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Abstract We consider Galerkin approximation in space of linear parabolic initial-
boundary value problems where the elliptic operator is symmetric and thus induces
an energy norm. For two related variational settings, we show that the quasi-
optimality constant equals the stability constant of the L2-projection with respect
to that energy norm.

1 Introduction

A Galerkin method S for a variational problem is quasi-optimal in a norm k�k if
there exists a constant q such that

ku � USk � q inf
v

ku � vk ; (1)

where u is any variational solution, US its associated Galerkin approximation and
v varies in the discrete trial space. The quasi-optimality constant qS is the best
constant q in (1), and thus measures how well the Galerkin method S exploits the
approximation potential offered by the discrete trial space. The determination or
estimation of qS is therefore the ideal first step in an a priori error analysis.
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Here we are interested in Galerkin approximation in space for linear parabolic
initial-boundary value problems like

@tu � �u D f in ˝ � .0;T/;

u D 0 on @˝ � .0;T/; u.�; 0/ D w in ˝:
(2)

Whereas for the stationary case, i.e. elliptic problems, quasi-optimality results like
Céa’s lemma are very common, such results have been less explored for parabolic
problems. A common assumption of such results is that the L2-projection onto the
underlying discrete space is H1-stable; see, e.g., [4, 5, 7], where the norm in (1) is
either the one of H1.H�1/ \ L2.H1/ or the one of L2.H1/. Recently, the authors
[8] have clarified the role of this assumption by showing that it is also necessary.
This follows by applying the inf-sup theory [2, 3] to two weak, essentially dual
formulations: the standard weak formulation with trial space H1.H�1/ \ L2.H1/

and the ultra-weak formulation with trial space L2.H1/.
This short note underlines the close relationship between parabolic quasi-

optimality and the H1-stability of the L2-projection. It improves the results of [8]
in the special case of a time-independent symmetric elliptic operator. For the model
problem (2) and both variational formulations, this improvement reads as follows:
the quasi-optimality constant of a Galerkin approximation with values in a discrete
subspace S of H1

0 is given by the operator norm in H1
0 of the L2-projection onto S:

qstdIS D kPSkL .H1
0/ D qultIS: (3)

2 Petrov-Galerkin Framework and Quasi-Optimality

This section, which is taken from [8], provides the general framework for the
derivation of our quasi-optimality results. Let .H1; k�k1/ and .H2; k�k2/ be two real
Hilbert spaces. The dual space H�

2 of H2 is equipped with the usual dual norm
k`kH�

2
D supk'k2D1 `.'/ for ` 2 H�

2 . Moreover, let b be a real-valued bounded
bilinear form on H1 � H2 and set Cb WD supkvk1Dk'k2D1 jb.v; '/j. We consider the
problem

given ` 2 H�
2 , find u 2 H1 such that 8' 2 H2 b.u; '/ D `.'/ (4)

and say that it is well-posed if, for any ` 2 H�
2 , there exists a unique solution that

continuously depends on `. This holds if and only if there hold the following two
conditions involving the so-called inf-sup constant cb, cf. [3]:

cb WD inf
kvk1D1

sup
k'k2D1

b.v; '/ > 0 (uniqueness); (5a)

8' 2 H2 n f0g 9v 2 H1 b.v; '/ > 0 (existence): (5b)
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If (5) is satisfied, we have the duality

inf
kvk1D1

sup
k'k2D1

b.v; '/ D inf
k'k2D1

sup
kvk1D1

b.v; '/: (6)

For notational simplicity, we take the viewpoint that a Petrov-Galerkin method
for problem (4) is characterized by one pair of subspaces, instead of a family of
pairs. Let Mi � Hi, i D 1; 2, be nontrivial and proper subspaces. The Petrov-
Galerkin method M D .M1;M2/ for (4) reads

given ` 2 H�
2 , find UM 2 M1 such that 8' 2 M2 b.UM; '/ D `.'/: (7)

Problem (7) is well-posed if and only if there hold the semidiscrete counterparts
of (5), involving the semidiscrete inf-sup constant cM:

cM WD inf
v2M1Wkvk1D1

sup
'2M2Wk'k2D1

b.v; '/ > 0;

8' 2 M2 n f0g 9v 2 M1 b.v; '/ > 0:

A method M is quasi-optimal if there exists a constant q � 1 such that, for any
` 2 H�

2 , there holds

ku � UMk1 � q inf
v2M1

ku � vk1 : (8)

The quasi-optimality constant qM of the method M is the smallest constant
verifying (8). The formula for qM in [8, Theorem 2.1] or combining [2, 3] with
[9] imply

cb
cM

� qM � Cb

cM
: (9)

3 Two Weak Formulations of Linear Parabolic Problems

In order to cast parabolic initial-boundary value problems in the form (4), we briefly
recall two suitable weak formulations thereof.

Let V and W be two separable Hilbert spaces such that V � W � V�
forms a Hilbert triplet. The scalar product in W as well as the duality pairing of
V� � V is denoted by h�; �i. The norms are indicated by k�kV , k�kW , and k�kV� D
supkvkVD1 h�; vi.
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Let A 2 L .V;V�/ be a linear and continuous operator arising from a symmetric
bilinear form a via hAv; 'i D a.v; '/. We assume that a is bounded and
coercive, i.e.

�a WD inf
kvkVD1

a.v; v/ > 0; Ca WD sup
kvkVDk'kVD1

a.v; '/ < 1: (10)

In view of (10) and the symmetry of a, the energy norm k�ka D hA�; �i1=2 and
the dual energy norm k�kaI� WD supk'kaD1 h�; 'i are equivalent to k�kV and k�kV� ,
respectively. Moreover, for every ` 2 V� we have

k`kaI� D sup
k'kaD1

˝
A';A�1`

˛ D �
�A�1`

�
�
a

D
p

h`;A�1`i: (11)

Finally, given a final time T > 0 and a Hilbert space X, we set I WD .0;T/ and
denote with L2.X/ WD L2.IIX/ the space of all Lebesgue-measurable and square-
integrable functions of the form I ! X. In addition, if Y is another Hilbert space,
we set H1.X;Y/ WD fv 2 L2.X/ j v0 2 L2.Y/g and write H1.X/ for H1.X;X/.

3.1 Standard Weak Formulation

The standard weak formulation is very common, also for some nonlinear parabolic
problems. In the above setting, it reads

given f 2 L2.V�/ and w 2 W; find u 2 H1.V;V�/ such that

u0 C Au D f in I; u.0/ D w
(12)

and can be cast in the form (4) by choosing H1 D H1.V;V�/ and H2 D f' D
.'0; '1/ j '0 2 W; '1 2 L2.V/g with norms

kvk2
1 D kv.T/k2

W C
Z

I
kvk2

a C ��v0��2

aI� ; k'k2
2 D k'0k2

W C
Z

I
k'1k2

a : (13)

Bilinear form and right-hand side are given, respectively, by

b.v; '/ D bstd.AI v; '/ WD hv.0/; '0i C
Z

I

˝
v0; '1

˛ C hAv; '1i (14)

and `.'/ D hw; '0i C R
I h f ; '1i. We denote the constants of bstd by Cstd etc.

The norm k�k1 in (13) slightly differs from the corresponding definition in [8]
because it involves v.T/ instead of v.0/. This modification offers the following
advantage, which was already observed in [1]: the norms in (13) mimic the energy
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norm for a linear elliptic problem in that the operator v 7! b.v; �/ is an isometry. We
provide a proof because its arguments will be used in what follows.

Proposition 1 (Isometry) For every v 2 H1, we have kb.v; �/kH�

2
D kvk1 :

Proof In view of
R
I hv0; vi D kv.T/k2

W � kv.0/k2
W , the symmetry of A and (11), we

have the identity

kv.0/k2
W C

Z

I

��A�1v0 C v
��2

a
D kv.T/k2

W C
Z

I

��A�1v0��2

a
C kvk2

a D kvk2
1 (15)

for every v 2 H1. On the one hand, this gives, for every v 2 H1, ' 2 H2,

b.v; '/ D hv.0/; '0i C
Z

I

˝
v0; '1

˛ C hAv; '1i

�
�

kv.0/k2
W C

Z

I

�
�A�1v0 C v

�
�2

a

�1=2

k'k2 D kvk1 k'k2 ;

which implies kb.v; �/kH�

2
� kvk1. On the other hand, choosing

'0 D v.0/; '1 D v0 C A�1v (16)

and using again (15), we get k'k2 D kvk1 and

b.v; '/ D kv.0/k2
W C

Z

I

˝
v0; v

˛ C ˝
v0;A�1v

˛ C hAv; vi D kvk2
1 :

Hence, kb.v; �/kH�

2
� kvk1. ut

Corollary 2 (Standard bilinear form) The bilinear form b in (14) is continuous
and satisfies the inf-sup condition with Cstd D cstd D 1.

Proof The equalities follow readily from Proposition 1. The proof of the non-
degeneracy condition (5b) can be found in [8, Prop. 3.1]. ut

3.2 Ultra-Weak Formulation

Discontinuous Galerkin methods, applications in optimization and stochastic PDEs
motivate to consider solution notions with less regularity in time. In order to obtain
such a solution notion for (12), one may multiply the differential equation with a
test function

' 2 H1
T.V;V�/ WD f' 2 L2.IIV/ j ' 0 2 L2.I;V�/; '.T/ D 0g;
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integrate in time and by parts. This results in the ultra-weak formulation, which can
be cast in the form (4) by choosing H1 D L2.V/, and H2 D H1

T.V;V�/, with norms

kvk2
1 D

Z

I
kvk2

V ; k'k2
2 D

Z

I
k'k2

a C �
�' 0��2

aI� :

Here, bilinear form and right-hand side are given, respectively, by

b.v; '/ D bult.AI v; '/ WD
Z

I
� ˝

' 0; v
˛ C hAv; 'i (17)

and `.'/ D hw; '.0/i C R
I h f ; 'i C h' 0; f1i, with f 2 L2.V�/, f1 2 L2.V/ and

w 2 W. We denote the constants of bult by Cult etc. Every solution of the standard
weak formulation is one of the ultra-weak formulation.

Corollary 3 (Ultra-weak bilinear form) The bilinear form b in (17) is continuous
and satisfies the inf-sup condition with Cult D cult D 1.

Proof We exploit the duality with the standard weak formulation. Setting �v.t/ WD
v.T � t/, t 2 I D .0;T/ and using the symmetry of A, we have

8v1 2 L2.V/; v2 2 H1
T.V;V�/ bult.AI v1; v2/ D bstd.AI �v2; �v1/I (18)

see [8, Lemma 4.1]. Since Proposition 1 holds also with H1
0.V;V�/ WD fv 2

H1.V;V�/ j v.0/ D 0g in place of H1.V;V�/, we thus deduce Cult D Cstd D 1

and cult D cstd D 1 with the help of (6). ut

4 Galerkin Approximation in Space and Quasi-Optimality
Constants

We review Galerkin approximation in space for the standard and the ultra-weak for-
mulation and then derive identities for the corresponding quasi-optimality constants.

Let S be a finite-dimensional, nontrivial, and proper subspace of V . Observe that
S is also a subspace of W and, with the identification S� D S, also of V�. As a
subspace of V�, we can equip S D S� with

k`kaI� D sup
'2V

h`; 'i
k'ka

as well as k`kaIS� WD sup
'2S

h`; 'i
k'ka

:

The following relationship, which can be found, e.g., in [8, Proposition 2.5], will be
crucial:

sup
`2S

k`kaI�
k`kaIS�

D kPSkL .V;k�ka/ WD sup
kwkaD1

kPSwka ; (19)
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where PS is the W-orthogonal projection onto S satisfying hPSw; 'i D hw; 'i for all
' 2 S and every w 2 W.

4.1 Standard Weak Formulation

We first consider the standard weak formulation and define the spaces H1, H2, their
norms and the bilinear form b as in Sect. 3.1. The Galerkin approximation with
values in S is characterized by (7) with M D .M1;M2/ where

M1 D H1.S/ � H1; M2 D S � L2.S/ � H2: (20)

In order to determine the associated inf-sup constant cstdIS in (5a), we first derive a
discrete counterpart of Proposition 1. To this end, we define on M1 the following
S-dependent variant of k�k1:

kvk2
1IS WD kv.T/k2

W C
Z

I
kvk2

a C ��v0��2

aIS�
;

where we replaced the dual norm k�kaI� of the time derivative with the discrete dual
norm k�kaIS� . This gives rise to

QcstdIS WD inf
v2M1

sup
'2M2

b.v; '/

kvk1IS k'k2

; QCstdIS WD sup
v2M1

sup
'2M2

b.v; '/

kvk1IS k'k2

and

inf
v2M1

kvk1IS
kvk1

QcstdIS � cstdIS � inf
v2M1

kvk1IS
kvk1

QCstdIS: (21)

Proposition 4 (Discrete isometry) For every v 2 M1, we have

kb.v; �/kM�

2
WD sup

'2M2

b.v; '/

k'k2

D kvk1IS :

Proof In order to proceed as in the proof of Proposition 1, we introduce the discrete
counterpart of A, namely the operator AS W S ! S� given by hASv; 'i D a.v; '/,
for every v, ' 2 S. In analogy to (11), we have

˝
`;A�1

S `
˛ D kA�1

S `k2
a D k`k2

aIS� . We
thus conclude as in the proof of Proposition 1, upon replacing ' D .'0; '1/ in (16)
with '0 D v.0/ 2 S, '1 D v C A�1

S v0 2 L2.S/. ut
Consequently, the counterparts of the identities in Corollary 2 are

QcstdIS D QCstdIS D 1; (22)
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which imply a symmetric error estimate for k�k1IS, similar to the one in [6]. For k�k1

instead, we have:

Theorem 5 (Quasi-optimality in H1.V; k�ka IV�; k�kaI�/) The quasi-optimality
constant of the Galerkin method (20) is given in terms of the W-projection onto S by

qstdIS D kPSkL .V;k�ka/ :

Proof Identity (19) entails that the ratio of the two norms in the trial space is

sup
v2M1

kvk1

kvk1IS
D kPSkL .V;k�ka/ ; (23)

see [8, Proposition 2.5 and (3.14)]. We thus deduce

qstdIS D c�1
stdIS D sup

v2M1

kvk1

kvk1IS
D kPSkL .V;k�ka/ : (24)

by using Corollary 2 in (9) and (22) in (21). ut
Remark 6 (Non-symmetric case) If a is not symmetric, Theorem 5 can be general-
ized to

��1
a kPSkL .V;k�ka/ � qstdIS � �a kPSkL .V;k�ka/ ;

where k�ka is given by the symmetric part of a and �a depends on Ca and �a,
with �a D 1 whenever a is symmetric. To this end, the bilinear form is split
into its symmetric and skew-symmetric part, where the latter part is treated as
a perturbation. An alternative and more general approach is offered by [8]. That
analysis appears to be simpler but we only have �a D p

2 if a is symmetric and one
adopts the above energy-norm setting.

4.2 Ultra-Weak Formulation

We turn to Galerkin approximation based upon the ultra-weak formulation. Let the
spaces H1, H2, their norms and the bilinear form b be given as in Sect. 3.2. The
corresponding Galerkin approximation with values in S is characterized by (7) with
M D .M1;M2/ where

M1 D L2.S/ � H1; M2 D H1
T.S/ WD H1.S/ \ H1

T.V;V�/ � H2: (25)
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Also, the Galerkin approximation of the ultra-weak formulation generalizes the
Galerkin approximation of the standard weak formulation. Moreover:

Theorem 7 (Quasi-optimality in L2.V; k�ka/) The quasi-optimality constant of
the ultra-weak Galerkin method (25) is determined in terms of the W-projection
onto S by

qultIS D kPSkL .V;k�ka/ :

Proof We exploit again duality. To this end, notice first that Proposition 4 and (23)
hold also if H1.S/ is replaced by H1

0.S/ WD fv 2 H1.S/ j v.0/ D 0g. Hence, the
discrete inf-sup constant does not change under this replacement and (18) yields
cultIS D cstdIS. We thus obtain

qultIS D c�1
ultIS D c�1

stdIS D kPSkL .V;k�ka/

by using Corollary 3 in (9) and (24). ut
Theorems 5 and 7 with W D L2.˝/, V D H1

0.˝/ and A D �� yield (3).
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