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Abstract The purpose of the paper is to analyse the effect of hp mesh adaptation
when discretized versions of finite element mixed formulations are applied to elliptic
problems with singular solutions. Two stable configurations of approximation
spaces, based on affine triangular and quadrilateral meshes, are considered for
primal and dual (flux) variables. When computing sufficiently smooth solutions
using regular meshes, the first configuration gives optimal convergence rates of
identical approximation orders for both variables, as well as for the divergence
of the flux. For the second configuration, higher convergence rates are obtained
for the primal variable. Furthermore, after static condensation is applied, the
condensed systems to be solved have the same dimension in both configuration
cases, which is proportional to their border flux dimensions. A test problem with
a steep interior layer is simulated, and the results demonstrate exponential rates of
convergence. Comparison of the results obtained with H1-conforming formulation
are also presented.

1 Introduction

Several methods have been developed for the construction of H.div/-conforming
approximation spaces to be applied in flux approximations of the mixed finite
element formulation. In some contexts the vector basis functions are constructed
on the master element, which is mapped to the elements of the partition using Piola
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transformations, as described in [1, 2, 8]. The constructions of hierarchical high
order spaces in [5, 7, 10, 11] are based on the properties of the De Rham complex.

Another methodology is proposed in [9] for the construction of hierarchical
high order H.div/-conforming approximation spaces based on affine triangular or
quadrilateral elements, which has been extended to hp-adaptive meshes in [6], and
to three-dimensional affine tetrahedral, hexahedral and prismatic meshes in [4]. The
principle is to choose appropriate constant vector fields, based on the geometry of
each element, which are multiplied by an available set of H1 hierarchical scalar
basis functions to form vectorial shape functions. The assemblage of them, having
the characteristic property of H.div/-conforming functions of continuous normal
components over element interfaces, is a direct consequence of the properties of the
properly chosen vector fields, and of the continuity of the scalar basis functions.

As described in [4], these vectorial shape functions can be combined in dif-
ferent ways to form H.div/-conforming approximation spaces to be applied for
flux approximations in discretized versions of the mixed formulation for elliptic
problems. In all configurations, the divergence of the dual space and the primal
approximation space coincide. There is a first configuration that gives optimal
convergence rates of identical approximation orders for primal and dual (flux)
variables, as well as for the divergence of the flux, when computing sufficiently
smooth solutions using regular meshes. For a second configuration, the accuracy
of the primal variable can be enhanced by increasing its approximation order and
by enriching the dual space with some properly chosen internal shape functions.
Using static condensation, the global condensed matrices to be solved in these two
types of space configuration have the same dimension, which is proportional to the
dimension of border fluxes.

The purpose of the present paper is to analyse the effect of hp mesh adaptation
on these space configurations when applied to singular problems. A test problem
with a steep interior layer is simulated, and the results demonstrate exponential
rates of convergence. Comparison of the results obtained with H1-conforming
formulation are also presented. The implementations are performed in the NeoPZ 1

computational platform, which is an open-source object-oriented project providing
a comprehensive set of high performance tools for finite element simulations,
including hp adaptivity [3].

2 Approximation Spaces in H.div; ˝/

Let � be a mesh on a domain ˝ � R
2 formed by elements K. The approximation

subspaces in

H.div; ˝/ D ˚
q 2 L2.˝/ � L2.˝/I r:q 2 L2.˝/

�
;

1http://github.com/labmec/neopz

http://github.com/labmec/neopz
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which are defined piecewise over the elements of � , require that the local pieces
qK D qjK should be assembled by keeping continuous normal components across
common element edges. We shall be concerned with affine triangular or quadri-
lateral meshes, without any limitation on hanging sides, and varying approximation
order distribution k D .kK/. The proposedmethodology used for the construction of
such kind of approximation subspaces follows a sequence of steps described below.
For more details, we refer to [9], in the case of regular meshes, and to [6] for the
case of hp-adaptive meshes.

1. For each element K, there is an affine geometric mapping x W OK ! K,
associating each point � 2 OK of the (rectangular or triangular) master element OK
to a point p D x.�/ 2 K.

2. A family of hierarchical bases BK
kK

D f˚g is given, where the parameter kK refers
to the degree of the polynomials in PkK used in their definitions (of maximum
degree, for quadrilateral elements, or of total degree, for triangular elements), as
proposed in [9]. The principle is to choose appropriate constant vector fields v,
based on the geometry of the element, which are multiplied by an available set of
H1 hierarchical scalar basis functions ' to form a vectorial shape function ˚ D
' Ov. There are shape functions of interior type, with vanishing normal components
over all element edges. Otherwise, ˚ is classified as of edge type, and its normal
component on the edge associated to it coincides with the restriction of the scalar
shape function ' used in its definition, and vanishes over the other edges.

3. Construction of approximation subspaces of H.div; ˝/ formed by functions q 2�
L2.˝/

�2
, which are defined piecewise over the elements of � by local functions

qK D qjK 2 span BK
kK

� H.div;K/. As described in [6], the pieces can be easily
assembled to get continuous normal components on the elements interfaces. This
property is obtained as a consequence of the particular properties satisfied by
the proposed vectorial shape functions, and the continuity of the scalar shape
functions used in their construction.

3 Application to Mixed Finite Element Formulation

Given f 2 L2.˝/, boundary values uD and g for Dirichlet and Neumann conditions
enforced on @˝D and @˝N , consider the variational mixed formulation of finding
u 2 L2.˝/ and � 2 V D fq 2 H.div; ˝/I � � �j@˝N D �gg, such that, for all
v 2 L2.˝/, and q 2 V0 D fq 2 H.div; ˝/I q � �j@˝N D 0g,

Z

˝

� � q d˝ �
Z

˝

u r � q d˝ D �
Z

@˝D

uD q � � ds;

�
Z

˝

r � � v d˝ D �
Z

˝

fv d˝:
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Approximation Spaces Following the developments in [4], we shall consider two
stable configuration cases for approximation spaces to be used for primal u and
dual � variables in discretized versions of the mixed formulation. In both cases,
the primal variable is approximated in subspaces of L2.˝/ formed by piecewise
functions ujK D uK , without any continuity constraint, as in typical discretized
mixed formulations [2].

The first configuration considers polynomials uK 2 PkK , and the dual variable
� is sought in approximation spaces � H.div; ˝/ formed by vectorial functions q
such that qK D qjK 2 span BK�

kK
, where the bases BK�

kK
� BK

kKC1 are formed by
enriching BK

kK
with interior shape functions ˚ 2 BK

kKC1 whose divergence r � ˚ 2
PkK . The resulting set of approximations spaces is classified as being of P�

k Pk type.
Another type of approximation configuration is classified as being of P��

k PkC1

type, where the primal approximations uK are inPkKC1, and P��
k refers to vectorial

approximation spaces spanned by bases BK��
kK

� BK�
kKC1, where the edge functions

are restricted to those ones of P�
k type.

As explained in [4], when computing sufficiently smooth solutions using P�
k Pk

space configurations based on affine regular meshes, optimal convergence rates of
identical approximation orders k C 1 are obtained for primal and dual variables, as
well for r � � . For the P��

k PkC1 configuration, higher convergence rate of order
k C 2 is obtained for the primal variable. Furthermore, after static condensation is
applied, the condensed systems to be solved only involve the flux edge terms and a
constant value for u in each element, and thus they have the same dimension in both
configuration cases.

Test Problem The problem is defined over the domain of ˝ D Œ0; 1� � Œ0; 1�, and
the load function f is chosen such that the model problem has exact solution given
by

u.x; y/ D �

2
� arctan

h
˛

�p
.x � 1:25/2 C .y C 0:25/2 � �

3

�i
;

having strong gradients with magnitude determined by the parameter ˛ D 200 in
the proximity to the circumference centred at the point .1:25; �0:25/, with radius
�=3. Plots of the exact solution u.x; y/ and its gradient magnitude are presented in
Fig. 1.

Adaptive hp-Refinement Process We consider a sequence of hp-adaptive meshes
with either quadrilateral or triangular geometries, with variable polynomial degree
distributions. To construct them, firstly, split the domain into two regions: the region
near the singularity and the smooth part, elsewhere. In the region where the solution
is smooth, p refinement is adopted in order to produce exponential convergence
rates there. In the central region, hp refinement is employed in order to generate
approximation spaces which better capture the singular behaviour. The initial mesh
is composed of uniform elements with mesh size 2�3, and p D 2 in the smooth part,
and mesh size 2�4 and p D 3 in the region of the singularity. Then, the refinement
process follows a sequence of steps ` D 2; 3, and 4 by first increasing by 1 the
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Fig. 1 Exact solution: primal (left side) and dual (right side) variables

Fig. 2 Illustration of the hp refinement process: initial mesh (top-side), and mesh at the final
refinement step (bottom-side) for quadrilateral (left-side) and triangular (right-side) geometries

approximation order of all elements of the previous step, and then by subdividing
the elements intersecting a layer of diameter 2�` around the singularity curve, and
by further increasing their approximation order by 1. Figure 2 illustrates the hp
refinement process at the initial step, and at the final refinement level.
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Fig. 3 L2-error curves in terms of the number of degrees of freedom for the dual (left side) and
primal (right side) variables using mixed formulation and approximation spaces of type P�

k Pk

(continuous curves), and P��

k PkC1 (dashed curves) based on hp-meshes with quadrilateral (top-
side) and triangular (bottom-side) geometries. The dashed-dotted curves correspond to simulations
for uniform meshes with P�

2 P2 configuration. For comparison, results for H1-conforming
formulation based on the same hp-meshes are also included (dotted curves)

Our purpose is to use these kinds of meshes for the simulation of the test
problem by the mixed formulations using the space configurations of P�

k Pk and
P��

k PkC1 types. As expected, the application of hp refinement to the singular
problem improves considerably the performance of the methods, with exponential
rates of convergence. Furthermore, the accuracy in the primal variable improves
when P��

k PkC1 configuration is applied in the mixed formulation. Figure 3
shows the calculated L2-norms of the dual � and primal u errors using these
sequences of hp-adaptive meshes versus the number of equations solved after static
condensation. For comparison, results for the H1-conforming formulation based on
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Fig. 4 Percentage of condensed degrees of freedom in the mixed method using the P�

k Pk space
configuration (continuous lines) and in the H1-conforming method (dashed-dotted lines), applied
to quadrilateral and triangular hp-meshes

the same hp-meshes, and for the mixed formulation with uniformmeshes and P�
2 P2

configuration are plotted. For the experiments with H1 conforming approximations,
the performance in terms of accuracy versus degrees of freedom is similar to the
experiments with the mixed formulation.

The effect of static condensation is also verified in terms of the size reduction of
the global system to be solved, which is more significant in the mixed formulation,
with increasing order of approximation, and with quadrilateral meshes, as compared
with triangular ones. At the finest levels of mesh refinement, the number of
condensed equations in the mixed formulation amounts to more than 90%, as shown
in Fig. 4, meaning that the size of the condensed system to be solved is less than
10% of the total number of equations. This fact demonstrates the potential benefit
of using H.div/ approximation spaces in parallel computers.
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