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Abstract In this paper we investigate the stability of the space-time discontinuous
Galerkin method (STDGM) for the solution of nonstationary, linear convection-
diffusion-reaction problem in time-dependent domains formulated with the aid of
the arbitrary Lagrangian-Eulerian (ALE) method. At first we define the continuous
problem and reformulate it using the ALE method, which replaces the classical
partial time derivative with the so called ALE-derivative and an additional con-
vective term. In the second part of the paper we discretize our problem using the
space-time discontinuous Galerkin method. The space discretization uses piecewise
polynomial approximations of degree p � 1, in time we use only piecewise linear
discretization. Finally in the third part of the paper we present our results concerning
the unconditional stability of the method.

1 Formulation of the Continuous Problem

We consider an initial-boundary value nonstationary, linear convection-diffusion-
reaction problem in a time-dependent bounded domain:

Find a function u D u.x; t/ with x 2 ˝t; t 2 .0;T/ such that

@u

@t
C v � ru � �4u C cu D g in ˝t; t 2 .0;T/; (1)

u D uD on @˝t; t 2 .0;T/; (2)

u.x; 0/ D u0.x/; x 2 ˝0: (3)

We assume that v D .v1; v2/; c; g; uD; u0 are given functions and � > 0 is a
given constant. Moreover let QT D f.x; t/I t 2 .0;T/; x 2 ˝tg, and let us assume
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that there exist constants cv; cc > 0, such that

v 2 C.Œ0;T�I W1;1.˝t//; jrvj � cv; jvj � cv in QT ;

c 2 C.Œ0;T�;L1.˝t//; jc.x; t/j � cc in QT :

Problem (1)–(3) will be reformulated using the so called arbitrary Lagrangian-
Eulerian (ALE) method. It is based on a regular one-to-one ALE mapping of the
reference domain˝0 onto the current configuration˝t:

At W ˝0 ! ˝ t;

X 2 ˝0 ! x D x.X; t/ D At.X/ 2 ˝ t; t 2 Œ0;T�:

We assume that At 2 C1.Œ0;T�IW1;1.˝t//; i.e. the mapping At belongs to the
Bochner space of continuously differentiable functions in Œ0;T� with values in the
Sobolev space W1;1.˝t/. We define the ALE velocity by

Qz.X; t/ D @

@t
At.X/; t 2 Œ0;T�; X 2 ˝0;

z.x; t/ D Qz.A �1
t .x/; t/; t 2 Œ0;T�; x 2 ˝t:

Let jz.x; t/j; jdiv z.x; t/j � cz for x 2 ˝t; t 2 .0;T/: Further, we define the ALE
derivative Dt f D Df=Dt of a function f D f .x; t/ for x 2 ˝t and t 2 Œ0;T� as

Dtf .x; t/ D D

Dt
f .x; t/ D @Qf

@t
.X; t/;

where Qf .X; t/ D f .At.X/; t/; X 2 ˝0; and x D At.X/ 2 ˝t. The use of the chain
rule yields the relation

Df

Dt
D @f

@t
C z � rf ; (4)

which allows us to reformulate problem (1)–(3) in the ALE form:
Find u D u.x; t/ with x 2 ˝t; t 2 .0;T/ such that

Dtu C .v � z/ � ru � �4u C cu D g in ˝t; t 2 .0;T/; (5)

u D uD on @˝t; (6)

u.x; 0/ D u0.x/; x 2 ˝0: (7)

In what follows, we shall use the notation w D v � z for the ALE transport
velocity.

Numerical methods for linear convection-diffusion-reaction equations in a
domain ˝ independent of time were analyzed e.g. in [5]. In the case, when
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problem (1)–(3) is considered in a fixed domain, error estimates for the space-
time discontinuous Galerkin discretization were derived in [4]. These results were
generalized to the case of nonlinear convection and diffusion (cf. [3]). The paper [1]
is devoted to the proof of unconditional stability of the space-time discontinuous
Galerkin method (STDGM) applied to nonlinear convection-diffusion problems.
The STDGM was used with success for the numerical solution of compressible
flow in time-dependent domains and also for the dynamical linear and nonlinear
elasticity (see [3]). In [2], the stability of the time discontinuous Galerkin semi-
discretization of problem (5)–(7) was analyzed. Here we are concerned with the
investigation of the stability of the complete STDGM applied to problem (5)–(7) in
a time-dependent domain.

2 Space-Time Semidiscretization

In the time interval Œ0;T� we construct a partition formed by time instants 0 D t0 <
t1 < : : : < tM D T and set Im D .tm�1; tm/ and �m D tm � tm�1 for m D 1; : : : ;M.
Further we set � D maxmD1;��� ;M �m. For a function ' defined in

SM
mD1 Im we denote

one-sided limits at tm as 'ṁ D '.tm˙/ D limt!tm˙ '.t/ and the jump as f'gm D
'.tmC/ � '.tm�/:

For any t 2 Œ0;T� we denote by Th;t a partition of the closure ˝ t into a finite
number of closed triangles with mutually disjoint interiors. We set hK D diam.K/
for K 2 Th;t. The boundary of the domain will be divided into two parts: @˝t D
@˝�

t [ @˝C
t :

w.x; t/ � n.x/ < 0 on @˝�
t ;8t 2 Œ0;T� (inflow boundary)

w.x; t/ � n.x/ � 0 on @˝C
t ;8t 2 Œ0;T� (outflow boundary);

where n denotes the unit outer normal to @K: Similarly for each K 2 Th;t we set

@K� .t/ D fx 2 @KI w .x; t/ � n .x/ < 0g ;
@KC .t/ D fx 2 @KI w .x; t/ � n .x/ � 0g :

By Fh;t we denote the system of all faces of all elements K 2 Th;t. It consists
of the set of all inner faces F I

h;t and the set of all boundary faces F B
h;t: Fh;t D

F I
h;t [ F B

h;t: Each � 2 Fh;t will be associated with a unit normal vector n� . By

K.L/� and K.R/� 2 Th;t we denote the elements adjacent to the face � 2 Fh;t. We

shall use the convention that n� is the outer normal to @K.L/� . Over a triangulation
Th;t, for each positive integer k, we define the broken Sobolev space Hk.˝t;Th;t/ D
f'I'jK 2 Hk.K/ 8K 2 Th;tg:
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If ' 2 H1.˝t;Th;t/ and � 2 Fh;t, then 'j.L/� ; 'j.R/� will denote the traces of ' on

� from the side of elements K.L/� ;K.R/� adjacent to � . For � 2 F I
h;t we set

h'i� D 1

2

�
'j.L/� C 'j.R/�

�
; Œ'�� D 'j.L/� � 'j.R/� ;

h.� / D
h
K
.L/
�

C h
K
.R/
�

2
for � 2 F I

h;t; h.� / D h
K
.L/
�

for � 2 F B
h;t:

If u; ' 2 H2.˝t;Th;t/, � 2 R and cW > 0, we introduce the following forms.

Convection form:

bh.u; '; t/ D
X

K2Th;t

Z

K
w � ru ' dx

�
X

K2Th;t

Z

@K�\@˝t

w � nu' dS �
X

K2Th;t

Z

@K�n@˝t

w � nŒu�' dS;

Diffusion form:

ah.u; '; t/ D
X

K2Th;t

Z

K
ru � r' dx

�
X

� 2F I
h;t

Z

�

.hrui � n� Œ'�C � hr'i � n� Œu�/ dS

�
X

K2Th;t

Z

@K�\@˝t

.ru � n� ' C �r' � n� u � �r' � n� uD/ dS;

Interior and boundary penalty:

Jh.u; '; t/ D cW
X

� 2F I
h;t

h.� /�1
Z

�

Œu� Œ'� dS

CcW
X

K2Th;t

h.� /�1
Z

@K�\@˝t

u ' dS;

Ah.u; '; t/ D �ah.u; '; t/C � Jh.u; '; t/;

Reaction form:

ch.u; '; t/ D
X

K2Th;t

Z

K
cu' dx;
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Right-hand side form:

lh.'; t/ D
X

K2Th;t

Z

K
g' dx C � cW

X

� 2FB
h;t

h.� /�1
Z

�

uD ' dS:

Let us note that in integrals over faces we omit the subscript � . We consider
� D 1, � D 0 and � D �1 and get the symmetric (SIPG), incomplete (IIPG)
and nonsymmetric (NIPG) variants of the approximation of the diffusion terms,
respectively.

Further, we set

.';  /! D
Z

!

' dx; k'k! D
�Z

!

j'j2 dx
�1=2

;

k�kw;� D
�
�
�
p

jw � nj �
�
�
�
L2.�/

;

where ! � R
2, � is either a subset of @˝ or @K and n denotes the corresponding

outer unit normal to @˝ or @K, provided the integrals make sense.
Let p; q � 1 be integers. For any m D 1; : : : ;M and t 2 Œ0;T� we define the

finite-dimensional spaces

Sph;t D ˚
' 2 L2.˝t/I 'jK 2 Pp.K/; K 2 Th;t; t 2 Œ0;T�� ;

Sp;qh;� D ˚
' 2 L2.QT/I ' D '.x; t/; for each X 2 ˝0

the function '.At.X/; t/ is a polynomial

of degree � q in t; '.�; t/ 2 Sph;t for every t 2 Im; m D 1; : : : ;M
�
:

Definition 1 We say that functionU is an approximate solution of problem (5)–(7),
if U 2 Sp;qh;� and

Z

Im

�
.DtU; '/˝t

C Ah.U; '; t/C bh.U; '; t/C ch.U; '; t/
	
dt (8)

C.fUgm�1; 'C
m�1/˝tm�1

D
Z

Im

lh.'; t/ dt 8' 2 Sp;qh;� ; m D 1; : : : ;M;

U�
0 2 Sph;0; .U�

0 � u0; vh/ D 0 8vh 2 Sph;0: (9)

3 Analysis of the Stability

In our further considerations for each t 2 Œ0;T�we introduce a system of conforming
triangulations fTh;tgh2.0;h0/, where h0 > 0. We assume that it is shape regular and
locally quasiuniform. Under these assumptions, the multiplicative trace inequality
and the inverse inequality hold.
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Moreover, we assume that Th;t D fKt D At.K0/IK0 2 Th;0g: This assumption
is usually satisfied in practical computations, when the ALE mapping At is a
continuous, piecewise affine mapping in ˝0 for each t 2 Œ0;T�.

In the space H1.˝;Th;t/ we define the norm

k'kDG;t D
0

@
X

K2Th;t

j'j2H1.K/ C Jh.'; '; t/

1

A

1=2

:

Moreover, over @˝ we define the norm

kuDkDGB;t D
0

@cW
X

K2Th;t

h�1.� /
Z

@K�\@˝t

juDj2 dS
1

A

1=2

:

If we use ' WD U as a test function in (8), we get the basic identity

Z

Im

�
.DtU;U/˝t

C Ah.U;U; t/C bh.U;U; t/C ch.U;U; t/
	
dt (10)

C.fUgm�1;UC
m�1/˝tm�1

D
Z

Im

lh.U; t/ dt:

Let us denote

�.U/ D 1

2

X

K2Th;t

�
kUk2w;@K\@˝ C kŒU�k2w;@K�n@˝

�
: (11)

For a sufficiently large constant cW , whose lower bound is determined by the
constants from the multiplicative trace inequality, inverse inequality and local
quasiuniformity of the meshes, we can prove the coercivity of the diffusion and
penalty terms:

Z

Im

Ah.U;U; t/ dt � �

2

Z

Im

kUk2DG;t dt � �

2

Z

Im

kuDk2DGB;t dt: (12)

Furthermore, if k1 > 0, then the following inequalities for the convective term,
reaction term and for the right-hand side form hold:

bh.U;U; t/ D �.U/� 1

2

Z

˝t

U2r � w dx; (13)

Z

Im

jch.U;U; t/j dt � cc

Z

Im

kUk2˝t
dt; (14)
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Z

Im

jlh.U; t/j dt � 1

2

Z

Im

�kgk2˝t
C kUk2˝t

	
dt (15)

C�k1
Z

Im

kuDk2DGB;t dt C �

k1

Z

Im

kUk2DG;t dt:

In what follows, we are concerned with the derivation of inequalities based on
estimating the expression

R
Im
.DtU;U/˝t dt. By some manipulation we find that

Z

Im

.DtU;U/˝t dt C �fUgm�1;UC
m�1

	
˝tm�1

(16)

� 1

2

�
kU�

m k2˝tm
� kU�

m�1k2˝tm�1
C kfUgm�1k2˝tm�1

�

�1
2

Z

Im

.U2;r � z/˝t dt;

and
Z

Im

.DtU;U/˝t dt C .fUgm�1;UC
m�1/˝tm�1

(17)

� 1

2
.kU�

mk2˝tm
C 1

2
kUC

m�1k2˝tm�1
/ � .U�

m�1;UC
m�1/˝tm�1

�1
2

Z

Im

.U2;r � z/˝t dt:

Taking into account that �.U/ � 0 and w D v � z, from (10), (14) and (12)–(16)
and putting k1 D 4, we get the relation

kU�
mk2˝tm

� kU�
m�1k2˝tm�1

�
Z

Im

.U2;r � v/˝t dt (18)

C
Z

Im

.2c � 1;U2/˝t C �

2

Z

Im

kUk2DG;t dt

� c1

Z

Im

�kgk2˝t
C kuDk2DGB;t

	
dt

with a constant c1 independent of data, h and � .
First, let us assume that

2c � r � v � 1: (19)
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Then the summation of (18) over m D 1; : : : ; k � M yields the estimate

kU�
k k˝tk

C �

2

kX

m�1

Z

Im

kUk2DG;t dt (20)

� kU�
0 k2˝0 C c1

kX

m�1

Z

Im

�kgk2˝t
C kuDk2DGB;t

	
dt;

which proves the stability.
If condition (19) is not valid, then the stability analysis is more complicated. In

this case, instead of (18) we get the inequality

kU�
m k2˝tm

� kU�
m�1k2˝tm�1

C �

2

Z

Im

kUk2DG;t dt (21)

� c1

kX

m�1

Z

Im

�kgk2˝t
C kuDk2DGB;t

	
dt C c2

Z

Im

kUk2˝t
dt:

It is necessary to estimate the term
R
Im

kUk2˝t
dt. It is rather technical and the proof

has been carried out for q D 1, i.e., for piecewise linear time discretization. Then it
is possible to show that there exist constants L1 and M1 such that

kUC
m�1k2˝tm�1

C kU�
mk2˝tm

� L1
�m

Z

Im

kUk2˝t
dt; (22)

kUC
m�1k2˝tm�1

� M1

�m

Z

Im

kUk2˝t
dt:

This allows to prove that there exists a constant c� > 0 depending on c2 and L1 such
that

Z

Im

kUk2˝t
dt � 2c1

L1
�m

Z

Im

�kgk2˝t
C kuDk2DGB;t

	
dt C 8M1

L21
�mkU�

m�1k2˝tm�1
(23)

holds, if 0 < �m � c�.
Now, by virtue of (21) and (23), the summation over m D 1; : : : ; k � M and the

application of the discrete Gronwall lemma we get the following result.
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Theorem 2 Let q D 1 and 0 < �m � c�. Then there exists a constant c3 > 0 such
that

kU�
m k2˝tm

C
mX

jD1
kfUj�1gk2˝tj�1

C ˇ0

2

mX

jD1

Z

Ij

kUk2DG;j dt (24)

� c3

0

@kU�
0 k2˝t0

C
mX

jD1

Z

Ij

Rj dt

1

A ; m D 1; : : : ;M; h 2 .0; h0/;

where

Rj D c1

�

1C 2c2
L1
�j

� �
kgk2˝j

C kuDk2DGB;t
�
:
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