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Abstract We propose a modified local discontinuous Galerkin (LDG) method for
second–order elliptic problems that does not require extrinsic penalization to ensure
stability. Stability is instead achieved by showing a discrete Poincaré–Friedrichs
inequality for the discrete gradient that employs a lifting of the jumps with one
polynomial degree higher than the scalar approximation space. Our analysis covers
rather general simplicial meshes with the possibility of hanging nodes.

1 Introduction

It is well–known that the local discontinuous Galerkin (LDG) method for second–
order elliptic problems can be formulated, in part, by replacing the differential
operators in the variational formulation by their discrete counterparts [3–5]. For
example, on the space of discontinuous piecewise polynomials of degree at most k,
the discrete gradient operator is composed of the element-wise gradient corrected
by a lifting of the jumps into the space of piecewise polynomial vector fields. The
original formulation of the LDG method [3] employs liftings of same polynomial
degree k as the scalar finite element space, while liftings of order k�1 have also been
considered, see the textbook [5] and the references therein. Part of the motivation
for these choices of the order of the lifting is the correspondence to the order of
the element-wise gradient and reasons of ease of implementation. However, unlike
the continuous gradient acting on the space H1

0 , the discrete gradient operators with
liftings of order k � 1 or k fail to satisfy a discrete Poincaré–Friedrichs inequality.
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Therefore, the LDG method requires additional penalization with user–defined
penalty parameters to ensure stability.

In this note, we construct a modified LDG method with guaranteed stability
without the need for extrinsic penalization. This result is obtained by simply
increasing the polynomial degree of the lifting operator to order kC1 and exploiting
properties of the piecewise Raviart–Thomas–Nédélec finite element space. Our
analysis covers the case of meshes with hanging nodes under a mild condition of
face regularitywhich we introduce in this work.We recall that the order of the lifting
in the LDG method does not alter the dimension or stencil of the resulting stiffness
matrix. As a result, the proposed method has a negligible increase of computational
cost and inherits the advantages of the standard LDG method in terms of locality
and conservativity.

The rest of the paper is organized as follows. In Sect. 2 we give the notation used
throughout the manuscript and state some preliminary results. We define the lifted
gradient operator with increased polynomial degree in Sect. 3 and show that the L2

norm of this operator is equivalent to a discrete H1 norm on piecewise polynomial
spaces. We establish by means of a counterexample that the increased polynomial
degree is necessary to obtain this stability estimate in Sect. 4. In Sect. 5 we propose
and study the modified LDG method in the context of the Poisson equation.

2 Notation

Let ˝ � R
d, d 2 f2; 3g, be a bounded polytopal domain with Lipschitz boundary

@˝ . Let fThgh>0 be a shape- and contact–regular sequence of simplicial meshes on
˝ , as defined in [5, Definition 1.38]. For each element K 2 Th, let hK :D diamK,
with h D maxK2Th hK for each mesh Th. We define the faces of the mesh as in [5,
Definition 1.16], and we collect all interior and boundary faces in the sets F i

h and
F b

h , respectively, and let Fh :D F i
h [ F b

h denote the skeleton of Th. In particular,
F 2 F i

h if F has positive .d � 1/-dimensional Hausdorff measure and if F D @K1 \
@K2 for two distinct mesh elements K1 and K2. For an element K 2 Th, we denote
F .K/ the set of faces ofK, i.e. E 2 F .K/ if E is the closed convex hull of d vertices
of the simplex K. Note that on a mesh with hanging nodes, a mesh face may be a
proper subset of an element face, see Fig. 1, hence the notions of mesh faces and
element faces do not need to coincide. In this work, the meshes are allowed to have
hanging nodes, provided that they satisfy the following notion of face regularity.

Definition 1 A face F 2 Fh is called regular with respect to the element K if
F 2 F .K/. We say that the mesh Th is face regular if every face ofFh is a regular
face with respect to at least one element of Th.

Figure 1 illustrates the notion of face regularity with two examples. We remark
that any matching mesh is face regular. On a face regular mesh, any boundary face
is necessarily regular with respect to the element to which it belongs. It appears that
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Fig. 1 Face regularity of meshes: the mesh on the left has interior faces F i
h D fFig3

iD1, each of
which is regular to at least one element in the sense of Definition 1, even though F2 and F3 fail to
be regular with respect to the element K, since F2 and F3 are only proper subsets of the elemental
face F2 [ F3. Since all boundary faces are also regular, the mesh on the left is face regular in the
sense of Definition 1, whereas the mesh on the right is not: the mesh face NF3 fails to be regular
with respect to any element of the mesh

meshes of practical interest are most likely to be face regular, so this restriction is
rather mild in practice.

For integrable functions � defined piecewise on either Th or Fh, we use the
convention

Z
˝

� dx D
X
K2Th

Z
K

� dx;
Z
Fh

� ds D
X
F2Fh

Z
F

� ds:

For the integer k � 1, we define the discontinuous finite element spaces Vh;k

as the space of real-valued piecewise-polynomials of degree at most k on Th, and
˙ h;kC1 the space of vector-valued piecewise-polynomials of degree at most k C 1

on Th. We define the mesh-dependent norm k�k1;h on Vh;k by

kvhk2
1;h :D

X
K2Th

krvhk2
L2.K/

C
X
F2Fh

1

hF
k�vh�k2

L2.F/
8 vh 2 Vh;k; (1)

where hF :D diamF for each face F 2 Fh.
We shall also make use of the (local) Raviart–Thomas–Nédélec space [7] defined

by

RTNkC1.K/ :D �k.K/ ˚ QPk.K/ x � �kC1.K/;

where �k.K/ is the space of vector-valued polynomials of degree at most k on K,
and QPk.K/ is the space of real-valued homogeneous polynomials of degree k on K.
We recall that �h 2 RTNkC1.K/ is uniquely determined by the moments

R
K �h ��h dx

and
R
E.�h � nE/ vh ds for all �h 2 Pk�1.K/ and vh 2 Pk.E/ for each E 2 F .K/,

where nE denotes a unit normal vector of E. We also recall that if all facial moments
of �h vanish on an elemental face E, then �h � nE vanishes identically on E.



168 L. John et al.

For a face F 2 Fh belonging to an element Kext, we define the jump and average
operators by

�w�jF :D wjKext
� wjKint

; fwg jF :D 1
2

�
wjKext

C wjKint

�
; if F 2 F i

h;

�w�jF :D wjKext
; fwg jF :D wjKext

; if F 2 F b
h ;

where w is a sufficiently regular scalar or vector-valued function, and in the case
where F 2 F i

h, Kint is such that F D @Kext \ @Kint. Here, the labelling is chosen so
that nF is outward pointing with respect to Kext and inward pointing with respect
to Kint. Let � 2 L2.Fh/, then the lifting operators rhWL2.Fh/ ! ˙ h;kC1 and
rhWL2.Fh/ ! Vh;k are defined by

Z
˝

rh.�/ � � h dx D
Z
Fh

� f� h � nFg ds 8 � h 2 ˙ h;kC1; (2a)

Z
˝

rh.�/ vh dx D
Z
F i

h

� fvhg ds 8 vh 2 Vh;k: (2b)

For quantities a and b, we write a . b if and only if there is a positive constant
C such that a � Cb, where C is independent of the quantities of interest, such as
the element sizes, but possibly dependent on the shape-regularity parameters and
polynomial degrees.

3 Stability of Lifted Gradients

We define the lifted gradient GhWVh;k ! ˙ h;kC1 by

Gh.vh/ D rhvh � rh.�vh�/ 8 vh 2 Vh;k; (3)

where rh denotes the element-wise gradient operator. We note that Gh is usually
defined with a lifting using polynomial degrees k or k � 1, see for instance [5].
However, as we shall see, by increasing the polynomial degree of the lifting to kC1,
we obtain the following key stability result.

Theorem 2 Let fThgh>0 denote a shape regular, contact regular and face regular
sequence of simplicial meshes on ˝ . Let the norm k�k1;h be defined by (1) and let
the lifted gradient operator Gh be defined by (3). Then, we have

kuhk1;h . kGh.uh/kL2.˝/ . kuhk1;h 8 uh 2 Vh;k: (4)
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Proof The upper bound kGh.uh/kL2.˝/ . kuhk1;h is standard and we refer the reader
to [5, Sec. 4.3] for a proof. To show the lower bound, consider an arbitrary uh 2 Vh;k.
Since Gh.uh/ 2 ˙ h;kC1, we have

kGh.uh/kL2.˝/ D sup
�h2˙ h;kC1nf0g

R
˝
Gh.uh/ � �h dx

k�hkL2.˝/

;

with the supremum being achieved by the choice �h D Gh.uh/. Therefore, to
show (4), it is sufficient to construct a �h 2 ˙ h;kC1 such that

kuhk2
1;h .

Z
˝

Gh.uh/ � �h dx; (5)

k�hkL2.˝/ . kuhk1;h: (6)

Let �K 2 RTNkC1.K/ be defined by

Z
K

�K � �h dx D
Z
K

ruh � �h dx 8 �h 2 �k�1.K/; (7a)

Z
E

.�K � nE/ vh ds D
(

� R
E

1
hE

�uh� vh ds if E 2 Fh;

0 if E … Fh;
(7b)

where (7b) holds for all vh 2 Pk.E/, for each element face E 2 F .K/. In particular,
if the element face E 2 Fh, i.e. E is also a mesh face, then we require that nE agrees
with the choice of unit normal used to define the jump and average operators. If
E … Fh, then �K �nE vanishes identically on E, and the orientation of nE on the left-
hand side of (7b) does not matter. The global vector field �h 2 ˙ h;kC1 is defined
element-wise by �hjK D �K .

Since the mesh Th is assumed to be face regular, for every F 2 Fh there exists
an element K 2 Th and an elemental face E 2 F .K/ such that E D F; then E
satisfies the first condition in (7b). Therefore, the facts that f�h � nFg jF and �uh�jF
both belong to Pk.F/ together with (7b) imply that for each F 2 Fh, one of only
three situations may arise:

1. F is a boundary face and hence F 2 F .K/. In this case, we have f�h � nFg jF D
�h�1

F �uh�jF .
2. F is an interior face which is regular with respect to both elements to which it

belongs. In this case, we have f�h � nFg jF D �h�1
F �uh�jF .

3. F is an interior face which is regular with respect to only one of the elements
to which it belongs. In this case, we have f�h � nFg jF D � 1

2
h�1
F �uh�jF , since

�hjK0 � nF � 0 for the element K0 with respect to which F is not regular.
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Therefore, since �h 2 ˙ h;kC1, the definition of the lifting operator in (2a) implies
that

Z
˝

Gh.uh/ � �h dx D
X
K2Th

Z
K

ruh � �h dx �
X
F2Fh

Z
F
f�h � nFg �uh� ds

�
X
K2Th

kruhk2
L2.K/

C 1

2

X
F2Fh

1

hF
k�uh�k2

L2.F/

� 1

2
kuhk2

1;h;

where the second line follows from (7) and from the fact that ruhjK 2 �k�1.K/

for each K 2 Th. Hence (5) is satisfied, and we now verify (6). A classical scaling
argument using the Piola transformation [2, p. 59] yields

k�hkL2.K/ . sup
�h2�k�1.K/nf0g

R
K �h � �h dx

k�hkL2.K/

C
X

E2F .K/

sup
vh2Pk.E/nf0g

h1=2
E

R
E.�h � nE/vh ds

kvhkL2.E/

8K 2 Th:

Therefore, it follows from (7) that, for each K 2 Th,

k�hk2
L2.K/

. kruhk2
L2.K/

C
X

F2F .K/\Fh

hFkh�1
F �uh�k2

L2.F/
: (8)

Summing (8) over all elements therefore implies (6). ut

4 Counterexample to Stability for Equal-Order Liftings

Theorem 2 shows the stability of the lifted gradient operator Gh provided that the
lifting operator rh has polynomial degree kC1. In this section, we verify by means of
a counterexample that the stability estimate does not generally hold for lower-order
liftings, including in particular the case of equal-order liftings, which are commonly
used in practice; our example simplifies a similar counterexample in [1].

Example Let ˝ D .�1; 1/2, and consider the finite element space Vh;k defined on
a criss-cross mesh with four triangles, as depicted in Fig. 2, using piecewise linear
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Fig. 2 Counterexample of
Sect. 4: the domain
˝ D .�1; 1/2 and the
criss-cross mesh Th

considered in the example

polynomials, i.e. k D 1. Let uh 2 Vh;1 be the piecewise linear function defined by

uhjK1 D y C 2

3
; uhjK2 D x � 2

3
;

uhjK3 D �y C 2

3
; uhjK4 D �x � 2

3
:

Direct calculations show that fuhgjF � 0 on all interior faces F 2 F i
h, and thatR

K uh dx D 0 for all elements K 2 Th. Consequently, if the lifting operator Qrh is
defined in (2a) with the polynomial degree k C 1 replaced by k, and if QGh.uh/ :D
rhuh � Qrh.�uh�/ denotes the equal-order lifted gradient, then we have for all �h 2
˙ h;1,

Z
˝

QGh.uh/ � �h dx D
X
K2Th

Z
K

rhuh � �h dx �
X
F2Fh

Z
F
f�h � nFg �uh� ds

D �
X
K2Th

Z
K
uh.rh � �h/ dx C

X
F2F i

h

Z
F
fuhg��h � nF� ds D 0:

Since QGh.uh/ 2 ˙ h;1, we deduce that QGh.uh/ D 0, and thus it is found that no bound
of the form kuhk1;h . k QGh.uh/kL2.˝/ is possible. ut

5 A Modified LDG Method Without Penalty Parameters

As an application of Theorem 2, consider the discretization of the homogeneous
Dirichlet boundary-value problem of the Poisson equation by a modified LDG
method [3, 4] as follows. For f 2 L2.˝/, let u 2 H1

0.˝/ be the unique solution
of

Z
˝

ru � rv dx D
Z

˝

f v dx 8 v 2 H1
0.˝/: (9)

Let the bilinear form ahWVh;k � Vh;k ! R be defined by

ah.uh; vh/ D
Z

˝

Gh.uh/ � Gh.vh/ dx 8 uh; vh 2 Vh;k; (10)
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where the lifted gradient operator Gh was defined in (3). The bilinear form ah.�; �/
defines a modified LDG method for (9): find uh 2 Vh;k such that

ah.uh; vh/ D
Z

˝

f vh dx 8vh 2 Vh;k: (11)

It follows from Theorem 2 that ah.�; �/ is uniformly stable with respect to the norm
k�k1;h, and thus (11) is well-posed for each h. Moreover, the discrete Poincaré
inequality [5] implies that kuhk1;h . k fkL2.˝/ for all h, so that the numerical
solutions uh are uniformly bounded with respect to the mesh-dependent norms
k�k1;h. The a priori error analysis for the numerical method defined by (11) may
be developed following the frameworks of [3, 5, 6], although for reasons of space
we do not present the arguments here.

An interesting feature of the modified LDG method (11) is that it does not
require any additional stabilization, such as added penalty terms of the formR
Fh

�F
hF

�uh��vh� ds for some user-defined parameter �F . The absence of such penalty
terms enables us to show the following discrete conservation property. We define
the lifted divergenceDhW ˙ h;kC1 ! Vh;k by

Dh.� h/ D divh � h � rh.�� h � nF�/; � h 2 ˙ h;kC1; (12)

where divh denotes the element-wise divergence operator, and where rh is the
scalar lifting operator defined in (2b). We note that we have the integration-by-parts
identity

Z
˝

� h � Gh.vh/ dx D �
Z

˝

Dh.� h/ vh dx 8 vh 2 Vh;k; � h 2 ˙ h;kC1; (13)

which should be compared with the analogous continuous identity between the
spaces H1

0.˝/ and H.div; ˝/. Therefore, the numerical scheme (11) can be
equivalently expressed in the strong form

�
Z

˝

Dh.Gh.uh// vh dx D
Z

˝

f vh dx; (14)

which implies that the numerical solution uh 2 Vh;k solves

� Dh.Gh.uh// D ˘ k
h f ; (15)

in the pointwise sense on each element K, where ˘ k
h f denotes the element-wise

L2-projection of f into Vh;k. Although we have shown here how the lifted gradient
operator Gh of degree k C 1 may be used to achieve a stable discretization of
the Poisson equation, it is by no means restricted to this model problem, as the
lifted gradients may be used to discretize the second-order terms of more general
differential operators.
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6 Conclusions

In this article, we studied an intrinsically stable modified LDG method without
additional parameter dependent penalization. For this, we showed that increasing the
degree of the lifting operator by one order leads to stability of the discrete gradient
operator on face regular meshes with hanging nodes.

Acknowledgements The work of the third author was partially supported by the NSF grant DMS–
1417980 and the Alfred Sloan Foundation.

References

1. F. Brezzi, M. Manzini, D. Marini, P. Pietra, A. Russo, Discontinuous Finite Elements for
Diffusion Problems. Atti del Convegno in Memoria di F. Brioschi (Istiuto Lombardo di Scienze
e Lettere, Milano, 1997)

2. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series
in Computational Mathematics, vol. 44 (Springer, Berlin/New York, 2013)

3. P. Castillo, B. Cockburn, I. Perugia, D. Schötzau, An a priori error analysis of the local
discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706
(2000) (electronic)

4. B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) (electronic)

5. D.A. Di Pietro, A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathéma-
tiques & Applications, vol. 69 (Springer, Berlin/New York, 2012)

6. T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic
problems. Math. Comput. 79(272), 2169–2189 (2010)

7. J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35(3), 315–341 (1980)


	Stable Discontinuous Galerkin FEM Without Penalty Parameters
	1 Introduction
	2 Notation
	3 Stability of Lifted Gradients
	4 Counterexample to Stability for Equal-Order Liftings
	5 A Modified LDG Method Without Penalty Parameters
	6 Conclusions
	References


