Quasi-Optimality Constants for Parabolic
Galerkin Approximation in Space

Francesca Tantardini and Andreas Veeser

Abstract We consider Galerkin approximation in space of linear parabolic initial-
boundary value problems where the elliptic operator is symmetric and thus induces
an energy norm. For two related variational settings, we show that the quasi-
optimality constant equals the stability constant of the L?>-projection with respect
to that energy norm.

1 Introduction

A Galerkin method S for a variational problem is quasi-optimal in a norm |-|| if
there exists a constant g such that

lu—Us|| = qinflu—v], Sy

where u is any variational solution, Uy its associated Galerkin approximation and
v varies in the discrete trial space. The quasi-optimality constant gs is the best
constant g in (1), and thus measures how well the Galerkin method S exploits the
approximation potential offered by the discrete trial space. The determination or
estimation of g is therefore the ideal first step in an a priori error analysis.
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Here we are interested in Galerkin approximation in space for linear parabolic
initial-boundary value problems like

du—Au=fin 2 x (0,7),

u=00n0d2 x(0,T), u(-,0)=win 2. @
Whereas for the stationary case, i.e. elliptic problems, quasi-optimality results like
Céa’s lemma are very common, such results have been less explored for parabolic
problems. A common assumption of such results is that the L?>-projection onto the
underlying discrete space is H _stable; see, e.g., [4, 5, 7], where the norm in (1) is
either the one of H'(H™') N L*(H") or the one of L?(H'). Recently, the authors
[8] have clarified the role of this assumption by showing that it is also necessary.
This follows by applying the inf-sup theory [2, 3] to two weak, essentially dual
formulations: the standard weak formulation with trial space H'(H™") N L*(H")
and the ultra-weak formulation with trial space L>(H").

This short note underlines the close relationship between parabolic quasi-
optimality and the H'-stability of the L2-projection. It improves the results of [8]
in the special case of a time-independent symmetric elliptic operator. For the model
problem (2) and both variational formulations, this improvement reads as follows:
the quasi-optimality constant of a Galerkin approximation with values in a discrete
subspace S of H,) is given by the operator norm in HO1 of the L*-projection onto S:

qstd;s = ||PS||$(H(1)) = qult;S- (3)

2 Petrov-Galerkin Framework and Quasi-Optimality

This section, which is taken from [8], provides the general framework for the
derivation of our quasi-optimality results. Let (Hy, ||-||;) and (Hz, ||-||,) be two real
Hilbert spaces. The dual space H; of H, is equipped with the usual dual norm
I1€]] HE = SUP|y|,=1 L(p) for £ € H}. Moreover, let b be a real-valued bounded
bilinear form on H; x H, and set C), := SUP|Iu |, =flgll,=1 |b(v, ¢)|. We consider the
problem

given £ € Hy, find u € H, suchthat Vo € H, b(u, ) = £(¢) 4)

and say that it is well-posed if, for any £ € HJ, there exists a unique solution that
continuously depends on £. This holds if and only if there hold the following two
conditions involving the so-called inf-sup constant ¢, cf. [3]:

cp:= inf  sup b(v,p) >0 (uniqueness), (5a)
=1 llell,=1

Vo € H\{0}3v € H; b(v,¢) >0 (existence). (5b)
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If (5) is satisfied, we have the duality

inf  sup b(v,p) = inf sup b(v, ). (6)
Il =1 Jlgll,=1 lell=1llvll,=1

For notational simplicity, we take the viewpoint that a Petrov-Galerkin method
for problem (4) is characterized by one pair of subspaces, instead of a family of
pairs. Let M; C H;, i = 1,2, be nontrivial and proper subspaces. The Petrov-
Galerkin method M = (M, M) for (4) reads

given £ € Hy, find Uy € M; such that Vo € My b(Up, @) = £(p). 7

Problem (7) is well-posed if and only if there hold the semidiscrete counterparts
of (5), involving the semidiscrete inf-sup constant c:

cy =  inf sup  b(v,9) >0,
veMy:|lvlli=1 peMy:|lpl,=1

Yo e My \ {0} Jv e My b(v,p) > 0.

A method M is quasi-optimal if there exists a constant ¢ > 1 such that, for any
{ € H}, there holds

-U <gq inf ||u— . 8
Ju=Unlly < g inf u—vl, ®)

The quasi-optimality constant gy of the method M is the smallest constant
verifying (8). The formula for gy, in [8, Theorem 2.1] or combining [2, 3] with
[9] imply

Squ= . €))

3 Two Weak Formulations of Linear Parabolic Problems

In order to cast parabolic initial-boundary value problems in the form (4), we briefly
recall two suitable weak formulations thereof.

Let V and W be two separable Hilbert spaces such that V. C W C V*
forms a Hilbert triplet. The scalar product in W as well as the duality pairing of
V* x V is denoted by (-, -). The norms are indicated by |||y, ||:llw. and |||y« =

SUpjyp, =1 (- V)
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LetA € Z(V,V*) be a linear and continuous operator arising from a symmetric
bilinear form a via (Av,¢) = a(v,@). We assume that a is bounded and
coercive, i.e.

v, = inf a(v,v) >0, C,:= sup a(v, @) < oo. (10)

lolly=1 lvllv=lelly=1
In view of (10) and the symmetry of a, the energy norm |-||, = (A-,-)"/* and
the dual energy norm ||-[|;, := supy, —; (-, ¢) are equivalent to |||, and [|-[|y=,

respectively. Moreover, for every £ € V* we have

€] = sup (Ap.A7'0) = |AT2| = V/(£.A¢). (11)

lell,=1

Finally, given a final time 7 > 0 and a Hilbert space X, we set I := (0,T) and
denote with L?>(X) := L?*(I; X) the space of all Lebesgue-measurable and square-
integrable functions of the form / — X. In addition, if Y is another Hilbert space,
weset H'(X,Y) := {v € L*2(X) | v/ € L*(Y)} and write H'(X) for H'(X, X).

3.1 Standard Weak Formulation

The standard weak formulation is very common, also for some nonlinear parabolic
problems. In the above setting, it reads

givenf € L*(V*) and w € W, find u € H'(V, V*) such that

(12)
W +Au=finl, u(0) =w

and can be cast in the form (4) by choosing H; = H'(V,V*) and H, = {¢ =
(%0, 91) | @o € W, @1 € L*(V)} with norms

2
1ol = Bty + [0+ 10 ol = ool + [hnl2. a3
1 1

Bilinear form and right-hand side are given, respectively, by
b(v,9) = bya(A: v, 9) := (v(0), o) + /(v’, o1) + (Av, @) (14)
1

and £(¢) = (w, @o) + f, (f, ¢1). We denote the constants of byg by Cygq etc.

The norm ||-||; in (13) slightly differs from the corresponding definition in [8]
because it involves v(T) instead of v(0). This modification offers the following
advantage, which was already observed in [1]: the norms in (13) mimic the energy
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norm for a linear elliptic problem in that the operator v — b(v, -) is an isometry. We
provide a proof because its arguments will be used in what follows.

Proposition 1 (Isometry) For every v € Hy, we have ||b(v, -)||H2* =|v|l, -

Proof Tnview of [, (v',v) = |u(T) |3, — [v(0)|[}, the symmetry of A and (11), we
have the identity

)13 + /IHA“v’ + ]2 = vl + /IHA“v’Hj o2 =2 as)

for every v € H;. On the one hand, this gives, for every v € H|, ¢ € H>,

b(v.0) = (v(0). o) + /I(v’,gol) 4 (Av. 1)

1/2
_ 2
< (OB + [147 +012) 1ol = ol ol
which implies ||b(v,-)||H;< < |lv]|,. On the other hand, choosing

@0 = v(0), or=v +A (16)

and using again (15), we get ||¢|, = ||v]|, and

b(v.¢) = [v(0) [}y + /I(v’,v) + (V. A7) + (Av,v) = |ollT

Hence, [[b(v.)|lzz = lIv]l;- .

Corollary 2 (Standard bilinear form) The bilinear form b in (14) is continuous
and satisfies the inf-sup condition with Cgq = cgq = 1.

Proof The equalities follow readily from Proposition 1. The proof of the non-
degeneracy condition (5b) can be found in [8, Prop. 3.1]. O

3.2 Ultra-Weak Formulation

Discontinuous Galerkin methods, applications in optimization and stochastic PDEs
motivate to consider solution notions with less regularity in time. In order to obtain
such a solution notion for (12), one may multiply the differential equation with a
test function

@ € HL(V,V*) = {p e [X(I;V) | ¢’ € L*(I,V*),o(T) = 0},
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integrate in time and by parts. This results in the ultra-weak formulation, which can
be cast in the form (4) by choosing H; = L?(V), and H, = H-(V, V*), with norms

HM=[MM, wﬁ=ﬁw%ww;-

Here, bilinear form and right-hand side are given, respectively, by

bmm=Mme:[4¢w+wW> (17)

and £(¢) = (w,9(0)) + [;{f.¢) + (¢ .fi), with f € L*(V*), fi € L*(V) and
w € W. We denote the constants of by by Cyy etc. Every solution of the standard
weak formulation is one of the ultra-weak formulation.

Corollary 3 (Ultra-weak bilinear form) The bilinear form b in (17) is continuous
and satisfies the inf-sup condition with Cy = ¢y = 1.

Proof We exploit the duality with the standard weak formulation. Setting (v (¢) :=
v(T —1),t €I =(0,T) and using the symmetry of A, we have

Yo, € L2(V), vy € HF(V,V*)  bu(A; vy, v2) = bga(A; 10y, 101); (18)

see [8, Lemma 4.1]. Since Proposition 1 holds also with H)(V,V*) := {v €
H'(V,V*) | v(0) = 0} in place of H'(V,V*), we thus deduce Cyy = Cyq = 1
and ¢y = cyg = 1 with the help of (6). O

4 Galerkin Approximation in Space and Quasi-Optimality
Constants

We review Galerkin approximation in space for the standard and the ultra-weak for-
mulation and then derive identities for the corresponding quasi-optimality constants.

Let S be a finite-dimensional, nontrivial, and proper subspace of V. Observe that
S is also a subspace of W and, with the identification §* = §, also of V*. As a
subspace of V*, we can equip S = S$* with

e, Ev
1€l ;:« = sup (L) aswellas  ||£]|,.g« 1= sup ( qp).
’ eV ”(p”a ’ QES ”go“a

The following relationship, which can be found, e.g., in [8, Proposition 2.5], will be
crucial:

1€ .
sup, " = IIPslleqv, = sup IPswll, (19)
tes 1€l vl =1
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where Pg is the W-orthogonal projection onto S satisfying (Psw, ¢) = (w, ¢) for all
¢ € Sandeveryw € W.

4.1 Standard Weak Formulation

We first consider the standard weak formulation and define the spaces H;, H», their
norms and the bilinear form b as in Sect.3.1. The Galerkin approximation with
values in S is characterized by (7) with M = (M, M,) where

M, =H'S)CH,, M,=SxL*S)CH,. (20)

In order to determine the associated inf-sup constant cyq;s in (5a), we first derive a
discrete counterpart of Proposition 1. To this end, we define on M the following
S-dependent variant of |-||;:

IolRs = Pl + [ 101 + e

where we replaced the dual norm |- .., of the time derivative with the discrete dual
norm ||| .¢+. This gives rise to

b(v, ) = b(v, )
Citd;s := sup sup

Cyazs = inf  sup
s vey pem, V15 el

VEM| @EM, ||U||1;S ||‘/’||2
and

olls

;.
lolss - Cas- (21)

Cstd;s < Ca;s < inf
veMy |||l

Proposition 4 (Discrete isometry) For every v € Mj, we have

b(v, ¢)
I16(v, ) lpsz := sup
My QEM> ”(p“Z

= [lvlly;s -

Proof In order to proceed as in the proof of Proposition 1, we introduce the discrete
counterpart of A, namely the operator Ag : S — S* given by (Asv, ¢) = a(v, ¢),
for every v, ¢ € S. In analogy to (11), we have (£, Ag'¢) = A |2 = ||€||¢2,;S*. We
thus conclude as in the proof of Proposition 1, upon replacing ¢ = (¢, ¢1) in (16)
with go = v(0) € S, 91 = v + Ay € L*(S). O

Consequently, the counterparts of the identities in Corollary 2 are

Esld;S = Cstd;S =1, (22)
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which imply a symmetric error estimate for |||, similar to the one in [6]. For |||
instead, we have:

Theorem 5 (Quasi-optimality in H'(V., |||, : V*. |ll,.«)) The quasi-optimality
constant of the Galerkin method (20) is given in terms of the W-projection onto S by

gsazs = [1Psll 21, -

Proof Identity (19) entails that the ratio of the two norms in the trial space is

vl
sup

= Psl 2w - (23)
yar,4 ”UHI;S V.ll-lla)

see [8, Proposition 2.5 and (3.14)]. We thus deduce

_ [[vll
Gstts = Cygys = SUP b= 1Psll e, - (24)
vem, ||Vl 1;8
by using Corollary 2 in (9) and (22) in (21). |

Remark 6 (Non-symmetric case) 1f a is not symmetric, Theorem 5 can be general-
ized to

-1
Ko NPsll 2 g, < gsiazs = KallPsll 2w g, -

where ||-||, is given by the symmetric part of a and «, depends on C, and v,,
with k, = 1 whenever a is symmetric. To this end, the bilinear form is split
into its symmetric and skew-symmetric part, where the latter part is treated as
a perturbation. An alternative and more general approach is offered by [8]. That
analysis appears to be simpler but we only have k, = /2 if a is symmetric and one
adopts the above energy-norm setting.

4.2 Ultra-Weak Formulation

We turn to Galerkin approximation based upon the ultra-weak formulation. Let the
spaces H;, H,, their norms and the bilinear form b be given as in Sect.3.2. The
corresponding Galerkin approximation with values in S is characterized by (7) with
M = (M, M,) where

M, = L*(S) CH,, M,=HNS):=H'S)NHNV,V*) C H,. (25)
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Also, the Galerkin approximation of the ultra-weak formulation generalizes the
Galerkin approximation of the standard weak formulation. Moreover:

Theorem 7 (Quasi-optimality in L*(V, ||-||,)) The quasi-optimality constant of
the ultra-weak Galerkin method (25) is determined in terms of the W-projection
onto S by

quss = |Psllz ) -

Proof We exploit again duality. To this end, notice first that Proposition 4 and (23)
hold also if H'(S) is replaced by H}(S) := {v € H'(S) | v(0) = 0}. Hence, the
discrete inf-sup constant does not change under this replacement and (18) yields
Cul;s = Csidzs- We thus obtain

-1 -1
Gui;s = Cyi;s = Cstd;s = ”PS||$(V,||-||,,)

by using Corollary 3 in (9) and (24). O
Theorems 5 and 7 with W = L?(2), V = H}(£2) and A = — A yield (3).
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