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Abstract In this paper we investigate the stability of the space-time discontinuous
Galerkin method (STDGM) for the solution of nonstationary, linear convection-
diffusion-reaction problem in time-dependent domains formulated with the aid of
the arbitrary Lagrangian-Eulerian (ALE) method. At first we define the continuous
problem and reformulate it using the ALE method, which replaces the classical
partial time derivative with the so called ALE-derivative and an additional con-
vective term. In the second part of the paper we discretize our problem using the
space-time discontinuous Galerkin method. The space discretization uses piecewise
polynomial approximations of degree p > 1, in time we use only piecewise linear
discretization. Finally in the third part of the paper we present our results concerning
the unconditional stability of the method.

1 Formulation of the Continuous Problem

We consider an initial-boundary value nonstationary, linear convection-diffusion-
reaction problem in a time-dependent bounded domain:
Find a function u = u(x, r) with x € £2;, t € (0, T) such that

d
81:+U-Vu—eAu+cu:g in £, te€(0,7), €))
u=up on 0982, 1€ (0,7), 2)
u(x,0) = u’(x), xe . 3)

We assume that v = (vy,v2), ¢, g, up, u® are given functions and € > 0 is a
given constant. Moreover let Or = {(x,1); t € (0,T), x € £2,}, and let us assume
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that there exist constants ¢,, c¢. > 0, such that

v e C(0,T]; Wh*°(2), |[Vv| <cp, [v|<c, in Or,
c € C([0,T],L*($2))), |c(x,0)| <c. in OQr.
Problem (1)—(3) will be reformulated using the so called arbitrary Lagrangian-

Eulerian (ALE) method. It is based on a regular one-to-one ALE mapping of the
reference domain £2( onto the current configuration £2;:

o 20 — 824,
XeRy—>x=x(X,t) = HX) € 2,, te]0,T].
We assume that o7, € C'([0,T]; W'*°(£2,)), i.e. the mapping .27 belongs to the

Bochner space of continuously differentiable functions in [0, 7] with values in the
Sobolev space W (£2,). We define the ALE velocity by

W= S, (€0T) X e,
zZ(x, 1) = Z(Jz{r_l(x), 1, tel0,7T)], x € £2,.

Let |z(x,?)|, |divz(x,7)| < ¢, forx € §2,, t € (0, T). Further, we define the ALE
derivative D, f = Df /Dt of a function f = f(x, ) forx € £2; and r € [0, T] as

of
ot (Xv t)a

D
D, , 1) = , 1) =
)= | fe0)
where f(X,1) = f((X).1), X € 2, and x = 7 (X) € £2,. The use of the chain
rule yields the relation

Df _of
Dt_8t+z'vf’ )

which allows us to reformulate problem (1)—(3) in the ALE form:
Find u = u(x, ) withx € £2;, t € (0, T) such that

Du+ wv—-2z)-Vu—€eAu+cu=g in £, te(0,7), (&)
u=up on 038, (6)
u(x,0) = u’(x), xe 2. @)

In what follows, we shall use the notation w = v — z for the ALE transport
velocity.

Numerical methods for linear convection-diffusion-reaction equations in a
domain §2 independent of time were analyzed e.g. in [5]. In the case, when
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problem (1)—(3) is considered in a fixed domain, error estimates for the space-
time discontinuous Galerkin discretization were derived in [4]. These results were
generalized to the case of nonlinear convection and diffusion (cf. [3]). The paper [1]
is devoted to the proof of unconditional stability of the space-time discontinuous
Galerkin method (STDGM) applied to nonlinear convection-diffusion problems.
The STDGM was used with success for the numerical solution of compressible
flow in time-dependent domains and also for the dynamical linear and nonlinear
elasticity (see [3]). In [2], the stability of the time discontinuous Galerkin semi-
discretization of problem (5)—(7) was analyzed. Here we are concerned with the
investigation of the stability of the complete STDGM applied to problem (5)—(7) in
a time-dependent domain.

2 Space-Time Semidiscretization

In the time interval [0, 7] we construct a partition formed by time instants 0 = #y <
t <...<ty=Tandsetl, = (t,—1,tm) and 7, = t,, — t,— for m=1,..., M.
Further we set T = max,,=1... » T,y. For a function ¢ defined in szl I, we denote
one-sided limits at ,, as = = @(t,,£) = lim,—,, + ¢() and the jump as {¢}, =
P(tm+) — @(tm—).

For any ¢t € [0, T] we denote by ., a partition of the closure §2, into a finite
number of closed triangles with mutually disjoint interiors. We set hx = diam(K)
for K € 9. The boundary of the domain will be divided into two parts: 952, =

9827 U QT

w(x, 1) -n(x) <0onds2,”,Vt e [0, T] (inflow boundary)
w(x,7) -n(x) > 0on 8[2,+, Yt € [0, T] (outflow boundary),

where n denotes the unit outer normal to K. Similarly for each K € .7, ; we set

0K~ (f) = {x € dK; w (x,1) -n (x) <0},
KT (1) = {x € 0K; w (x,1) -n (x) > 0}.

By %, we denote the system of all faces of all elements K € 7},,. It consists
of the set of all inner faces 3‘}{’, and the set of all boundary faces ﬂfr: Fny =
Fl,UFZE. Bach I € .7, will be associated with a unit normal vector n. By
K}L) and K;fe) € 9, we denote the elements adjacent to the face I' € .%;,,. We
shall use the convention that rr is the outer normal to BK}L) . Over a triangulation

T+, for each positive integer k, we define the broken Sobolev space H*(£2,, 7,,) =
{piplk € HY(K) VK € T}
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If p € H' (82, ;) and I" € %, then qo|§9, (pl(ﬁ) will denote the traces of ¢ on
I' from the side of elements K}L), K;F) adjacentto I'. For I € 3“,@ we set

1
(e =, (el +0I). lelr =0l - ol

I = for " €.7,,, MI)=huw forl e.F}.
: « :

If u, o € H*(£2,, 1), 0 € Rand cy > 0, we introduce the following forms.

Convection form:

bp(u, ¢, 1) = Z /Kw'Vugodx

KeTh,
— Z/ w - nup dS — Z/ w - nlu]p dS,
ke, ) K™ NI, Ke7,, Y OK™\o%
Diffusion form:

ap(u, ¢, 1) = Z /KVu'Vgodx

K€ T,

= % [ Vil + 0 (V) nr i) as

regj,
— Z / Vu-npo+6Vo-npru—0Vo-nrup) ds,
ke, 0K~
Interior and boundary penalty:

Iy =cw 3 ey [ diglas

rezi,

vow w7 [ ugas,

Kedh, OK— NSy
Ap(u, 0, 1) = eap(u, ¢, t) + € Jy(u, ¢, 1),
Reaction form:

cn(u, @, t) = Z /cmpdx,
K

KE T,
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Right-hand side form:
(g, 1) = Z /g(pdx+€cw Z W(Ir)™! / up ¢ ds.
ke, 'K rezf, r

Let us note that in integrals over faces we omit the subscript I". We consider
0 = 1,0 = 0and 6 = —1 and get the symmetric (SIPG), incomplete (IIPG)
and nonsymmetric (NIPG) variants of the approximation of the diffusion terms,
respectively.

Further, we set

1/2
(w,w)w=/gowdx, el = (/ |<p|2dx) ,

7l = | /1w -nln

20)’

where @ C R?, o is either a subset of 92 or 9K and n denotes the corresponding
outer unit normal to 952 or dK, provided the integrals make sense.

Let p, ¢ > 1 be integers. For any m = 1,...,M and t € [0, T] we define the
finite-dimensional spaces

Sh,= {0 € L*(R2); ¢lx € PP(K), K € F,, t € [0, T},
Sid = {¢ € L(Qr): ¢ = p(x.1), foreach X € 2
the function ¢(#(X), t) is a polynomial

of degree < gqint, ¢(-,t) € Si’[ foreveryt € I,,, m = 1,...,M}.

Definition 1 We say that function U is an approximate solution of problem (5)—(7),
if U e 8,7 and

/ (DU, @) g, + An(U,@.1) + by (U, @.1) + cin(U. ¢.1)) dt (8)
Im

F({ Ut 01D, :/ hWip.ndi Vo eS m=1,.. M,
IIV[

Uy €Shy. Uy —uvp) =0 Vv, €8h. )

3 Analysis of the Stability

In our further considerations for each ¢ € [0, 7] we introduce a system of conforming
triangulations {7} re(0.ny), Where by > 0. We assume that it is shape regular and
locally quasiuniform. Under these assumptions, the multiplicative trace inequality
and the inverse inequality hold.
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Moreover, we assume that .7, = {K; = 2%(Ky); Ko € T50}. This assumption
is usually satisfied in practical computations, when the ALE mapping <7 is a
continuous, piecewise affine mapping in £2, for each r € [0, T].

In the space H' (2, ;) we define the norm

1/2
lelloe: = | D 1l +In(@. 0.0
KE€Ths
Moreover, over 052 we define the norm
1/2
lupllpes: = | ew Y H'(I) ; lup|* dS

KeT, K— N2,

If we use ¢ := U as a test function in (8), we get the basic identity
/ (DU U)g, + AU, U 1) + by(U, U, 1) + c4(U, U, 1)) dt -~ (10)
Im

+({Un-1.U e, =/ (U, 1) dt.

Let us denote

1
o) =, X (IUlbaxrae + 1 i) - an
KET),

For a sufficiently large constant cy, whose lower bound is determined by the
constants from the multiplicative trace inequality, inverse inequality and local
quasiuniformity of the meshes, we can prove the coercivity of the diffusion and
penalty terms:

€ €
/ AU, U, 1)ydt > / U5, dt — / lupl|Bes, dr. (12)
I 2/, 2 /i,

Furthermore, if k; > 0, then the following inequalities for the convective term,
reaction term and for the right-hand side form hold:

by(U,U, 1) = o(U) — ;/ UV -w dx, (13)

e

/ ln(U, U, 0)|di < c. / VU1, dr (14)
Ly I
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1
[ mw.ntac= [ (el + 101 a (1s)

I"’l
2 € 2
vetr [ Nuolap e+ [ 101,
In'l In'l

In what follows, we are concerned with the derivation of inequalities based on
estimating the expression fl (D:U, U)gq, dt. By some manipulation we find that

/ (Dth U)Q, dt + ({U}Wl—ls Ur—n’——l)_Q (16)
Irﬂ

Im—1

1 _ _
= (101, =10, + Ui, )

1
- (U, V -2)gq, dt,
2

and
/ (DU, U)o, dit + {Uw—1. U Da, (17)
Ir”

1 _ 1 _
> UL, + UG, ) = (U, U e,

1
— | (VA V 2)q dt.
2 /.

1

Taking into account that 6 (U) > 0 and w = v —z, from (10), (14) and (12)—(16)
and putting k; = 4, we get the relation

103 s, = U5l — [ @9 g as)
Il”

€
+ [ @c—1.0%g + 2/ U, dt
Im Im

<o / (8113, + luplBas,) dr
I

with a constant ¢; independent of data, & and 7.
First, let us assume that

2c—V.v>1. (19)
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Then the summation of (18) overm = 1,...,k < M yields the estimate
¢ &
107, + 5 3 [ 1010, dr o)
m—1 I

k
< UF I3, + e Y / (Igl3, + luplBgs,) dr.
m—1 In

which proves the stability.
If condition (19) is not valid, then the stability analysis is more complicated. In
this case, instead of (18) we get the inequality

_ _ €
1071, ~ 1051, + 5 [ 10T, @1
Il”

k
<o) [ (sl + lunlfion,) dr+c2 [ 101, .
m_l Im Il”

It is necessary to estimate the term [, ||U ||§2’ dt. It is rather technical and the proof
has been carried out for ¢ = 1, i.e., for piecewise linear time discretization. Then it
is possible to show that there exist constants L; and M; such that

m

_ L
10, + 10 lG, =~ | Ul dt (22)

m J1I,
M
+ 12 1 2
050, < [ NI, a
m ‘L’m Im
This allows to prove that there exists a constant ¢* > 0 depending on ¢, and L, such
that

2c; &M, _
[0 < v [ (sl + Noban) de+ )3 Uy s, 23)
m m 1

holds, if 0 < 1, < c*.
Now, by virtue of (21) and (23), the summation overm = 1, ...,k < M and the
application of the discrete Gronwall lemma we get the following result.



Stability Analysis of the ALE-STDGM in Time-Dependent Domains 223

Theorem 2 Let g = 1 and 0 < 1,, < ¢*. Then there exists a constant c3 > 0 such

that
-2 = 2 Bo = 2
U1, + SN, + ) 3 [ 10T, ar @4
Jj=1 j=1"4
=a |10 lg, +Z/Rjdt ,m=1,...,M, he(0,h).
j=1 74
where

26‘2
R = (1 o cj) (10, + oo, )
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