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Abstract This work is devoted to the Directional Do-Nothing (DDN) condition as
an outflow boundary condition for the incompressible Navier-Stokes equation. In
contrast to the Classical Do-Nothing (CDN) condition, we have stability, existence
of weak solutions and, in the case of small data, also uniqueness. We derive an
a priori error estimate for this outflow condition for finite element discretizations
with inf-sup stable pairs. Stabilization terms account for dominant convection and
the divergence free constraint. Numerical examples demonstrate the stability of the
method.

1 Introduction

The classical do-nothing condition is very often prescribed at outflow boundaries
for fluid dynamical problems. However, in the case of the Navier-Stokes equations
in a domain ˝ � R

d, d 2 f2; 3g, not even existence of weak solutions can be
shown, see [10]. The reason is that this boundary condition does not exhibit any
control about inflow across such boundaries, see [4]. This has also severe impact
onto the stability of numerical algorithms for flows at higher Reynolds numbers.
Denoting the velocity field by u and the pressure by p, the directional do-nothing
(DDN) boundary condition

�ru � n � pn � ˇ.u � n/�u D 0 at S1 (1)

on S1 � @˝ with normal vector n and a parameter ˇ � 0 is one possibility to
circumvent this disadvantage. Here, .u � n/�.x/ D min.0;u.x/ � n.x// denotes the
negative part of the flux across the boundary at x 2 @˝ . In particular, existence of
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weak solutions is proved in [4], and in several applications the stability is enhanced
compared to the classical do-nothing condition (ˇ D 0), see e.g. [2, 12].

In the case of pure outflow, i.e. if u �n � 0 on S1, this condition is identical to the
classical do-nothing condition (CDN). In particular, it reproduces Poiseuille flow
for a laminar flow in a tube with parabolic inflow.

The outflow condition (1) has similarities with the convective boundary condition
in [5, 6], but no reference solution nor Stokes solution on a larger domain is needed.
We also like to refer to the recent work [8] where a different open boundary
condition is proposed which makes use of a smoothed step function and overcomes
backflow instabilities as well.

2 Variational Formulation

The variational spaces for velocity and pressure are given by

V WD fu 2 H1.˝/d j u D 0 a.e. on S0g;
Q WD L2.˝/;

respectively. The norm in L2.!/ (and in L2.!/d) for ! � ˝ is denoted by jj � jj! .
For ! D ˝ we surpress the index. The H�1.˝/-norm is denoted by jj � jj�1. In
order to formulate the Navier-Stokes system in variational form we consider the
decomposition

..w � r/u; �/ D 1

2
...w � r/u; �/ � .u; .w � r/�/// C 1

2

Z
@˝

.w � n/u � � ds;

of the convective term for divergence free vector fields w and use the notation

c.wIu; �/ WD 1
2
..w � r/u; �/ � 1

2
.u; .w � r/�/

C
Z
S1

�
1
2
.w � n/ � ˇ.w � n/�

�
u � � ds:

Lemma 1 The nonlinear convective term can be expressed by

c.wIu; �/ D ..w�r/u; �/ C 1
2
.divwu; �/ � ˇ

Z
S1

.w � n/�u � � ds

for all w;u; � 2 V.

Proof This identity follows easily by integration by parts.

The semi-linear form for the Navier-Stokes system with DDN condition reads

A.wIu; pI �; �/ WD c.wIu; �/ C .�ru; r�/ � . p; div�/ C .divu; �/:
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We seek .u; p/ 2 V � Q s.t.

.@tu; �/ C A.uIu; pI �; �/ D h f ;�i 8� 2 V; 8� 2 Q: (2)

Diagonal testing with the solution, � WD u, � WD p, results in

1

2
@tjjujj2 C �jjrujj2 C

Z
S1

�
1

2
.u � n/C C

�
1

2
� ˇ

�
.u � n/�

�
juj2ds

� jjf jj�1jjrujj:

For ˇ � 1=2 the arising boundary integral is non-negative. This property is needed
to show existence of weak solutions, see techniques in [4]. Moreover, the solution
is unique in the case of small data, see [3].

3 Finite Element Discretization

For the discretization of (2) in space we use inf-sup stable finite elements of order
k for uh, for instance the classical Taylor-Hood element Q2=Q1 on quadrilaterals
(for d D 2). Due to the fact that we use a divergence-free projection in the
analysis below, we require for d D 3 on hexahedrons Q3=Q2 elements, see [9].
It is well-known that the convective terms and the divergence-free constraint should
be stabilized in order to obtain more accurate discrete solutions with enhanced
divergence properties and less over- and undershoots. We use a combination of div-
div stabilization and local projection (LPS) of the convective terms

Sh.wIu; �/ WD
X

M2Mh

�M.divu; div�/M C ˛M.�MŒ.wM �r/u�; �MŒ.wM �r/��/M

with local fluctuation operator �M W L2.M/ ! L2.M/ on patches M, and piecewise
constant approximation wM of w. We allow for the one-level (M 2 Th) or the two-
level (M 2 T2h) variant, but the common requirements according to [11] should be
satisfied. The stabilization parameter �M for the divergence stabilization is patch-
wise constant in the following range:

0 < �0hmax � �M � �max; (3)

with positive constants �0; �max > 0 and the maximal mesh size hmax D maxfhT W
T 2 Thg. The LPS parameter ˛M must be non-negative (may vanish) and may
depend on uM but is bounded (˛0 � 0):

0 � ˛M � ˛0juMj�2: (4)
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Similar to the work [1] we assume for the a priori estimate the following local
approximation property:

jju � uMjjL1.M/ � CjjujjL1.M/: (5)

The semi-discrete system consists in seeking uh 2 Vh, ph 2 Qh s.t.

.@tuh; �/ C A.uhIuh; phI �; �/ C Sh.uhIuh; �/ D h f ;�i (6)

for all � 2 Vh and all � 2 Qh.

4 A Priori Estimate

For the a priori estimate we split the error eu WD u � uh into interpolation error
�u WD u � ihu and projection error �u WD ihu � uh. Here, ih W V ! Vh is a
divergence-free projection. We use the following norm in V:

jjjujjj2uh D �jjrujj2 C
Z
S1

�
1
2
.uh � n/C C . 1

2
� ˇ/.uh � n/�

� juj2d�

CSh.uhIu;u/:

A bound on the interpolation error �u is well-known, see [9]. Therefore we focus on
the projection error.

Theorem 2 Under the previous assumptions (3), (4) and (5), enough regularity of
the continuous solution u, p, and ˇ > 1=2 it holds for the projection error:

jj�ujj2L1.0;TIL2.˝//
C
Z T

0

jjj�u.t/jjj2uhdt � C
Z T

0

eCG.t��/
X
M

	M.�/d�

with the Gronwall constant

CG WD c.1CjujL1.0;TIW1;1.˝// C hjjujj2L1.0;TIW1;1.˝//
C .1C��1/jjujjL1.S1//;

and the quantity 	M depending on u and on the interpolation errors �u, 
p:

	M WDjj@t�ujj2M C .c1 C c3/jjr�ujj2M C c2jj�ujj2M C c3jj�M.ru/jj2M C c4jj
pjj2M;

and coefficients c1; : : : ; c4:

c1 D � C �M; c2 D h�2
M C ��1jjujj2L1.M/; c3 D ˛Mjuj2M; c4 D .� C �M/�1:
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This bound is similar to the one published in [1] (for S1 D ;). The difference is the
additional term ��1jjujjL1.S1/ in the Gronwall constant.

Proof In the first step we subtract (2) and (6) and perform diagonal testing. Due to
the additive splitting of the error, eu D �u C�u, and after reordering terms we arrive
at

1

2
@tjj�ujj2 C jjj�ujjj2uh D �.@t�u; �u/ � �.r�u; r�u/ C .div �u; 
p/�.div�u; �p/

�c.uIu; �u/ C c.uhI ihu; �u/ C Sh.uhI ihu; �u/

Using Lemma 1 we obtain

�c.uIu; �u/ C c.uhI ihu; �u/

D �.u � ru; �u/ C .uh � rihu; �u/ C 1
2
.divuh ihu; �u/

Cˇ

Z
S1

˚
.u � n/�u � .uh � n/�ihu

� � �uds

D �.eu � ru; �u/ � .uh � r�u; �u/ C 1
2
.divuh ihu; �u/

Cˇ

Z
S1

˚
.u � n/�u � .uh � n/�ihu

� � �uds:

Integration by parts a second time yields

.uh � r�u; �u/ D �.�u;uh � r�u/ � .divuh �u; �u/ C
Z
S1

.uh � n/�u � �u ds:

We obtain the identity

1

2
@tjj�ujj2 C jjj�ujjj2uh D R C T;

with volume integrals

R WD �.@t�u; �u/ � �.r�u; r�u/ C .div �u; 
p/ � .div�u; �p/

�.eu � ru; �u/ C 1
2
.divuh ihu; �u/ C .�u;uh � r�u/

C.divuh �u; �u/ C Sh.uhI ihu; �u/;

and boundary integrals

T WD
Z
S1

˚
ˇ.u � n/�u � ˇ.uh � n/�ihu � .uh � n/�u

� � �uds:
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For R we may use the result of [1]:

R � 1

2
jj@t�ujj2 C CGjj�ujj2 C 1

4
jjj�ujjj2uh C 2

X
M

	M:

The techniques in [1] do not require any further integration by parts. Therefore, the
approach for the Dirichlet case without any outflow condition also applies to bound
R in our case. The remaining terms of T will be bounded in the sequel. A basic
calculus yield

T D T1 C T2

with

T1 WD �
Z
S1

f.uh � n/C C .1 � ˇ/.uh � n/�g�u � �u ds;

T2 WD ˇ

Z
S1

f.u � n/� � .uh � n/�gu � �u ds:

Since the triple-norm includes control on the boundary fluxes, T1 is bounded by
jjj � jjjuh provided ˇ > 1

2
:

T1 D �
Z
S1

f.uh � n/C C .1 � ˇ/.uh � n/�g�u � �u ds

� max

 
2;

jˇ � 1j
ˇ � 1

2

!
jjj�ujjjuh jjj�ujjjuh :

T2 can be bounded by the trace theorem in L1-norm and the product rule with
arbitrary � > 0:

T2 D ˇ

Z
S1

f.u � n/� � .uh � n/�gu � �u ds

� cSjjujjL1.S1/jjjeujj�ujjjW1;1.˝/

� cSjjujjL1.S1/.jjjeujj�ujjjL1.˝/ C jjr.jeujj�uj/jjL1.˝//

� cSjjujjL1.S1/.1 C ��1/.jj�ujj2 C jj�ujj2/ C �.jjj�ujjj2uh C jjj�ujjj2uh/:

Hence, the sum of the two terms T1 and T2 can now be bounded by

T � CG.jj�ujj2 C jj�ujj2/ C .� C cˇ��1/jjj�ujjj2uh C �jjj�ujjj2uh ;
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with a still arbitrary parameter � > 0. In combination with the upper bound for R
we arrive for � D 1

4
at

@tjj�ujj2 C jjj�ujjj2uh � jj@t�ujj2 C 4
X
M

	M C CG.jj�ujj2 C jj�ujj2/ C c0̌ jjj�ujjj2uh :

Application of the Gronwall lemma yields the assertion. ut
Remark 3 If the solution u is sufficiently smooth, the previous Theorem can be used
to derive an upper bound of the projection error in terms of powers of hM by using

	M.�/ � Ch2k
M

�
jj@tu.�/jj2H2.M/

C .c5 C c6/jju.�/jj2
HkC1.M/

C c4jjp.�/jj2Hk.M/

�

with c4 D .� C �M/�1, c5 D 1 C � C �max C ˛0, and c6 D h2
M��1jjujj2L1.M/.

Remark 4 The term c6 in the previous Remark can be avoided by using a different
bound in the proof of Theorem 2, see Dallmann [7] (page 44). However, this leads
to a larger Gronwall constanteCG D CG C jjuhjj2L1.˝/.

5 Numerical Results

We want to support the above analysis by numerical examples that show the desired
convergence results in space. In particular we like to see that the error does not blow
up in time or space, even if there is inflow at the boundary S1.

The considered domain is given by ˝ WD .0; 2
/ � .�
; 
/. We use the
directional do-nothing (DDN) at S1 WD f.2
; y/ W �
 � y � 
g with the parameter
ˇ D 1, and Dirichlet boundary at S0 WD @˝ n S1. Let � W R ! Œ0; 1� defined as
�.y/ D 1 if y < 0, and �.y/ D 0 for y � 0. The exact solution in analytical form
and the corresponding right hand side are given by

u.x; y/ D .sin.y/ cos.t/2; 0/T ;

p.x; y/ D � 1
2
�.y/ sin.y/2 cos.t/4;

f .x; y/ D .� sin.2t/ sin.y/ C cos.t/2 sin.y/�; ��.y/ cos.y/ sin.y/ cos.t/4/T :

We investigate the convergence behavior for the classical Taylor-Hood pair Q2=Q1.
Since we are not interested in the error due to time discretization we set �t D 10�4

and evaluate the error at T D 10�2.
In Fig. 1 we depict the L2-errors with respect to velocity and pressure, jju � uhjj

and jjp � phjj, in dependence of a uniform mesh size h for various viscosities �. We
compare with (� D 1) and without (� D 0) div-div stabilization. For the velocity
error in L2 we observe convergence of third order in the case � D 1. Without div-div
stabilization the convergence order of jju � uhjj is reduced. For the pressure, second
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Fig. 1 L2-errors of u and p for Taylor-Hood (Q2=Q1) elements
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Fig. 2 Errors jjdiv .u � uh/jj and ju � uhj1 for Taylor-Hood (Q2=Q1) elements

order convergence can be observed which is in line with our analysis. The pressure
error does essentially not depend on any of the parameters.

In Fig. 2 we show the errors ju � uhj1, and jjdiv .u � uh/jj. Both quantities
show quadratic convergence, i.e. at optimal rate, if div-div stabilization is used. For
the velocity energy error jju � uhjj and the H1.˝/ error the results deviate from
the optimal rate of convergence (h3 resp. h2) if no div-div stabilization is used.
However, the biggest impact of the stabilization can be seen for the divergence
error jjdiv .u � uh/jj. For sufficiently small viscosity the error stays nearly constant
if no div-div stabilization is used. Optimal convergence rates can be recovered
if div-div stabilization is used. With respect to the LPS stabilization we did not
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observe any significant influence for the considered norms. Compared to results in
[1] for Dirichlet boundary conditions the div-div stabilization seems to play a more
important role.
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