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Abstract. This study considers an important problem of predicting required
calibration sample size for electroencephalogram (EEG)-based classification in
brain computer interaction (BCI). We propose an adaptive algorithm based on
learning curve fitting to learn the relationship between sample size and classi-
fication performance for each individual subject. The algorithm can always
provide the predicted result in advance of reaching the baseline performance
with an average error of 17.4 %. By comparing the learning curve of different
classifiers, the algorithm can also recommend the best classifier for a BCI
application. The algorithm also learns a sample size upper bound from the prior
datasets and uses it to detect subject outliers that potentially need excessive
amount of calibration data. The algorithm is applied to three EEG-based BCI
datasets to demonstrate its utility and efficacy. A Matlab package with GUI is
also developed and available for downloading at https://github.com/ZijingMao/
LearningCurveFittingForSampleSizePrediction. Since few algorithms are yet
available to predict performance for BCIs, our algorithm will be an important
tool for real-life BCI applications.

Keywords: Sample size prediction � Calibration � Brain computer interface �
EEG � Rapid serial visual presentation � Driver’s fatigue

1 Introduction

A brain computer interaction (BCI) system allows interactions between human and an
external device through monitoring brain signals [1]. EEG-based BCIs have become
increasingly popular in the past decade, finding real-life applications from controlling
wheel chairs to monitoring human performance [2]. Most of the BCI systems require a
calibration stage, where training samples are collected to build a classification model
for event detection from brain signals. The current practice of BCIs relies on collecting
an excessively large amount of calibration data to ensure that a robust classifier can be
built. Such practice has become a bottleneck for the BCI applications in real-world
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settings because such practice prolongs BCI training time and deteriorates user per-
formance due to induced fatigue on users. Moreover, due to individual differences in
brain responses, calibration needs to be adapted for each individual. Related efforts
have been made to take advantage of machine learning (ML) algorithms such as active
learning [3] and transfer learning [4, 5] by borrowing from existing data from the same
or other subjects to reduce the calibration samples as much as possible. However, as
long as there is a need for collecting calibration samples, determining an appropriate
calibration sample size for each individual before the training is an important issue to
be tackled. In fact, integrating sample size prediction together with transfer learning in
the calibration stage should be a favorable practice.

Despite its importance, the problem for predicting calibration sample size for BCIs
has not received much attention in the past. However, the problem of sample size
estimation (SSE) [6] has been studied in many other fields for different purposes. The
existing work stems mostly from three main types of methods. The first type is the power
analysis for sample size calculation [7], a method that is widely applied in biostatistics,
bioinformatics, and clinical research [7–9]. Power analysis requires information about
effect size, significance level, and power of the underlying hypothesis testing to predict
the sample size; sophisticated tools [9] have been developed for this analysis. However,
power analysis concerns more on the statistical significance rather than the classification
performance as in BCIs. The second type of methods treats SSE as an optimization
problem and defines specific optimization functions to balance the cost and benefit of
using a sample size [10]. However, these optimization-based SSE methods require
knowledge to define cost and benefit in the same domain such that they can be compared
and thus optimized; this knowledge is difficult to obtain in many applications including
BCIs. For instance, while it is possible to assess the cost of collecting samples in BCIs in
terms of money or time, it is nevertheless difficult to assess the benefit in performance
improvement in terms of cost or time. The last type of methods is the learning curve
fitting, which fits a regression model to the observed sample sizes and performances to
capture the relationship between performance and sample size. Since 1936,
learning-curve fitting has been studied and applied in many industrial fields [11]. One of
the most widely used fitting model is the inverse power law [11], by the intuitive thought
of more samples always improve the performance but improvements decay gradually.
Because of its data-driven nature and ease of implementation, we apply it for the
prediction of calibration sample sizes for BCIs.

We propose a novel adaptive algorithm for EEG calibration-sample-size prediction.
The algorithm has several unique features tailored for BCI tasks. First, the algorithm
utilizes the prior datasets commonly available in BCIs to suggest a baseline perfor-
mance and to derive a population-wide sample size upper bound. Second, it adaptively
fits the learning curve between performance and sample size for each individual and
makes the prediction of calibration sample size when a satisfactory fitting confidence
level is reached. Third, it also provides a way to identify subject outliers that potentially
need excessive amount of calibration data. Fourthly, it can be used to select the best
classifier for BCIs. We evaluated the algorithm and demonstrated its efficacy on three
different BCI datasets. A Matlab package with GUI is also developed and released to
facilitate the application of the proposed methods (https://github.com/ZijingMao/
LearningCurveFittingForSampleSizePrediction).
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The remainder of the paper is organized as follows. Section 2 discusses the pro-
posed algorithm in details. Testing results are reported in Sect. 3. Conclusions are
drawn in Sect. 4.

2 Materials and Methods

2.1 Experiments and Data

Data from three BCI experiments are used in this study to test the proposed algorithm.
The experiments include two image Rapid Serial Visual Presentation (RSVP) [12]
experiments and one simulated driving experiments for driver performance study.
The RSVP experiments are Static Motion (D1) and the Cognitive Technology Threat
Warning System (CT2WS or D2) [13, 14]. The static motion RSVP experiments
include the presentations of color target images of enemy soldiers/combatants versus
the background non-target images of village street scenes. The CT2WS experiment
includes presentations of gray scale images, where target images include moving
people and vehicle animations, whereas the non-targets are other types of animations
such as plants or buildings. Each subject performed four sessions in static motion and
only one session in CT2WS, where each session lasted for about 15 min. For both
experiments, the images were presented at 2 Hz (one image presented every 500 ms)
and brain signals were recorded with 64-channel Biosemi EEG systems at a sampling
rate of 512 Hz. There were a total of 16 and 15 subjects in the static motion and
CT2WS experiment, respectively. The simulated driving dataset (D3) includes EEG
samples from 17 subjects, each performed a lane-keeping driving task in a virtual
reality interactive driving platform with a 3-D highway scene [15]. Perturbations to the
car were introduced into driving path every 8 to 12 s and driver’s reaction time and the
amount of the lane deviation was measured to assess the degree of driver’s drowsiness.
Each experiment lasted one and half hours during which EEG signals were measured
from 30 electrodes. The reaction time (RT) is defined as the time between the onset of
the lane perturbation and the moment when the subject starts steering the car. RT is
used to define the drowsy or alert state of the driver. Particularly, when the reaction
time is � 0:7s; the driver is considered as alert, whereas when the reaction time is
� 2:1s; the driver is considered as drowsy.

2.2 Data Preprocessing

EEG data from three experiments were subject to the similar preprocessing steps.
Particularly, the raw EEG data were first bandpass-filtered with a bandwidth ranging
from 0.1–50 Hz in order to remove DC noise and electrical artifacts. Down-sampling
was performed next to reduce the sampling rate from the original 512 Hz to 128 Hz,
which is the maximum down-sampled frequency that does not produce aliasing at the
high-passed frequency. Then, by following [16], one-second epochs of the EEG
samples after each image onset were extracted for all the subjects to be used as data for
calibration and prediction. In the end, about 13,500 epochs from Static Motion (*1000
epochs per subject) and about 10,400 epochs from CT2WS (*700 epochs per subject)
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were obtained. For the driving data, we used one-second epochs before the onsets of
the perturbations as data for predicting the “drowsy” or “alert” state of the drivers.
There is a total of 2,796 (764 drowsy and 2,032 alert) epochs from the 17 subjects.
Because the sampling rate is 250 Hz, the dimension of one-second EEG epoch is
250 × 30 = 7500. Afterwards, normalization was applied to all the epochs. Each
(channel � time) pair in the calibration set was normalized across epochs by z-score
normalization. The test sets were then z-score normalized according to the calibration
set mean and standard deviation. The goal for RSVP classification is to predict if the
subject sees a target image based on the epoch data while for driving performance
classification, the goal is to predict if the subject has a slow reaction time.

2.3 The Proposed Scheme for Calibration Sample Size Prediction

The goal of calibration sample size prediction is to suggest an appropriate sample size
for calibrating the classification algorithm for a new subject. We consider a common
scenario in BCIs, where the prior datasets collected from other subjects performing the
same task are available and therefore a baseline performances PB (e.g. PB = 0.9 Area
under ROC or AUC) for satisfactory event classification is learned. Intuitively, an
appropriate sample size is the one needed for a classifier to reach the baseline per-
formance, or the baseline sample size SB as we will refer to next and we hope to predict

SB, denoted as cSB for an individual by collecting only a small number of calibration
samples from the subject. To this end, we propose an adaptive algorithm, where at the
mth iteration, M new samples are collected and an intermedium prediction and its
confidence are calculated using all the samples collected thus far. The final prediction is
reached when the prediction confidence falls within a tolerate threshold (e.g. 95 %
significance level). At the mth iteration, to make a prediction, a learning curve is first
fitted to the performance of a classifier. A learning curve characterizes the classification
performance (pAz) as a function of calibration sample size s and as in [8], can be
represented using an inverse power law (IPL) model [11]

p sð Þ ¼ f s; a; b; cð Þ ¼ a� sb þ c; ð1Þ

where a, b and c, are the model parameters that represent the decay rate, learning rate,
and bias, respectively. The goal of fitting is to estimate the parameters using the
classification performances obtained at all m iterations. To this end, the non-linear least
square method is applied in this work and a 95 % confidence interval I(s) of the fitting
for the sample size s is also reported. An illustration of this process is shown in Fig. 2.
As can be seen, using the learning curve, the sample size sA can be predicted from
(1) by setting p sð Þ ¼ PB. Then, I sAð Þ; the 95 % confidence interval at s ¼ sA; is
compared with a predefined tolerance level Ts. We define Ts by calculating the ratio
between curve fitting confidence interval bound and sA: For example, if we set Ts ¼
0:02; it means the range of confidence interval is 2 % of sA: If I sAð Þ\Ts; then sA is
reported as the predicted baseline sample size; otherwise additional M samples will be
collected and one additional iteration will be performed.

For some subjects, SB can be excessively large and it might not be prudent to collect
such large samples given limited resources. To determine if SB is too large, we resort to
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the prior datasets. Particularly, we bootstrap the dataset 100 times and for each boot-
strapped data, we perform cross-validation to determine the baseline sample size SB.
Then, we counted the histogram of all the bootstrapped baseline sample sizes to
generate the population-wide distribution of SB. Based on this distribution, we esti-
mated a population-wide sample size upper bound Sb, as P SB [ Sb

� �� 0:05: Given
that the prior dataset is large enough to capture the data distribution of the subject
population, Sb can be interpreted as a sample size upper bound such that only 5 % of
subjects require more samples to reach the baseline performance PB: Therefore, the

predicted baseline sample size cSB for the subject of interest can be determined to be

excessively large if cSB [ Sb: In this case, we recommend cSB ¼ Sb if there is prior
dataset for performing transfer learning. Otherwise, we suggest excluding this subject

from this task. Taking together, we report cSB as the predicted calibration sample size ifcSB\Sb; otherwise, we suggest to collect Sb calibration samples and then apply transfer
learning (TL) algorithms to improve the classification performance to PB: The proce-
dure of the algorithm is summarized as follows.

Initialize the baseline performance and sample size:  and 

Initialize sample size increment  and initial sample size 

Initialize the tolerance level 

While do

Obtain calibration performance  based on 
Based on all obtained s, fit learning curve 
Estimate the baseline sample size 
Estimate 95% CI, 

If do
Predicted baseline sample size 

If do
Break 

End if
End if  
Current sample size 

End while  
If or  does not exist do

Set predicted baseline sample ; 
or exclude the current subject 

Else 
Report predicted baseline sample  

End if 
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Fig. 1. Learning curve fitting of 3 datasets for 3 classification methods. The blue dots are AUCs
obtained by calibration with an increasing size of EEG samples. These AUCs were obtained at
sample sizes linear-spaced below 1,000 with a step size of 10 and log-spaced above 1,000 with a
step size that amounts to 50 logarithmically even-spaced points between 103 and 104. (Color
figure online)

Fig. 2. An illustration of adaptive learning curve fitting. The blue dots are AUCs obtained by
calibration with an increasing size of EEG samples. The figures show the fitting results of using
different calibration sample sizes, where A, B, C, D used the 50, 100, 200, 400 calibration
samples (which means using the first 5, 10, 20 and 40 blue dots) to fit the learning curve (red line)
respectively. The data come from subject 1 of Static Motion RSVP (D1). (Color figure online)
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We can also apply this algorithm to select the best classifier for the BCI task.
Specifically, we predict the sample sizes for all candidate classifiers and the one that is
associated with the smallest predicted sample size is selected.

3 Results

This section demonstrates the performance and utility of the proposed algorithm of
calibration sample size prediction using 3 BCI datasets, as described in Sect. 2; and
considered 3 classification algorithms including gradient boosting method (GBM) [17],
linear discriminant analysis (LDA) [18] and support vector machines (SVM) [18]. As a
result, we have nine different combinations for performance evaluation.

3.1 Learning Curve Fitting

We first examined the performance of learning curve fitting, where, for each dataset, we
merged samples from all subjects and fitted the inverse power law model for each of the
three classifiers, separately. Sample size increased from 300 to 10,000 in D1, from 300
to 8,500 in D2, and from 150 to 2,000 in D3, respectively and at a particular sample
size, bootstrapping was performed to calculate the classification ROC of AUCs for
each classifier. Figure 1 shows the results of nine fitted learning curves. We also
calculated the R2 statistic as a measurement of the goodness of fit (GoF). The R2 is
denoted by:

Fig. 3. Mean absolute error (MAE, blue line) and root mean squared error (RMSE, red line) as a
function of calibration sample size. The horizontal axis is the sample size used for calibration and
obtaining the baseline AUCs, and the vertical axis is the value of MAE and RMSE. (Color figure
online)
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R2 ¼
P

n f sfitn ; a; b; c
� �� pfitn

� �2P
n pfitn � pfit
� �2 ; ð2Þ

where sfitn and pfitn represent the nth fitting sample size and the corresponding ROC of
AUCs, the denominator is called the total sum of squares, where pfit is the mean of
classification performance, and the numerator is called the regression sum of squares.
As shown in Fig. 1, R2 scores are high for all the fitting (> 97 %), indicating that the
IPL can model the relationship between performance and sample size.

Next, we examined the adaptive fitting of the learning curve and its ability to
predict future performance as described above. Figure 2 shows an example of the
adaptive fitting and prediction results for Subject 1 in static motion RSVP (D1). In
Fig. 2A, the curve was fitted using first 5 AUC points (trained by 50 EEG samples).
The predicted curve (red line) deviates slightly from the true AUCs after the 5th point
(blue dots) and as expected, both deviations and prediction confidence intervals grow
larger as we move further into a larger sample size. However, the true AUCs do fall in
between the 95 % confidence interval (orange lines) consistently. As we increased the
number of fitting points from 5 to 40 (trained by 50 to 400 EEG samples), the predicted
curve became increasingly similar to the behavior of the true AUCs and at the same
time the 95 % confidence interval grew much narrower (Fig. 2A–D). At 40 points, the

Fig. 4. Adaptive prediction of baseline sample size. The horizontal axis is the sample size used
for calibration and obtaining a baseline AUCs. The vertical axis is the sample size predicted by
learning curve in order to reach the baseline AUC. The green and red line indicates the true (SB)

and predicted (cSB ) calibration sample size for the baseline AUC respectively. The blue dot
represents the calibration sample size that can reach < 2 % of confidence interval for the learning
curve fitting. (Color figure online)
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predicted curve closely resembled the true learning curve with very high confidence
(Fig. 2D). To systematically evaluate the prediction, we use prediction mean absolute
error (MAE) and root mean squared error (RMSE) for each dataset, as in [8], which are
defined as

MAE ¼ 1
N

X
n

f spredn ; a; b; c
� �� ppredn

�� ��; ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
n

f sPredn ; a; b; c
� �� ppredn

� �2
s

; ð4Þ

where sPredn and pPredn are nth sample size and corresponding AUC obtained by cali-
bration with n EEG data samples. Figure 3 shows MAE and RMSE as a function of
fitting sample size for all three datasets. For each dataset, AUCs associated with 20
largest sample sizes were retained and used for evaluating the prediction MAE and
RMSE for learning curve fitted by an increasing sample size. Specifically, D1, D2 and
D3 fitted the learning curve using calibration samples range from 300 to 6000, 300 to
5000 and 150 to 1300 with respect. As expected, both RMSE and MAE decrease and
became very close to zero as the fitting sample size grows larger. In nearly all datasets,
a mean error less than 0.1 can be reached after the sample size increased to 1,000,
suggesting that the proposed adaptive prediction of learning curve is effective. The rate
that RMSE or MAE drops is also an indication of data variation and robustness of

Fig. 5. Illustration of three scenarios that result in different sample size prediction. A and B are
results from subject 1, D1, where the baseline AUCs PB were set as 0.9 and 0.95, respectively.
C shows the results from subject 2, D1 where PB = 0.95. The blue dots are AUCs obtained by
calibration with an increasing size of EEG samples. The red line is the fitted learning curve. The
green vertical line is predicted sample size obtained from fitted learning curve in order to reach
PB. The figures in the right columns depict the distribution of calibration sample size estimated
from the prior dataset in order to reach a given PB. The blue line indicates the sample size
distribution and the red line indicates the maximum tolerate sample size for calibration,
calculated by the maximum 5 % of the sample size distribution. (Color figure online)
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classifier. Among the three datasets, MAE and RMSE drop the fastest for D3 for all
three algorithms. This suggests that D3 has least variation, because it required the least
amount of fitting samples to model the behavior of learning curve. Compared among
the three algorithms, LDA and GBM are the most robust because their associated
RMSE and MAE drop the fastest for all three datasets.

3.2 Calibration Sample Size Prediction

Finally, we investigated the performance of calibration sample size prediction. Recall
that our prediction algorithm reports two decisions for samples sizes, namely the

predicted baseline sample size cSB and the population-wide upper bound Sb. We first

examined cSB , where the tolerance level Ts on the 95 % fitting confidence interval was
set to 2 %. For each dataset, 1,000 samples were randomly selected as the prior dataset,
from which classification AUCs for each of the three classifiers were obtained. Then,
the average AUCs of the three classifiers were used as the baseline performance PB for
each dataset. Figure 4 illustrates the trajectories of the adaptive prediction for all cases.
Given a baseline performance, we gradually increased calibration data and updated
learning curve coefficients. Once we reached a pre-set confidence level for the curve
fitting, this algorithm would stop from obtaining new calibration data and provide a
prediction of the calibration sample size that will be used in order to reach the baseline.

For instance, it was predicted that for dataset D1, at the tolerance level 2 %, cSB = 880
samples are needed for GBM to reach the baseline performance PB = 0.84. In this case,
the true sample size for PB = 0.84 is 820 and therefore our algorithm predicted 30 more
samples or a 7.5 % error. Setting a more stringent tolerance level can further reduce
this error. Examining all nine cases, we can always observe convergence to the true
calibration samples size as the sample size increases and the prediction result when
compared with the baseline performance has an error of 17.4 % on average. More
specifically, GBM has an average prediction error of 6.2 %, LDA has an error of
26.5 %, and SVM has an error of 20 %. Besides, it is observed that our algorithm
usually overestimated the baseline sample size. In practice, an overestimation is pre-

ferred because an overestimated cSB would always ensure that the baseline performance

could be reached. As discussed previously, cSB can be used to select classifier for BCI.
In this case, LDA is selected for D1 and D2, whereas SVM is selected for D3. These
selections are consistent with those based on the true baseline sample size, suggesting
again that our prediction algorithm can correctly assess the relationship between sample
size and classification performance.

Finally, we investigated the scenarios where we need to consider the
population-wide upper bound Sb . Particularly, we used the dataset D1 to simulate three
potential scenarios. For the first scenario, we set the baseline AUC PB = 0.9. We used
the randomly selected 1,000 samples to estimate the distribution of baseline sample
size, from which we had Sb = 270 (Fig. 5A). Then, we focused on Subject 1 and

determined that cSB = 140. Since cSB < Sb, the calibration sample size was predicted to
be 140 (Fig. 5A). In the second scenario, we increased the PB = 0.95. Once again,
we estimated the distribution of the baseline performance from the 1,000 prior data
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samples and cSB for Subject 1. This time, we had cSB = 550 but predicted calibration

sample cSB = 590 (Fig. 5B). Since cSB > Sb, we would suggest to collect 550 samples

for calibration. However, notice that cSB is only 40 samples more than Sb, therefore one
might consider collecting the predicted 590 samples instead, if resources permit. In the
third scenario, we still set PB = 0.95 and therefore Sb = 550. However, we chose to

predict the baseline sample size for Subject 2, where we had cSB = 1,340 (Fig. 5C).
Since this time cSB ≫ Sb, we would suggest to collect only 550 samples.

4 Conclusion and Future Work

This study proposed a new algorithm for predicting calibration sample size for EEG)-
based classification in BCIs. The key component of the algorithm is an adaptive fitting
of a learning curve. Instead of producing a single prediction, our algorithm outputs a
predicted baseline sample size and a population-wide upper bound. Empirical results
showed that our algorithm can correctly predict the behavior between classification
performance and sample size. Providing two predicted sample sizes gives user more
flexibility to reach a case-specific decision. In addition, the predicted sample size can
be used to select an appropriate classifier for BCI.

Another important future direction is to investigate the integration of the sample
size prediction methods with transfer learning to achieve reduced calibration data.
There are two potential directions for this investigation. First, we can investigate
progressive classifiers with TL and generate a learning curve for sample size prediction
based on the results coming from these classifiers. Second, we can exploit TL when a
subject with the predicted sample size much greater than our expected baseline cali-
bration sample size. Specifically, we can design TL algorithms for the subject to
improve the classification accuracy and also reduce calibration samples.
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