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Abstract This paper is concerned with the numerical solution of dynamic elasticity
by the discontinuous Galerkin (dG) method. We consider the linear and nonlinear St.
Venant-Kirchhoff model. The dynamic elasticity problem is split into two systems
of first order in time. They are discretized by the discontinuous Galerkin method
in space and backward difference formula in time. The developed method is tested
by numerical experiments. Then the method is combined with the space-time dG
method for the solution of compressible flow in a time dependent domain and used
for the numerical simulation of fluid-structure interaction.

1 Description of the Dynamic Elasticity Problem

Let us consider an elastic body represented by a bounded polygonal domain ˝b �
R

2. We assume that @˝b D � b
D [ � b

N and � b
D \ � b

N D ;. On � b
D and � b

N we
prescribe the Dirichlet boundary condition and the Neumann boundary condition,
respectively. The deformation of the body is described by the displacement u W
˝b � Œ0;T� ! R

2 and the deformation mapping '.X; t/ D X C u.X; t/, X 2
˝b; t 2 Œ0;T�, where Œ0;T� with T > 0 is a time interval. Further, we introduce the
deformation gradient F D r', the Jacobian J D detF > 0 and the Green strain
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@Xi
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We set tr.E/ D P2
iD1 Eii and by I we denote the unit tensor. By the symbol CofF

we denote the cofactor of the matrix F defined as CofF D J.F�1/T . Further, we
introduce the first Piola-Kirchhoff stress tensor P. Its form depends on the chosen
elasticity model.

The general dynamic elasticity problem is formulated in the following way: Find
a displacement function u W ˝b � Œ0;T� ! R

2 such that

�b @2u
@t2

C CM�b @u
@t

� divP D f in ˝b � Œ0;T�; (3)

u D uD in � b
D � Œ0;T�; (4)

Pn D gN in � b
N � Œ0;T�; (5)

u.�; 0/ D u0;
@u
@t

.�; 0/ D z0 in ˝b; (6)

where f W ˝b � Œ0;T� ! R
2 is the density of the acting volume force, gN W

� b
N � Œ0;T� ! R

2 is the surface traction, uD W � b
D � Œ0;T� ! R

2 is the prescribed
displacement, u0 W ˝b ! R

2 is the initial displacement, z0 W ˝b ! R
2 is the initial

deformation velocity, �b > 0 is the material density and CM � 0 is the damping
coefficient.

We consider two elasticity models (see [2]).
St. Venant-Kirchhoff material. In this case we set

˙ D �btr.E/I C 2�bE; P D F˙ ; (7)

where ˙ is the second Piola-Kirchhoff stress tensor. The Lamé parameters �b and
�b are expressed with the aid of the Young modulus Eb and the Poisson ratio �b:

�b D Eb�b

.1 C �b/.1 � 2�b/
; �b D Eb

2.1 C �b/
: (8)

Linear elasticity model is the simplest elasticity model obtained by the assump-
tion of small deformations. By this assumption the second term in (2) is neglected
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and the linear approximation of E (linear with respect to the gradient F) is denoted
by e and called the small strain tensor. Then E D e D .eij/2

i;jD1 and

eij D 1

2

�
@ui
@Xj

C @uj
@Xi

�
: (9)

In this case we write

P D �btr.e/I C 2�be: (10)

As we see, in general, F D F.u/;E D E.u/; ˙ D ˙ .u/;P D P.u/:

For the time discretization of problem (3), (4), (5) and (6) we rewrite the dynamic
elasticity problem as the following system of first-order in time for the displacement
u W ˝b � Œ0;T� ! R

2 and the deformation velocity z W ˝b � Œ0;T� ! R
2:

�b @z
@t

C CM�bz � divP D f ;
@u
@t

� z D 0 in ˝b � Œ0;T�; (11)

u D uD in � b
D � Œ0;T�; (12)

Pn D gN in � b
N � Œ0;T�; (13)

u.�; 0/ D u0; z.�; 0/ D z0 in ˝b: (14)

2 Discrete Problem

The discretization of the dynamic elasticity problem will be carried out by the dG
method in space and the backward difference formula (BDF) method in time.

Let T b
h be a partition of the closure ˝

b
formed by a finite number of closed

triangles with disjoint interiors.
Let us consider a partition of the time interval Œ0;T� formed by time instants

tk D k� , k D 0; : : : ;M, whereM is a sufficiently large positive integer and � D T=M
is the time step. (The generalization to a nonuniform partition is possible.)

Let p > 0 be an integer. By Shp we denote the space of piecewise polynomial
functions on the triangulation T b

h ,

Shp D ˚
v 2 L2.˝b

h/I vjK 2 Pp.K/ 8K 2 T b
h

�
; (15)

where Pp.K/ denotes the space of polynomial functions of degree � p on the
element K. The approximate solution will be sought in Shp D Shp � Shp at each
time level.

By F b
h we denote the system of all faces of all elements K 2 T b

h and
F bB

h ;F bD
h ;F bN

h and F bI
h will denote the sets of all boundary, Dirichlet, Neumann

and inner faces, respectively. We set F bID
h D F bI

h [F bD
h . Further, for each � 2 F bI

h
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there exist two neighbouring elements K.L/
� ;K.R/

� 2 T b
h such that � � @K.L/

� \@K.R/
� .

For each � 2 F b
h we define a unit normal vector n� . We assume that for � 2 F bB

h
the normal n� has the same orientation as the outer normal to @˝b. We use the
convention that n� is the outer normal to @K.L/

� and the inner normal to @K.R/
� . For

v 2 Shp we introduce the following notation: vj.L/
� D the trace of vj

K
.L/
�

on � ,

vj.R/
� D the trace of vj

K
.R/
�

on � , hvi� D 1
2

�
vj.L/

� C vj.R/
�

�
, Œv�� D vj.L/

� � vj.R/
� ,

where � 2 F bI
h . If � 2 F bB

h , then there exists an element K.L/
� 2 T b

h such that

� � K.L/
� \ @˝b

h and we set vj.L/
� D the trace of vj

K
.L/
�

on � , hvi� D Œv�� D vj.L/
� .

Finally, we set h� D .h
K

.L/
�

C h
K

.R/
�

/=2.

In the derivation of the space discretization by the dG method the following
process is essential. We multiply the governing system by a test function v 2 Shp,
integrate the resulting relations over elements K 2 T b

h , apply Green’s theorem to
the term containing P, add some mutually vanishing terms, use boundary conditions
and sum over all elements. In this way we get the following forms:

abh.u; v/ D
X

K2T b
h

Z

K
P .u/ W rv dx �

X

� 2FbID
h

Z

�

.hP .u/in/ � Œv� dS; (16)

Jbh.u; v/ D
X

� 2FbID
h

Z

�

Cb
W

h�

Œu� � Œv� dS; (17)

`bh.v/ D
X

K2T b
h

Z

K
f � v dx C

X

� 2FbN
h

Z

�

gN � v dS C
X

� 2FbD
h

Z

�

Cb
W

h�

uD � v dS; (18)

Ab
h D abh C Jbh ; (19)

.u; v/˝b D
Z

˝b
u � v dx D

X

K2T b
h

Z

K
u � v dx; (20)

where u; v 2 Shp and Cb
W > 0 is a sufficiently large constant.

For k D 0; : : : ;M we use the approximations u.tk/ � ukh 2 Shp and z.tk/ � zkh 2
Shp. A general backward difference formula approximating the time derivative reads

@u
@t

.tkC1/ � 1

�

lX

jD0

clu
kC1�j
h ; (21)

where l is the order of the method and cj, j D 0; : : : ; l, are the coefficients.
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The BDF-dG approximate solution of problem (11)–(14) is defined as a couple
of sequences fukhgMkD0, fzkhgMkD0 such that

a/ ukh; z
k
h 2 Shp; k D 0; : : : ;M; (22)

b/

0

@�b

�

lX

jD0

clz
kC1�j
h ; vh

1

A

˝b
h

C �
CM�bzkC1

h ; vh
�

˝b
h

C Ab
h.u

kC1
h ; vh/

D `bh.vh/.tkC1/ 8vh 2 Shp;

c/

0

@�b

�

lX

jD0

clu
kC1�j
h ; vh

1

A

˝b
h

� �
zkC1
h ; vh

�
˝b

h
D 0 8vh 2 Shp;

k D 0; : : : ;M � 1;

d/ .u0
h � u0; vh/˝b

h
D 0; .z0

h � z0; vh/˝b
h

D 0 8vh 2 Shp:

The initial values ukh, z
k
h, k D 1; : : : ; l are obtained by k-step BDF schemes.

In the first order BDF method we have l D 1, c0 D 1, c1 D �1 and in the second
order BDF method l D 2 and c0 D 3=2, c1 D �2, c2 D 1=2.

The discrete nonlinear problems are solved on each time level by the Newton
method. For the solution of linear subproblems either direct UMFPACK solver or
GMRES method with block diagonal preconditioning are used.

3 Numerical Experiments

3.1 A Benchmark Problem

The applicability and accuracy of the BDF-dG method is tested by the comparison
with the benchmark denoted by CSM3 proposed by J. Hron and S. Turek in [4],
where they used a different solution approach. We consider a 2D domain formed by
the rigid cylinder with an attached elastic beam, as is shown in Fig. 1.

The following data are used: f D �
0; �2�b

�T
Œm:s�2�; �b D 103 Œkg:m�3�,

on the left part � b
D of the boundary connected with the rigid body we prescribe

Fig. 1 Rigid cylinder with an elastic beam of the nonlinear elasticity benchmark problem
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Fig. 2 The deformation of the beam in case CSM3: St. Venant-Kirchhoff model (left), linear
elasticity model (right)

Table 1 CSM3: comparison of the position of the point A for BDF2, St. Venant-Kirchhoff
material and different time steps � . The values are written in the format “mean value ˙ amplitude
[frequency]”

Method � u1

	�10�3



u2

	�10�3



Ref �14:305 ˙ 14:305 Œ1:0995� �63:607 ˙ 65:160 Œ1:0995�

BDF2 0.04 �10:566 ˙ 9:963 Œ1:0675� �64:866 ˙ 45:218 Œ1:0675�

BDF2 0.02 �13:477 ˙ 13:462 Œ1:0850� �64:133 ˙ 61:177 Œ1:0850�

BDF2 0.01 �14:119 ˙ 14:111 Œ1:0900� �63:905 ˙ 64:212 Œ1:0900�

BDF2 0.005 �14:454 ˙ 14:453 Œ1:0925� �64:384 ˙ 64:939 Œ1:0925�

homogeneous Dirichlet boundary condition uD D 0 and on the rest part � b
N of the

boundary we prescribe the Neumann boundary condition with no surface traction
gN D 0. The initial conditions u0 D z0 D 0. The material is characterized by the
Young modulus Eb D 1:4 � 106 and the Poisson ratio �b D 0:4.

Figure 2 shows the deformation of the beam at several time instants computed by
the linear model and St. Venant-Kirchhoff model. The linear model does not give
results correct from the physical point of view in contrast to the nonlinear case.
Table 1 presents the comparison between the reference results of the benchmark
with our computation carried out by the second-order BDF2 time discretization with
several time steps on a relatively coarse mesh with 722 elements and polynomial
degree p D 1. According to [4], the time dependent displacement is represented
by its mean value mean D 1=2.max C min/, amplitude D 1=2.max � min/ and
frequency. Table 1 shows a good agreement with the reference data from [4].

3.2 Example of Fluid-Structure Interaction

The BDF-dG method described above is combined with the solution of compressible
flow in a time dependent domain ˝t and the resulting coupled problem is applied to
the simulation of fluid-structure interaction. The boundary of ˝t is formed by three
disjoint parts: @˝t D �I [ �O [ �Wt ; where �I is the inlet, �O is the outlet and �Wt

represents impermeable time-dependent walls. The time dependence of the domain
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˝t is taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE)
method (see, e.g., [3], Chap. 10). It is based on a regular one-to-one ALE mapping of
the reference configuration ˝0 onto the current configuration ˝t. The compressible
Navier-Stokes system transformed to the ALE formulation is discretized by the
space-time discontinuous Galerkin method, see [1] or [3].

In the FSI simulation the common interface between the fluid and structure at
time t is defined as Q�Wt D fx D X C u.X; t/IX 2 � b

N g � �Wt . The flow and
structural problems are coupled by the transmission conditions

v.x; t/ D @u.X; t/

@t
; P.u.X; t//n.x/ D � f .x; t/Cof.F.u.X; t///n.x/; (23)

X 2 � b
N ; x D X C u.X; t/; 	

f
ij D �p ıij C �ıijdivv C 2�dij.v/;

dij.v/ D 1

2

�
@vi

@xj
C @vj

@xi

�
:

Here v denotes the fluid velocity, p is the fluid pressure and � > 0 and � D �2�=3

are the fluid viscosity coefficients. The fluid-structure interaction problem is solved
with the aid of a coupling procedure, see [3], Chap. 10.

As an example of the FSI problem we present the simulation of vibrations
of vocal folds model excited by the airflow in a simplified geometry of vocal
tract and vocal folds shown in Fig. 3. Figure 4 presents the velocity field con-
taining a number of vortices in the deformed vocal tract at time instants t D
0:0336; 0:0360; 0:0384; 0:0408s. The light shades correspond to low velocity,
whereas the dark shades represent higher velocity. The pressure is in the range
between 88200 and 99950 Pa. The prescribed outlet pressure is 97611 Pa. The inlet
velocity is 4 ms�1. The deformation of the vocal folds was computed with the use
of St. Venant-Kirchhoff model. The Young modulus and the Poisson ratio have
values Eb D 12000 Pa and �b D 0:4, respectively, the structural damping coefficient
cM D 1 s�1 and the material density �b D 1040 kg m�3.

Fig. 3 Computational domain with the mesh at time t D 0 and the description of its size: LI D
50 mm, Lg D 15:4 mm, LO D 94:6 mm, H D 16 mm. The width of the channel in the narrowest
part is 1:6 mm
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Fig. 4 The velocity field. The values of velocity magnitude (white to black) at time instans t D
0:0336; 0:0360; 0:0384; 0:0408 s

4 Conclusion

This paper is concerned with the application of the discontinuous Galerkin method
in space combined with the BDF time discretization to the numerical solution of
dynamic nonlinear elasticity problems using St. Venant-Kirchhoff material model.
The method was tested on the benchmark proposed by J. Hron and S. Turek with
satisfactory results. It is also shown that the method can be successfully applied to
fluid-structure interaction.

Our further goal is a deeper analysis of the vocal folds vibrations using more
complex geometry of vocal tract. Moreover, theoretical analysis of the developed
method will be carried out.
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