioning, and finally
to behavioral manifestations (adapted from Minshew and Goldstein 1998).

Some scientists believe that much of the upsurge is the result of increased
awareness of ASDs or changes in diagnostic criteria, which would suggest that the
true prevalence of the disorders has been stable over time. If the number of cases
is truly on the rise, then it would seem likely that some change in the environment
is driving up the total. This observation has divided scientists into opposing camps
with focus on the relative importance of genetic and environmental factors in the
disorders’ etiology. A few cases of ASD have been clearly linked to environmental
insults. These include prenatal exposure to chemical agents such as thalidomide
and valproic acid, as well as to infectious agents such as the rubella and influenza
viruses. The correlation here is not 100 %, therefore a genetic predisposition is
necessary for chemical and microbial factors to act as triggers.
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Fig. 9.1 Origination of autism (Adapted from Minshew and Goldstein 1998)

As to the other conditions and syndromes (comorbidities) related to or commonly
occurring alongside autism, they are as follows (Fig. 9.2):

• Attention deficit/hyperactive disorder (ADHD) describes children who have
overactive behavior (hyperactivity), impulsive behavior, and difficulty in paying
attention.

• Epilepsy, a brain disorder involving recurrent seizures. Seizures are sudden
changes in behavior due to an excessive electrical activity in the brain.

• Learning Disability (mental retardation) and intellectual disability, which are the
permanent conditions, arising during childhood or adolescence, characterized by
a state of incomplete development of mind that includes significant impairments
of intelligence and social functioning.

• Non-verbal learning disorder (NVLD), which covers people with the social
behavior pattern of Asperger syndrome, who also have problems with the non-
verbal skills of arithmetic and some visuo-spatial skills.

• Semantic-pragmatic disorder is characterized by good grammatical language but
lack of ability to use language in a socially appropriate manner.

• Tourette’s syndrome is characterized by multiple tics characteristically involving
the face and head (twitches, blinking, nodding) as well as vocal tics.
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Fig. 9.2 Co-occurrence of ASD and other mental disorders (From WordPress 2015)

9.2 Diagnosing Autism

We enumerate the diagnostic criteria for Asperger syndrome (Gillberg and Gillberg
1989; Szatmari et al. 1989) and highlight the ones which are the target of
intervention methods associated with “Computational” issues of autism:

1. Social impairment

(a) difficulties interacting with peers
(b) indifference to peer contacts
(c) difficulties interpreting social cues
(d) socially and emotionally inappropriate behavior
(e) approaches others only to have own needs met
(f) extreme egocentricity

2. Social isolation

(a) no close friends
(b) avoids others
(c) no interest in making friends
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(d) a loner
(e) one-sided responses to peers
(f) difficulty sensing feelings of others
(g) indifference to the feelings of others

3. Narrow interest:

(a) exclusion of other activities
(b) repetitive adherence
(c) more mechanical and repetitious than meaningful and sensible

4. Compulsive need for introducing routines and interests:

(a) which affect the individual’s every aspect of every-day life
(b) which affect others

5. Speech and language peculiarities:

(a) delayed speech development
(b) superficially perfect expressive language
(c) formal pedantic language
(d) odd prosody, peculiar voice characteristics
(e) impairment of comprehension including misinterpretations of

literal/implied meanings
(f) abnormalities of inflection
(g) over-talkative
(h) non-communicative
(i) lack of cohesion to conversation
(j) idiosyncratic use of words
(k) repetitive patterns of speech

6. Non-verbal communication problems:

(a) limited use of gestures or large and clumsy gestures
(b) clumsy and gauche body language
(c) limited facial expression
(d) inappropriate facial expression
(e) peculiar, stiff gaze
(f) avoids looking at others
(g) does not use hands to aid expression
(h) impossible to read emotions through facial expression of the child

7. Motor clumsiness

(a) poor performance in neuro-developmental test

Now we enumerate the characteristics of autistic behavior (highlighting affected
by reasoning and cognition):
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• Obsessions with objects, ideas or desires.
• Ritualistic or compulsive behavior patterns (sniffing, licking, watching

objects fall, flapping arms, spinning, rocking, humming, tapping, sucking,
rubbing clothes).

• Fascination with rotation. autistics can have unusual attachments
• Play is often repetitive.
• Many and varied collections.
• Unusual attachment to objects.
• Quotes movies or video games.
• Difficulty transferring skills from one area to another.
• Perfectionism in certain areas.
• Frustration is expressed in unusual ways.
• Feels the need to fix or rearrange things.
• Transitioning from one activity to another is difficult.
• Difficulty attending to some tasks.
• Gross motor skills are developmentally behind peers (riding a bike, skating,

running).
• Fine motor skills are developmentally behind peers (hand writing, tying

shoes, scissors).
• Inability to perceive potentially dangerous situations.
• Extreme fear (phobia) for no apparent reason.
• Verbal outbursts.
• Unexpected movements (running out into the street).
• Difficulty sensing time (Knowing how long 10 min is or 3 days or a week).
• Difficulty waiting for their turn (such as in a line).
• Causes injury to self (biting, banging head).

9.3 Autistic Spectrum

Autism is a developmental disorder characterized by deficits in social interactions
and communication (including language) skills, along with limited imagination
and a tendency toward a repetitive pattern of behavior (American Psychiatric
Association 1994). AS is characterized by these same impairments but without
language delay. Researchers have found that individuals with AS demonstrate better
imaginative abilities and demonstrate more circumscribed interests than those with
high functioning autism (HFA) at the age of 13, but that their early histories show
more pronounced differences in language and communication development, with
individuals with HFA showing more delays than those with AS (Ozonoff et al.
2000). Individuals with AS and HFA have similar cognitive and behavioral profiles
but differ in degree of impairment; those with AS have a better chance of successful
rehabilitation than those with HFA. AS is different from autism based on different
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neurological profiles. AS is at the far end of the ASD continuum, being a “bridge”
between autism and typical development (Baron-Cohen et al. 2001).

9.4 Applied Behavior Analysis and Rehabilitation
of Reasoning

Obviously, the main target of autistic intervention activity is behavior. There is
a number of approach to cure behavior directly, and Applied Behavior Analysis
(ABA) is one of them. Behavior analysis focuses on the principles that explain how
learning takes place. Positive reinforcement is one such principle. When a positive,
productive behavior is followed by some sort of reward, this behavior is more
likely to be repeated. Instead of explaining CwA a rule why he should behave in
a certain way to achieve something, ABA rewards him without explanation, without
providing a rationale behind the decision.

Behavior analysts began working with young CwA in the 1960s. Early tech-
niques often involved adults directing most of the instruction. Some allowed the
child to take the lead. Since that time, a wide variety of ABA techniques have been
developed for building useful skills in learners with autism of various ages. ABA
can be used in a formal educational environment such as a classroom as well as in
everyday situations at home. ABA therapy sessions involve one-on-one interaction
between the behavior analyst and the participant or group instruction. ABA can
be complementary to the reasoning rehabilitation technique presented here. In this
work we distance ourselves from ABA for verbal CwA since we believe reasoning is
a proper foundation of behavior control in humans and not controlling the behavior
directly. For non-verbal CwA ABA can be the only available remediation strategy.

Pivotal Response Treatment is derived from ABA and aims at the development
of communication, language and positive social behaviors and relief from disruptive
self-stimulatory behaviors, and the “pivotal” areas of a child’s development. These
include motivation, response to multiple cues, self-management and the initiation
of social interactions. By targeting these critical areas, this treatment is believed
to produce substantial improvements in sociability, communication, behavior and
academic skills. A targeted technique meant to improve social engagement among
children with autism spectrum disorders, PRT forgoes the focus on specific skills,
like block-building, to concentrate instead on so-called “pivotal areas,” such as
motivation, in hopes of inducing a cascading effect with similar impact across
multiple areas.

Voos et al. (2013) used fMRI as the tool for measuring the impact of Pivotal
Response Treatment on both lower- and higher-functioning children with autism
receiving this treatment for the first time. fMRI allows researchers to see what
areas of the brain are active while processing certain stimuli, in this case human
motion. Comparing pre- and post-therapy data from the fMRI scans of their 5-
year-old subjects, the researchers observed noticeable changes in how the children

http://education.ucsb.edu/autism/prt.html#_blank%23prt%20link
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were processing the stimuli. After 4 months of treatment, CwA starting to use brain
regions that typically-developing kids are using to process social stimuli.

If one looks at this approach from the software standpoint, it would look like
updating a training set for a faulty machine learning system. But all software
engineers understand that the most straightforward way to improve an algorithm
is to update its source code, and altering the training set can only take the system so
far in its development.

9.5 Dealing with Challenging Behavior

Disordered receptive communication leads to confusion and anxiety when CwA are
unable to understand what other people are talking about. When they are unable to
understand what is happening around them or what is about to happen, the confusion
and anxiety may cause a challenging behavior.

Behavioral problems are easier to be solved when they are formulated as
logical and predictable responses to particular situations. Once the meaning behind
a behavior is understood, solutions or modifications to the environment can be
applied.

Understanding of behavior relied on the knowledge that behavior is a communi-
cation means as a logical response to a given situation (Janzen 1996). Challenging
behavior is an attempt to regulate encountered conditions that deviate from CwA
needs. Behavior is a logical response to the environment where this behavior was
first learned. Over time this behavior is generalized to other situations that are not
appropriate and the purpose behind original behavior may be abandoned. Also,
behavior is an attempt by a person to keep the brain in active mode and in a
kind of equilibrium (examples here are self-stimulation and repetitive behavior).
Furthermore, behavior is an outward expression of an inward mental state of an
individual. Fears and phobias, disease, anxiety and fatigue all have a significant
effect on a person’s tolerance and control in different situations.

A promising approach in behavioral remediation is Popular Behavior Approach.
It emphasizes the observation and most challenging behaviors are learned rather
than inherited. It is unacceptable to justify a certain behavior by saying that “a
person has always been like that”. A challenging behavior is also communicative
as it serves as a means to send clear message to others. The cause of problematic
behavior is associated with either receptive language difficulties or difficulties with
expression. Once communicative skills are improved (through the use of visual
strategies), the behavior improvement is expected to follow (Dodd 2003). Positive
behavior approach teaches the skills that are required to function in the general
community and decrease stress and anxiety level (Fig. 9.3). The approach’s focus
is developing communicative strategies that are pitched at each CwA level of
understanding.

A multi-element approach to behavior remediation looks beyond the behavior
itself to understand the background of the problem and identify skill deficit. A
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Fig. 9.3 Group exercise in attention focus

Fig. 9.4 An attempt to put a CwA into a new, interesting, non-stressful environment encouraging
exploration

multi-element approach provides an environmental support taking into account
the necessary physical, social and program changes to prevent anxiety, develop
independence and competence, teaching alternative, more functional ways of
communicating needs and wants. This approach provides a positive reinforcement to
encourage desired behaviors and established the crisis management plan (Fig. 9.4).



9.6 Rehabilitation Case Studies 353

9.6 Rehabilitation Case Studies

We present the case studies of NL_MAMS-assisted treatment of reasoning that has
been developed in 1997–2001, evaluated in 1999–2002 and used on a regular basis
since 2002. Usually, each child is suggested the developed series of exercises during
three half an hour session; success in each exercise is recorded. If some progress
is detected in a particular component of mental reasoning, it is subject to further
development during consecutive sessions. If the exercises are performed easily, ones
with more complex mental states are suggested. In case of a complete failure, the
same exercises are planned to be attempted in a few month time, when a trainee gets
may acquire some background knowledge and skills that are essential to perform
these exercises.

Such strategy fits well into the methodology of rehabilitation center “Our Sunny
World” (Moscow, Russia), where the objective is to stimulate all phases of child
development process assuming some of them failed in comparison with control
children (Fig. 9.3). Not all children are worth applying the totality of developed
exercises. Some kinds of exercises like “show a person in a certain mental state”
are applicable to non-verbal children with rich internal world; questions about
“attributes of an object held by a person with specified mental state” are well-suited
for the trainees with least developed world knowledge. We believe, however that
all trainees should be encouraged to complete the totality of developed exercises
on mental reasoning as a long-term goal. NL_MAMS helps to assure a totality of
mental states of given complexity has been covered; frequently intervention of a
member of rehabilitation personnel is not required.

We present two case studies for two pairs of children with high-functioning
autism (Table 9.1). Their mental and emotion capabilities are believed to have been
developed by the suggested approach in addition to the traditional combination
of treatments. This pair was chosen from the group of 12 children mentioned in
Sect. 8.9 (from 6 to 10 years old, diagnosed with one of the autism syndromes)
because the training seemed to better fit their mental age. Alexandra (F) and Leon
(M), 10 years old, have attended “Sunny World” on a regular basis, participating
in common games with other children, speech therapy, animal-assisted therapy,
general training for reading, writing, mathematics and other skills. We track the
progress of their mental capabilities from the winter of 2001/2002 to the autumn of
2002 (Table 9.2). One can see that both children have dramatically improved their
overall skills of behavior in the mental world. As we can judge given the data for two
children, each has his/her own problems that were the direct or implicit targets of
the training. However, certain capabilities have been developed insignificantly; they
may be weakly affected by the suggested methodology. The reader might notice
that a lot of additional training has to be performed so that the mental and emotional
development proceeded towards the normal skills for their age (Figs. 9.5 and 9.6).

http://dx.doi.org/10.1007/978-3-319-39972-0_8
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Table 9.2 A sample log for a training session

Name Key success features Problems unsolved so far

Eugenia O Fast understanding of interactions
(memorizes information that has
been explained and then answers
repetitive questions in a much more
complete manner)

Lack of understanding for
motivations, causal links, mental
expressions with complexity above
one

Daniel O. Good understanding of characters
participating/not participating in a
given activity

Lack of understanding/prediction of
an intention of characters
participating/not participating in a
given activity. Misunderstanding of
negations in cases with no direct
effect
Lack of complete explanations of
characters’ behavior, motivations
and causal links

Alexey Y. Capability of supporting a
conversation; understanding the
modes of sharing/gaining
information

Avoiding mental terms in
conversation

Ivan B. Acquiring the definitions of
cheating/pretending and
offending/forgiving

Failure of revealing motivations and
predicting scene characters’
behavior for scene characters

Victor N. Partial detecting hide-and-seek
scenario from the scene and
transferring it to realistic
hide-and-seek behavior

Lack of understanding characters
participating/not participating in a
given activity

Andrew G. Acquiring the definitions of
cheating/pretending and
offending/forgiving

Improper conduct of the dialog,
distorted understanding of discourse

Demonstration of its applicability to
real-world situations

As to the other trainees in this group, each of them improved certain emotional
skills and capabilities of reasoning about mental states to a various degree. Ten other
trainees of “Sunny World” have participated in the emotional rehabilitation training
using NL_MAMS. (Table 9.2 shows only six autistic trainees among them, summer
2003). Observations of a sample training session are outlined, including the strong
and weak points for each trainee. Given a definition of a mental entity (for example,
via the form with multiple choices for agents and entities, Section 5.6), the trainees
are suggested to describe a scene to reveal the learned forms of behavior from the
scenes.
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Fig. 9.5 Computer-assisting training involves a parent and a trainer

Fig. 9.6 Development of basic communication/interaction skills
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9.7 Relying on Hyper-Systematizing Skills

There is a strong evidence for hypersystemizing in autism, which should be relied
upon while choosing remediation strategies. PwA have an increased rate of savant
skills in systems such as calendars, calculation, or train timetables (Hermelin 2002).
Ideally, CwA should form calendars, calculations and timetables for something
related to mental states. The PwA score high on tests of attention to detail
(O’Riordan et al. 2001) and can achieve high levels in domains such as mathematics,
physics, or computer science. Also, they may have an “exact mind” when it comes
to art (Myers et al. 2004).

A number of studies confirm our approach to teaching emphasizing via systemiz-
ing. According to (Golan et al. 2006), the efforts to teach CwA to mind read succeed
only when taking the fairly artificial approach of presenting mental states (such as
emotional expressions) as if they are lawful and can be systemized, even if they are
not. Such an approach tailors the information to the learning style of the learner so
that at least they can begin to process it.

On the picture-sequencing task, CwA perform above average on sequences
that contain temporal or physical-causal (i.e., systematic) information (Baron-
Cohen et al. 1986). Their obsessions cluster in the domain of systems, such as
watching electric fans go round (Baron-Cohen and Wheelwright 1999). Given a
set of colored counters, they show extreme “pattern imposition” (Frith 1970)—they
hypersystemize. The evidence for systemizing being part of the “broader autism
phenotype” includes the finding that fathers—and even grandfathers—of children
with ASC are twice as likely to work in the occupation of engineering (a clear
example of a systemizing occupation) (Baron-Cohen et al. 1997). Students in the
natural sciences (engineering, mathematics, physics) also have a higher number
of relatives with autism (Baron-Cohen et al. 1998). Mathematicians have a higher
rate of autistic spectrum, and so do their siblings (Baron-Cohen et al. 2007). Both
mothers and fathers of children with AS have been found to be strong in systemizing
on the Embedded Figures Test (Baron-Cohen and Hammer 1997). Finally, there is
some evidence that above average systemizers have more autistic traits. There is
the strongest correlation of AS and math skills (Baron-Cohen et al. 2001). These
findings suggest a link between systemizing talent and autistic traits, the link being
likely to be genetic.

9.8 Estimating Real-World Performance

The critical point of suggested methodology is the estimate of the real-world
performance we have approached in Chap. 8. One needs to see how well the trainees
can transfer the acquired skills from the class exercise with hypothetical characters
to the human agents of real world. We conducted the case study with Andrew
G. (age 11, Table 9.2). After training session, when Andrew was suggested the

http://dx.doi.org/10.1007/978-3-319-39972-0_8
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cheating exercise, the author encouraged Andrew’s participation in the following
scenario, when it became clear that Andrew can properly handle cheat in the training
scenarios.

Passing by the children playing soccer, Andrew was encouraged to bring the
attention of a goalkeeper by telling his something loudly right before the goal
attempt, when the goalkeeper was expected to focus on the ball. Assumed to
be motivated to distract the goalkeeper from catching the ball, Andrew shouted
“there is a cat passing by” in the right time. Andrew was capable of analyzing
the goalkeeper’s actions that were caused by Andrew’s cheating attempt: “the
goalkeeper looked around trying to locate a cat and missed the ball”.

It is quite hard to precisely evaluate the impact of NL_MAMS-assisted rehabil-
itation of reasoning on the resultant capabilities of the trainees in real world. We
outline two following levels at which the resultant trainees’ skills are evaluated:

1st level: answering questions and behaving during the evaluation session;
2nd level: interacting with other people in real world.

Accurate estimate of the set of acquired axioms is currently performed by the
parents, reporting how their children associate patterns of cheating and pretending,
being jealous, offending and forgiving, etc. As to the 2nd level, we have a rough
estimate of 60 % of the entities that have been introduced in a training scenarios
have been adequately identified while interacting with other people.

The high-level view of how a remediation strategy should be chosen is shown in
Fig. 9.7.

9.9 Assisting in Autistic Cognition

CwA does not believe that learning from experience leads to a good result, because
of a long history of failures in solving real world problems. The belief is that
everything is permanent, and let it be that way. CwA believe that they never
succeeded in anything.

The purpose of training is to make CwA believe that it is not the case and they
can successfully learn how to recognize new stuff and apply new cognitive skills in
the real life. Training autistic cognition, a caregiver is expected to give a child the
feelings that can potentially be used to learn and succeed. We need to demonstrate
that with recognized information CwA can do something, apply it to the problems
of the real world, and take her to a state she would enjoy (Fig. 9.8).

Stimulation of learning is also done in ABA by making CwA do something
good, like acquiring some skills, but it is hard to explain what is good within ABA
framework. So a teacher gives something tasty once CwA performs a particular
good thing, and CwA forms association “good-tasty” which is neither reasoning
or cognitive advantageous step but nevertheless a step towards normal behavior. A
usual ABA approach is unable to change adaptation mechanism. ABA does not
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Children ages 0-2
years considered
to be at risk for
ASD diagnosis

7

6

3 4

2

1
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Individual and Therapeutic Characteristics

ASD symptom severity

Targeted outcome in
the treatment setting

Functional outcome outside
the treatment setting

Language/communication

Academic skill development

Maladaptive behaviors

Distress

Adaptive skills development

Social skills/interaction

Harms Harms

Psychosocial adaptation

Psychological well-being

Academic
engagement/Attainment

Adaptive independence

Motor skills (at-risk children)

Cognitive skills (at-risk children)

ASD symptom
severity/diagnostic

outcome (at-risk children)

Children ages
0-12 years

diagnosis with
ASD

Choice of
behavioral
intervention

Long-term
outcomes include

quality of life,
social integration,
and appropriate

level of
independence

Fig. 9.7 Decision-making chart for chosing remediation strategy

Fig. 9.8 Evaluating the
performance in the
orienteering exercise

motivate the successful recognition. Instead, it strengthen motivation to receive
positive feeling directly, skipping the cognition loop.

Another source of critics for ABA is that every individual has a freedom of
choice and ABA limits it. By training certain behavior forms directly, without
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building the required reasoning layer to support these behaviors, we limit this
freedom for a CwA. Instead, reasoning should be taught before the behavior so
that the choice of behavior becomes broader and more rational, and the choice of
behavior is voluntary.

9.10 Autistic Team Formation

Usually, agents of a multiagent system (MAS) can be characterized by whether
they are cooperative or self-interested. Both types of agents need to collaborate
with other agents to achieve their goals in uncertain, dynamic domains. This is true
for software, human and hybrid agents. In such environments system constraints,
resource availabilities, agent goals are changeable, leading MAS to various states.
At the same time, MAS organization needs to be adjusted for environments, there
is no single best organization for all possible states. In a broad range of MAS
applications, a flexible mechanism is required to facilitate automated forming of
teams and autonomous adaptation to the environment (Bai and Zhang 2005a). Both
software and human agents develop their team forming skills in the due course, as a
result of active learning with reward (Lopes and Oudeyer 2010).

There are established research areas of team formation in the following
settings:

• software and hardware agents;
• human agents;
• hybrid/mixed teams.

A vast body of literature addressed team formation scenarios in the above cases,
in a broad range of application domains (Bai and Zhang 2005b). These scenarios
are usually complex and very domain-specific, so it is hard to judge how general
the conclusions can be drawn. For software and hardware agents, a lot of technical
details need to be taken into account. In the case of human agents, psychological
analysis makes considerations rather complex and possibly ambiguous.

In this study we focus on the case of autistic team formation, which is expected to
shed the light on the fundamental properties of the team formation process. Behavior
of small children with autism is not as complex as that of controls of the same
age. Furthermore, autistic behavior is simpler than that of software agents, since
engineering details do not need to be taken into account. Hence we hypothesize
that a team of small children with autism is a much more “pure” environment for
studying the phenomenon of team formation compared to conventional investigation
platforms for team formation.

9.10.1 How Trust Develops in a Baby

Trust is baby’s inner certainty that the mother is going to help when it is needed
(Erikson 1968; Serhan 2011). This certainty is derived from predictability and
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consistency of the mother’s actions. If mistrust (a model of danger) emerges during
the first half year, then the baby is at disadvantage and this is a path to autistic
adaptation. Developing trust in first half year is necessary to acquire a control
over one’s affairs. This is also true when a baby grows into a toddler, is expected
to succeed in toilet training, feeding independently, bathing and interacting with
known people.

Mistrust in child’s surrounding combined with the impression that the world
is unpredictable is another feature of autistic adaptation and keeps the child from
expanding his world and exploring her opportunities. For a CC, if the mother is
inconsistent in her availability and her care for the baby then there is a risk that this
baby develops into a mistrusting and will be withdrawn from the world. Success in
this stage will lead to the virtue of hope. By developing a sense of trust, the infant
can have hope that as new crises arise, there is a real possibility that other people
will be there are a source of support. Failing to acquire the virtue of hope will lead
to the development of fear.

For example, if the care has been harsh or inconsistent, unpredictable and
unreliable, then the infant will develop a sense of mistrust and will not have
confidence in the world around them or in their abilities to influence events. This
infant will carry the basic sense of mistrust with them to other relationships. It may
result in anxiety, heightened insecurities, and an over feeling of mistrust in the world
around them.

The repetitiveness and sameness of actions (Sect. 7.3.4), behavior and facial
expressions carried out by the mother at the initial step of development eventually
create a set of symbols in the baby’s mind. This is how baby’s trust is developing.
These symbols come to represent safety in interaction and having a calming effect.
Then when these symbols of familiarity and predictability come up later in toddler
life they will be associated with social comfort. Trust development vary in how
much time it takes to be accomplished. A mother can recognize if her baby develops
trust in her constant presence is through the following. When the mother leaves the
room and observes the baby reaction, one of two can be seen:

1. The baby reacts with anxiety, frowning, erratic movements, crying spell.
2. The baby does not react and continues without changing.

The former means that the trust has not been established yet. Once the trust has
been established (2) the mother can be more flexible with delegation of caregiving.
When the baby acquired, tension in the baby significantly decreases and he will
ask for attention less frequently; separation between self and environment proceeds
along with baby’s feeling of independence.

9.10.2 Assessing Mental Reasoning Capability to Form Teams

We explore how children with autism form teams to perform simple tasks. The focus
of our experiment is to find a correlation between how children do reasoning about

http://dx.doi.org/10.1007/978-3-319-39972-0_7
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mental world, and how they perform team formation tasks. The underlying model
for our correlation is a belief-desire-intention (BDI, Rao and Georgeff 1995) model
for a multiagent system (Chap. 4).

To assess reasoning capabilities of children, we ask them questions about mental
states of characters, and evaluate the correctness of their answers (Galitsky et al.
2011). We hypothesize that while team formation, they have to initiate the same or
similar questions before they perform speech acts with their proponents and possibly
opponents. The questions involve first order mental states (do you know : : : ?, does
she want : : : ?), second order (do you want him to believe : : : ?), third order (he
believes she wanted him to know that she wanted : : : ), and fourth-order (he know
she wanted him to know that she does not want : : : ).

We used the following team formation tasks. These are the tasks CwA of the age
6–10 usually experience difficulties with, being fairly easy for the CC. These tasks
rely on various physical actions, but the commonality between them is the necessity
to reason about beliefs and intentions of other team members:

• hide-and-seek game, where children need to agree who is hiding and who is
searching (Sect. 8.7);

• “hiding an object in a bag” game;
• making one participant do something with the second participant what the third

participant wants;
• form a team of buyers to shop for the items of mutual interested;
• form small soccer, football or basketball teams, two vs two;
• form chess playing team taking turns in moves, two vs two.

Each task required 3–4 participants. Sixteen children of the age 6–10 participated
in all team-building tasks and completed all reasoning exercises.

We split CwA into four groups with respect to their capabilities in team
formation:

1. Active team builder who can initiate a new team;
2. Active team builder which can maintain the team performing tasks and encourage

others to do so;
3. Passive team members who can be maintained to be a part of the team being

encouraged by other members. They cannot initiate team formation themselves,
but they can resume the team activity after it stopped;

4. Passive team members who can be maintained to be a part of the team. They
can neither initiate team formation themselves, nor resume the team activity
(Fig. 9.9).

For each child, we assign him to a group if he is capable of performing the
required team formation function in more than a half of scenarios. Notice that some
team building scenarios require verbal communication, and some rely on non-verbal
one.

http://dx.doi.org/10.1007/978-3-319-39972-0_4
http://dx.doi.org/10.1007/978-3-319-39972-0_8
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Fig. 9.9 An illustration for basketball team formation

The joint results of the reasoning assessment and team formation assessment
are shown in Table 9.3. Rows indicate the percentages of successfully completed
reasoning tasks for each group of team formers (averaged through 4 individuals).
Rows are grouped from top to bottom according to the order of formulas required
to answer the respective question. Dark grey area shows good performance of
reasoning tasks (>70 %) and light-grey show lower performance (60–70 %). The
white area shows the level of reasoning complexity this group of team formers
cannot reliably achieve. Mental states and actions of reasoning exercise are ordered
in the way of increasing complexity (averaged performance). Columns are formed
according to four groups of children above.

We observe a direct correlation between the reasoning order and team forming
capabilities. If children cannot perform even the first-order reasoning tasks, they are
neither capable of team forming nor understanding of team forming by others. To
be capable of team forming, second-order reasoning needs to be satisfactory.

The third-order mental states are the ones the trainees experience most difficulties
with. Various skills at these tasks differentiate children with autism into two
groups:

• those who can initiate new teams, and
• those who can maintain team activities and resume team operations.

For the former group, substantial third-order reasoning is required, and for the latter,
just rudimentary third-order skills suffice.

Finally, fourth order mental states are difficult for both children with autism
and controls of comparable age (see the rightmost column for evaluation of team
formation by the control group).
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Table 9.3 Capability of team formation vs reasoning about mental states capabilities

Controls
Roles Initiate Maintain Maintain Resume

Knowing an object 
and its attributes 95 91 82 72 95
Not seeing-> not 
knowing 90 93 78 80 90

Intention of yourself 88 90 80 76 95
Intention of others 92 87 71 70 95

Informing 87 84 78 73 90

Information request 91 89 72 71 85
Asking to do an 
action 78 83 80 75 90
Asking to help 85 80 70 75 90
Questioning 81 83 68 70 85

Explaining 72 70 61 64 85
Agreeing 76 73 64 60 90
Pretending 81 76 65 62 90
Deceiving 70 64 62 54 80
Offending 73 68 58 50 85
Forgiving 72 62 61 46 80
Reconciling 65 64 50 39 85
Disagreeing 72 69 42 40 75
Inviting to help 62 59 39 46 70
Asking to leave 64 57 40 51 85

Interfere 70 50 38 32 70

Disagreeing 62 46 32 28 65
Resolving a conflict 42 37 17 12 65
Negotiating 48 24 12 7 60

Active team builder Passive team members

9.10.3 Autistic Cooperation in the Real World

We observed the team formation behavior in the real world as a part of the
intervention program conducted by the Center for children with special needs
“Our Sunny World” (www.solnechnymir.ru). The children in the summer camp
were forming teams with the help of intervention personnel and parents, performing

http://www.solnechnymir.ru/
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Fig. 9.10 A team of children
at work (Sunny World 2014)

various farming tasks. These tasks include harvesting and packaging vegetables into
boxes. Children had to agree on who is doing what, how to store and pass vegetables
between each other and in what order, and how to handle varying harvesting
conditions (Fig. 9.10). The difficulty level for this task is of the order two and three
in most cases.

The children who participated in our evaluation study and successfully formed
teams in artificial scenarios were also capable of forming teams for the farming
tasks. On the contrary, those who could not adequately participate in our assessment
had significant difficulties in performing the tasks requiring interaction with other
team members.

It was hard to do a performance assessment in farming teams because of lack
of repetition and systematic framework in the farming tasks. Unlike the team
formation exercises, which also included conflict scenarios, farming ones involved
cooperation only, avoiding any kinds of conflicts. However, the overall impression
of the personnel and the parents was that doing abstract team formation helped some
children to understand mental states sufficiently to form cooperative teams.
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Team formation in real world shed a light how the notion of trust is perceived by
the reduced reasoning of children with autism. Trust becomes a mental state with
certain rules, compared to the trust states that are learned by control human and
software agents. Trust is explicitly defined via communicative actions of promise
and believe:

trust(Who, Whom) :-  Subject promise(Whom, Who, Subject), believe(Who, Subject). 

and serves as an additional constraint for team formation rule: engage with trusted
partners. In this respect the notion of trust is simpler than in general case of adequate
reasoners, who need to acquire trust in the course of dynamic process.

Yi et al. (2013) investigated whether children with ASD had an indiscrimi-
nate trust bias, believe in any information provided by an unfamiliar adult with
whom they had no interactive history. Young school-aged children with ASD
and their age- and ability-matched CC participated in a simple hide-and-seek game
(Sect. 8.7). In the game, a caregiver with whom the children had no previous
interactive history pointed to or left a marker on a box to indicate a location of
a hidden reward. Results showed that although CwA did not blindly trust any
information provided by the unfamiliar adult, they tend to be more trusting in the
adult informant than CC.

For an abstract reasoning system, experiencing difficulties in forming teams does
not necessarily mean that deficiencies are in the domain of reasoning about mental
world. It could be general incapability to adjust to a given environment (Galitsky
and Peterson 2005), general problems in non-monotonic reasoning (Galitsky and
Goldberg 2003; Galitsky 2007), autistic planning (Galitsky and Jarrold 2011) and
autistic active learning (Galitsky and Shpitsberg 2014). However, it turned out that
the root cause of autistic difficulties in team formation are due to reasoning in
the mental domain, as demonstrated by its direct correlation with the real world
performance.

We explored team formation at the following level:

1. Abstract reasoning in mental world related to team formation
2. Team formation in controlled, assessment tasks

We found a strong correlation between (1) and (2), and a weak qualitative
correlation between (2) and (3). We used the computational tool capable of solving
similar problems (reasoning about mental states, Galitsky 2013) to what were given
to children to simulate the peculiarities of autistic reasoning on one hand and support
intervention exercises on the other hand. We used the following hybrid teams of
agents: autistic C autistic, autistic C control and autistic C software (educational,
assessment).

We found that the main determining feature of autistic team formation is
their reasoning capabilities. This observation can be extended to the case of
software agents, where behavioral algorithms can be affected by a broad range of
circumstances. For software agents, the bottleneck of reasoning about mental states

http://dx.doi.org/10.1007/978-3-319-39972-0_8
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can be less noticeable, but we expect it to be as almost as strong as for the case of
autistic reasoning.

Our study has certain implications for how the autonomy features of abstract
agents can be modeled via aspects of human behavior. Our finding confirms the
theory of social interdependence in its simple form, applied to naïve autistic
reasoners: once agents become capable of operating in mental world, they are able
to form teams: no special, additional skills are required. Once children form teams,
their mental reasoning capabilities improve, but they don’t need to learn anything
besides mental states and actions to learn forming simple teams. In this respect,
our findings back up the traditional individual methodological perspectives (e.g.,
cognitive architectures).

9.11 Preparing Autistic Children for School

When a parent is getting his child ready to start school, planning ahead is a
good idea. And as a general rule, slow and steady works best. There are also
some simple strategies that can help make the transition successful. Parents should
building familiarity with school, practice it, organize their CwA for school and make
transition plans.

Once the parent chosen her child’s school, it can be very helpful to slowly
introduce the things that she’ll need for the school day. This way she can get familiar
with them before she starts school. It can also help reduce anxiety about having too
much change in one go. You could have your child’s new school bag, books, lunch
box or clothes lying out in the open so he can get used to seeing it around.

Helping CwA get used to the school itself can be done gradually. A parent could
start with just walking or driving past when you’re on normal trips to other places.
This will help your child see the school as part of her everyday routine. Visiting the
school with CwA after hours could be the next step. If possible, the parent should
try to do this several times so that her child gets to know the school environment.

The parent could also encourage CwA to train with a school attendance scenario
about starting school or a visual storybook with photos of the school. This can help
CwA understand what to expect as well as to anticipate what other people will
expect him to do. Having a practice at home before CwA starts school can help
CwA feel familiar with the new routines and activities. It can also help the parent to
spot any potential problems and resolve them before the child actually starts.

Being organized and ready for when your child starts school will ease the stress
and help it go well. It’s a good idea to make sure the child has everything she needs
well in advance. Schools usually give the parent a comprehensive list of what the
child will need.

When a parent has decided on a school for her autistic child, whether a specialist
school or a mainstream school, she should go in and meet the teachers. Although the
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teachers will receive medical notes about each child, it is best for both the teacher
and the child to meet in person. Usually, prior to the start of term, the teachers
arrange transition visits for every child and their family. The teachers need to be able
to understand each individual’s needs before term starts as every CwA is different,
but they can also provide plenty of advice for parents.

The parents should take a camera on their school visit, and take pictures of all
the new classrooms, canteen, sports halls and toilets your child may use. With these
images the parent can create your own picture book, to help your child become
familiar with the environment. Planning is key when it comes to helping CwA to
have an easy transition into school life. The parents need to be prepared to face any
situations that may arise, even if your child’s been fine in the past. Sometimes CwA
may just not feel well, but the parents should stay calm and work things through
together.

9.12 Preparing Autistic Adults for Work

We share our experience on how to apply reasoning intervention methodology
to a child to be included in a regular education process. Also, reasoning and
math exercises for teenagers and young adults are included. We discuss vocational
training adjusted to the strength and weaknesses of adults with various forms of
autism.

One of the key barrier for an AwA to engage in a work activity is avoidant
personality (Fig. 9.11). A person with avoidant personality experiences a long-
standing feeling of inadequacy due to the lack of social skills that result from
mind-blindness. This influences the AwA to be socially inhibited. Because of these

Fig. 9.11 Exaggerated representation of a group of people with avoidant personality (From
http://www.emotionalaffair.org 2016)

http://www.emotionalaffair.org/
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feelings of inadequacy and inhibition, these individuals will often seek to avoid
work, school, or any activities that involve socializing or interacting with others
(e.g., many young PwA with avoidant personality are still living with their parents
and playing video games rather than working, going to college, getting married,
etc.).

The treatment of choice is psychotherapy. While individual therapy is usually
the preferred modality, group therapy can be useful if the AwA can agree to attend
enough sessions. Because of the basic components of this condition, though, it is
often difficult to have the individual attend group therapy early on in the therapeutic
process. It is a modality to consider as the AwA approaches termination of individual
treatment, if additional therapy seems necessary and beneficial to her. We suggest
the following strategies for such adults:

1. Actively seek out and join supportive social environments.
2. Challenge negative, unhelpful thoughts that trigger and fuel social anxiety,

replacing them with more balanced views.
3. Challenge social anxiety one step at a time. While it may seem impossible to

overcome a feared social situation, you can do it by taking it one small step at
a time. The key is to start with a situation that you can handle and gradually
work your way up to more challenging situations, building your confidence
and coping skills as you move up the “anxiety ladder” (e.g., if socializing with
strangers makes you anxious, you might start by accompanying an outgoing
friend to a party, and once you’re comfortable with that step, you might try
introducing yourself to one new person, and so on).

4. Group therapy for social anxiety is a good idea. It uses acting, videotaping and
observing, mock interviews, and other exercises to work on situations that make
you anxious in the real world. As you practice and prepare for situations you’re
afraid of, you will become more and more comfortable and confident in your
social abilities, and your anxiety will lessen.

5. Know that avoidance leads to more problems. While avoiding social situations
may help you feel better in the short term, it prevents you from becoming more
comfortable in social situations and learning how to cope. In fact, the more you
avoid certain social situations, the easier it is to become even more unsociable.
Avoidance may also prevent you from doing things you’d like to do or reaching
certain goals.

6. Learn how to control the physical symptoms of anxiety through relaxation
techniques and breathing exercises.

7. Take a social skills class or an assertiveness training class. These classes are
often offered at local adult education centers or community colleges.

8. Use cognitive-behavioral techniques for social anxiety, including role-playing
and social skills training.

9. Volunteer doing something you enjoy, such as walking dogs in a shelter, or
stuffing envelopes for a campaign — anything that will give you an activity
to focus on while you are also engaging with a small number of like-minded
people.
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10. Work on your communication skills. Good relationships depend on clear,
emotionally-intelligent communication. If you find that you have trouble
connecting to others, learning the basic skills of emotional intelligence can help.

A number of skills such as self-regulation, independence, social relationships,
and self-advocacy are important for getting and keeping a job. Being able to get and
hold a job is an essential result of all the life skills acquired at autism intervention
facilities. For someone to be accepted by a company, they must be able to control
themselves emotionally and also in their sensory space. Substantial independence
is required to perform job responsibilities. Understanding that an employee should
speak to his boss differently than he would to a colleague is important to know in
most work situations. Self-advocacy skills are necessary in order to request what
you need to get the job done.

Life skills in general should be broken down into step-by-step sets and translated
into the intermediate training goals and objectives. Obviously, the skill level reached
at each of these steps is different depending on the person, but every CwA student
is expected to learn a minimum in order to live and work in the community.

Employers usually look for the following characteristics: honesty, integrity, a
strong work ethic, analytical skills, computer skills, teamwork, time management,
organizational skills, communication skills (oral and written), flexibility, interper-
sonal skills, motivation and initiative. Most AwA are not the employee who will be
caught stealing or cheating. A strong work ethic applies to most of AwA: they the
ones who do not like a change in routine and are going to be there rain or shine.
They will be very devoted to the workplace (Baron-Cohen and Wheelwright 1999)
and will not be calling in sick because of some personal circumstances, or leave
early because they have an event to attend.

Analytical skills are really ‘obsessive attention to detail,’ and many of CwA
have that. The child who likes to line up blocks and trains probably has good
organizational skills. Teamwork and flexibility are difficult areas for many CwA
and a lot of attention should be paid to these skills (Sect. 9.10). Teachers should be
teaching flexibility at schools, such as exercises from Chap. 8. The teamwork can
be handled by ensuring the AwA has one person on the team that he is in contact
with for all needed information.

Recently, technical recruiters started recommending employees with AS as
preferred (Romano 2016). They are described as living on open-source forums,
having no social skills as their advantage for a company, “generally marry the
first girl they date”, making no eye contact, having their resume poorly written and
education background as a mess. However their main advantage for their employers
is that they work like machines, don’t engage in politics, don’t develop attitudes and
never switch jobs.

For some professions, AwA have strong advantages due to their analytical skills
and hypersensitivity. Military analytics is one of such professions. Many autistic
soldiers who would otherwise be exempt from military service have found a place
in a selective intelligence squad in Israel where they can leverage their advanced
perceptual skills. For a full day, AwA sits in front of multiple computer screens,
scanning high-resolution satellite images for suspicious objects or movements. As a

http://dx.doi.org/10.1007/978-3-319-39972-0_8
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Fig. 9.12 Intelligence unit using soldiers with autism produces stellar results (algemeiner.com
2014)

decoder of complex and heavily civilian battlefield, AwA is critical in preventing the
loss of life of soldiers on the ground in several different situations. For CC, looking
through each millimeter of the same location from various angles would be tedious
work—but AwA describes his job as relaxing and hobby-like (Fig. 9.12).

Israel Defense Force’s “Visual Intelligence Division,” employs a hundred of
Israelis on the autism spectrum among its members. The relationship between this
unit and AwA is a mutually beneficial one, being a chance for these young people
to have an active, satisfactory lifestyle that might otherwise be closed to them.
And for the military, it is an opportunity to take advantage of the unique cognitive
capabilities for visual thinking and attention to detail. Both these skills are critical
for the highly specialized task of aerial analysis.

There is a socially innovative company “Specialisterne” (Danish as “The Spe-
cialists”) where many employees have an ASD diagnosis. AwA work as business
consultants on tasks such as software development, quality assurance and data-
entry. The company takes advantages of the special characteristics and talents of
PwA and use them as a competitive advantage, and as a means to help people with
autism secure meaningful employment. Specialisterne has operations in numerous
locations around the Europe and US.

There is individual who has autism and a cum laude degree from Yale. He got a job as a
telemarketer and lasted a day and a half. He is now a research assistant testing computer
code. His co-workers are all work study undergraduate students. He comments, “So, rather
than just looking at the rumpled suit and diffident eye contact, employers might be well
advised to give candidates with autism a second look. After all, what good is it to hire
a normal guy who dresses well and gives you a presentation worthy of a drum major if
he or she is going to move on in six months? Besides someone like that will probably be
making personal phone calls all day, whereas people with autism would seldom or ever do
so. If these people are really looking for diligent, loyal employees, they just might find that
people with autism fit the bill.”

http://www.algemeiner.com/
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9.13 Cross-Cultural Differences and Autism

Cross-cultural psychology research and ethnographic methods in cognitive anthro-
pology have shed some light on which of these two perspectives, constructivism
or nativism, best characterizes our abilities to reason about the minds of others.
(Lillard 1998) reviews the evidence for and against differences between the
standard European/American commonsense psychological model and that of non-
European/American cultures, and argues that meaningful variations can be found in
the following areas:

• Not all cultures appear to view the mind as equal to the self, as internal to and
distinct from the body, or as an important topic of conversation and attention.

• There are variations in the degree to which other cultures view behavior as a
result of mental processes. In some cultures, situational and social factors prevail
in driving behavior stronger than in the European/American view.

• Whereas the primary way of affecting the mind in the European/American view
is through perception of the world, several cultures hold beliefs that the mind is
also affected by ritual acts or by transgressions of people in their past.

• The characterizations of specific mental processes, particularly perception, emo-
tion, and thinking, can vary widely across cultures, and can include the beliefs
that hearing applies to non-acoustic phenomenon, that the cause of sadness is
an illness, and that thinking about something is only a superficial means of
understanding something.

In summarizing the evidenced cultural differences in common-sense psycho-
logical theories, Lillard recommends caution: systematic cross-cultural studies of
adult theories of the mind have yet to be completed. Moreover, (Lillard 1998)
points out that cultural differences should not be seen as proof of cultural relativism
in commonsense psychology; underlying the differences seen between cultures
is a substantial amount of similarity, with many common beliefs that might be
candidates for human universals.

As with many findings of cross-cultural studies, the universality of any psy-
chological trait is likely to be a matter of degree. On one hand, Avis and Harris
(1991) demonstrated the universality of the human ability to reason about the beliefs
and desires of others in their experiments with children of the Baka, a group of
pygmies living in the rain forests of southern Cameroon. On the other hand, (Wu
and Keysar 2007) studied people’s ability to take the perspective of another in a
visual perception task, and demonstrated significant differences between Chinese
and American-raised adults attending the same university on the south side of
Chicago. While significant differences such as these suggest a role for enculturation
in the development of commonsense psychology, the current cross-cultural evidence
does not strongly favor either the constructivist or nativist perspective.

People in collectivistic cultures such as India are believed to have interdependent
self-perception, and people in individualistic Western European cultures such as
the US are believed to have independent selves. To assess the role of culture,



9.14 Discussion and Conclusions 375

(Wu and Keysar 2007) observed Chinese and American individuals playing a
communication game that is a perspective-taking based. The measures of Eye-
gaze showed that the interdependent self-perception participants were more tuned
into their partner’s perspective than were the independent selves participants.
Moreover, independent selves often completely failed to take the perspective of
their partner, whereas interdependent self-perception almost never did. Cultural
patterns of interdependence focus attention on the other, causing Chinese to be better
perspective takers than Americans. Although members of both cultures are able
to distinguish between their own perspective and that of another persons, cultural
patterns give Chinese a chance to effectively use this ability to quickly decode other
people’s actions and intents.

9.14 Discussion and Conclusions

We observed how the account of autism reasoning engine ! behavior presented in
this book yielded the intervention strategy that helps children with autism to develop
skills for everyday life. Reasoning skills are the main target of training to achieve
adequate behavior among peers, and the more advanced these skills are, the more
complete and satisfactory is the feeling of CwA at school, at a social event and at
home.

To tackle the mental world, CwA needs to acquire its axioms and apply them as
strict rules. Since living in the mental world is the hardest thing for CwA, the more
axioms about it are learned and being followed literally, the better. For the physical
world, where CwA is already more comfortable, she is expected to not just follow
its rules but to be capable of adjusting them to the context, handling exceptions
properly. We conducted the evaluation for how using the training strategy according
to reasoning engine ! behavior account helps in better living in both these worlds.

PwA have preference for systems that change in highly lawful or predictable
ways (such as mathematics, repetition, objects that spin, routine, music, machines,
collections) and why they become disabled when faced with systems characterized
by less lawful change (such as social behavior, conversation, people’s emotions, or
pure fiction), since these cannot be easily systemized and are not oriented towards
discovering “truth” (defined as lawfulness). PwA have a “need for sameness” or
“resistance to change” (Kanner 1943) in such “random” contexts as the social world.
Although CwA are not native inhabitants of the social world, their hypersystemizing
can bring their talent in problem domains that can be represented in a systematic
way. The majority of PwA have their hypersystemizing skills focused on a
massive collection of facts and observations (lists of schedules and cycles of home
appliances) or on massive repetition of behavior of physical systems. However PwA
who go beyond a life at home, become data scientists and propose a law or a pattern
of the data can substantially contribute to human knowledge.
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Autistic genes for increased systemizing have strongly affected human history
(Fitzgerald 2002). The “Assortative Mating” theory of (Baron-Cohen 2006) pro-
poses that the cause of ASC is the genetic combination of having two strong
systemizers as parents. This theory may help explain why the genes that can cause
social disability have also been maintained by natural selection in the gene pool.
These genes comprise all the advantages that strong systemizing can bring on the
first-degree relatives of PwA.

This Chapter summarizes the results of the proposed intervention strategy.
Having read this Chapter, the reader is expected to be fluent with the main concepts
related to autistic reasoning and behavior, be prepared to complete a broad spectrum
of proposed exercises and also be ready to assess how her child is progressing.
A parent should now be prepared to deal with challenging behavior, involve her
child into a team work, and have the child ready for school and the adult ready for
work.

We want to conclude this Chapter from the standpoint of theoretical foundations
of educational approaches. The cognitive domain has been the principal focus for
developing educational goals and objectives while the affective and psychomotor
domains have received less attention. (Bloom 1956) taxonomy has been used by
generations of curriculum planners in both traditional and special needs education
areas (Magnusen 2005). Bloom’s taxonomy of Educational Objectives identified the
following levels of cognitive learning that we apply here to the mental world:

• Knowledge – The remembering of learned mental states and actions; this involves
the recall of a basic and derived mental entities

• Comprehension – The ability to grasp the meaning of previously-learned mental
entities; this may be demonstrated by translating material from one form to
another, interpreting material (explaining or summarizing), or by predicting
consequences or effects of communicative actions.

• Application – The ability to use learned material about the mental world in new
and concrete situations; this may include the application of rules for individual
communicative actions and mental states to concrete situations of interaction
between people.

• Analysis – The ability to break down the events in the mental world into its
component parts so that its organizational structure may be understood; this may
include the identification of the parts of this event of interaction between people,
analysis of the relationships between these parts, and recognition of the structural
principles on what drives the communication between people.

• Synthesis – The ability to put parts together to form a new whole scenario of
interaction between people. This may involve the production of a scenario of an
encounter between people, or a plan of operations to resolve a conflict between
people, or a set of abstract relations in the mental world.
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Chapter 10
Conclusions

It has been discovered two decade ago that autistic people cannot properly
understand and reproduce mental states and emotions. The proposed account of
autism, reasoning engine ! behavior, is based on the observation that people
with autism suffer from difficulties in learning social rules from examples but
nevertheless can memorize and apply rules independently. Many remediation
strategies have not taken this into account. Therefore an appropriate intervention
strategy is to teach not simply via examples but to teach the rule along with it.
In this book we suggested a reasoning intervention strategy, based in particular
on playing with a computer based mental simulator that is capable of modeling
mental and emotional states of the real world. A model of the mental world has
been presented in twenty-three steps. We described our implementation of the
natural language multiagent system NL_MAMS that implements this model. In
addition, we described the system’s user interface for autistic intervention. This
system was subject to short-term and long-term evaluation of rehabilitation of
autistic reasoning. Case studies with children who used it extensively are presented.
Implications specifically in terms of autistic rehabilitation as well as generally in
terms of reasoning about mental states are discussed.

The main contribution of this book is the model of reasoning about mental world
and the simulation means for children with autism to learn this model. The following
steps were accomplished in the path from the former to the latter:

1. The theory of mind is subject to a formal treatment from the standpoint of logical
artificial intelligence;

2. The possibilities of the theory of mind teaching are re-evaluated, taking into
account the developed formal framework for reasoning about the mental world;

3. Appropriateness of formal reasoning as an educational means and associated
cognitive issues are assessed;

4. The model of mental world is constructed to serve as a basis for education means;
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5. The simulation-based hybrid algorithm of deriving consecutive mental states and
its software implementation is designed and evaluated;

6. Theory of mind teaching using this software is evaluated on a short-term and
long-term basis;

7. Implications for the practical intervention strategies are analyzed;

Results of short-term and long-terms rehabilitation of autistic reasoning have
been presented, and we demonstrated the benefits of using the tool in autism
intervention centers. We showed that children with NL_MAMS-based training
perform better than those without theory of mind training, both in testing envi-
ronment and interacting with other children in real world. Hence we recommend
using the developed tool, NL_MAMS, in autism rehabilitation facilities in various
languages across the world, having tested it in “Our Sunny World” center and
other organizations. A number of intervention tools and exercises are available at
relevance-based-on-parse-trees.googlecode.com/files/autistic_rehabilitation.zip.

A computational approach to studying the phenomena of autism has been
introduced. We critiqued modern accounts of autism, proposed a computationally-
centered one and explained how a reasoning-based account can assist in understand-
ing the nature of autism as well as in curing it. We also explained how autistic
reasoning due to its purity can help computer scientists evaluate their reasoning
models. It has been demonstrated that knowledge in a formalized form is more
suitable to reproduce the peculiarities of autistic reasoning on one hand and to
directly teach reasoning and domain-specific rules to children with autism on the
other hand. We outlined the common features of teaching autistic children and
computers various forms of reasoning and machine learning. We also discussed
how our experience accumulated while teaching children with autism in the above
domains can be applied to the design of intelligent software systems.

We showed that CwA are not alone in their problems with reasoning. The
real world multiagent systems such as groups of people performing the common
goals, partnerships and corporations, as well as engineering AI systems, frequently
experience similar difficulties to CwA. In this book we attempted to find a common
cure for human and engineering reasoning systems to overcome these difficulties,
and demonstrated the remediation results for the former case. Additional material is
available at http://extras.springer.com.

http://extras.springer.com
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