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Abstract. Ridesharing brings significant social and environmental ben-
efits, e.g., saving energy consumption and satisfying people’s commute
demand. In this paper, we propose a recommendation framework to
predict and recommend whether and where should the users wait to
rideshare. In the framework, we utilize a large-scale GPS data set gener-
ated by over 7,000 taxis in a period of one month in Nanjing, China to
model the arrival patterns of occupied taxis from different sources. The
underlying road network is first grouped into a number of road clusters.
GPS data are categorized to different clusters according to where their
sources are located. Then we use a kernel density estimation approach to
personalize the arrival pattern of taxis departing from each cluster rather
than a universal distribution for all clusters. Given a query, we compute
the potential of ridesharing and where should the user wait by investigat-
ing the probabilities of possible destinations based on ridesharing require-
ments. Users are recommended to take a taxi directly if the potential to
rideshare with others is not high enough. Experimental results show that
the accuracy about whether ridesharing or not and the ridesharing suc-
cessful ratio are respectively about 3 times and at most 40 % better than
the naive “stay-as-where-you-are” strategy. This shows that about 500
users can save 4-8 min with our recommendation. Given 9 RMB as the
starting taxi fare and suppose users can save half of the total fare by
ridesharing, users can save 10.828-44.062 RMB.

1 Introduction

Due to the emergency of saving energy consumption and assuaging traffic con-
gestion while satisfying people’s needs in commute and willings to save money in
ride, ridesharing enabled by low cost geo-location devices, smartphones, social
networks and wireless networks has recently received a lot of attention [1-4].
Taxis are considered as a major means of transportation in modern cities. In
many big cities, taxis are equipped with GPS sensors to report their locations,
speed, direction and occupation periodically. In Fig. 1 we gather statistics of the
pick-up actions from a large-scale GPS data set generated by over 7,000 taxis in a
period of one month in Nanjing, China. There are roughly 3 peaks per day where
the pick-up number is above 6,000. We partition Nanjing metropolitan area into
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30 x 30 grids with equal intervals. We count all the pick-up and drop-off events
in 9:30am-9:35am on June 25th in each region and analysis the hotspots. As
shown in Fig. 2a and b, both pick-up and drop-off have hotspots, indicating that
many queries are likely to get ridesharing. Ridesharing gives the potential to
solve congestion, pollution and environmental problems as well as saves money
for users.
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Fig. 1. Pick-up frequency in 30 min of Nanjing.

Ridesharing can be classified into carpooling [5], real-time taxi rideshar-
ing [1,2,6], slugging [3] and Dial-a-Ride [7]. In slugging, passengers change their
sources and destinations to join the trips of drives while drivers of others change
their routes to pick up and drop off passengers. In real-time taxi ridesharing,
ridesharing becomes an optimization problem to allocate a query to proper taxis
considering extra cost in terms of both distance and waiting time. In Carpooling
or recurring ridesharing, the driver is associated with her own trip. In Dial-a-Ride
vehicles need to return to the same location (depot) after the trip.

Previous works on ridesharing mostly focus on the driver side by considering
which taxi should the coming request be assigned to for the minimum extra
travel time or travel distances. On the other hand, we focus on the user side
of ridesharing to help the users decide whether they can rideshare and where
should they wait if they are likely to get ridesharing. We use slugging as the
ridesharing type since slugging is shown to be effective in reducing vehicle travel
distance as a form of ridesharing [3].

Consider the scenario of slugging, Alice raises a ridesharing query @ =
(id, timestamp, ls, g, ts, te, tyy) where id is user id, timestamp is when the query
is submitted, [ and 4 are respectively the source and the destination of the user,
ts is the maximum walking time to a new place, and ¢, is the maximum walking
time after she left the taxi to her own destination. t,, is the maximum waiting
time at the new place for ridesharing. At present there is no taxi to rideshare
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Alice in the system. Alice may either take a taxi directly or try again after a
short time period. With the observation that Alice may also walk to some place
nearby during waiting in order to increase her chance to rideshare, we propose
a framework to predict the probability for Alice to rideshare and recommend
whether and where should she wait. The key challenges are (i) how to embed
query satisfaction requirements with recommendation, which makes our prob-
lem more complicated than finding passengers or taxis [8-10]; (ii) how to develop
effective machine learning algorithms for ridesharing recommendation.
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40

] ] “

2 » 2

= I I x 35

é I I 30 ﬁ
w2z I 0z 30
2% 2 2% T
oR ! [N I P
=Ev c 17
rE ! o rE
B85 3% @
513 I 513
£ 8 HHH - 24 .
379 a3y

7 10 7 o

8 & | oA

5 5

H s H s

: [ :

12345678 8 101MZ1314151617181202 222 LRET2RTD ’ 12345678 9 10111213141516171615202 2224252627285 ’
Longitude in Grids Longitude in Grids
(a) density of pick-up (b) density of drop-off

Fig. 2. Hotspots for pick-ups and drop-offs.

In the framework, ridesharing recommendation is based on the probabilities
to have other passengers departing from somewhere within time ¢4 from source
ls towards somewhere within time ¢, from destination /.. Since taxi appearance
is too dynamic for a single road, the underlying road network is grouped into
road clusters. For each road cluster that are within time ¢; from source I,, we
investigate the probability for taxis to depart from somewhere in it and have
somewhere that is within time ¢, to destination /; as their destination by kernel
density estimation [11]. Only road clusters with the probabilities greater than
a threshold are recommended to users. In case many road clusters satisfies the
condition, we return top-k clusters according the probabilities. If no cluster is
returned for @, the user will be suggested not to wait for ridesharing and take a
taxi directly. Thus users can either save time or save money.

Rather than calculating a common distribution for all road clusters [12,13]
to describe possible taxi destinations, we derive unique distributions for each
road cluster. Given any new location (lon, lat), we can obtain the probability
to have a taxi that departs from a certain cluster towards location (lon, lat).
In reality, the probabilistic distributions should be various since clusters have
different features such as Point-of-Interests (POIs). For instance, at noon taxi
passengers from clusters with POIs of companies are likely to have restaurants
as destinations while passengers from clusters with POIs of residencies may have
companies as destinations.
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To the best of our knowledge, this is the first work to study ridesharing
from the aspect of predicting whether and where should a user wait. The main
contributions of this paper can be summarized as follows:

— We design a recommendation framework to help users decide whether and
where to wait for ridesharing.

— We explore the arrival patterns of road clusters based on kernel density esti-
mation for ridesharing recommendation.

— Experimental results based on real GPS data set show that the accuracy about
whether ridesharing or not and the ridesharing successful ratio are respectively
about 3 times and at most 40 % better than the naive “stay-as-where-you-are”
strategy, i.e., users wait at their sources for ridesharing. About 500 users can
save 4-8 min with our recommendation. Given 9 RMB as the starting taxi fare
and suppose users can save half of the total fare by ridesharing, users can save
10.828-44.062 RMB.

The rest of this paper is organized as follows. Section2 highlights related
works. Section 3 delineates the proposed recommendation framework. Section 4
analyzes the performance. Finally Sect. 5 concludes this paper.

2 Related Works

In this section, we highlight related works in both ridesharing and recommender
systems based on taxi GPS data set.

2.1 Ridesharing

Ridesharing is transformed to an optimization problem about matching one
driver and multiple ridesharing queries considering extra cost in terms of both
distance and waiting time. We summarize the related works as dynamic match-
ing and other issues like fair payment mechanism.

Dynamic Ridesharing Matching. Current dynamic ridesharing can be clas-
sified into four types, namely slugging, taxi ridesharing, carpooling and Dial-a-
Ride. In slugging passengers change their sources and destinations to join the
trips of drivers. From the passenger’s point of view, this requires the source
and destination of driver to be close to those of the passenger. In this paper
we adapted slugging as our ridesharing type. The closeness is controlled by tg
and t. in the query Q. With the walking speed, we can easily get the maxi-
mum walking distances of each query. In the other three types drivers change
their routes to pick up and drop off passengers. Carpooling [5] is ridesharing
based on private cars where the driver is associated with her own trip. Carpool-
ing considers computing the best route for a given set of requests. In contrast
to carpooling, taxi ridesharing [1,2,6] is more challenging as both passengers’
queries and taxis’ positions are highly dynamic and are real-time in most cases.
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Besides, pricing mechanism is required to incite the driver. In Dial-a-Ride [7],
vehicles need to return to the same location (depot) after the trip, which can be
treated as the carpooling problem with additional restrictions about depot. In
this paper, we adapt slugging as the ridesharing model to recommend whether
and where should a user wait for ridesharing. Ridesharing recommendation is
different from travelling plan problems [14] where the sequence of must-visit loca-
tions is known in advance and the target is to decide the optimal visit order. As
an online recommendation problem, we need to provide ridesharing suggestions
for each request in real time.

Other Issues. Though ridesharing is envisioned as a promising solution to miti-
gate traffic congestion and air pollution for metropolitan cities, people raise social
discomfort and safety concerns about traveling with strangers. Social rideshar-
ing with friends [14] is studied to overcome these barriers. Another interesting
issue about ridesharing is fair payment mechanism, including when taking a
ride with friends [15] and pricing mechanism to incite the taxi drivers in taxi
ridesharing [1]. Trip grouping [16] is to group similar trips where the sources and
destinations are close to each other according to certain heuristics. The difference
is that there is no waiting time or cost constraints in trip grouping.

2.2 Recommender Systems

GPS records of taxis take down information including ID, time, longitude,
latitude, speed, direction and occupation, which reflect the patterns of both
passengers and taxi drivers. Applications based on taxi GPS trajectory data
including urban planning [17,18], route prediction [19] and recommender sys-
tems [8-10,20]. We here focus on discussing recommender systems.

Current recommender systems provide services for either passengers or taxi
drivers. A passenger-finding strategy based on L1-norm SVM [10] is proposed to
determine whether a taxi should hunting or waiting for passengers. TaxiRec [8]
evaluates the passenger-finding potentials of road clusters based on supervised
learning and recommends the top-k road clusters for taxi drivers. T-Finder [9,20]
recommends some locations instead road clusters by utilizing historical data for
both passengers and taxis. There is no training process comparing to supervised
learning techniques [8]. Comparing to recommending road clusters or locations
for taxis or users [8,9,20], besides finding a taxi, ridesharing recommendation
also needs to consider the possible destinations of the coming taxis to predict
whether ridesharing can be successful or not. This makes the problem much
more challenging.

3 Ridesharing Recommendation

3.1 Preliminaries

Road Network. We model a road network as a direct graph G(V, E), where E
and V are sets of road segments and intersections of road segments. The travel
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cost of each road segment (u,v) may be either time or distance measure. Since
they can be converted from one to the other with the moving speed, they are used
interchangeably. In addition, a grid index structure is built on the underlying
road network. Given a location (lon,lat), we can find out a road segment on
which the location is located.

Taxi. There are three possible status for a taxi: occupied (O), cruising (C) and
parked (P). A taxi can pick up a passenger (P — O and C — O) or drop off a
passenger (O — P and O — (). Taxis mentioned in this paper refers to occupied
taxis, i.e., taxis with passengers, and are willing to rideshare queries.

Ridesharing Query. A ridesharing query is defined as Q = (id, timestamp, I,
lg, ts, te, tw) where id is the user id, timestamp is when the query is submitted,
ls and [4 are respectively the source and the destination of the user, ¢ is the
maximum walking time from [ to a new place; and ¢, is the maximum walking
time from the destination of taxi to 4. t,, is the maximum waiting time for
ridesharing at the new place for ridesharing.

Query Satisfaction. ) can rideshare with a taxi if and only if (i) the walking
time to a new waiting place for the user is no longer than t,; (ii) the walking
time from the destination of the taxi to the user’s own destination l4 is no longer
than t.; (iii) the waiting time at the new place for taxi is no longer than t,,.

Problem Definition. Given a ridesharing query @ = (id, timestamp, I, 14,
ts, te, tw), we aim to recommend the user to rideshare or take a taxi directly
by herself. For users that are recommended to rideshare with others, we also
provide places that are easier to get ridesharing for users.

3.2 Road Segment Clustering

Since a single road segment is not a proper evaluation unit, we adapt the
road segment clustering method proposed in [8], where k-means [11] is used
to partition road segments! {ri,rs,...,7n} into k clusters {C1,Cs,...,Cx}, to

. . .k
minimize the intra-cluster sum of square argminy ; ;> r; — ||, where

ri€C;
Wi = % >_r,ec, Ti and n; is the number of road segments in the i-th cluster.
Interesting readers may refer to the original paper [8] for the details of road seg-
ment clustering. Figure 3 shows the clustering result in the urban area of Nanjing
when the number of clusters is set to 1,000. Since we built a grid index on the
road networks, by identifying the road segment where location (lon, lat) located,
we can get the cluster that the location belongs to.

3.3 Kernel Density Estimation

Kernel density estimation can be used with arbitrary distributions and does not
assume a fixed distribution in advance, which is used to predict the probability
for taxis to depart from somewhere in cluster C; and have somewhere (lon, lat) as

! The mid-point of a road segment is considered as its representative point.
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Fig. 3. Clustering on the road segments in urban area of Nanjing.

their destination. The estimation process consists of two steps: sample collection
and distribution estimation.

Sample Collection. Recall that taxis departing from different clusters have
different distributions of destinations since clusters have various features such as
POI distributions. Given the GPS data, in order to personalize the destination
distributions of each cluster, the start location decides which cluster will utilize
the sample.

Intuitively ridesharing can succeed or not is related to not only locations of
source and destination, but also when the query is submitted since traffic direc-
tions in modern city depend on time. Consider the traffics between companies
and residencies, in the morning most traffics are likely to be from residencies to
companies while in the evening traffics take the opposite direction. If only the
destinations of GPS data are considered, we may recommend a user to rideshare
even the query is from companies to residencies in the morning.

To avoid this, we collect samples as: s = (lon, lat, TimeLabel) where (lon,
lat) is the destination of the taxi and TimeLabel is the time label of the sample,
indicating when the trip departing from a certain cluster to (lon, lat) happens.
We divide a day into 48 time intervals, with the unit of 30 min (i.e., (1) 0:00 to
0:30, (2) 0:30 to 1:00, ...., (48) 23:30 to 0:00) and label them from 1 to 48. The
label of the time interval containing the start time of the GPS data decides the
TimeLabel of a sample. We discretize time because ridesharing consider taxis
appearing in a time period to rideshare a query.

Distribution Estimation. Let S¢ =< s1,s9,..., 8, > be the samples for a
certain cluster ¢ that follows an unknown density p. Its kernel density estimator
over S°¢ for a new sample s,y is given by:

n

p(504115°) Z (P (1)
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where each sample s; = (lon;, lat;, T imeLabel;)T is a three-dimensional column
vector with the longitude (lon;) and latitude (lat;) and TimeLabel (TimeLabel;).
K (.) is the kernel function, o is the optimal bandwidth? [21]. In this paper we
apply the widely used multi-dimensional normal kernel:

K) = Goargn @pl( 50— ) 57 o ), @

2
where x is a real d-dimensional column vector and x~AN(u, X). We consider the
time domain as the third dimension due to the nature of ridesharing.

3.4 Recommendation Framework

We now present the ridesharing framework in Algorithm 1. Given a ridesharing
query @ = (id, timestamp, ls, lq,ts, te, ), network expansion technique [22] is
used to select all reachable road segments from [ in t; time. Clusters that
contain any of these road segments are added to the candidate cluster set L =
{C;li =1,...., N} (Line 1). Similarly we also get road segments that are reachable
within ¢, from l; as D = {r;|j = 1,2,..., M} (Line 2). Denote prob(C; — r;)
as the probability for taxis to depart from somewhere in cluster C; and have
somewhere on road 7; as their destination. For each candidate cluster Cj, we
compute prob(C; — r;) for each road segment r; in D with Eq.1. The total
probability P is used as the ridesharing potential of cluster C; (Line 3 to 10). If
no valid cluster exists for @), the user will be suggested not to wait for ridesharing
and take taxi directly (Line 12). The top-k clusters whose potentials are no less
than a certain threshold are recommended for rideharing (Line 14).

4 Experiments

4.1 Experiment Settings

Dataset. The large-scale GPS data set is generated by over 7,000 taxis in a
period of one month in Nanjing?, China. Each GPS record includes ID, time,
longitude, latitude, speed, direction and occupation. We only take the occupied
trips into consideration to rideshare queries [1,2]. We divide data set into the
training set and the testing set in terms of the start time of each record. In
practice we can only utilize the past data to predict the future. We take data in
June 1st — June 28th as training data. 1,000 records in June 29th are randomly
selected as ridesharing queries. The start time, source and destination of trip are
treated as timestamp, ls and [y in the queries.

Comparison of Performances. We compare our ridesharing recommendation
with the naive “stay-as-where-you-are” strategy, denoted as RR and SAWYA
2 Optimal bandwidth o = 0.969n "7 £/ %Zz si where s;; is the marginal variance.

3 Road networks are obtained from OpenStreetMap. http://www.openstreetmap.org.
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Algorithm 1. Ridesharing recommendation

input : Q = (id, timestamp, lc, la, ts, te, tw)

output: Whether and where to wait for ridesharing
1 Get clusters L = {C;|i = 1, ...., N} that are reachable from [ in ¢s time;
2 Get roads D = {r;|j = 1,...., M} that are reachable from l4 in t. time;
3 foreach Candidate cluster C; in L do

4 P = 0;
5 foreach Possible destination r; in D do
6 Take the mid-point (ri", ri*) of r; and the label TimeLabel of the

time interval containing timestamp as the new sample s,4+1 = (T;-O",

ré-at, TimeLabel);
Compute prob(C; — r;) with Eq. 1;

8 P+ = prob(C; — rj);

9 if P > threshold then

10 L Add C; to answer set;

11 if Answer set is empty then

12 ‘ Recommend user don’t wait for ridesharing and take taxi directly;
13 else

14 L Sort according to P and recommend top-k clusters for users to rideshare.

respectively. In SAWYA, the users wait for ridesharing at where they are, i.e.,
the cluster that [, is in. Recall in a ridesharing query we have walking time
and waiting time ¢,,, in SAWYA t, = 0 and we define the new waiting time ¢/,
as ty + ty.

When evaluating the performance of SAWYA, during ¢, time, if there is any
taxi whose source is in the same cluster as () and destination is reachable from
lg of @ within t., SAWYA is considered to give users an accurate to-rideshare.
Similarly, for each recommended cluster in our recommendation framework, if
any taxi whose source is in them and destination is reachable from I of Q
within t. time, our recommendation is considered as an accurate to-rideshare.
On the other hand, if a user is recommended not to wait for ridesharing and
there is no taxi to rideshare, our recommendation is considered as an accurate
not-to-rideshare.

Parameters. We study three parameters ¢, t. and t,, about their influence on
the performances of RR and SAWYA, as shown in Table 1. The walking speed is
set to 1.4m/s [23]. We recommend top-k clusters where k is set to 5.

4.2 Performance Metrics

Ridesharing Successful Ratio. We measure the ratio of successful ridesharing
of both RR and SAWYA by RSRatio, defined as RSRatio = no. of accurate to-
rideshare / no. of queries.
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Table 1. Overview about parameters

Parameter | Default value | Range

ts 4 min [2min, 4 min, 6 min, 8 min, 10 min]|
te 4 min [2min, 4 min, 6 min, 8 min, 10 min)]
tw 4 min [2min, 4 min, 6 min, 8 min, 10 min]|

Prediction Accuracy. We measure the accuracy of predicting whether the user
should wait for ridesharing or not by accuracy, defined as accuracy = (no. of
accurate not-to-rideshare + no. of accurate to-rideshare) / no. of queries.

Recommendation Accuracy. To evaluate the quality of cluster recommenda-
tions, it is important to find out how many clusters that actually have taxis to
rideshare a query are discovered by our framework. For this purpose, we employ
standard metrics, i.e., precision and recall:

no. of discovered clusters I no. of discovered clusters
recall =

precision = — .
k ’ no. of positive clusters

Positive clusters are clusters with taxis to rideshare @ and discovered clusters
are the positive clusters in the recommended clusters. Precision and recall are
averages over all queries to obtain the overall performance.

4.3 Experiment Results

Effect of Walking Time t¢,. Table 2 depicts the effect of walking time ¢, from
current locations of users to new places. Since users can walk to farther places,
the number of candidate clusters increases for both RR and SAWYA, which
relaxes the requirement of ridesharing. As the number of taxis to rideshare
queries increases, both RR and SAWYA have better ridesharing successful ratio
(RSRatio) and prediction accuracy (Accuracy). RR outperforms SAWYA in terms
of RSRatio by at most 40 % since it can efficiently discover new places to
rideshare for users. RR outperforms SAWYA in terms of accuracy by about 3
times since RR makes prediction for both not-to-rideshare and to-rideshare. This
shows that about 500 users can save 4-8 min with RR. Given 9 RMB as the start-
ing taxi fare and suppose users can save half of the total fare by ridesharing,

Table 2. Effect of walking time ¢; (min).

Metrics | RR SAWYA
2 4 6 8 10 2 4 6 8 10

RSRatio |0.143|0.196 | 0.234 | 0.297 | 0.310 | 0.122 | 0.141 | 0.173 | 0.203 | 0.215
Accuracy | 0.695 | 0.710 | 0.726 | 0.738 | 0.751 | 0.122 | 0.141 | 0.173 | 0.203 | 0.215
Precision | 0.316 | 0.317 | 0.356 | 0.395 | 0.433 | - - - - -
Recall 0.875|0.867 | 0.746 | 0.615 | 0.516 | - - - - -
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Table 3. Effect of walking time ¢. (min).

Metrics | RR SAWYA
2 4 6 8 10 2 4 6 8 10

RSRatio |0.111]0.196 | 0.229 | 0.262 | 0.288 | 0.091 | 0.142 | 0.186 | 0.232 | 0.275
Accuracy | 0.667 | 0.710 | 0.762 | 0.770 | 0.785 | 0.091 | 0.142 | 0.186 | 0.232 | 0.275
Precision | 0.314|0.317 | 0.472 | 0.601 | 0.636 | - - - - -
Recall 0.857 1 0.867 | 0.871 | 0.902 | 0.917 | - - - - -

Table 4. Effect of waiting time ¢,, (min).

Metrics | RR SAWYA
2 4 6 8 10 2 4 6 8 10

RSRatio |0.156 | 0.196 | 0.203 | 0.235 | 0.254 | 0.122 | 0.141 | 0.173 | 0.203 | 0.215
Accuracy 1 0.6810.710 | 0.722 1 0.749 | 0.776 | 0.122 | 0.141 | 0.173 | 0.203 | 0.215
Precision | 0.315]0.317 | 0.365 | 0.402 | 0.507 | - - - - -
Recall 0.860 | 0.867 | 0.868 | 0.881 | 0.886 | - - - - -

users can save 10.828-44.062 RMB by ridesharing. Precision increases as more
positive clusters are discovered. Recall decreases since a longer ¢, leads to more
candidate clusters while we only recommend top-k to users.

Effect of Walking Time ¢.. Table 3 depicts the effect of walking time ¢, from
the destinations of taxis to those of users. As t. increases from 2 min to 10 min,
more destinations of taxis become reachable for users, which increases the num-
ber of taxis to rideshare queries. Both RR and SAWYA achieve better rideshar-
ing successful ratio (RSRatio) and prediction accuracy (Accuracy). Precision
and recall both increase because the number of discovered clusters and positive
clusters increase with more taxis to rideshare queries.

Effect of Waiting Time t,. Table4 depicts the effect of waiting time ¢,
at the waiting location. As t,, increases, users can wait for taxis for a longer
time. Thus more taxis are taken into consideration and increase the probability
to rideshare queries. The ridesharing successful ratio (RSRatio) and prediction
accuracy (Accuracy) increase for both RR and SAWYA. As the number of taxis
increases with t,,, both the number of discovered clusters and the number of
positive clusters increases, leading to the increase in precision and recall.

5 Conclusion

In this paper, we proposed a recommendation framework based on kernel density
estimation to predict whether and where should a user wait for ridesharing. In
the framework, we grouped road segments into clusters and modeled the arrival
patterns of taxis from different clusters. Given a query, we compute the potential
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of ridesharing by investigating the probabilities of possible destinations based on
ridesharing requirements. Experimental results show that the accuracy about
whether ridesharing or not and the ridesharing successful ratio are respectively
about 3 times and at most 40 % better than the naive “stay-as-where-you-are”
strategy. In the future work, we will study how to incorporate the influence of
Point-of-Interests (POIs) into our ridesharing recommendation.
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