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Abstract We present an extension of the complete flux scheme for conservation
laws containing a linear source. In our new scheme, we split off the linear part of the
source and incorporate this term in the homogeneous flux, the remaining nonlinear
part is included in the inhomogeneous flux. This approach gives rise to modified
homogeneous and inhomogeneous fluxes, which reduce to the classical fluxes for
vanishing linear source. On the other hand, if the linear source is large, the solution
of the underlying boundary value problem is oscillatory, resulting in completely
different numerical fluxes. We demonstrate the performance of the homogeneous
flux approximation.

1 Introduction

Conservation laws are ubiquitous in science and engineering, describing a wide
variety of phenomena, such as chemically reacting flow, electrical discharges in
gases, transport in porousmedia etc. These conservation laws are often of advection-
diffusion-reaction type, describing the interplay between different processes such
as advection or drift, diffusion or conduction and (chemical) reactions or impact
ionization. We restrict ourselves to stationary conservation laws.

Numerical simulation of these equations requires sophisticated space discretiza-
tion methods and efficient (iterative) solvers for the resulting algebraic system.
For space discretization of the conservation law we employ the finite volume
method (FVM); see [2] for a detailed account. For the numerical fluxes in the
discrete conservation law there exist many schemes. Basic schemes are the central
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difference and upwind schemes. The central difference scheme is prone to spurious
oscillations for dominant advection while the upwind discretization is too diffusive.
To remedy this, exponentially fitted schemes were introduced, see [6] and the
many references therein. These schemes combine the central difference and upwind
schemes in such a way that the resulting discretization reproduces the exact solution
of a local one-dimensional and homogeneous boundary value problem (BVP).
Exponentially fitted schemes are especially useful for singularly perturbed problems
[4]. Moreover, these schemes are applied in various disciplines in computational
physics, such as the numerical simulation of reactive flow or plasmas. In the field
of semiconductor device simulation the exponetially fitted scheme is often referred
to as the Scharfetter-Gummel scheme; see e.g. [7] for a general introduction. An
ingenious generalization to nonlinear convection-diffusionproblemswas introduced
in [3], where an (iterative) procedure is proposed to compute the numerical flux
from a nonlinear, but homogeneous, BVP. Another generalization is the complete
flux scheme, where the flux is derived from a local BVP for the entire equation,
including the source term [8]. Consequently, the numerical flux can be written as
the superposition of a homogeneous flux, which is the exponentially fitted flux
corresponding to the advection-diffusion operator, and an inhomogeneous flux,
taking into account the effect of the source term.

In this contribution, we extend the derivation of the complete flux scheme
to conservation laws containing a linear source. We split off the linear part and
incorporate this term in the homogeneous flux. To that purpose, we solve the
corresponding homogeneous boundary value problem, which describes the balance
between advection, diffusion and a linear source. The remaining (nonlinear) part
of the source is included in the inhomogeneous flux, as usual. The modified
homogeneous and inhomogeneous fluxes reduce to the classical fluxes when the
linear source vanishes. On the other hand, for a dominant linear source, the solution
of the underlying boundary value problem exhibits oscillatory behaviour, resulting
in completely different fluxes. A similar scheme is presented in [5] for the special
case that the characteristic equation of the local BVP has two distinct real roots. Our
scheme also allows for double real or complex (conjugate) roots.

Thus, we consider the model advection-diffusion-reaction equation

d

dx

�
u' � "

d'

dx

�
D c' C s.'/; (1)

where, for example, u is an advection velocity, " � "min > 0 a diffusion coefficient,
c' the linear part of the source, and s.'/ the remaining (nonlinear) source. The
unknown ' might be the mass fraction of one of the constituent species in a reacting
flow or plasma. Associated with (1) we introduce the flux f , which is defined by

f D u' � "
d'

dx
: (2)
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The conservation law (1) can be concisely written as df=dx D c' C s.'/ with
the flux f defined in (2). In the FVM we cover the domain with a finite number
of control volumes (cells) Ij of size �x. We choose the grid points xj, where the
variable ' has to be approximated, in the cell centres. Consequently, we have Ij WD
Œxj�1=2; xjC1=2� with xjC1=2 WD 1

2
.xj C xjC1/. Integrating the equation over Ij and

applying the midpoint rule for the integral of c' C s.'/, we obtain the discrete
conservation law

FjC1=2 � Fj�1=2 D �x
�
c 'j C s.'j/

�
; (3)

where FjC1=2 and 'j are the numerical approximation of the flux f at the cell edge
xjC1=2 and of the unknown ' at the grid point x D xj, respectively. The complete
flux approximation FjC1=2 is the sum of the homogeneous flux Fh

jC1=2 and the

inhomogeneous flux Fi
jC1=2, i.e.,

FjC1=2 D Fh
jC1=2 C Fi

jC1=2

D ˛jC1=2'j � ˇjC1=2'jC1 C �x
�
�jC1=2s.'j/ C ıjC1=2s.'jC1/

�
:

(4)

The coefficients ˛jC1=2 and ˇjC1=2 depend on the homogeneous differential operator,
containing the advection-diffusion operator as well as the linear source, and the
coefficients �jC1=2 and ıjC1=2 depend on the nonlinear source s.'/.

We have organized our paper as follows. In Sect. 2 we derive expressions for
the homogeneous flux, and subsequently in Sect. 3, we outline the derivation of
the inhomogeneous flux. For the latter we reformulate equation (1) and relation (2)
together as a first order ODE-system. In Sect. 4 we demonstrate the performance of
the homogeneous flux scheme, and finally we present conclusions in Sect. 5.

2 Modification of the Homogeneous Flux

In this section we present the extension of the homogeneous flux scheme to
equation (1). We assume in the sequel of this paper that u, " and c are constant.
The expression for the homogeneous flux Fh

jC1=2 is then derived from the following
local BVP

"' 00 � u' 0 C c' D 0; xj < x < xjC1; (5a)

'.xj/ D 'j; '.xjC1/ D 'jC1; (5b)

including the linear source term c', where the prime .0/ denotes differentiation
with respect to x. Although the source term c' is included, we refer to the
resulting numerical flux as homogeneous, since equation (5a) is homogeneous. The
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inhomogeneous flux takes into account the effect of the nonlinear source s.'/ and
will be discussed in the next section.

The characteristic equation of equation (5a) reads "�2 � u� C c D 0 and has
discriminant D D u2 � 4"c. Let us introduce the auxiliary variables

d D "c

u2
; P D u�x

"
; S D

r
jcj
"

�x: (6)

In (6), P is the well-known Péclet number and S is a dimensionless parameter
measuring the reaction-diffusion ratio. Moreover, in the presentation that follows
we encounter the following functions:

B.z/ D z

ez � 1
; sinhc.z/ D sinh.z/

z
; sinc.z/ D sin.z/

z
: (7)

Based on the sign of the discriminant D, we can distinguish the following three
cases. First, for D > 0, or equivalently d < 1

4
, the characteristic equation has two

distinct real roots � D u.1 ˙ r/=.2"/ with r D p
1 � 4d. We can solve the BVP (5)

and subsequently compute the numerical flux from (2). We find

Fh
jC1=2 D "

�x

�
C.PI r/B.�Pr/'j � C.�PI r/B.Pr/'jC1

�
; (8a)

C.PI r/ D eP.1�2r/=4
�
cosh

�
1
4
Pr
�C 1

4
P sinhc

�
1
4
Pr
��

: (8b)

Note that the numerical flux in (8) is reminiscent of the classical homogeneous
flux, and contains ‘correction factors’ C.PI r/ and C.�PI r/. Second, for D D 0,
and hence d D 1

4
and r D 0, the characteristic equation has the double real root

� D u=.2"/. We find for the numerical flux

Fh
jC1=2 D "

�x

�
C.P/'j � C.�P/'jC1

�
; (9a)

C.P/ D eP=4
�
1 C 1

4
P
�
: (9b)

Note that the numerical flux (8) reduces to (9) for r D 0. Finally, for D < 0, or
equivalently d > 1

4
, the characteristic equation has two complex (conjugate) roots

� D u.1˙ir/=.2"/with r D p
4d � 1. We simply have to replace in the expressions

in (8) r by ir. For the numerical flux, for example, we find

Fh
jC1=2 D "

�x

�
C.PI ir/B.�iPr/'j � C.�PI ir/B.iPr/'jC1

�
; (10)
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so it seems as if the numerical flux is complex-valued! However, using Euler’s
formula, we can show that the numerical flux is real and is given by

Fh
jC1=2 D "

�x

�
C.PI r/'j � C.�PI r/'jC1

�
; (11a)

C.PI r/ D eP=4
cos

�
1
4
Pr
�C 1

4
P sinc

�
1
4
Pr
�

sinc
�

1
2
Pr
� : (11b)

Note that this expression is valid provided 1
2
jPjr < � .

It is interesting to investigate some limiting cases. First, for c D 0, we have
D > 0, r D 1 and recover the well-known homogeneous numerical flux for the
advection-diffusion equation given by

Fh
jC1=2 D "

�x

�
B.�P/'j � B.P/'jC1

�
; (12)

see [8]. Next, for " D 0 equation (1) is an advection-reaction equation and we also
have D > 0 and r D 1. The numerical flux (8) reduces to the upwind flux. Finally,
for u D 0 equation (1) is a diffusion-reaction equation and we have P D 0 and
D D �4"c. Consequently, we have to distinguish two different cases, i.e., c < 0 and
c > 0. First, for c < 0 it is obvious that D > 0 and the numerical flux (8) reduces to

Fh
jC1=2 D � "

�x

'jC1 � 'j

sinhc
�

1
2
S
� : (13)

Finally, for c > 0 and D < 0 the numerical flux (11) is given by

Fh
jC1=2 D � "

�x

'jC1 � 'j

sinc
�

1
2
S
� ; (14)

provided 1
2
S < � . Both expressions are in fact the central difference approximation

of the flux divided by the correction factor sinhc
�

1
2
S
�
or sinc

�
1
2
S
�
. Alternatively, we

could have computed these numerical fluxes directly from the BVP (5) with u D 0.

3 Modification of the Inhomogeneous Flux

In this section we outline the modification of the inhomogeneous flux for equa-
tion (1); a more elaborate discussion will be presented elsewhere. To derive the
integral representation for the inhomogeneous flux, it is convenient to reformulate
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equation (1) coupled with expression (2) for the flux as the first order ODE-system

v0 D Av C b; xj < x < xjC1; (15a)

'.xj/ D 'j; '.xjC1/ D 'jC1; (15b)

where v, A, and b are given by

v D
�

'

f

�
; A D

 
u
"

� 1
"

c 0

!
; b D

�
0

s.'/

�
: (15c)

This formulation is somewhat unusual, since the second component of v is the flux,
for obvious reasons, instead of the derivative ' 0. The fundamental matrix

V D
 

'1 '2

f1 f2

!
(16)

corresponding to (15) satisfies the BVP

V0 D AV; xj < x < xjC1; (17a)

'1.xj/ D 1; '1.xjC1/ D 0; '2.xj/ D 0; '1.xjC1/ D 1: (17b)

Note that only boundary conditions for the unknown ' are specified. A straightfor-
ward derivation shows that for D > 0 the solutions '1.x/ and '2.x/ are given by

'1.x/ D eP�.x/=2
sinh

�
1
2
Pr.1 � �.x//

�

sinh
�

1
2
Pr
� ; (18a)

'2.x/ D e�P.1��.x//=2
sinh

�
1
2
Pr�.x/

�

sinh
�

1
2
Pr
� ; (18b)

where �.x/ D .x � xj/=�x is the normalized coordinate on .xj; xjC1/. The
corresponding (homogeneous) fluxes f1.x/ and f2.x/ can be readily determined
from (2). Similar expressions hold for D D 0 or D < 0.

Applying variation of constants, we can derive the following representation of
the solution of (15), see also [1]:

v.x/ D V.x/r C
Z xjC1

xj

G.xI y/b.y/ dy; r D
�

'j

'jC1

�
; (19)
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with G.xI y/ the Green’s function given by

G.xI y/ D �
"W.'1; '2/.y/

��1

8
ˆ̂̂̂
<̂
ˆ̂̂
ˆ̂:

 
�'1.x/f2.y/ '1.x/'2.y/

�f1.x/f2.y/ f1.x/'2.y/

!
for xj < y � x;

 
�'2.x/f1.y/ '2.x/'1.y/

�f2.x/f1.y/ f2.x/'1.y/

!
for x < y < xjC1:

(20)
In (20),W.'1; '2/ is the Wronskian of '1 and '2, which for D > 0 is given by

W.'1; '2/ D
ˇ̌
ˇ̌
ˇ
'1 '2

' 0
1 ' 0

2

ˇ̌
ˇ̌
ˇ D 1

�x

eP.�.x/�1=2/

sinhc
�

1
2
Pr
� : (21)

Note that the relations (19), (20), and (21) define the complete solution, i.e., the
unknown ' and the flux f , on the entire interval Œxj; xjC1�. However, we are only
interested in the flux at the interface x D xjC1=2. The second component of the term
V.xjC1=2/r is the homogeneous flux Fh

jC1=2 as detailed in the previous section. The

inhomogeneous flux f i.xjC1=2/ is the second component of the inhomogeneous term
in (19) evaluated at xjC1=2 and reads

f i.xjC1=2/ D 1

"
Fh

1;jC1=2

Z xjC1=2

xj

'2.x/s.x/

W.'1; '2/.x/
dx

C 1

"
Fh

2;jC1=2

Z xjC1

xjC1=2

'1.x/s.x/

W.'1; '2/.x/
dx:

(22)

The flux values Fh
1;jC1=2 and Fh

2;jC1=2 correspond to f1.x/ and f2.x/ and follow
readily from the expressions (8), (9) or (11) by substituting 'j D 1; 'jC1 D 0 or
'j D 0; 'jC1 D 1, respectively. Applying suitable quadrature rules, we can derive
expressions for the numerical inhomogeneous flux Fi

jC1=2.

4 Numerical Example

As an example we apply the modified homogeneous flux scheme to the following
model problem

d

dx

�
u' � "

d'

dx

�
D c'; 0 < x < L; (23a)

'.0/ D 'L; '.L/ D 'R: (23b)
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Fig. 1 Boundary layer solution: numerical solutions (left) and error plots (right). Parameter values
are u D �1, " D 10�2, c D 2, and �x D 10�1

Fig. 2 Oscillatory solution: numerical solutions (left) and error plots (right). Parameter values are
u D 1, " D 0:5, and c D 2 � 102, and �x D 2:5 � 10�3

We consider two cases, viz. a boundary layer solution, characterized by dominant
advection, and an oscillatory solution, for which the source term is dominant. For
the first solution D > 0 and we employ the numerical flux (8), whereas for the
second solution we apply the numerical flux (11) since D < 0.

To assess the (order) of accuracy of the modified scheme, we define the average
discretization error e.�x/ D �xjj' � '�jj1, with '� the exact solution of (23)
restricted to the grid. A representative numerical solution and the average discretiza-
tion error as function of the grid size are shown in the figures above. From the Fig. 1,
we conclude that for the boundary layer solution the modified homogeneous flux
scheme is much more accurate than the standard scheme, although both schemes
exhibit second order convergence. On the other hand, for the oscillatory solution,
the modified scheme is slightly better, as is evident from Fig. 2. Further research is
needed to investigate this issue further.

5 Concluding Remarks

In this contribution we derived a new complete flux approximation scheme for
conservation laws containing a linear source. We included the linear source in the
homogeneous differential operator to determine the homogeneous flux. The inho-
mogeneous flux contains the effect of the remaining (nonlinear) part of the source.
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In the derivation of the inhomogeneous flux, we reformulated the conservation law
coupled with the expression for the flux as a first order ODE-system. First numerical
results are encouraging, however, more testing is needed.

To be relevant for practical applications, the scheme should be extended to (at
least) two-dimensional problems. This can be achieved if we include the cross-
flux term as an additional source in the one-dimensional model BVP. To close the
discretization, we employ the homogeneous flux scheme for the cross flux; see [8]
were this idea is elaborated for the original CF scheme.
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