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Abstract. Frequent pattern mining (FPM) is an important data mining
task, having numerous applications. However, an important limitation of
traditional FPM algorithms, is that they rely on a single minimum sup-
port threshold to identify frequent patterns (FPs). As a solution, several
algorithms have been proposed to mine FPs using multiple minimum sup-
ports. Nevertheless, a crucial problem is that these algorithms generally
consume a large amount of memory and have long execution times. In
this paper, we address this issue by introducing a novel algorithm named
efficient discovery of Frequent Patterns with Multiple minimum supports
from the Enumeration-tree (FP-ME). The proposed algorithm discovers
FPs using a novel Set-Enumeration-tree structure with Multiple mini-
mum supports (ME-tree), and employs a novel sorted downward closure
(SDC) property of FPs with multiple minimum supports. The proposed
algorithm directly discovers FPs from the ME-tree without generating
candidates. Furthermore, an improved algorithms, named FP-MEDiffSet,
is also proposed based on the DiffSet concept, to further increase mining
performance. Substantial experiments on real-life datasets show that the
proposed approaches not only avoid the “rare item problem”, but also
efficiently and effectively discover the complete set of FPs in transac-
tional databases.

Keywords: Frequent patterns · Multiple minimum supports · Sorted
downward closure property · Set-enumeration-tree · DiffSet

1 Introduction

In the process of knowledge discovery in database (KDD) [2,3], many approaches
have been proposed to discover more useful and invaluable information from
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huge databases. Among them, frequent pattern mining (FPM) and association
rule mining (ARM) [2–4] have been extensively studied. Most studies in FPM or
ARM focus on developing efficient algorithms to mine frequent patterns (FPs)
in a transactional database, in which the occurrence frequency of each item-
set is no less than a specified number of customer transactions w.r.t. the user-
specified minimum support threshold (called minsup). However, they suffer from
an important limitation, which is to utilize a single minimum support threshold
as the measure to discover the complete set of FPs. Using a single threshold to
assess the occurrence frequencies of all items in a database is inadequate since
each item is different and should not all be treated the same. Hence, it is hard
to carry out a fair measurement of the frequencies of itemsets using a single
minimum support when mining FPs.

For market basket analysis, a traditional FPM algorithm may discover
many itemsets that are frequent but generate a low profit and fail to dis-
cover itemsets that are rare but generate a high profit. For example, clothes
i.e., {shirt, tie, trousers, suits} occur much more frequent than {diamond} in a
supermarket, and both have positive contribution to increase the profit amount.
If the value of minsup is set too high, though the rule {shirt, tie ⇒ trousers}
can be found, we would never find the rule {shirt, tie ⇒ diamond}. To find the
second rule, we need to set the minsup very low. However, this will cause lots
of meaningless rules to be found at the same time. This is the co-called “rare
item problem” [7]. To address this issue, the problem of frequent pattern min-
ing with multiple minimum supports (FP-MMS) has been studied. Liu et al. [7]
introduced the problem of FP-MMS and proposed the MSApriori algorithm by
extending the level-wise Apriori algorithm. The goal of FP-MMS is to discover
the useful set of itemsets that are “frequent” for the users. It allows the users
to free set multiple minimum support thresholds instead of an uniform mini-
mum support threshold to reflect different natures and frequencies of all items.
Some approaches have been designed for the mining task of FP-MMS, such as
MSApriori [7], CFP-growth [11], CFP-growth++ [10], etc. The state-of-the-art
CFP-growth++ was proposed by extending the FP-growth [4] approach to mine
FPs from a condensed CFP-tree structure. However, the mining efficiency of
them is still a major problem. Since the previous studies of FP-MMS still suffer
the time-consuming and memory usage problems, it is thus quite challenging and
critically important to design an efficient algorithm to solve this problem. In this
paper, we propose a novel mining framework named mining frequent patterns
from the Set-enumeration-tree with multiple minimum supports to address this
important research gap. Major contributions are summarized as follows:

– Being different from the Apriori-like and FP-growth-based approaches, we
propose a novel algorithm for directly extracting FPs with multiple minimum
supports from the Set-enumeration-tree (abbreviated as FP-ME). It allows
the user to specify multiple minimum support thresholds to reflect different
natures and frequencies of items. This increases the applicability of FPM to
real-life situations.
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– Based on the proposed Set-Enumeration-tree with Multiple minimum supports
(ME-tree), a new sorted downward closure (SDC) property of FPs in ME-tree
holds. Therefore, the baseline algorithm FP-ME can directly discover FPs by
spanning the ME-tree with the SDC property, without the candidate generate-
and-test, thus greatly reduce the running time and memory consumption.

– The DiffSet concept is further extend in the improved FP-MEDiffSet algorithm
to greatly speed up the process of mining FPs.

– Extensive experiments show that the proposed FP-ME algorithm is more effi-
cient than the state-of-the-art CFP-growth++ algorithm for mining FPs in
terms of runtime, effectiveness of prune strategies and scalability, especially
the improved algorithm considerably outperforms the baseline algorithm.

2 Related Work

Up to now, many approaches have been extensively developed to mine FPs. Since
only a single minsup value is used for the whole database, the model of ARM
implicitly assumes that all the items in the database have similar occurrence
frequencies. However, as most of the real-world databases are non-uniform in
nature, mining FPs with a single minsup (or mincof ) constraint leads to the
following problems: (i) If minsup is set too high, we will not find the patterns
involving rare items. (ii) In order to find the patterns that involve both fre-
quent and rare items, we have to set minsup very low. However, this may cause
combinatorial explosion, producing many meaningless patterns.

The problem of frequent pattern mining with multiple minimum support
thresholds has been extensively studied, and algorithms such as MSApriori [7],
CFP-growth [11], CFP-growth++ [10], REMMAR [8] and FQSP-MMS [6] have
been proposed, among others [9]. MSApriori extends the well-known Apriori
algorithm to mine FPs or ARs by considering multiple minimum support thresh-
olds [7]. The major idea of MSApriori is that by assigning specific minimum item
support (MIS ) values to each item, rare ARs can be discovered without gener-
ating a large number of meaningless rules. MSApriori mines ARs in a level-wise
manner but suffers from the problem of “pattern explosion” since it relies on a
generate-and-test approach. Lee et al. [9] then proposed a fuzzy mining algorithm
for discovering useful fuzzy association rules with multiple minimum supports
by using maximum constraints. An improved tree-based algorithm named CFP-
growth [11] was then proposed to directly mine frequent itemsets with multiple
thresholds using the pattern growth method based on a new MIS-Tree struc-
ture. An enhanced version of CFP-growth named CFP-growth++ [10] was also
proposed, it employs LMS (least minimum support) instead of MIN to reduce
the search space and improve performance. LMS is the least MIS value amongst
all MIS values of frequent items. Moreover, three improved strategies were also
presented to reduce the search space and runtime. However, it is still too time-
consuming and memory cost.
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Table 1. An example database

TID Transaction

T1 a, c, d

T2 a, d, e

T3 b, c

T4 a, c, e

T5 a, b, c, d, e

T6 b, d

T7 a, b, c, e

T8 b, c, d

T9 c, d, e

T10 a, c, d

Table 2. Derived FPs

Itemset MIS × |D| sup Itemset MIS × |D| sup

(a) 4 6 (ae) 4 4

(b) 5 5 (bc) 3 4

(c) 3 8 (cd) 3 5

(d) 6 7 (ce) 3 4

(ac) 3 5 (acd) 3 3

(ad) 4 4 (ace) 3 3

3 Preliminaries and Problem Statement

Let I = {i1, i2, . . . , im} be a finite set of m distinct items. A transactional
database D = {T1, T2, . . . , Tn}, where each transaction Tq ∈ D is a subset
of I, contains several items with their purchase quantities q(ij , Tq), and has
an unique identifier, TID. A corresponding multiple minimum supports table,
MMS-table = {ms1,ms2, . . . ,msm}, indicates the user-specified minimum sup-
port value msj of each item ij . A set of k distinct items X = {i1, i2, . . . , ik} such
that X ⊆ I is said to be a k-itemset. An itemset X is said to be contained in a
transaction Tq if X ⊆ Tq. An example database is shown in Table 1. It consists of
10 transactions and 5 items, denoted from (a) to (e), respectively. For example,
transaction T1 contains items a, c and d. The minimum support value of each
item, denoted as ms, is defined and as shows the MMS-table = {ms(a): 40 %;
ms(b): 50 %; ms(c): 30 %; ms(d): 60 %; ms(e): 100 %}.

Definition 1. The number of transactions that contains an itemset is known as
the occurrence frequency of that itemset. This is also called the support count
of the itemset. The support of an itemset X, denoted by sup(X), is the number
of transactions containing X w.r.t. X ⊆ Tq.

Definition 2. The minimum support threshold of an item ij in a database D,
which is related to minsup, is redenoted as ms(ij) in this paper. A structure
called MMS-table indicates the minimum support threshold of each item in D
and is defined as: MMS-table = {ms1, ms2, . . ., msm}.

Definition 3. The minimum item support value of a k-itemset X = {i1, i2, . . . ,
ik} in D is denoted as MIS(X), and defined as the smallest ms value for items
in X, that is: MIS(X) = min{ms(ij)|ij ∈ X}.

For example, MIS(a) = min{ms(a)} = 40%, MIS(ae) = min{ms(a),
ms(e)} = min{40%, 100%} = 40 %, and MIS(ace) = min{ms(a),ms(c),
ms(e)} = min{40 %, 30 %, 100 %} = 30 %. The extended model enables the
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user to simultaneously specify high minsup for a pattern containing only fre-
quent items and low minsup for a pattern containing rare items. Thus, efficiently
addressing the “rare item problem”.

Definition 4. An itemset X in a database D is called a frequent pattern (FP)
iff its support count is no less than the minimum itemset support value of X,
such that sup(X) ≥ MIS(X) × |D|.
Definition 5. Let be a transactional database D (|D| = n) and a MMS-table,
which defines the minimum support thresholds {ms1,ms2, . . . ,msm} of each
item in D. The problem of mining FPs from D with multiple minimum supports
(FP-MMS) is to find all itemsets X having a support no less than MIS(X)×|D|.

For the running example, the derived complete set of FPs is shown in Table 2.

4 Proposed FP-ME Algorithm for FP-MMS

4.1 Proposed ME-Tree

Based on the previous studies, the search space of mining frequent patterns with
multiple minimum supports can be represented as a lattice structure [12] or a
Set-enumeration tree [12], both of them for the running example are respectively
shown in Fig. 1. Note that the well-known downward closure property in associ-
ation rule mining does not hold for FP-MMS. For example, the item (e) is not
a FP but its supersets (ae) and (ace) are FPs in the running example. To solve
this problem, Liu et al. [7] proposed a concept called sorted closure property,
which assumes that all items within an itemset are sorted in increasing order of
their minimum supports.

Property 1. If a sorted k-itemset {i1, i2,. . . , ik}, for k ≥ 2 and MIS(i1) ≤
MIS(i2) ≤ . . . ≤ MIS(ik), is frequent, then all of its sorted subsets with k − 1
items are frequent, except for the subset {i2, i3, . . . , ik} [6].

Definition 6 (Total order ≺ on items). Without loss of generality, assume
that items in each transaction of a database are sorted according to the lexi-
cographic order. Furthermore, assume that the total order ≺ on items in the
designed ME-tree is the ascending order of items MIS values.

Definition 7 (Set-enumeration-tree with multiple minimum sup-
ports). A ME-tree is a sorted Set-enumeration tree using the defined total order
≺ on items.

Definition 8 (Extension nodes in the ME-tree). In the designed ME-tree
with the total order ≺, all child nodes of any tree node are called its extension
nodes.

Since MIS(c) < MIS(a) < MIS(b) < MIS(d) < MIS(e), the total order
≺ on items in the ME-tree is c ≺ a ≺ b ≺ d ≺ e. The ME-tree for the running
example is illustrated in Fig. 2, and the following lemmas are obtained.
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Fig. 1. The search space presentation of FP-MMS.
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Fig. 2. Applied pruning strategies in the ME-tree.

Lemma 1. The complete search space of the proposed FP-MMS algorithm can
be represented by a ME-tree where items are sorted according to the ascending
order of the MIS values on items.

Lemma 2. The support of a node in the ME-tree is no less than the support of
any of its child nodes (extension nodes).

Proof. Let Xk be a node in the ME-tree containing X items, and let Xk−1 be
any parent node of Xk containing (k-1) items. It is straightforward from the
well-known Apriori property that sup(Xk) ≤ sup(Xk−1), this lemma can be
proven.

Lemma 3. The MIS of a node in the ME-tree equals to the MIS of any of its
child nodes (extension nodes).
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4.2 Proposed Pruning Strategies

It is important to note that the sorted downward closure (SDC) property of
FPs in the ME-tree can only guarantee partial anti-monotonicity for FPs, but
not general anti-monotonicity. In other words, the SDC property holds for any
extensions (child nodes) of a given node, but it may not hold for any supersets of
that node. Thus, if the SDC property of FPs is used to determine if all supersets
of an itemset should be explored, some FPs may not be found. For instance,
in the running example database, the item (e) is not a FP since sup(e) = 5
(<10), while its supersets (ae), (ce) and (ace) are FPs, as shown in Table 2. It
is thus incorrect to directly determine the FPs based only on the proposed SDC
property. In MSApriori and CFP-growth++, it was shown that the MIN/LMS
concept can guarantee the global anti-monotonicity of frequent patterns with
multiple minimum supports and ensure the completeness of the set of derived
FPs. To address this problem, we further adopt the MIN/LMS concept in the
proposed FP-ME algorithm.

Definition 9 (Least minimum support, LMS). The least minimum support
(LMS ) refers to the lowest minsup of all frequent patterns. Therefore, the LMS
in a database is always equal to the lowest MIS value among all frequent items.
Thus, the LMS is equal to the lowest value in the MMS-table and is defined
as min{ms(i1),ms(i2), . . . , ms(im)}, where m is the total number of items in a
database.

For example, the LMS of Table 2 is calculated as LMS = min{ms(a), ms(b),
ms(c), ms(d), ms(e)} = min{40 %, 50 %, 30 %, 60 %, 100 %} = 30 %.

Property 2. If X = {i1, i2,. . . , ik} ⊆ I, where 1 ≤ k ≤ n, is a pattern such
that sup(X) < LMS, then sup(X) < min{MIS(i1),MIS(i2), . . . ,MIS(ik)},
it never could be a frequent pattern.

Property 3. If X and Y are two patterns such that X ⊂ Y and sup(X) <
LMS, then sup(Y ) < LMS. It indicates that LMS guarantees the global anti-
monotonicity of frequent patterns with multiple minimum supports.

Proof. Let be an itemset X such that X is a subset of Y . Thus, sup(Y ) ≤
sup(X). The relationship sup(Y ) ≤ sup(X) < LMS holds.

Note that the set of 1-items which having sup(X) ≥ LMS is denoted as
LMS-FP 1, the following theorem can be obtained.

Theorem 1. Assume that 1-itemsets which having a MIS lower than LMS are
discarded and that the sorted downward closure (SDC) property is applied. We
have that if an itemset is not a LMS-FP 1, then it is not a FP as well as all its
supersets.

Proof. Let Xk−1 be a (k -1)-itemset and its superset k -itemset is denoted as
Xk. Since Xk−1 ⊆ Xk, (1) For a LMS-FP 1, sup(X) ≥ LMS; (2) Since
items are sorted by ascending order of MIS values, sup(Xk−1) ≥ sup(Xk)
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and MIS(Xk−1) = MIS(Xk) = min{MIS(i1), MIS(i2), . . . , MIS(im)} =
MIS(i1). Thus, if Xk−1 is not a LMS-FP 1 (MIS(Xk−1) < LMS), none of its
supersets are FPs.

Based on the designed ME-tree, the above lemmas and theorems ensure that
all FPs are included in the extensions of the set of LMS-FP 1 and thus that we
can safely discard the other itemsets. Thus, the designed sorted downward closure
(SDC) property in ME-tree can guarantee the completeness and correctness of
the proposed FP-MMS framework. These properties facilitate to use LMS as
a constraint to reduce the search space. Based on the above analysis, it can be
shown that the LMS plays a significant role in the FP-ME algorithm, it not
only ensures the completeness of the set of derived FPs, but also can be used to
prune the search space.

Strategy 1. In the designed ME-tree using the total order ≺, if a node X has a sup-
port value less than the LMS, then any nodes which contains X w.r.t. all supersets
of X can be directly pruned, X would not be used to explored in the ME-tree.

Lemma 4. Given a transactional database D and multiple minimum support
threshold MIS(ik) of each item ik, the constructed ME-tree contains the complete
information about frequent patterns in D.

Proof. In the construction process of ME-tree, each transaction in D can be
mapped to one path in the ME-tree whenever necessary. And according to The-
orems 1 and 2, all promising itemsets, the LMS-FP 1, their information in each
transaction is completely stored in the ME-tree based on the total order ≺. Notice
that we retained those infrequent items with supports no less than LMS w.r.t. the
LMS-FP 1 in the ME-tree because these items their supersets may be frequent.

Strategy 2. Let be the designed ME-tree using the MIS-ascending order of
items. If a node X has a support value less than its MIS w.r.t. the MIS of its
prefix level-2 node, then any extension of X w.r.t. all child nodes of X can be
directly pruned.

For example, the effect of Pruning Strategy 1 and Pruning Strategy 2
in the running example are respectively shown in Fig. 2(a) and (b). The itemset
(cab) is not considered to be a FP since sup(cab) (= 2 < MIS(cab) × |D|). By
applying the Pruning Strategy 2, all the child nodes of itemset (cab) are not
considered to be FPs since their support values are always no greater than those
of (cab). Hence, the child nodes (cabd), (cabe) and (cabde) (the shaded nodes in
Fig. 2) are guaranteed to be uninteresting and can be pruned safely.

4.3 Proposed FP-ME Algorithm

Note that the top-down traversal strategy is adopted in the ME-tree. As shown in
Algorithm 1, the FP-ME algorithm first scans the database to calculate the MIS
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value of each single item, as well as the LMS, then discover the set of I∗ w.r.t.
LMS-FP 1 (Lines 1 to 2). It is important to notice that here the derived patterns
are the set of LMS-FP 1 but not the set of FPs, the reason had been mentioned
before. The discovered LMS-FP 1 are then sorted in MIS -ascending in order to
construct their TID-Sets by scanning database again, thus forming the final set
of TID-Sets of all item i ∈ I∗ (Lines 3 to 4). Afterwards each 1-itemset X in the
set of I∗ is processed in designed order ≺ to find FPs from the ME-tree, using
the constructed TID-Sets without multiple rescanning the database (Line 5, FP-
Spanning procedure). As mentioned before, the spanning miner mechanism in
the FP-ME is different form the generate-and-test algorithm and the pattern-
growth approaches. The main idea of the FP-Spanning procedure (c.f. Algorithm
2) is that for each 1-itemset Xa, extensions of Xa are recursively explored using
a depth-first search. Moreover, each itemset encountered during that search is
evaluated to determine if it is a defined FP (Lines 2 to 4). Note that the depth
search is only performed for an itemset Xa if the support of Xa (which is directly
obtained from the relevant TID-Sets by calculating its TIDs) is larger than or
equal to MIS(Xa) × |D| (Lines 3 to 4). Simultaneously, the TID-Sets of the

Input: D (n = |D|), MMS-table.
Output: The set of frequent patterns (FPs).

1 scan MMS-table to calculate the MIS value of each single item and put into the
set of MISArrary, as well as the LMS among them ;

2 scan D to find I∗ ← {i ∈ I|sup(i) ≥ LMS}, w.r.t. the LMS-FP 1 ;
3 sort the set I∗ in MIS ascending order ≺;
4 scan D once again to construct the TID-Set of each i ∈ I∗ such as i.T idSet;
5 call FP-Spanning(φ, I∗, MISArray);
6 return FPs;

Algorithm 1: FP-ME algorithm

Input: X: an itemset, extensionsOfX: a set of all extensions of X, MISArray:
an array containing the minimum item support thresholds of all items.

Input: The set of frequent patterns (FPs).
1 for each itemset Xa ∈ extensionsOfX do
2 calculate the sup(Xa) and MIS(Xa) from the built structure of Xa;
3 if sup(Xa) ≥ MIS(Xa) × |D| then
4 FPs ← FPs ∪ Xa;
5 extensionsOfXa ← ∅;
6 for each itemset Xb ∈ extensionsOfXa such that b after a do
7 Xab ← Xa ∪ Xb;
8 calculate the Xab.T idSet by merging Xa.T idSet and Xb.T idSet;
9 extensionsOfXa ← extensionsOfXa ∪ Xab;

10 call FP-Spanning(Xa, extensionsOfXa, MIS(Xa));

11 return FPs;

Algorithm 2: FP-Spanning Procedure



12 W. Gan et al.

extensions of Xa is built (Lines 6 to 9). The above process is recursively executed
until all items in LMS-FP 1 have been processed (Line 10).

4.4 Improved Algorithm with the DiffSet Strategy

In [13], a novel vertical data representation called DiffSet was presented, that only
keeps track of differences in the TIDs of a candidate pattern from its generating
frequent patterns. It had been shown that DiffSet drastically cut down the size
of memory required to store intermediate results. Furthermore, we incorporated
the DiffSet into previous vertical mining method FP-ME, significantly increasing
the mining performance, and denoted this improved algorithm as FP-MEDiffSet,
for fast mining FPs. Details of the concept DiffSet and its construction in the
FP-MEDiffSet algorithm were skipped here due to the space limitation.

5 Experimental Results

In this section, substantial experiments were conducted to verify the effective-
ness and efficiency of the proposed baseline FP-ME algorithm (FP-MEbaseline)
and the improved FP-MEDiffSet algorithm. Note that there are several stud-
ies have been done previously on the topic of mining FPs with multiple mini-
mum supports, and it had been shown that the CFP-growth++ [10] significantly
outperforms the MSApriori [7] and CFP-growth [11]; the state-of-the-art CFP-
growth++ was thus executed to derive FPs, which can provide a benchmark to
verify the efficiency of the proposed two algorithms. All algorithms are imple-
mented in Java language and performed on a personal computer with an Intel
Core i5-3460 dual-core processor and 4 GB of RAM and running the 32-bit
Microsoft Windows 7 operating system. And experiments are conducted on two
datasets named kosarak [1] and BMSPOS [1]. The source code of the MSApriori
and CFP-growth++ algorithms can be download from the SPMF data mining
library [5]. Note that the front 100 K transactions in kosarak are selected in the
experiments.

Furthermore, the discussed method in [7] is adopt in the proposed FP-ME
algorithm to automatically assign multiple item supports to items. The method-
ology is as follows: MIS(ij) = max[β ×f(ij), LMS], where β is a constant used
to set the MIS values of items as a function of their frequency (or support). To
ensure the randomness and equipment diversity, β was set in the [0.0, 1.0] inter-
val for the datasets. The parameter LMS is the user-specified least minimum
itemset support allowed, and f(ij) is the frequency (or support) of an item ij .
Note that if β is set to zero, then a single LMS value will be used for all items,
and this will be equivalent to traditional FPM. If β = 1 and f(ij) ≥ LMS, then
MIS(ij) = f(ij).

5.1 Execution Time

For the conducted experiments, the parameter β was randomly set to a fixed
number of each item. Fig. 3 shows the runtime of the algorithms under various
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LMS with a fixed β and under various β with a fixed LMS for different datasets.
From Fig. 3, it can be observed that both the FP-MEbaseline and the improved
FP-MEDiffSet algorithms outperform the CFP-growth++ algorithm on the two
datasets under various LMS with a fixed β or under a fixed LMS with various β.
Moreover, we can see that FP-MEDiffSet has in general the best performance
among them. It is reasonable since CFP-growth++ consists of three phases. It
first scans the database once to construct a global MIS-Tree. All nodes in the
Header-table of a MIS-Tree are sorted by the order of descending MIS values.
Then, the MIS-Tree is restructured to reduce the search space by four pruning
techniques. At last, CFP-growth++ recursively mines the tree by creating pro-
jected trees to generate all desired itemsets. This process is too time-consuming,
thus it performs worse than the two proposed FP-ME algorithms. In contrast,
the proposed algorithms utilize the “structuring when mining” property, and
apply two pruning strategies to early prune unpromising itemsets and search
space in ME-tree, which can avoid the costly join operations of a huge number
of unpromising patterns. Moreover, the FP-MEDiffSet algorithm applies the Diff-
Set to quickly calculate the TID-Set, thus greatly reducing the computations
than the baseline algorithm.
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Fig. 3. Execution time.

5.2 Memory Usage

With the same test parameters, we also assessed the memory consumption of
the compared algorithms. Memory measurements were done using the Java API.
Note that the peak memory consumption of each algorithm was recorded for
all datasets. Results are shown in Fig. 4. It can be clearly seen that the pro-
posed algorithms, both FP-MEbaseline and the improved FP-MEDiffSet, require
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less memory compared to the state-of-the-art CFP-growth++ algorithm under
various parameters on the two datasets, and even up to 8 times as shown in
Fig. 4(a). Specifically, the two ME-tree-based approaches require nearly constant
memory under various parameter values on the all datasets. The memory usage
of the generation-and-test CFP-growth++ algorithm dramatically increases as
LMS or β decreases, while the memory usage of the proposed algorithms remain
stable. Besides, the improved FP-MEDiffSet always consumes little more mem-
ory than that of FP-MEbaseline. This result is reasonable since the vertical data
structure DiffSet is adopted to keep track of differences in the TIDs of a prefix
pattern from its generating FPs.
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Fig. 4. Memory usage. (Color figure online)

5.3 Scalability Analysis

The scalability of the proposed methods are further evaluated by performing
experiments when the kosarak dataset size was varied from 100 K to 500 K, by
increments of 100 K each time. Figure 5 shows the runtime and memory usage for
the three compared algorithms when the LMS and β were set to 0.001 and 0.5,
respectively. It can be observed that the runtime of all compared algorithms is
linear increased along with the increasing of dataset size |X|. The performance
of P-MEbaseline and the improved FP-MEDiffSet significantly scale better than
that of CFP-growth++. With the increasing of the size of dataset, the runtime
of FP-MEbaseline is close to that of FP-MEDiffSet. Specially, the gap of runtime
among them grows wider with the increasing of dataset size. It also can be
clearly seen that the proposed two algorithms require less memory compared to
the state-of-the-art CFP-growth++ algorithm in a wide range of dataset size.
From the observed results of the scalability test, it can be concluded that the
proposed algorithms are more scalable than the previous algorithms.
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Fig. 5. Scalability of compared algorithms. (Color figure online)

6 Conclusion

In this paper, we proposed a novel FP-MMS framework namely FP-ME for min-
ing frequent patterns with multiple minimum supports. Based on the designed
Set-enumeration-tree with multiple minimum supports (ME-tree), a novel sorted
downward closure (SDC) property was proposed. In order to guarantee the com-
pleteness of derived results, the LMS concept was extend in FP-ME to mine
the FPs. Different from the generate-and-test approach, FP-ME can directly
discover FPs by spanning the ME-tree with two pruning strategies. In addition,
an improved algorithm by adopting the DiffSet concept is further developed to
speed up the mining process by reducing the cost of database scans and pruning
search space. From the experiments, it can be found that the proposed two algo-
rithms significantly outperform the state-of-the-art CFP-growth++ algorithm in
terms of execution time, memory usage and scalability. Specifically, the improved
algorithm outperforms the baseline algorithm.
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