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Abstract We apply continuous and discontinuous Galerkin time discretization
together with standard finite element method for space discretization to the heat
equation. For the numerical solution arising from these discretizations we present
a guaranteed and fully computable a posteriori error upper bound. Moreover, we
present local asymptotic efficiency estimate of this bound.

1 Introduction

We consider the heat equation, which represents a model problem to more general
linear parabolic problems. We discretize this problem by standard finite element
method in space and by either continuous or discontinuous Galerkin method in time.

Recently, time discretizations of Galerkin type start to be very popular. They
represent higher order and very robust schemes for solving ordinary differential
equations. When combined with classical Galerkin space discretizations, e.g. with
finite element method (FEM), it is possible to analyze the complete discretization
in a unified framework. For a survey about Galerkin time discretizations see [1]
and [2]. A nice result presenting the connection of these discretizations to classical
Runge–Kutta methods can be found in [8].

In this paper we shall focus on a posteriori error analysis of proposed problem.
Our aim is to present a guaranteed, cheap and fully computable upper bound
to chosen error measure that provides local efficiency at least asymptotically.
To achieve these properties we use the technique of so-called equilibrated flux
reconstruction, see e.g. [5]. We have been influenced by [4], where lower order
time discretizations are considered, and by [2], where Galerkin time discretizations
are analyzed and nodal superconvergence is derived via a posteriori error estimates.
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2 Continuous Problem

Let ˝ � Rd (d D 1; 2; 3) be a bounded polyhedral domain with Lipschitz
continuous boundary @˝ and T > 0. Let us consider the following initial–boundary
value problem

@u

@t
��u D f in ˝ � .0;T/; (1)

u D 0 in @˝ � .0;T/;
u D u0 in ˝:

We assume that the right-hand side f 2 C.0;T;L2.˝// and the initial condition
u0 2 L2.˝/.

Let .:; :/ and k:k be the L2.˝/-scalar product and norm, respectively. Let us
denote the time derivative u0 D @u

@t . We define spaces X D L2.0;T;H1
0.˝// and

Y D fv 2 X W v0 2 L2.0;T;L2.˝//g; (2)

Y0 D fv 2 X W v0 2 L2.0;T;L2.˝//; v.0/ D u0g:

It is well known that the spaces Y and Y0 are subsets of C.Œ0;T�;L2.˝//.

Definition 1 We call u 2 Y0 the weak solution of problem (1), if

Z T

0

. f ; v/ � .u0; v/ � .ru;rv/dt D 0; 8v 2 X: (3)

We assume that there exists a unique weak solution of problem (3).

3 Discretization

We consider a space partition Th consisting of a finite number of closed, d -
dimensional simplices K with mutually disjoint interiors and covering ˝, i.e.
˝ D [K2ThK. We assume conforming properties, i.e. neighbouring elements share
an entire edge or face. We set hK D diam.K/ and h D maxKhK . By �K we denote the
radius of the largest d-dimensional ball inscribed into K. We assume shape regularity
of elements, i.e. hK=�K � C for all K 2 Th, where the constant does not depend on
Th for h 2 .0; h0/.

We set the space for the semidiscrete solution

Xh D fv 2 H1
0.˝/ W vjK 2 Pp.K/g; (4)
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where Pp.K/ denotes the space of polynomials up to the degree p � 1 on K. We
define˘ p

˝ W H1
0.˝/ ! Xh to be the L2-orthogonal projection.

In order to discretize problem (3) in time, we consider a time partition 0 D
t0 < t1 < : : : < tr D T with time intervals Im D .tm�1; tm/, time steps �m D
jImj D tm � tm�1 and � D maxmD1;:::;r �m. Let .:; :/K;m and .:; :/K be the local L2-
scalar products over K � Im and K, respectively, and k:kK;m be the local L2.K � Im/-
norm. In the forthcoming discretization process we will assume two variants of the
time discretization, the conforming and the nonconforming one. In the conforming
case, the approximate solution will be sought in the spaces of piecewise polynomial
functions

Y�0h D fv 2 Y W vjIm D
qC1X
jD0

vj;mt
j; vj;m 2 Xh; v.0/ D ˘

p
˝u

0g (5)

and in the nonconforming case in the space

X�h D fv 2 X W vjIm D
qX

jD0
vj;mt

j; vj;m 2 Xhg: (6)

The spaces Y�0h and X�h represent natural discrete spaces to Y0 and X, respectively.
The space Y�0h consists of functions that are one degree higher in time than
the functions from the space X�h . On the other hand the functions from Y�0h are
continuous with respect to time with fixed starting value at 0. Altogether, both these
spaces have the same dimension r.q C 1/ dimXh.

For a function v 2 X�h we define the one–sided limits

vm˙ D v.tm˙/ D lim
t!tm˙ v.t/ (7)

and the jumps

fvgm D vmC � vm�; m � 1 and fvg0 D v0C � u0: (8)

We omit the subscript ˙ for continuous functions v 2 Y, since v.tm˙/ D v.tm/.
Now, we are able to formulate two variants of discrete schemes – the conforming

version:

Definition 2 We say that the function u�h 2 Y�0h is the discrete solution of
problem (3) obtained by time continuous Galerkin – finite element method (cG–
FEM), if the following conditions are satisfied

Z
Im

..u�h/
0; v/C .ru�h;rv/dt D

Z
Im

.f ; v/dt (9)

8m D 1; : : : ; r; 8v 2 X�h ;
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and the nonconforming version:

Definition 3 We say that the function u�h 2 X�h is the discrete solution of problem (3)
obtained by time discontinuous Galerkin – finite element method (dG–FEM), if the
following conditions are satisfied

Z
Im

..u�h/
0; v/C .ru�h;rv/dt C .fu�hgm�1; vm�1C / D

Z
Im

.f ; v/dt (10)

8m D 1; : : : ; r; 8v 2 X�h :

It is evident that the exact solution u 2 Y0 defined by (3) satisfies both relations (9)
and (10).

The methods (9) and (10) can be viewed as a generalization of classical one–
step methods for parabolic problems. It is possible to show that setting q D 0,
i.e. piecewise linear continuous approximation in time for cG–FEM or piecewise
constant approximation in time for dG–FEM, is equivalent (up to suitable quadrature
of the right–hand side) to Crank–Nicolson, resp. backward Euler method, in time
and FEM in space.

4 A Posteriori Error Analysis

In this section we shall propose suitable error measure and derive a posteriori error
estimate of this measure.

4.1 Error Measure

Let dK;m > 0 be an arbitrary parameter associated with space-time element K � Im,
e.g. d2K;m D h2K C �2m or dK;m D 1 or dK;m D hK or d2K;m D .h�2

K C ��2
m /�1. Let us

define the space

Y� D fv 2 X W v0jIm 2 L2.Im;L
2.˝//g (11)

of piecewise continuous functions with respect to time. We define the norm

kvk2Z;K;m D h2Kkrvk2K;m C �2mkv0k2K;m
d2K;m

; kvk2Z D
X
K;m

kvk2Z;K;m: (12)
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Since Y� � X, we gain from (3) that the exact solution u 2 Y satisfies

Z
Im

.f ; v/ � .u0; v/ � .ru;rv/dt � .fugm�1; vm�1C / D 0 (13)

8m D 1; : : : ; r; 8v 2 Y� :

The existence of the solution u of problem (13) comes clearly from the existence
of the solution of problem (3). We shall focus on uniqueness of the solution
of problem (13). Let us assume that there exists another solution u1 2 Y� of
problem (13). After subtracting the equation for u from the equation for u1 and
setting v D 2.u � u1/ we gain

0 D
Z
Im

2.u0 � u0
1; u � u1/C 2kr.u � u1/k2dt (14)

C2.fu � u1gm�1; .u � u1/
m�1C /

D k.u � u1/
m�k2 � k.u � u1/

m�1� k2 C kfu � u1gm�1k2

C2
Z
Im

kr.u � u1/k2dt

Summing this relation over m D 1; : : : ; r and using the fact u0� D u0 D u01� we gain

k.u � u1/
r�k2 C

rX
mD1

kfu � u1gm�1k2 C 2

Z T

0

kr.u � u1/k2dt D 0; (15)

which implies u D u1.
It is natural to define error measure EST for both variants of discretization as

residual of (13)

EST.w/ D sup
0¤v2Y�

1

kvkZ

 X
K;m

.f ; v/K;m � .w0; v/K;m (16)

�.rw;rv/K;m � .fwgm�1; vm�1C /K

!

for w 2 X�h .
It is possible to show that the uniqueness of the solution of problem (13) implies

that EST.u�h/ D 0, if and only if u�h is equal to the exact solution u.
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4.2 Reconstruction of the Solution with Respect to Time

Since the exact solution u 2 Y0 � C.Œ0;T�;L2.˝//, i.e. u is continuous in time
and u.0/ D u0, we will reconstruct the discrete solution u�h in such a way, that the
reconstruction satisfies these properties too. For conforming variant of discretization
(cG-FEM) this task is easier, since the solution is already continuous in time, but
the initial condition can still be violated. For nonconforming version we need to
reconstruct for both reasons.

Let rm 2 PqC1.Im/ be the right Radau polynomial on Im, i.e. rm.tm�1/ D
1, rm.tm/ D 0 and rm is orthogonal to Pq�1. Then there exists a polynomial
reconstruction R�h D R�h.u

�
h/ for both variants of discretization such that

R�h.t/ D u�h.t/ � fu�hgm�1rm.t/; 8t 2 Im: (17)

Since the cG-FEM solution u�h is continuous in time, the reconstruction R�h is equal
to u�h except I1. It is still necessary to reconstruct the discrete initial condition˘ p

˝u
0

on I1, see (8).
The resulting function R�h is continuous in time and satisfies the initial condition,

i.e. R�h 2 Y0. Moreover,

Z
Im

..R�h/
0; v/dt D

Z
Im

..u�h/
0; v/ � r0

m.fu�hgm�1; v/dt

D
Z
Im

..u�h/
0; v/dt C

Z
Im

rm.fu�hgm�1; v0/dt (18)

�rm.tm/.fu�hgm�1; vm�/C rm.tm�1/.fu�hgm�1; vm�1C /

D
Z
Im

..u�h/
0; v/dt C .fu�hgm�1; vm�1C /; 8v 2 Pq.Im;L

2.˝//:

Such a reconstruction is used to show the equivalence among Radau IIA Runge–
Kutta method, Radau collocation method and discontinuous Galerkin method. For
the details see, e.g. [6] and [7]. Such a reconstruction is also used for proving a
posteriori nodal superconvergence in [2].

4.3 Reconstruction of the Solution with Respect to Space

It is possible to show that the exact solution satisfies ru 2 L2.0;T;H.div//. Since
ru�h … L2.0;T;H.div// in general, we reconstruct also ru�h. Let
RTNp.K/ be the Raviar-Thomas-Nedelec space of order p, i.e. RTNp.K/ D
Pp.K/d C xPp.K/. Let us denote the patch Ta D S

a2K K of vertex a. Then we
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can define RTN spaces on Ta

RTNN;0
p .Ta/ D fv 2 RTNp.Ta/ W v � n D 0 8e � @Tag; a … @˝; (19)

RTNN;0
p .Ta/ D fv 2 RTNp.Ta/ W v � n D 0 8e � @Ta n @˝g; a 2 @˝:

Let us denote by Pp�.Ta/ piecewise polynomials of order p for a 2 @˝ . Moreover,
Pp�.Ta/ consists of functions with zero mean value for a … @˝ . Let us denote  a

piecewise linear “hat” function associated with vertex a with  .a/ D 1,  D 0 on
@Ta.

We formulate space–time version of patch–wise reconstruction from [3]. We seek
��a jTa�Im 2 Pq.Im;RTNN;0

p .Ta// and r�a 2 Pq.Im;P
p�.Ta// such that

.��a ; v/Ta;m � .r�a ;r � v/Ta;m D . aru�h; v/Ta;m; (20)

8v 2 Pq.Im;RTN
N;0
p .Ta//;

.r � ��a ; q/Ta;m D . a.f � .R�h/
0/; q/Ta;m C .r a � ru�h; q/Ta;m;

8q 2 Pq.Im;P
p�.Ta//:

Then

��h D
X
a

��a : (21)

The reconstructions ��a and ��h , exist and satisfy

0 D .f � .R�h/
0 C r � ��h ; v/K;m (22)

D .f � .u�h/
0 C r � ��h ; v/K;m � .fu�hgm�1; vm�1C /K ;

8v 2 Pq.Im;P
p.K//:

4.4 Upper Error Bound

In this section we will present a posteriori upper bound for EST.u�h/, i.e. we will
present the estimate of EST.u�h/ in terms of data f and u0, discrete solution u�h (both
versions of time discretizations are covered) and functionsR�h and ��h that are derived
and easily computable from the discrete solution u�h.

Theorem 4 (Upper error bound) Let u 2 Y0 be the solution of (3) and u�h 2 X�h
be arbitrary. Let R�h be the reconstructions obtained from u�h by (17) and ��h be the
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reconstruction obtained from u�h by (20) and (21). Then

EST.u�h/ �
 X

K;m

�
dK;m
�

k f � .R�h/
0 C r � ��h kK;m C

dK;m
hK

k��h � ru�hkK;m C dK;m
�m

k.R�h � u�h/
0kK;m

�2!1=2
(23)

The proof of Theorem 4 is a straightforward application of (17) and (22), but it is
quite long. For this reason we omit it.

4.5 Asymptotic Lower Error Bound

The goal of this section is to show that the local individual terms from a posteriori
estimate (23) are locally effective, i.e. provide a local lower bound to EST.u�h/, at
least in asymptotic sense.

To be able to apply the result in a local way, we need following notation. Let
TK be a patch consisting of elements surrounding K and K itself. Let M � ˝, e.g.
M D K or M D TK . We define local version of space Y�

Y�M;m D fv 2 Y� W supp.v/ � M � Img; (24)

and local version of EST.w/

ESTM;m.w/ D sup
0¤v2Y�M;m

1

kvkZ

 X
K;m

.f ; v/K;m � .w0; v/K;m (25)

�.rw;rv/K;m � .fwgm�1; vm�1C /K

!
:

For the purpose of the effectivity analysis let us assume that f is a space–time
polynomial. Otherwise, it is necessary to deal with the classical oscillation term.

Theorem 5 (Local effectivity estimate) Let u 2 Y0 be the solution of (3) and
u�h 2 X�h be arbitrary. Let R�h be the reconstructions obtained from u�h by (17) and
��h be the reconstruction obtained from u�h by (20) and (21). Let f be a space–time
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polynomial. Then there exists a constant C > 0 such that

d2K;mkf � .R�h/
0 � r � ��h k2K;m C d2K;m

�2m
kR�h � u�hk2K;m (26)

Cd2K;m
h2K

k��h � ru�hk2K;m � CESTTK ;m.u
�
h/
2:

The proof of Theorem 5 is very technical and quite long. For these reasons we shall
skip it in this paper.
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