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Abstract In this work, we introduce discontinuous Galerkin and enriched Galerkin
formulations for the spatial discretization of phase-field fracture propagation. The
nonlinear coupled system is formulated in terms of the Euler-Lagrange equations,
which are subject to a crack irreversibility condition. The resulting variational
inequality is solved in a quasi-monolithic way in which the irreversibility condition
is incorporated with the help of an augmented Lagrangian technique. The relaxed
nonlinear system is treated with Newton’s method. Numerical results complete the
present study.

1 Introduction

Fracture propagation in elasticity, plasticity, and porousmedia is currently one of the
major research topics in mechanical, energy, and environmental engineering. In this
paper, we concentrate specifically on fracture propagation in elasticity. We consider
a variational approach for brittle fracture introduced in [6], which has been later
formulated in terms of a thermodynamically-consistent phase-field technique [8]. In
fact, variational and phase-field formulations for fracture are active research areas
as attested in recent years, e.g., [1–4, 9, 10]. Our motivations for employing a phase-
field model are that fracture nucleation, propagation, kinking, and curvilinear paths
are automatically included in the model; post-processing of stress intensity factors
and remeshing resolving the crack path are avoided. Furthermore, the underlying
equations are based on continuum mechanics principles that can be treated with
adaptive Galerkin finite elements.

In this work, we extend existing Galerkin formulations for phase-field fracture
with regard to two major aspects:
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– Spatial discretization of the displacement field with discontinuousGalerkin (DG)
finite elements resulting in NIPG [12] and IIPG methods [5] and an enriched
Galerkin (EG) formulation [13];

– Formulation of a quasi-monolithic augmented Lagrangian iteration for the
nonlinear coupled displacement-phase-field system.

These frameworks are formulated in Sects. 2, 3 and 4 and are substantiated with
numerical tests in Sect. 5.

2 The Phase-Field Fracture Model

We limit our attention to 2-dimensional problems and let ˝ 2 R
2, be a smooth,

open, connected and bounded set. We denote the L2 scalar product with .�; �/, and
assume that the crack C is a 1-dimensional set, not necessarily connected, contained
in ˝ . Using the variational/phase-field approach to fracture [3, 6], the crack C is
represented using a continuous phase-field variable ' W ˝ ! Œ0; 1�. This value
of the phase-field variable interpolates between the broken (' D 0) and unbroken
(' D 1) states of the material. The diffusive transition zone between these two states
is controlled by a regularization parameter " > 0. Imposing a crack irreversibility
condition ' � 'n�1 (where 'n�1 WD '.tn�1/ denotes the previous time step
solution), and further ingredients for a thermodynamically consistent phase-field
framework [8] result in the following Euler-Lagrange formulation:

Formulation 1 For the loading steps n D 1; 2; 3; : : :: Find vector-valued displace-
ments and a scalar-valued phase-field variable fun; 'ng WD fu; 'g 2 fNu C Vg � W
such that

��
.1 � �/'2 C �

�
�.u/; e.w/

�
D 0 8w 2 V; (1)

as well as,

.1 � �/.'�.u/ W e.u/;  � '/

C Gc

�
� 1

"
.1 � '; � '/C ".r';r � '/

�
� 0 8 2 Win \ L1.˝/;

(2)

where V WD H1
0.˝/, Win WD fw 2 H1.˝/jw � 'n�1 � 1 a.e. on ˝g and

W WD H1.˝/. Furthermore, � D �.u/ D 2�se C �str.e/I is the stress tensor
with �s; �s > 0, and e.u/ D 0:5.ru C ruT/ is the linearized strain tensor. The
critical energy release rate is Gc > 0. The domain is subject to boundary conditions,
and we assume �D ¤ ;, with the possibly non-homogeneous and time-dependent
Dirichlet boundary conditions Nu. Moreover, � is a regularization parameter for the
elastic energy bounded below by 0, such that � � ", see e.g., [3].
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Algorithm 2 Solution algorithm
For each time tn:
Let m D 0; choose initial �m 2 L2.˝/, � > 0.
repeat

Let k D 0; choose initial QUk 2 Vh �Wh.
repeat

Find ıUk solving A0.Uk/.ıUk ; 	/ D �A.Uk/.	/

Update QUkC1 QUk C ıUk

Update k kC 1
until Stopping criterion kUk � Uk�1k � TOL2 is satisfied.
Set UmC1 D .umC1; 'mC1/ D QUk

Update �mC1 D min.0; �m C �'mC1/C .�m C �.'mC1 � 'n�1//C

Update m mC 1
until Stopping criterion max.kumC1 � umk ; k�mC1 � �mk/ � TOLi is satisfied.
Set Un WD fun; 'ng D fumC1; 'mC1g

To treat crack irreversibility, we use the augmented-Lagrangian formulation
described in [14]. To apply this method, we begin by approximating the time
derivative @t' using the backward difference

@t' � @
t' D ' � 'n�1


t
) 1


t

�
.�C �.' � 'n�1//C

�
; 
t D tn � tn�1:

Here, � and � are a penalization function and parameter, respectively, and 'n�1 is
the phase-field solution at the previous time step. Moreover, .x/C WD maxf0; xg.

3 A Quasi-monolithic Incremental Formulation

We choose a quasi-monolithic approach [7] as this reduces algorithmic complexity
and has been demonstrated to be numerically robust and efficient when ' is replaced
by the extrapolation Q' in the first term of Formulation 2. The reason for choosing Q'
is the need to circumvent the non-convexity of the underlying energy functional.

Formulation 2 For n D 1; 2; 3; : : :: Find Un WD U WD fu; 'g 2 fNu C Vg � W,
where V WD H1

0.˝/ andW WD H1.˝/, such that

A.U/.	/ D 0 8	 WD fw;  g 2 V � W; (3)

where A.�/.�/ is the following semi-linear form

A.U/.	/ D
��
.1 � �/ Q'2 C �

�
�.u/; e.w/

�
C .1 � �/.'�.u/ W e.u/;  /

C Gc

�
� 1

"
.1 � '; /C ".r';r /

�
C 1


t

�
.�C �.' � 'n�1//C;  

�
: (4)
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Here Q' is a linear extrapolation of time-lagged ', i.e. ' � Q' WD Q'.'n�1; 'n�2/,
with 'n�1; 'n�2 denoting solutions to previous time steps. Solving the nonlinear
variational problem (4) is performed with Newton’s method and line search
backtracking. The resulting solution algorithm is outlined in Algorithm 2.

4 Spatial Discretization with DG and EG

In this section we establish key notations for DG and EG followed by the mathe-
matical statement of the discrete variational forms. On a conforming subdivision Eh

of a polygonal domain ˝ subdivided into elements E we define the discontinuous
finite element subspace to be

Dk.Eh/ D fv 2 L2.˝/ W 8E 2 Eh; vjE 2 Pk.E/g; (5)

where Pk.E/ denotes the space of piecewise polynomials of total degree less than or
equal to k on E. We also define the space of CG approximating polynomials enriched
with discontinuous piecewise constants

DC0
k .Eh/ WD DC

k .Eh/[ D0.Eh/: (6)

Here DC
k .Eh/ is the CG approximating space defined as

DC
k .Eh/ D fv 2 C.˝/ W 8E 2 Eh; vjE 2 P

C
k .E/; vj�D D 0g; (7)

where PC
k .E/ denotes the space of continuous piecewise polynomials of total degree

less than or equal to k on E.
In order to describe the vector-valued displacements, we consider the spaces

of vector functions that generalize (5) and (6): D k.Eh/ D .Dk.Eh//
d;DC0

k .Eh/ D
.DC0

k .Eh//
d;where d is the number of spatial dimensions. We note that the functions

in Dk.Eh/ and D
C0
k .Eh/ are discontinuous along the edges (or faces) of the mesh.

Now, consider two neighboring elements Ee
1 and E

e
2 that share a common side e.

Naturally then, there are two traces of w 2 Dk.Eh/ along e (see Fig. 1). We consider
ne to be the normal vector associated with e to be oriented from Ee

1 to E
e
2 and define:

fwg D 1
2
.wjEe

1
/C 1

2
.wjEe

2
/; Œw� D .wjEe

1
/� .wjEe

2
/ 8e D @Ee

1 \ @Ee
2:We extend

this definition to elements on the boundary @˝ as: fwg D Œw� D .wjEe
1
/ 8e D

@Ee
1 \ @˝: Further, we denote by jej the length of an edge e in d D 2. We now state

the equations corresponding to a discontinuous spatial discretization directly from
inspection of the monolithic formulation (4) and the DG-scheme for pure linear
elasticity, e.g., [11]. We pursue a discontinuous representation of the displacement
variable u only, recognizing that the regularization in the case of the phase-field
variable ' enforces its continuity across the crack.
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Fig. 1 Support points for bilinear and biquadratic basis functions. (a) CG: all support points
in red. (b) DG: support points for left element in red, for right element in blue. The common
edge has two sets of support points – one from each element. (c) EG: support points from CG
approximating space in red, piecewise constants in blue. Only the piecewise constant degree of
freedom is discontinuous across the common edge

We augment (4) with the jump and penalization terms to define the discrete
incremental semi-linear form

A.Uh/.	h/ D
X
E2Eh

Z

E

�
.1� �/ Q'2 C ��
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�
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t

�
.�C�.' � 'n�1//C;  

�
;

(8)

where � D 1 (NIPG) or � D 0 (IIPG); and ıe > 0 and ˇ > 0 (here ˇ D 1) are
the DG-penalization and superpenalization parameters, respectively. The DG-CG
variational problem reads: Find Uh WD fu; 'g 2 fNuh C VDG

h g � WCG
h such that

A.Uh/.	h/ D 0 8	h WD fw;  g 2 VDG
h � WCG

h : (9)
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The EG-CG variational problem reads: Find Uh WD fu; 'g 2 fNuh C VEG
h g � WCG

h
such that

A.Uh/.	h/ D 0 8	h WD fw;  g 2 VEG
h � WCG

h : (10)

The test and trial spaces are VDG
h WD ŒDk.Eh/�

2;VEG
h WD ŒDC0

k .Eh/�
2;WCG

h WD
DC

k .Eh/: Our formulation enforces both Dirichlet and Neumann boundary condi-
tions weakly. The use of homogeneous Neumann boundary conditions for u and
' results in a formulation exclusively dependent on �D. The directional derivative
of (8) needed for the Newton iterations is computed analytically.

5 A Numerical Test: Single Edge Notched Tension

The single edge notched tension test is a widely used experimental methodology
used to characterize the fracture toughness of various materials in plane-strain.

We consider a square plate with a horizontal notch placed at half-height, running
from the right outer surface to the center of the specimen. The plate is subject to
zero displacement boundary conditions on the bottom surface, and time-dependent
displacement on the top surface. The left and right surfaces are considered to
be traction-free. The problem setup is shown in Fig. 2. The material parameters
are chosen as � D 121:1538 kN/mm2, � D 80:7692 kN/mm2 and Gc D 2:7 �
10�3 kN/mm. The displacement boundary condition on the top surface is taken to
be Nuy.t/ D t N̨ with N̨ D 1mm=s: The expected response of this test is the build-
up of the stress concentration in the vicinity of the crack-tip, followed by unstable,
catastrophic crack growth.

ū = (0, ūy(t))ū = (0, ūy(t))

0.50.5

0.50.5

0.50.50.50.5

Fig. 2 Schematic of the single-edge-notched tension test (left), the final phase-field crack pattern
at T D 6:6 � 10�3 s (middle), and comparison of load-displacement curves from our monolithic
scheme with CG, DG-IIPG and EG-IIPG against results reported by Miehe et al. [9] and Heister et
al. [7]
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Fig. 3 We fix � and " on the coarsest mesh level and vary h. Left: CG. Middle: DG-IIPG. Right:
EG-IIPG. Spatial convergence is observed for all schemes

Our first objective is to study h-convergence for fixed ". We choose 
t D 1:0 �
10�4 s for the first 50 loading steps, after which
t D 1:0�10�5 s. This adaptivity in
the time step is necessary to capture the rapid movement of the crack tip. We choose
" D 4:4 � 10�2mm, � D 1:0 � 10�12, and run our code for h1 D 4:4 � 10�2mm,
h2 D 2:2� 10�2mm, and h3 D 1:1� 10�2mm. We evaluate the surface load vector
on the top surface of ˝ as � D .Fx;Fy/ D R

@˝top
�.u/nds: In this example, we

are particularly interested in Fy. Our findings for the surface load evolution with
varying h are shown in Fig. 3 for the IIPG flavors of EG and DG. It is observed that
our approach is stable with spatial mesh refinement, and that our solution converges
as we use finer meshes. Comparison to literature values are displayed in Fig. 2 at
right.

Results obtained fromDG-NIPG and EG-NIPG are very similar and are therefore
not presented here. The SIPG method (� D �1) yields unsatisfactory findings,
which are not shown in this work.

With the results of our scheme duly validated, we proceed to study the relative
efficiency of the schemes by comparing the number of Newton iterations taken
by each of them to converge. We first investigate the variation in the number of
Newton steps taken with the penalization parameter ıe. Note that when we multiply
Equations (8) throughout by 
t, our effective penalization of the jump becomes
ıe
t. This is an important detail that cannot be overlooked while using DG/EG for
the phase-field equations because for instance, using ıe D 105 with
t D 1�10�5 s
gives an effective penalization of ıe
t D 1 which is not sufficiently large and
produces spurious results. In the case of an adaptive time step size (we usually
take 
t D 1 � 10�4 s for the first 50 steps, and a smaller time step thereafter), the
product ıe
t is reported for the smaller time step. We vary the values of the effective
penalization and plot the cumulative number of Newton steps as a function of time
for h D 1:1�10�2mm, " D 2 hŒmm�, and � D 1:0�10�12. The results of this study
with IIPG and NIPG are shown in Fig. 4. In Fig. 5, we observe that DG and EG
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Fig. 4 Newton convergence performance with h D 1:1 � 10�2mm, 
t D f10�4; t <

0:005I 10�5; t � 0:005g, " D 2 hŒmm�, and � D 10�12 and varying penalty ıe. Left: DG-
NIPG. Right: EG-NIPG. Left: DG-IIPG. Right: EG-IIPG. Convergence is faster for higher values
of penalization

Fig. 5 Single edge notched tension test results using CG, DG-IIPG and EG-IIPG. Left: load vs.
displacement curve. Right: Newton convergence performance for constant 
t D 10�5 s

schemes take much fewer Newton iterations to converge than CG especially after
the onset of crack growth (approximately t D 0:0055 s).

For a better comparison of the efficiency, we run a test with the same physical
parameters as above, but with a uniform time step of 
t D 10�5 s throughout.
The motivation is to suppress the effect of adaptive time stepping on the Newton
performance and to give an unbiased comparison. Since the computational burden
with such a simulation is significant, we only consider the IIPG case with ıe
t D
102. These results are shown in Fig. 5. As we can see, DG and EG take roughly
the same number of Newton iterations (1800) while CG takes significantly more
(2520). We also observe that the load-displacement curves for all three methods are
in reasonable agreement. Hence, we can conclusively state that the Newton method
converges in fewer iterations for the DG and EG schemes than for the CG scheme.
Furthermore by inspecting Fig. 1, we see that EG has significantly fewer degrees of
freedom than DG.



DG and EG for Phase-Field Fracture 203

References

1. M. Ambati, T. Gerasimov, L. De Lorenzis, A review on phase-field models of brittle fracture
and a new fast hybrid formulation. Comput. Mech. 55(2), 383–405 (2015)

2. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J. Hughes, C.M. Landis, A phase-field description
of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217, 77–95 (2012)

3. B. Bourdin, G.A. Francfort, J.J. Marigo, The variational approach to fracture. J. Elast. 91(1–3),
5–148 (2008)

4. S. Burke, C. Ortner, E. Süli, An adaptive finite element approximation of a variational model
of brittle fracture. SIAM J. Numer. Anal. 48(3), 980–1012 (2010)

5. C. Dawson, S. Sun, M.F. Wheeler, Compatible algorithms for coupled flow and transport.
Comput. Methods Appl. Mech. Eng. 193(23), 2565–2580 (2004)

6. G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J.
Mech. Phys. Solids 46(8), 1319–1342 (1998)

7. T. Heister, M.F. Wheeler, T. Wick, A primal-dual active set method and predictor-corrector
mesh adaptivity for computing fracture propagation using a phase-field approach. Comput.
Methods Appl. Mech. Eng. 290, 466–495 (2015)

8. C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of
fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods in
Eng. 83(10), 1273–1311 (2010)

9. C. Miehe, M. Hofacker, F. Welschinger, A phase-field model for rate-independent crack
propagation: robust algorithmic implementation based on operator splits. Comput. Methods
Appl. Mech. Eng. 199(45), 2765–2778 (2010)
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