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Abstract. With the growth and affordability of the wearable sensors market,
there is increasing interest in leveraging physiological signals to measure human
functional states. However, the desire to produce a reliable universal classifier of
functional state assessment has proved to be elusive. In efforts to improve accu-
racy, we theorize the fusion of multiple models into a single estimate of human
functional state could outperform a single model operating in isolation. In this
paper, we explore the feasibility of this concept using a workload model devel-
opment effort conducted for an Unmanned Aircraft System (UAS) task environ-
ment at the Air Force Research Laboratory (AFRL). Real-time workload classi-
fiers were trained with single-model and multi-model approaches using physio-
logical data inputs paired with and without contextual data inputs. Following the
evaluation of each classifier using two model evaluation metrics, we conclude
that a multi-model approach greatly improved the ability to reliably measure real-
time cognitive workload in our UAS operations test case.
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1 Introduction

With the dramatic growth and affordability of the wearable sensors market in recent
years, there is increasing interest throughout many work domains in leveraging human
users’ real-time physiological signals to measure functional states, such as workload,
stress, and fatigue. In military defensive settings, the ability to monitor these states
throughout a mission would be a valuable asset to optimize mission operations and
warfighter workflow. As the complexity of military operations continues to increase,
warfighters will become increasingly vulnerable to undesired cognitive states. Meas-
uring cognitive states in relation to task and mission performance would provide the
requisite data to detect if, and when, a warfighter has met his/her limits while diagnosing
what intervention is best suited to sustaining good performance and obtaining the desired
outcomes. By introducing this capability, assessments of operator states would become
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integral system parameters about the mission to be proactively monitored and addressed
before potential problems occur [1].

The ability to obtain real-time physiological data carries promise for providing such
a capability to the warfighter. Physiological data have the substantial benefit of being
an objective source of information that is theoretically available from any person
working in any domain. The use of physiological data to classify a human operator’s
state has been extensively researched over the past few decades, frequently suggesting
the existence of measurable indicators that are predictive of a particular state, or change
in state [2, 3]. The majority of research has employed some combination of electroen-
cephalography (EEG) [4], electrocardiography (ECG) [5], pupillometry [6], or galvanic
skin response (GSR) [7]. For example, in the Air Force Multi Attribute Task Battery
(AF_MATB) environment, Wilson and Russell (2003) introduced a novel application
of artificial neural networks (ANNS) trained to each individual human performer for
real-time mental workload classification using six channels of brain electrical activity,
as well as eye, heart, and respiratory signals [2]. Wang et al. (2012) also employed the
AF_MATB to introduce a novel hierarchical Bayesian technique that showed promise
for cross-subject workload classification [3]. Although the majority of these and other
studies have been laboratory based and often employ costly and/or invasive monitoring
equipment, recent improvements in sensor reliability, level of invasiveness, set-up time,
and cost have made the concept more compelling for high-fidelity work environments.

Assuming sensor limitations are eventually overcome, as current trends would
suggest, several additional limiting factors still exist that have hindered progress in the
area of human functional state assessment. Perhaps the most notable challenge is lack
of consistent physiological indicators of a particular state or change in state. Most
commonly these inconsistent patterns in physiological signals occur as a function of
individual differences across people. However, this issue can also frequently occur
across time (e.g., different days or times of day) for a specific individual person. These
differences can be drastic; for instance, a highly reliable indicator of workload level for
one person could provide no utility in assessing workload for another person, or
vice versa. Prior research has often been forced to cater to this challenge by training a
classifier on a per-person, per-day basis [2], or by including a given person’s data in
both the model training and model testing sets [3], neither of which is practical for
implementing in real-world environments. Additionally, some individuals have few, or
weak, discernible physiological indicators of a functional state, making it difficult to
build a reliable model to classify a state of interest.

Over the past few years, we have made progress designing a universal machine
learning based approach to pinpoint a human operator’s state with high resolution (0-100
scale) and update frequency (second-by-second) with physiological-based assessment
[8]. Our concept was further expanded to evaluate the added precision offered by inte-
grating contextual data with physiological signals within a Functional State Estimation
Engine (FuSE?) [9]. The addition of contextual data in particular was shown to provide
noteworthy improvements to the challenge of inconsistent and/or weak patterns in one’s
physiological signals. Although this comes at the cost of a model classifier being tied to
a specific task environment, these results did not require the use of personalized models
that were trained to a specific individual [9].
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In spite of these improvements, the desire to produce a universal computational
model for functional state assessment has proved to be difficult, and there remains
significant room for innovation to solve this problem. For this reason, we have continued
to investigate novel and supplementary strategies for more consistent model classifier
results that would provide the necessary reliability for real-world utilization. One
concept that has not been thoroughly explored in human functional state assessment is
the convergence of multiple model classifiers into a single measurement of state. There
is evidence in other related fields such as adaptive system development that basing
decisions on a multi-model approach can outperform the same decisions being made
from a single-model approach [10]. We theorize a similar approach would improve
human state assessment given the many different ways that one’s physiological data
could be modeled, each having its own unique benefits and drawbacks. In addition, for
situations in which no given model is able to accurately measure a human functional
state, a multi-model approach can increase our confidence that the measurement chal-
lenges may lie in the data set itself (e.g., due to lack of distinguishable patterns), rather
than a flaw in the use of machine learning and model development. This would neces-
sarily shift the focus toward the need for more distinct and consistent sources of sensor
data that can better indicate a person’s functional state.

The objective of this work was to explore to what extent a multi-model approach
can increase the accuracy of physiological-based cognitive state classifiers in a UAS
task environment. In particular, our goal was to explore the multi-model approach from
a bottom-up perspective by decomposing a cognitive state of interest into multiple sub-
components that are each individually modeled and subsequently fused together to build
the construct. In the following sections we review a UAS study that was used to produce
data for building real-time workload classifiers within the FuSE? system using both the
single-model and multi-model approaches for comparative analysis. We also opted to
examine the effects of adding two contextual data inputs— human computer interaction
(HCI) rate and primary task performance — to investigate if the effect of using a multi-
model approach remained present after the accuracy boost presented in our previous
analysis [9]. Although FuSE? is capable of on-line supervised learning to adapt to an
individual for improving model accuracy, we restrict the scope of this paper solely to
cross-subject workload classification since a universal “plug and play” model that does
not require per-subject training would be an ideal technological milestone.

2 Methods

2.1 Data Collection

Data were collected within a simulated UAS task environment — the Vigilant Spirit
Control Station (VSCS) [11] — at the Human Universal Measurement and Assessment
Network (HUMAN) Laboratory located at Wright-Patterson Air Force Base. We
focused exclusively on cognitive workload for this study and the ensuing model devel-
opment effort so as to constrain the problem space to a single human functional state
that has wide applicability, particularly to UAS operations, and a large body of literature
to draw from as needed. The UAS task simulation employed the VSCS operator interface
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(Fig. 1) paired with a Multi-Modal Communication (MMC) tool for issuing communi-
cation requests [12] and a custom-built lights and gauges monitoring display. The
primary task objective was to track a high value target (HVT) while keeping the HVT
continuously positioned on the center of the UAS sensor crosshairs. Simultaneously,
participants conducted two secondary tasks: (1) monitor the lights/gauges display and
acknowledge each system event via button presses; and (2) verbally respond to each
communication request via the MMC tool. Task difficulty was manipulated by modi-
fying the HVT speed and motion complexity, the number of communication requests,
and the number of light/gauge events in each five-minute trial. This task paradigm
allowed for a gradual titration of task difficulty across 15 five-minute conditions ranging
from easy to hard, which was intended to induce variations in workload and performance
for each participant.

Fig. 1. The VSCS operator interface

There were 25 participants with each person completing one training session and
one data collection session each. Dependent measures were threefold: (1) a suite of
physiological metrics collected during each task condition consisting of six-channel
EEG, ECG, off-body eye tracking, respiratory activity, electrodermal activity, and voice
analysis features; (2) self-reported NASA Task Load Index (TLX) responses collected
at the end of each trial [13]; and (3) system-based performance measures derived from
Aptima, Inc.’s Performance Measurement Engine (PM Engine™) that utilized behav-
ioral and situational data to estimate continuous performance for all three task require-
ments. NASA TLX responses and condition difficulties yielded a correlation of r = 0.75
across all subjects and r = 0.89 mean correlation within subjects, suggesting the manip-
ulations were successful at inducing the intended variance in workload.

2.2 Model Development

Using the data collected from this study, a set of model-based classifiers was developed
within the FuSE? system using machine learning techniques that train each classifier to
output second-by-second workload estimates on a 0—100 scale. In accordance with the
goals of this analysis, classifiers were trained for both the single-model and multi-model
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approach. The single-model approach was implemented in which the model inputs were
trained directly to the composite NASA TLX response of total workload. In contrast,
the multi-model approach was implemented in which a set of model inputs was trained
to each of the six sub-scales of the NASA TLX provided by study participants. After
the NASA TLX sub-scale models were trained as part of the multi-model approach,
participants’ sub-scale card sort data were used to weight each model’s respective
contribution in determining total workload. For both the single-model and multi-model
approaches, this model training approach was done twice: once without contextual data
as a model input, and once with contextual data as a model input.

Development of each model classifier adhered to the approach in Durkee et al. [8],
in which we applied a noise injection algorithm to all NASA TLX responses under the
assumption that workload does not remain perfectly static over time. This algorithm
derives an estimate of “ground truth” on a second-by-second basis to which the model
classifiers are subsequently trained. We refer to each series of ground truth estimates as
the “desired model output” given each model classifier’s attempt to find the best fit based
on its feature inputs. Because it is impractical to obtain operator responses at very
frequent intervals, this algorithm relies on a theoretically-grounded correlate of work-
load as the basis for injecting this noise. Although the same correlate was used for noise
injection in the single-model approach as was done in our prior work [8, 9], the selected
correlates for the sub-scale models in the multi-model approach varied. This was done
because the six sub-scales that produce a NASA TLX value each have unique innate
qualities that vary in different ways (e.g., mental demand varies based on mental activity,
whereas physical demand varies based on physical activity). Hence, it was assumed the
same correlate should not be used across these sub-scale models, and as such, careful
consideration was given based on scientific theory supported with empirical literature.

Following the noise injection stage to produce desired model output values for
training, a comprehensive training set was prepared containing all selected feature inputs
and the desired model outputs. The training set included data from 19 of the 25 study
participants, while the other six participants were randomly selected for model evalua-
tion. A training process was initiated to derive model weights for each classifier based
on minimizing error between the feature inputs and the desired model outputs. The
selected physiological inputs for all model classifiers were three EEG channels (Fz, Pz,
02), ECG, and pupillometry; and, as previously mentioned, two versions of all models
were created: one without context, and one with context.

2.3 Model Evaluation

After completing the model training process, the next objective was to produce test
results in order to evaluate the accuracy of each workload classifier, particularly to assess
how the multi-model approach impacted model accuracy relative to the single-model
approach. Workload classifier results were produced through a batch playback of data
collected from the six participants excluded from the training set. All six test participants
completed the same 15 five-minute trials used to train the model classifiers, thus totaling
90 trials used for evaluation. The batch playback process simulated the production of
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real-time classifier results by outputting one workload estimate per second on a 0—-100
scale for all models, totaling 300 values per model within each trial.

Model accuracy was analyzed via summary statistics in two ways: correlation and
absolute difference between average model output and NASA TLX. In both cases, the
summary statistics were used to assess how closely mean classifier output for each trial
resembled its respective NASA TLX rating. A secondary objective was to assess the
degree to which model accuracy changed as contextual data were included as model
inputs alongside the physiological data inputs. A graphical plot is provided for each of
the two model evaluation metrics along with discussion of observable trends. Each figure
includes results on a per-participant basis across the two modeling approaches and both
with/without context, for a total of four statistics per participant.

3 Results and Discussion

The two model evaluation metrics used in this analysis were: (1) correlation between
average model output and NASA TLX; and (2) absolute difference between average
model output and NASA TLX. For the correlation analysis, we believed it would be
most suitable to derive a Pearson’s correlation coefficient () on a per-person basis to
better reflect how a given model tends to track any given person’s cognitive workload
across each trial. As such, the correlation coefficients for each of the six individual test
participants and for all four workload classifications are illustrated in Fig. 2.

Model Approach Comparison using Per-Subject Correlation
between Average Model Output & NASA TLX
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Fig. 2. Comparison of workload classification accuracy for six test participants using correlation
between NASA TLX and average model output. (Color figure online)
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The model approach with the highest correlations overall was the multi-model, with-
context approach, which produced notably high correlations with r = 0.94 or higher for
all six test participants. Perhaps the most noticeable finding in Fig. 2 is the consistent
trend of improvement exhibited when shifting from a single-model approach to the
multi-model approach, and similarly, from a no-context model to a with-context model.
This trend occurs for all six test participants, albeit with varying degrees of improvement.
This improvement is especially promising given the low correlations observed for
participants P2 and P5 when using a single-model, no-context approach. The improve-
ments in correlation were expected as a function of adding contextual data inputs. The
effect of using a multi-model approach was less certain, though shifted in the hypothe-
sized direction. From what can be observed in this small sample size, the magnitude of
improvement for the multi-model approach was greater with the no-context models, as
only minor improvements occurred for the with-context models. This may be due to the
fact that with-context models already produced high correlations with a single-model
approach. This finding may imply that for work environments in which contextual data
inputs to workload classifiers are feasible, a multi-model approach might not be needed.
However, if contextual data is not feasible as a model input, using a multi-model
approach could produce substantial benefits.

The second model evaluation metric is the absolute difference between average
model output and NASA TLX for each trial. This metric provides insight into each
model’s ability to produce workload classifications that accurately reflect the overall
workload induced over the course of an entire trial. In contrast to Fig. 2, lower values
shown in Fig. 3 indicate a greater degree of model accuracy by having a smaller differ-
ence from the desired NASA TLX value.

Model Approach Comparison using Per-Subject Mean Difference
between Average Model Output & NASA TLX
21.0
18.0

15.0

12.
9.
6.
3- | BRI IR
0.0
P1 P2 P3 P4 P5 P6

H Single Model, ® Multi-Model, ™ Single Model, = Multi-Model,
No Context No Context With Context With Context

Mean Difference (0-100 scale)
o o o

Lo |

Fig. 3. Comparison of workload classification accuracy for six test participants using mean
difference between NASA TLX and average model output. (Color figure online)
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As shown in Fig. 3, the greatest accuracy (i.e., smallest difference from NASA TLX)
was produced by the multi-model, with-context approach. On the 0-100 NASA TLX,
this modeling approach resulted in a mean difference of less than 5.0 for four of the six
test participants, with the other two participants having mean differences of 7.1 and 11.2
respectively. While this finding is generally consistent with the correlation statistics
shown in Fig. 2, there are several additional key observations found in Fig. 3. Most
notably, the magnitude of improvement using the multi-model approach is noticeably
higher compared to the improvement provided by adding contextual data inputs. In five
of the six test participants, shifting from a single-model, with-context approach to a
multi-model, with-context approach reduced the mean difference by 50 % or greater.
Further asserting the value provided with a multi-model approach is that a multi-model,
no-context approach met or exceeded the single-model, with-context approach in five
of the six test participants (P3 being the only exception).

4 Conclusions

In summary, we conclude that the utilization of a multi-model approach within our UAS
task environment generally enhanced the FuSE? system’s ability to accurately classify
workload for 90 new trials across six test participants. This trend is observed for all six
test participants across both model evaluation metrics (correlation & mean difference
between NASA TLX and average model output) and occurs regardless of whether
contextual data are included as model inputs. These results support our theory that
relying on a single model classifier to produce consistently reliable estimates of human
functional state presents risks, and that risk can effectively be mitigated through a
diversified multi-model approach that is robust against the failure of any single model.
We hypothesize the underlying cause of this potential improvement is due to the multi-
tude of possible ways to process any given data set, and as such, each approach carries
benefits and drawbacks that can never fully capture the entire picture in isolation. By
blending a variety of approaches together, the complete picture can be more fully inter-
preted from multiple different angles and perspectives.

It is important to emphasize several key points to the multi-model approach that we
believe influenced the promising results shown here. First, the human state assessments
produced by the multi-model approach were driven bottom-up by the underlying NASA
TLX sub-scale models. One potential drawback to the single-model approach is that
workload, as the NASA TLX defines it, can be driven by different factors at different
times, which may account for fewer discernible patterns to be discovered when focusing
on the final aggregated NASA TLX value. We hypothesize that the FuSE? model clas-
sifiers were able to discover a more consistent pattern in the physiological and contextual
training data sets by exposing the models to a more specific, low-level construct, as
found in the NASA TLX sub-scales (namely, mental demand, physical demand, effort,
frustration, temporal demand, and performance). Hence, it is possible that simply
training a library of different models to the final aggregated NASA TLX value and fusing
these results may not produce greater accuracy than a single-model approach. Another
key point of emphasis is that each sub-scale model was trained using a different source
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of second-by-second noise that is theoretically most appropriate for each respective sub-
scale construct. The mental demand sub-scale model, for example, used EEG data to
drive this noise, whereas the physical demand sub-scale model used ECG data, as
dictated by empirical research on these constructs.

Although these results are promising, future research is needed to more thoroughly
investigate the multi-model approach with other human functional states and within
different operator task environments. Additional research is also needed to investigate
and compare the difference in model accuracy between the bottom-up developments of
a human functional state classification approach (as was done in this analysis) versus
training and fusing multiple models to assess the same construct. Next, further analysis
must be done to assess the multi-model classifier approach on a second-by-second basis,
rather than solely the aggregated classifier results across entire trials. Lastly, the present
analysis and follow-on research needs should be performed with other combinations of
physiological data features — in particular, non-EEG models that may also include blinks,
saccades, and facial expressions, to name a few — that may be more appropriate for
specific work environments of interest.

Acknowledgement. Distribution A: Approved for public release. 88ABW Cleared 01/25/2016;
88ABW-2016-0243. This material is based on work supported by AFRL under Contract
FA8650-11-C-6236. Any opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of AFRL.

References

1. Blackhurst, J., Gresham, J., Stone, M.: The quantified warrior: how DoD should lead human
performance augmentation. Armed Forces J. 4, 11 (2012)

2. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using
psychophysiological measures and artificial neural networks. Hum. Factors 45(4), 635-644
(2003)

3. Wang, Z., Hope, R M., Wang, Z., Ji, Q., Gray, W.: Cross-subject workload classification with
a hierarchical bayes model. Neurolmage 59(1), 64-69 (2012)

4. Gevins, A., Smith, M.E., Leong, H., McEvoy, L., Whitfield, S., Du, R., Rush, G.: Monitoring
working memory load during computer-based tasks with EEG pattern recognition methods.
Hum. Factors 40, 79-91 (1998)

5. Hoover, A., Singh, A., Fishel-Brown, S., Muth, E.: Real-time detection of workload changes
using heart rate variability. Biomed. Sig. Process. Control 7, 333-341 (2012)

6. Just, M.A., Carpenter, P.A.: The intensity dimension of thought: Pupillometric indices of
sentence processing. Can. J. Exp. Psychol. 47(2), 310-339 (1993)

7. Setz, C., Arnrich, B., Schumm, J., La Marca, R., Troster, G.: Discriminating stress from
cognitive load using a wearable EDA device. Technology 14(2), 410417 (2010)

8. Durkee, K., Geyer, A., Pappada, S., Ortiz, A., Galster, S.: Real-time workload assessment as
a foundation for human performance augmentation. In: Schmorrow, D.D., Fidopiastis, C.M.
(eds.) AC 2013. LNCS, vol. 8027, pp. 279-288. Springer, Heidelberg (2013)

9. Durkee, K., Pappada, S., Ortiz, A., Feeney, J., Galster, S.: Using context to optimize a
functional state estimation engine in unmanned aircraft system operations. In: Schmorrow,
D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 24-35. Springer, Heidelberg
(2015)



10.

11.

12.

13.

Multi-model Approach to Human Functional State Estimation 197

Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans.
Autom. Control 42(2), 171-187 (1997)

Rowe, A.J., Liggett, K.K., Davis, J.E.: Vigilant spirit control station: a research testbed for
multi-UAS supervisory control interfaces. In: Proceedings of the 15th International
Symposium on Aviation Psychology, Dayton, OH (2009)

Finomore, V., Popik, D., Dallman, R., Stewart, J., Satterfield, K., Castle, C.: Demonstration
of a network-centric communication management suite: multi-modal communication. In:
Proceedings of the 55th Human Factors and Ergonomics Society Annual Meeting, HFES,
Las Vegas (2011)

Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of
empirical and theoretical research. In: Peter, A.H., Najmedin, M. (eds.) Advances in
Psychology, vol. 52, pp. 139-183. North-Holland, Amsterdam (2006)



	Multi-model Approach to Human Functional State Estimation
	Abstract
	1 Introduction
	2 Methods
	2.1 Data Collection
	2.2 Model Development
	2.3 Model Evaluation

	3 Results and Discussion
	4 Conclusions
	Acknowledgement
	References


