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Abstract Recently, we showed in (O. Kolb, SIAM J. Numer. Anal., 52 (2014),
pp. 2335–2355) for which parameter range the compact third order WENO recon-
struction procedure introduced in (D. Levy, G. Puppo, and G. Russo, SIAM J. Sci.
Comput., 22 (2000), pp. 656–672) reaches the optimal order of accuracy (h3 in
the smooth case and h2 near discontinuities). This is the case for the parameter
choice " D Khq in the weight design with q � 3 and pq � 2, where p � 1 is the
exponent used in the computation of the weights in the WENO scheme. While these
theoretical results for the convergence rates of the WENO reconstruction procedure
could also be validated in the numerical tests, the application within the semi-
discrete central scheme of (A. Kurganov, and D. Levy, SIAM J. Sci. Comput., 22
(2000), pp. 1461–1488) together with a third order TVD-Runge-Kutta scheme for
the time integration did not yield a third order accurate scheme in total for q > 2.
The aim of this follow-up paper is to explain this observation with further analytical
and numerical results.

1 Introduction

We are interested in the numerical solution of hyperbolic conservation laws

@

@t
u.x; t/ C @

@x
f .u.x; t// D 0 (1)

with given initial conditions u.x; 0/ D u0.x/. One major difficulty arises here due
to the fact that even for smooth initial data, the solutions of (the weak form of) (1)
may contain discontinuities after finite time. At the same time, one is interested in
resolving complex smooth solution structures with high order of accuracy. Based
on the pioneering works [9, 15], the approach of so-called weighted essentially
non-oscillatory (WENO) schemes allows the combination of high resolution with
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a stable behaviour in the presence of discontinuities. The key ingredient of such
schemes is a weighting of discretization stencils or reconstruction polynomials
based on smoothness indicators.

As already noted in [11], WENO reconstructions may not attain the optimal order
at critical points and meanwhile there are several fixes for that problem like [2–4, 6,
8, 10, 16–18]. Based on the smoothness indicator of [11], Aràndiga et al. recently
proposed in [1] to choose the parameter ", which occurs in the denominator within
the weight design, proportional to the square of the mesh size, h2. For the compact
third order WENO (CTO-WENO) reconstruction procedure introduced in [14], we
recently showed in [12] that it reaches the optimal order of accuracy (h3 in the
smooth case and h2 near discontinuities) for the parameter choice " D Khq with q �
3 and pq � 2, where p � 1 is the exponent used in the computation of the weights
in the WENO scheme. While these theoretical results for the convergence rates of
the CTO-WENO reconstruction procedure could also be validated in the numerical
tests, the application within the semi-discrete central scheme of [13] together with
a third order TVD-Runge-Kutta scheme from [7] for the time integration did not
yield a third order accurate scheme in total for q > 2. Meanwhile, in [5], our results
of [12] have been extended to the case of nonuniform meshes (for ".h/ D h and
".h/ D h2), where the dependency of " on h is substantial. The remaining question
is the explanation of the observed order reduction in the case q > 2 and it is the
aim of this follow-up paper to explain this observation with further analytical and
numerical results.

2 Numerical Scheme

We begin with a brief description of the considered discretization scheme. The
underlying CTO-WENO reconstruction procedure is described for the scalar case
in Sect. 2.1, and also the new results in Sect. 3 refer to the scalar case. Nevertheless,
the fully discrete scheme in Sect. 2.2 is given for the system case.

2.1 Reconstruction Procedure

The CTO-WENO reconstruction procedure from [14] based on cell averages builds
a core part of the analysed scheme. As in [12] we consider u D u.x/ as function
of the spatial variable only since the procedure is independent of the time variable.
Further, we assume a uniform grid with spatial grid size h, grid points xj D x0 C jh
and corresponding finite volumes Ij D Œxj � h

2
; xj C h

2
� D Œxj� 1

2
; xjC 1

2
�. The task is

to reconstruct the function u by a piecewise polynomial approximation P given the
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cell averages over all Ij,

Nuj D 1

h

x
jC 1

2Z

x
j� 1

2

u.x/dx :

For this, we will use (in each cell Ij) a convex combination of three polynomials PL,
PC and PR,

P.x/ D wLPL.x/ C wCPC.x/ C wRPR.x/ (2)

with wi � 0 for all i 2 fL; C; Rg and wL C wC C wR D 1. To improve the readability,
we leave out the index j indicating the considered interval for the polynomials and
other terms, wherever it is clear from the context.

The polynomials PL and PR are one-sided linear reconstructions,

PL.x/ D Nuj C Nuj � Nuj�1

h
.x � xj/ ; PR.x/ D Nuj C NujC1 � Nuj

h
.x � xj/ :

For the third polynomial PC we need the parabola Popt, which is the unique parabola
that conserves the three cell averages Nuj�1, Nuj, NujC1. Then, for given (positive)
constants cL, cR and cC D 1 � cL � cR, PC is chosen in such a way that

Popt.x/ D cLPL.x/ C cCPC.x/ C cRPR.x/ (3)

holds. For the weights in (2) we use

wi D ˛iP
k

˛k
; where ˛i D ci

.".h/ C ISi/p
i; k 2 fL; C; Rg (4)

and the smoothness indicators

ISi D
2X

kD1

x
jC 1

2Z

x
j� 1

2

h2k�1
�
P.k/
i .x/

�2
dx i 2 fL; C; Rg : (5)

In (4) we apply ".h/ D Khq (with K D 1 in all examples) and usually p D 2. For
the constants ci in (3) and (4), we use cL D cR D 0:25 as in [14] and accordingly
cC D 1 � cL � cR D 0:5.
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2.2 Fully Discrete Scheme

We now give a brief description of a complete numerical scheme to solve (1) based
on the CTO-WENO reconstruction procedure presented in Sect. 2.1 (cf. [12, 13]).
Note that the whole scheme can be applied to systems of conservation laws, where
the reconstruction procedure can for instance be applied componentwise. First, for
a given mesh size h, we average (1) over all intervals Ij. This yields the initial
conditions

Nuj.0/ D 1

h

x
jC 1

2Z

x
j� 1

2

u0.x/dx (6)

for the cell averages in each interval Ij, and the evolution equation

d

dt
Nuj.t/ D �1

h

�
f .u.xjC 1

2
; t// � f .u.xj� 1

2
; t//

�
: (7)

Next, the fluxes f .u.xj˙ 1
2
; t// at the cell boundaries are replaced/approximated by a

numerical flux Hj˙ 1
2
.t/ – here, corresponding to the central scheme in [13], by the

local Lax-Friedrichs flux

HjC 1
2
.t/ D

f .uC
jC 1

2

.t// C f .u�
jC 1

2

.t//

2
�

ajC 1
2
.t/

2

�
uC
jC 1

2

.t/ � u�
jC 1

2

.t/
�

(8)

with

ajC 1
2
.t/ D max

u2C.u�

jC 1
2

.t/;uC

jC 1
2

.t//
�

�
@f

@u
.u/

�
(9)

and

u�
jC 1

2

.t/ D Pj.xjC 1
2
; t/ and uC

jC 1
2

.t/ D PjC1.xjC 1
2
; t/ :

The polynomials Pj and PjC1 are reconstructed from the cell averages at time t
according to the procedure described in Sect. 2.1. Further, �.A/ denotes the spectral
radius of the matrix A and C.u�

jC 1
2

.t/; uC
jC 1

2

.t// is the curve in the phase space that

connects u�
jC 1

2

.t/ and uC
jC 1

2

.t/ via a Riemann fan.
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Finally, the third order TVD Runge-Kutta scheme of [7] is used for the time
integration of the semi-discretized problem

d

dt
Nuhj .t/ D �1

h

�
HjC 1

2
.t/ � Hj� 1

2
.t/

�

with approximate solution Nuh and initial conditions from (6).

3 New Results

3.1 A Sufficient Condition in the Linear Case

A usual argumentation for an mth order scheme (with respect to the spatial semi-
discretization) goes as follows: The exact evolution of the cell averages in each
interval Ij is given by (7). Now assume that the numerical flux satisfies

HjC 1
2
.t/ D f .u.xjC 1

2
; t// C d.xjC 1

2
; t/ hm C O.hmC1/ (10)

with a Lipschitz continuous function d.x; t/ with Lipschitz constant Ld (with respect
to x). Then,

HjC 1
2
.t/ � Hj� 1

2
.t/

h
D

f .u.xjC 1
2
; t// � f .u.xj� 1

2
; t//

h

C �
d.xjC 1

2
; t/ � d.xj� 1

2
; t/„ ƒ‚ …

k:::k �Ldh

�
hm�1 C O.hm/

and further (as desired)

d

dt
Nuj.t/ D �1

h

�
HjC 1

2
.t/ � Hj� 1

2
.t/

� C O.hm/ :

In the simplest case of a linear flux function, f .u/ D au with a > 0 (w.l.o.g.),
the local Lax-Friedrichs flux (8) reduces to HjC 1

2
.t/ D au�

jC 1
2

.t/ and the “sufficient

condition” (10) directly reduces to an accuracy condition

u�
jC 1

2

.t/ � u.xjC 1
2
; t/ D Qd.xjC 1

2
; t/ hm C O.hmC1/ (11)

with a Lipschitz continuous function Qd.x; t/ D d.x; t/=a (with respect to x). Further,
since u�

jC 1
2

.t/ D Pj.xjC 1
2
; t/, we have to take a closer look at the accuracy of the

reconstruction polynomials Pj given by (2). Actually, we are interested in the case
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m D 3 (a third order scheme in the smooth case). From the proof of Theorem 2.1
in [12], we see that the deviation

ci � wi D O.h/

from the optimal weights is essential to get third order accuracy in the reconstruction
since this deviation is multiplied with the interpolation error of the single polyno-
mials Pi, which is at least O.h2/ (in the smooth case). To also fulfill (11), it would
be sufficient to have

ci � wi D di.xj; t/ h C O.h2/ (12)

with Lipschitz continuous functions di.

3.2 Failure of q > 2: Numerical Evidence

According to the sufficient condition (12), it should be revealing to look at ci�wi
h for

h ! 0. Therefore, we consider the initial conditions of the first “failing” example
of [12] (originally from [10]),

u0.x/ D sin
�
�x � sin.�x/=�

�

on the computational domain x 2 Œ�1; 1� (with periodic boundary conditions). For
Nx D 2n grid cells with n 2 f10; 15; 20g, corresponding to h D 2 � 2�n, we apply
the CTO-WENO reconstruction with ".h/ D h3 and evaluate ci�wi

h for each cell and
i 2 fL; C; Rg.

Figure 1 shows the corresponding results. Note the different scales on the y-axes
and the different behaviour for i 2 fL; Rg in comparison to i D C. Obviously, the
quotient ci�wi

h seems to be unbounded at least for i 2 fL; Rg and h ! 0 close to
the zeros of u0

0 (at approximately ˙0:597). At the first view, this observation even
seems to be contradictory to the results of [12], but the quotient is bounded for each
fixed position xj so that finally wi D ci C O.h/ holds for arbitrary x also in the
considered case ".h/ D h3. Nevertheless, this behaviour is much different from the
results one observes in the case ".h/ D hq with q � 2 and it obstructs the “sufficient
condition” (12).
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Fig. 1 Differences ci�wi
h for i 2 fL; C; Rg, h D 2 � 2�n with n2f10; 15; 20g, ".h/ D h3. The plots

in the right column are zoomed from the plots in the left column

3.3 Failure of q > 2: Analytical Evidence

Next, we aim to explain the observation above from the analytical point of view.
First, the proof of Theorem 3.3 in [12] gives us for any fixed xj

ci � wi D �pfih
r C O.hrC1/

with r � 1 and fi D � P
k
ckeik, where the eik are given by

ISi � ISk
".h/ C ISk

D eikh
r C O.hrC1/ :
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The term on the left-hand side can be expressed as

ISi � ISk
".h/ C ISk

D cikh2sC2 C dikh2sC3 C O.h2sC4/

Khq C akh2sC2 C bkh2sC3 C O.h2sC4/
(13)

with s D sj (multiplicity of the zero of u0 at xj, or 0 if u0.xj/ ¤ 0) and appropriate
constants ai and bi, cik D ai � ak and dik D bi � bk from

ISi D aih
2sC2 C bih

2sC3 C O.h2sC4/

and

ISi � ISk D cikh
2sC2 C dikh

2sC3 C O.h2sC4/ :

Motivated by the numerical results above, we take a closer look at the zeros of
u0. Considering sj > 0 for q 2 .2; 3� gives

ISi � ISk
".h/ C ISk

D dikh2sC3�q C O.h2sC4�q/

K C akh2sC2�q C O.h2sC3�q/
D dik

K
h2sC3�q C O.h2sC4�q/ ;

for even sj (where cik D 0 according to [12]), and for odd sj

ISi � ISk
".h/ C ISk

D cikh2sC2�q C O.h2sC3�q/

K C akh2sC2�q C O.h2sC3�q/
D cik

K
h2sC2�q C O.h2sC3�q/ :

Due to the dominant role of the constant K in the denominator (and 2sC2�q � 1),
this case seems to be uncritical. The real problem are the points close to the zeros
of u0: In the case sj D 0, we get for q 2 .2; 3�

ISi � ISk
".h/ C ISk

D dikh C O.h2/

Khq�2 C ak C bkh C O.h2/
D dik

ak
h C O.hq�1/ ; (14)

where again cik D 0 according to [12]. From the proof of Lemma 3.1 in [12], we
know that ak D �

u0.xj/
�2

here, whereas bk and therewith dik are proportional to
u0.xj/u00.xj/. For any fixed xj with u0.xj/ ¤ 0, Eq. (14) is sufficient to finally get
third order accuracy for the CTO-WENO reconstruction, but obviously the factor
eik D dik

ak
, which is proportional to u00.xj/=u0.xj/, is not bounded uniformly in x

close to zeros of u0 (unless also u00 vanishes in that point). This clearly explains the
increase of the quotient ci�wi

h for h ! 0 close to the zeros of u0 and therewith finally
leads to the observed order reduction.

Remark 1 Obviously, for q � 2 the term ".h/ D Khq is always part of the dominant
term in the denominator of (13) (as already noted in [12]) and therefore the quotient
ci�wi
h stays bounded in that case and even the sufficient condition (12) is fulfilled.



Compact Third Order WENO Scheme 61

Remark 2 Reconsidering the scalar accuracy tests from [12], one actually observes
that third order accuracy is achieved by the fully discrete scheme with ".h/ D h3

apart from critical points.

4 Conclusion

The aim of this work was to explain the order reduction one observes for a fully
discrete scheme based on the CTO-WENO reconstruction procedure with ".h/ D
Khq with q 2 .2; 3�, whereas the pure spatial reconstruction is (pointwise) third
order accurate. Therefore, we took a closer look at the error expansions and found
numerical as well as analytical evidence for the “failure” of this parameter range.
Consequently, at least for the usual choice p D 2 in the weight design, the region
of practical interest is q 2 Œ1; 2�, for which meanwhile third order accuracy has also
been shown for the case of nonuniform meshes in [5].
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