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Abstract We present a flux approximation scheme for the incompressible Navier-
Stokes equations, that is based on a flux approximation scheme for the scalar
advection-diffusion-reaction equation that we developed earlier. The flux is com-
puted from local boundary value problems (BVPs) and is expressed as a sum of a
homogeneous and an inhomogeneous part. The homogeneous part depends on the
balance of the convective and viscous forces and the inhomogeneous part depends
on source terms included in the local BVP.

1 Introduction

The numerical solution of the incompressible Navier-Stokes equations requires
appropriate spatial and temporal discretisation methods. For the spatial discretisa-
tion we consider a finite volume method (FVM), in which the conservation laws
are integrated over a disjoint set of control volumes. The resulting semi-discrete
conservation laws require fluxes which need to be approximated at the interfaces of
the control volumes. Standard methods for the approximation of the fluxes include
the central difference (CD) and upwind (UW) approximations. These methods are
a consequence of two limit case solutions, i.e., the CD method results from the no-
flow solution whereas the UW method corresponds to inviscid flow. This issue can
be resolved if we use the exponential/hybrid scheme (as described in [1]), in which
the flux approximation is based on the local balance of the convective and viscous
forces, given by the solution of a homogeneous local BVP. The exponential scheme
can be further extended by including the pressure gradient, the gradient of the
transverse flux or the cross-flux and the time derivative of the velocity components
as source terms in the local BVP. In this contribution we restrict ourselves to the
steady computation of the flux and consider only the effects of including the pressure
gradient and the gradient of the cross-flux.
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Our objective in this paper is to formulate a flux approximation scheme, such
that the computed numerical flux not only depends on the convective and viscous
forces, but also includes the effects of the source terms affecting the fluid flow.
Such a scheme should provide a flux approximation which is locally consistent with
the corresponding conservation law. Our scheme is inspired by the complete flux-
scheme for the convection-diffusion-reaction equation described in [2], in which
an integral representation for the flux is derived using local BVPs for the entire
equation, including the source term. In [3, 4] we have presented a similar method for
the computation of the interface velocities required in the discrete convective terms
using local BVPs, including the pressure gradient and the gradient of the cross-flux
in the source term.

In this contribution we consider the case of two-dimensional flow. In Sect. 2
we outline the underlying FVM. Section 3 gives the integral representations of the
fluxes as well as the closure of the flux scheme. In Sect. 4 we use the flux scheme to
simulate flow in a lid-driven square cavity and compare the flux scheme with the CD
scheme and the benchmark results. Finally, we end with a summary and concluding
remarks in Sect. 5.

2 Finite Volume Method

In this section we briefly outline the FVM for the incompressible Navier-Stokes
equations. Consider the two-dimensional incompressible Navier-Stokes equations

r � u D 0; (1a)

ut C r � �
uu � �ru

� D �rp; (1b)

where u D uex Cvey is the flow velocity, p is the kinematic pressure and � D 1=Re,
with Re being the Reynolds number of the flow. For the spatial discretisation we use
a staggered grid configuration as shown in Fig. 1. We have different control volumes
for the discretisation of the u- and v-momentum equations.We express equation (1b)
component-wise, as

ut C r�f u D �r � . p ex/;
�
f u WD .u2 � �ux/ex C .uv � �uy/ey

�
; (2a)

vt C r�f v D �r � . p ey/;
�
f v WD .uv � �vx/ex C .v2 � �vy/ey

�
: (2b)

Integrating equation (2a) over a control volume ˝u and applying Gauss’ theorem
we get

Z

˝u
ut dA C

I

@˝u
f u � n ds D �

I

@˝u
p ex � n ds;



Finite-Volume Flux-Scheme for Incompressible Flows 45

(a) (b)

Fig. 1 (a) The staggered grid for the spatial discretization. (b) A control volume ˝u
iC1=2;j for the

spatial discretisation of the u-momentum equation

where n is the outward unit normal vector to the boundary @˝u. This integral form
of the conservation law can be approximated over the control volume˝u

iC1=2;j shown
in Fig. 1 using the mid-point rule as follows:

�y
�

f u;x
iC1;j � f u;x

i;j

�C�x
�
f u;y
iC1=2;jC1=2 � f u;y

iC1=2;j�1=2

� D
� �y

�
piC1;j � pi;j

� � �x �y .ut/iC1=2;j;
(3)

where f u;x WD u2 � �ux, f u;y WD uv � �uy and f u;x
i;j � f u;x.xi; yj/. Similarly,

equation (2b) can be discretised over the control volume ˝v
i;j as :

�y
�

f v;x
iC1=2;jC1=2�f v;x

i�1=2;jC1=2

� C �x
�
f v;y
i;jC1 � f v;y

i;j

� D
� �x

�
pi;jC1 � pi;j

� � �x �y .vt/i;jC1=2;
(4)

with f v;x WD uv � �vx and f v;y WD v2 � �vy.
We begin with the approximation of the flux f u;x

iC1;j using the quasi-one-
dimensional formulation of equation (2a), i.e.,

. f u;x/x D s;
�
s WD �px � .f u;y/y � ut

�
: (5)

Restricting the above equation to the interval x 2 ŒxiC1=2; xiC3=2� and y D yj, the
boundary conditions read

u.xiC1=2; yj/ D uiC1=2;j; u.xiC3=2; yj/ D uiC3=2;j:

The term s acts as the source term for the flux f u;x, giving the forces driving the
flux. We have included the inertial term ut in the source term. However, in this
contribution we focus on the steady computation of the fluxes, i.e., ut D 0.
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The components of the fluxes f u and f v are nonlinear, thereby making the local
BVPs nonlinear. The flux components are linearised using the interface velocities
which are computed at the interface of the control volume. For example, the
nonlinear term u2 in f u;x is linearised as Uu, where U is the approximation of the
interface velocity. The details regarding the iterative computation of the interface
velocities using local BVPs are given in [3, 4]. Thus, for the approximation of the
flux f u;x

iC1;j we solve the linearised local BVP

.Uu � �ux/x D �px � .f u;y/y; x 2 ŒxiC1=2; xiC3=2�; y D yj; (6a)

u.xiC1=2; yj/ D uiC1=2;j; u.xiC3=2; yj/ D uiC3=2;j: (6b)

In the next section we give the details regarding the solution of the above local BVP.

3 Integral Representation of the Fluxes

The flux approximation scheme is based on the computation of the flux for the scalar
advection-diffusion-reaction equation as described in [2]. The model equation is
given by 't C .a' � �'x/x D s, where the scalar flux is defined as f D a ' �
� 'x, ' being the unknown quantity. We outline the computation of the scalar flux
using a local BVP and then extend the scheme to the Navier-Stokes equations. The
computation of the flux fiC1 at the cell edge xiC1 D 1

2
.xiC1=2 C xiC3=2/ is based on

the following model BVP:

.a ' � � 'x/x D s; xiC1=2 < x < xiC3=2; (7a)

'.xiC1=2/ D 'iC1=2; '.xiC3=2/ D 'iC3=2: (7b)

For the solution of the above local BVP we need the following variables:

� WD a

�
; P WD ��x; �.x/ WD

Z x

xiC1

�.�/d�; S.x/ WD
Z x

xiC1

s.�/d�;

with �x D xiC3=2 � xiC1=2 and where P is the (grid) Péclet number. From [2], we
get that the flux fiC1 is the sum of a homogeneous (f h) and an inhomogeneous (f i)
part, i.e.,

fiC1 D f hiC1 C f iiC1; (8a)

f hiC1 D
�

e��iC1=2'iC1=2 � e��iC3=2'iC3=2

�
=

Z xiC3=2

xiC1=2

��1e��dx; (8b)

f iiC1 D �
Z xiC3=2

xiC1=2

��1e��S dx =

Z xiC3=2

xiC1=2

��1e��dx: (8c)
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For the incompressible Navier-Stokes equations, we first linearise the flux com-
ponent f u;x by defining Qf u;x D Uu � �ux, which can be computed using the model
BVP (7). In the followingwe restrict ourselves to the approximation of the linearised
flux Qf u;x. Now, the source term is given by s D �px � .f u;y/y. To simplify the
computation of the inhomogeneous part, we make the following assumptions for
the source term:

1. Pressure gradient: The pressure p is taken to be piecewise linear, consequently
the pressure gradient is piecewise constant, given by its CD approximation:

px.x; yj/ �
(

.ıxp/iC1=2;j D 1
�x .piC1;j � pi;j/; xiC1=2 � x � xiC1;

.ıxp/iC3=2;j D 1
�x .piC2;j � piC1;j/; xiC1 < x � xiC3=2:

2. Cross-flux gradient: the gradient of the cross-flux .f u;y/y is taken to be piecewise
constant, given by the CD approximation:

. f u;y/y.x; yj/ �
(

Cu
iC1=2;j; xiC1=2 � x � xiC1;

Cu
iC3=2;j; xiC1 < x � xiC3=2;

with

Cu
iC1=2;j D 1

�y

�
Fu;y

iC1=2;jC1=2 � Fu;y
iC1=2;j�1=2

�
;

Fu;y being the numerical approximation of the linearised flux component Qf u;y.

From the above we get that s is piecewise constant over the domain making S
piecewise linear. Moreover, we also have that U and � are constants on the domain
xiC1=2 < x < xiC3=2. Thus, evaluating expressions (8b) and (8c), we get that Fu;x

iC1;j,
is given by

Fu;x
iC1;j D Fu;x;h

iC1;j C Fu;x;i
iC1;j; (9a)

Fu;x;h
iC1;j D �

�x

�
B.�Pu/uiC1=2;j � B.Pu/uiC3=2;j

�
; (9b)

Fu;x;i
iC1;j D �x

�
W.�Pu/siC1=2;j � W.Pu/siC3=2:j

�
; (9c)

where Pu D U� x=� and

B.z/ WD z

ez � 1
; W.z/ WD ez=2 � 1 � z=2

z.ez � 1/
:

We further split the inhomogeneous part into terms depending on the gradient
of the cross-flux term (Fu;x;c) and the pressure gradient (Fu;x;p), using siC1=2;j D
�.ıxp/iC1=2;j � Cu

iC1=2;j in equation (9c).
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Fig. 2 Plots of the functions (a) A.jzj/, (b) W.z/ with varying Péclet numbers

Thus, we have computed the numerical flux Fu;x
iC1;j as the sum of a homogeneous

and an inhomogeneous part using local BVPs. Observe that the homogeneous flux
component can be expressed as a weighted mean of the CD flux (Fcd) and the UW
flux (Fuw) as follows

Fh D �
1 � A.jPuj/�Fuw C A.jPuj/Fcd; (10)

where A.z/ is a weight function defined as A.z/ WD 2.1 � B.z//=z. Figure 2 for the
function A.z/, shows that for diffusion dominated flows (Pu ! 0), the homogeneous
scheme reduces to the CD scheme, whereas for convection dominated flows (jPuj �
1), it reduces to the UW scheme. Analogously, the discrete source terms siC1=2;j

and siC3=2;j involved in the inhomogeneous part have equal contributions, when the
Péclet number is zero. For higher Péclet numbers the upwind source term has a
larger contribution to the inhomogeneous flux part (Fig. 2).

3.1 Closure of the Scheme

So far we have derived an expression for the approximation of the flux component
Fu;x

iC1;j: For the semi-discrete momentum equation (3) we also need to approximate
the cross-flux f u;y. For the closure of the scheme we restrict ourselves to the
homogeneous flux part for the cross-flux component. Thus, the flux f u;y

iC1=2;jC1=2 is
computed from the local BVP :

.Vu � �uy/y D 0; x D xiC1=2; yj � y � yjC1; (11a)

u.xiC1=2; yj/ D uiC1=2;j; u.xiC1=2; yjC1/ D uiC1=2;jC1; (11b)
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where V is the estimate of the interface velocity at .xiC1=2; yjC1=2/. On solving the
above homogeneous local BVP we find that the flux is given by :

Fu;y
iC1=2;jC1=2 D �

�y

�
B.�Pv/uiC1=2;j � B.Pv/uiC1=2;jC1

�
;

�
Pv D V�y=�

�
:

Similarly, the fluxes and the cross-fluxes in equation (4) are also computed from
local BVPs. The flux f v;y

i;jC1 is computed using the inhomogeneous local BVP :

.Vv � �vy/y D �.ıyp/ � .f v;x/x; x D xi; yjC1=2 � y � yjC3=2; (12a)

v.xi; yjC1=2/ D vi;jC1=2; v.xi; yjC3=2/ D vi;jC3=2; (12b)

for which expressions analogous to (9) can be derived. Again, for the computation
of the cross-flux f v;x

iC1=2;jC1=2 we solve the homogeneous local BVP :

.Uv � �vx/x D 0; xi � x � xiC1; y D yjC1=2;

v.xi; yjC1=2/ D vi;jC1=2; v.xiC1; yjC1=2/ D viC1;jC1=2:

In the following section we test the flux schemes described in this section for the
lid-driven flow.

4 Numerical Results

In this section we apply the flux schemes to the flow in a lid-driven cavity, in order
to assess the accuracy of the scheme. The lid-driven cavity flow is well suited to
investigate the effects of including the cross-flux term in the source term. We use
the results from Ghia-Ghia-Shin [5] as the reference. Figures 3 and 4 show the u-
velocity profile along the vertical center-line of the cavity. In Fig. 3 we compare the
homogeneous flux scheme, the 1-D flux scheme (including the pressure-gradient
as the source term), and the 2-D flux scheme (including both cross-flux and the
pressure-gradient), computed on a coarse 20�20 grid, with the finer grid (128�128)
Ghia-Ghia-Shin solution for Re D 100. Since the pressure gradient is practically
zero across the domain, we do not see much difference between the homogeneous
and the 1-D flux scheme. However the inclusion of the cross-flux term in the source
term gives us a higher accuracy.

Next, we compare the flux scheme with the CD scheme for Re D 400, (see
Fig. 4). Again we compare the coarse-grid solution (20 � 20) with the Ghia-Ghia-
Shin results. We can observe that the flux schemes exhibit higher accuracy compared
to the CD scheme. The difference between the flux schemes becomes very small,
with the 2-D flux scheme still being more accurate than the others though.
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Fig. 3 u-velocity profiles along the vertical centerline of the cavity for Re D 100
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Fig. 4 u-velocity profiles along the vertical centerline of the cavity for Re D 400
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5 Conclusion

In the preceding sections we presented methods for the approximation of the fluxes
derived from local BVPs. The computed flux is the sum of a homogeneous and an
inhomogeneous part. The homogeneous part is a weighted mean of the UW and CD
scheme and the inhomogeneous part depends on the source term in the BVP, i.e.,
the pressure-gradient and the cross-flux gradient. The inclusion of the source terms
provides higher accuracy to the flux approximation schemes, as observed from the
case of lid-driven cavity flow.

The scheme can be further extended by including the time derivative of the
velocity-component in the source term in the local BVP for the flux computation,
giving the transient flux scheme (TFS). The TFS combined with implicit Runge-
Kutta methods, should provide an accurate temporal discretisation method.
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