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Preface

The European Conference on Numerical Mathematics and Advanced Applications
(ENUMATH) is a series of conferences held every 2 years to provide a forum for
discussion on recent aspects of numerical mathematics and scientific and indus-
trial applications. The previous ENUMATH meetings took place in Paris (1995),
Heidelberg (1997), Jyvaskyla (1999), Ischia (2001), Prague (2003), Santiago de
Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), and Lausanne
(2013).

This book contains a selection of invited and contributed lectures of the
ENUMATH 2015 organized by the Institute of Applied Mathematics, Middle East
Technical University, Ankara, Turkey, September 14–18, 2015. It gives an overview
of recent developments in numerical analysis, computational mathematics, and
applications by leading experts in the field. The conference attracted around 300
participants from around the world including 11 invited talks by:

• Assyr Abdulle (EPF Lausanne, Switzerland), Reduced Basis Multiscale Methods
• Rémi Abgrall (Universität Zürich, Switzerland), Recent Progress on Non-

Oscillatory Finite Element Methods for Convection Dominated Problems
• Burak Aksoylu (TOBB University of Economics and Technology, Ankara,

Turkey), Incorporating Local Boundary Conditions into Nonlocal Theories
• Mark Ainsworth (Brown University, Providence, USA), Multigrid at Scale?
• Willi Freeden (TU Kaiserslautern, Germany), Principles in Geomathematically

Reflected Numerics and Their Application to Inverse Potential Methods in
Geothermal Exploration

• Des Higham (University of Strathclyde, Glasgow, UK), Models and Algorithms
for Dynamic Networks

• Yvon Maday (UniversitéĄ Pierre et Marie Curie, Paris, France), Towards a Fully
Scalable Balanced Parareal Method: Application to Neutronics

• Kaisa Miettinen (University of Jyväskylä, Finland), Examples of Latest Interac-
tive Method Developments in Multiobjective Optimization

• Mario Ohlberger (Universität Münster, Germany), Localized Model Reduction
for Multiscale Problems

v



vi Preface

• Anders Szepessy (KTH, Stockholm, Sweden), On Global and Local Error with
Application to Adaptivity, Inverse Problems and Modeling Error

• Eugene E. Tyrtyshnikov (Russian Academy of Sciences, Moscow, Russia), Ten-
sor Decompositions and Low-Rank Matrices in Mathematics and Applications

There were 119 minisymposia presentations in 20 sessions, and 89 contributed
talks covering a broad spectrum of numerical mathematics. This ENUMATH 2015
proceeding will be useful for a wide range of readers giving them a state-of-the-art
overview of advanced techniques, algorithms, and results in numerical mathematics
and scientific computing. This book contains a selection of 61 papers by the invited
speakers and from the minisymposia as well as the contributed sessions. It is
organized in IX parts as follows:

Part I Space Discretization Methods for PDEs
Part II Finite Element Methods
Part III Discontinuous Galerkin Methods for PDEs
Part IV Numerical Linear Algebra and High Performance Computing
Part V Reduced Order Modeling
Part VI Problems with Singularities
Part VII Computational Fluid Dynamics
Part VIII Computational Methods for Multi-Physics Phenomena
Part IX Miscellaneous Topics

We would like to thank all the participants for their valuable contributions and
scientific discussions during the conference and to the minisymposium organizers
for helping to shape the core structure of the meeting. The members of the Scientific
Committee have helped us tremendously in reviewing the contributions to this
proceedings. This conference would not have been possible without all the work and
guidance provided by the program committee: Franco Brezzi, Miloslav Feistauer,
Roland Glowinski, Gunilla Kreiss, Yuri Kuznetsov, Pekka Neittaanmaki, Jacques
Periaux, Alfio Quarteroni, Rolf Rannacher, Endre Süli, and Barbara Wohlmuth.
We also thank our sponsors for their generous support: Middle East Technical
University, Scientific Human Resources Development Program (ÖYP) of Ministry
of Development, Turkish Academy of Sciences, Oxford University Press, and
Springer Verlag. We would like to acknowledge the tireless effort of ATAK Tours;
Murat Uzunca, who coordinated the edition of this Proceedings; all the staff of
the Institute of Applied Mathematics for their tremendous help in organizing this
conference; and our students who have helped us in many ways.
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This volume is dedicated to the 60th anniversary of Middle East Technical
University.

Ankara, Turkey Bülent Karasözen
April 2016 Murat Manguoğlu
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DRBEM Solution of MHD Flow and Electric
Potential in a Rectangular Pipe with a Moving
Lid

Münevver Tezer-Sezgin and Canan Bozkaya

Abstract We present the dual reciprocity boundary element method (DRBEM)
solution of the system of equations which model magnetohydrodynamic (MHD)
flow in a pipe with moving lid at low magnetic Reynolds number. The external
magnetic field acts in the pipe-axis direction generating the electric potential. The
solution is obtained in terms of stream function, vorticity and electric potential in
the cross-section of the pipe, and the pipe axis velocity is also computed under a
constant pressure gradient. It is found that fluid flow concentrates through the upper
right corner forming boundary layers with the effect of moving lid and increased
magnetic field intensity. Electric field behavior is changed accordingly with the
insulated and conducting portions of the pipe walls. Fluid moves in the pipe-axis
direction with an increasing rate of magnitude when Hartmann number increases.
The boundary only nature of DRBEM provides the solution at a low computational
expense.

1 Introduction

MHD is the study of the interaction of electrically conducting fluids and electro-
magnetic forces. It has a widespread applications in designing cooling systems
with liquid metals, MHD generators, accelerators, nuclear reactors, blood flow
measurements, pumps, flow meters and etc. The most widely-known applications
such as MHD flow of liquid metals are considered at low magnetic Reynolds
number neglecting induced magnetic field in the fluid. The corresponding physical
applications are usually MHD flows inside the pipes. When the external magnetic
field applies in the pipe-axis direction, due to the interaction with the electrically
conducting fluid, the electric potential is generated which can be made use of in
MHD generators.

M. Tezer-Sezgin (�) • C. Bozkaya
Department of Mathematics, Middle East Technical University, 06800, Ankara, Turkey
e-mail: munt@metu.edu.tr; bcanan@metu.edu.tr

© Springer International Publishing Switzerland 2016
B. Karasözen et al. (eds.), Numerical Mathematics and Advanced
Applications ENUMATH 2015, Lecture Notes in Computational Science
and Engineering 112, DOI 10.1007/978-3-319-39929-4_1
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4 M. Tezer-Sezgin and C. Bozkaya

The DRBEM is a technique that offers a great advantage to solve MHD
flow equations treating all the terms (including nonlinear) other than diffusion as
inhomogeneity. The studies carried by BEM and DRBEM for solving the MHD
equations in pipes of several cross-sections are given in [1–6]. The externally
applied magnetic field in these works is taken parallel to the cross-section plane
with different orientations. Han Aydın et al. [7] and Tezer-Sezgin et al. [8] have
presented also stabilized FEM and BEM-FEM solutions for MHD flow in ducts and
for biomagnetic fluids, respectively. Biomagnetic fluid flow in cavities (ducts) is also
studied by Tzirtzilakis [9–11] by using pressure-linked pseudotransient method on
a collocated grid and finite volume method with SIMPLE algorithm, respectively.

In this paper, MHD flow in a pipe imposed to an external magnetic field in the
direction of the pipe-axis is simulated using DRBEM in the cross-section of the
pipe as a two-dimensional problem. The electric potential and pipe-axis velocity are
also obtained with DRBEM. The boundary only nature of DRBEM gives efficient
solution even by using constant elements with considerably small computational
cost compared to other numerical methods.

2 The Physical Problem and Mathematical Formulation

The steady flow of an incompressible, electrically conducting, viscous fluid in a
pipe in the presence of an external magnetic field acting in the pipe-axis direction is
considered.

The governing dimensionless MHD equations are [12, 13]

1

N
.u:r/u � 1

M2
r2uC 1

N
rp D B � r� C B � .B � u/ (1)

r:u D 0; r:B D 0; E D �r�; r2� D div .u � B/ (2)

where u D .ux; uy; uz/, p, B D .0; 0;B0/, � are the fluid velocity, pressure,
magnetic field and the electric potential, respectively. M and N are Hartmann and

Stuart numbers given by M D B0L

p
�p
��

, N D �B20
L

�U0
where � , �, � are the

electrical conductivity, density and kinematic viscosity of the fluid, L and U0 are the
characteristic length and the velocity, and B0 is the intensity of the applied magnetic
field. Induced magnetic field is neglected due to the low magnetic Reynolds number,
and M2 D N Re, Re being fluid Reynolds number.

Flow is two-dimensional in the cross-section of the pipe (see Fig. 1) giving

@ux
@x
C @uy
@y
D 0 (3)

1

N

�
ux
@ux
@x
C uy

@ux
@y

�
� 1

M2
r2ux C 1

N

@p

@x
D �@�

@y
� ux (4)
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Fig. 1 (a) Problem domain
and (b) cross-section of the
pipe

1

N

�
ux
@uy
@x
C uy

@uy
@y

�
� 1

M2
r2uy C 1

N

@p

@y
D @�

@x
� uy (5)

1

N

�
ux
@uz
@x
C uy

@uz
@y

�
� 1

M2
r2uz D � 1

N

@P

@z
(6)

where the pressure P D p.x; y/ C Pz.z/ is divided into the cross-section pressure

p.x; y/ and, the pipe-axis pressure Pz.z/ with constant
@Pz

@z
.

Introducing stream function and vorticity in two-dimensional cross-section as

ux D @ 

@y
; uy D �@ 

@x
; w D @uy

@x
� @ux
@y

we have

r2 D �w (7)

r2� D w (8)

1

N

�
ux
@w

@x
C uy

@w

@y

�
� 1

M2
r2w D 0 (9)

1

N

�
ux
@uz
@x
C uy

@uz
@y

�
� 1

M2
r2uz D � 1

N

@Pz

@z
: (10)
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On the boundary of the cavity, stream function is a constant due to the known
velocity value, electric potential or its normal derivative is zero according to
insulated or conducting portions, and the vorticity is not known.

3 DRBEM Application

DRBEM treats all the right hand side terms of Eqs. (7), (8), (9), and (10) as
inhomogeneity, and an approximation for this inhomogeneous term as proposed [14]
is

b �
KCLX
jD1

˛jfj D
KCLX
jD1

˛jr2 Ouj

whereK and L are the numbers of boundary and interior nodes, ˛j are sets of initially
unknown coefficients, and the fj are approximating radial basis functions linked
to particular solutions Ouj with r2 Ouj D fj. The radial basis functions fj are usually
chosen as polynomials of distance between the source point (xi; yi) and the field
point (xj; yj) as rij D

p
.xi � xj/2 C .yi � yj/2.

DRBEM transforms differential equations defined in a domain ˝ to integral
equations on the boundary @˝ . For this, differential equation is multiplied by the
fundamental solution u� D � ln .r/=2� of Laplace equation and integrated over
the domain. Using Divergence theorem for the Laplacian terms on both sides of the
equation, domain integrals are transformed to boundary integrals.

For the discretization of the boundary, constant elements are used to obtain
DRBEM matrix-vector form for Eqs. (7), (8), (9), and (10) as

.H �G
@ 

@n
/ D .H OU � G OQ/F�1 f�wg (11)

.H� � G
@�

@n
/ D .H OU � G OQ/F�1 fwg (12)

N

M2

�
Hw � G

@w

@n

�
D .H OU � G OQ/F�1

�
ux
@w

@x
C uy

@w

@y

�
(13)

N

M2

�
Huz � G

@uz
@n

�
D .H OU �G OQ/F�1

�
ux
@uz
@x
C uy

@uz
@y
C @Pz

@z

�
: (14)

Equations (11), (12), (13), and (14) are solved iteratively with an initial vorticity.

With the computed  , the velocity components ux D @ 

@y
and uy D �@ 

@x
are
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computed using coordinate matrix F with entries fij D 1C rij as

ux D @F

@y
F�1 ; uy D �@F

@x
F�1 

and substituted in the vorticity and pipe-axis velocity equations. All the other space
derivatives are computed using F matrix.

4 Numerical Results

The problem geometry is the lid-driven cavity ˝ D Œ0; 1� � Œ0; 1� which is the
cross-section of the pipe where the top layer is moving in the positive x-direction.
External magnetic field B D .0; 0;B0/ applies perpendicular to ˝ and generates
electric potential interacting with the electrically conducting fluid in the pipe. Fluid

moves with the movement of the lid and the constant pressure gradient
@Pz

@z
D

�8000 opposite to pipe-axis direction. K D 120 and L D 900 constant boundary
elements and interior nodes, respectively, are taken to simulate the flow and electric
potential. Solution is obtained, by using linear radial basis functions fij D 1C rij in
the F matrix, for increasing values of Hartmann number M, keeping Stuart number
N D 16 fixed. Effect of M on the pipe axis-velocity uz is also visualized.

In Fig. 2 we present streamlines, equivorticity and equipotential lines in the case
of electrically conducting pipe wall .� D 0/ for Hartmann number values M D 20,
100, 150, 200 which correspond to Reynolds numbers Re D 25, 625, 1406, 2500,
respectively, since M2 D N Re. It is observed that an increase in the strength of the
applied magnetic field (increase in M) causes the primary vortex of streamlines to
move through the center of the cavity. Recirculations appear at the lower corners and
finally at the left upper corner with further increase in M and the movement of the lid
to the right. Vorticity moves away from the cavity center towards the walls indicating
strong vorticity gradients. The fluid begins to rotate with a constant angular velocity
and it flows creating boundary layers near the top and right walls through the upper
right corner. Electric potential has the same pattern and magnitudes of streamlines
since r2� D w, r2 D �w and both  and � are zero for this case on the cavity
walls.

Figure 3 shows the increase in the magnitude of the pipe-axis velocity uz with

an increase in M when
@Pz

@z
D �8000. The damping in the magnitude of uz is seen

close to the moving lid as M increases (M D 20; 50; 100; 150).
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Fig. 2 Effect of Hartmann number on  , w and � when � D 0 on the walls



DRBEM Solution of MHD Flow and Electric Potential 9

(a) M = 20 (b) M = 50

(c) M = 100 (d) M = 150

Fig. 3 Pipe-axis velocity uz when � D 0 on the walls: (a) M D 20, (b) M D 50, (c) M D 100,
(d) M D 150

When the cavity walls are partly insulated and partly conducting, electric
potential leaves the behavior of the flow and obeys boundary conditions on the walls
for small values of M. It is seen from Fig. 4 that insulated vertical walls force the
potential to touch these walls and then both the increased magnetic intensity and
moving lid cause it to regain the flow behavior. On the other hand, insulated top
and bottom walls give completely different pattern for the flow as traveling electric
waves from the bottom to the top. Increasing Hartmann number does not change
this behavior much but tends to concentrate through the upper right corner.

5 Conclusion

The MHD flow in a pipe generates electric potential when the external magnetic
field applies in the pipe-axis direction. Increasing Hartmann number shows the same
behavior on the flow as if increasing Reynolds number. This is the development of
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M
 =

 1
50

M
 =

 1
00

M
 =

 2
0

Fig. 4 Effect of Hartmann number on  and � when
@�

@n
jxD0;1 D 0 (middle) and

@�

@n
jyD0;1 D 0

(right)

secondary flows near the lower corners and third flow close to upper right corner.
This behavior is reached for much smaller Re values with the effect of applied
magnetic field. Vorticity develops gradients on the moving lid and the right wall.
Electric potential has the same behavior of the flow only when pipe walls are
conducting. Pipe-axis velocity increases in magnitude with an increase in M.
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DRBEM Solution of the Double Diffusive
Convective Flow

Canan Bozkaya and Münevver Tezer-Sezgin

Abstract A numerical investigation of unsteady, two-dimensional double diffusive
convection flow through a lid-driven square enclosure is carried on. The left
and bottom walls of the enclosure are either uniformly or non-uniformly heated
and concentrated, while the right vertical wall is maintained at a constant cold
temperature. The top wall is insulated and it moves to the right with a constant
velocity. The numerical solution of the coupled nonlinear differential equations is
based on the use of dual reciprocity boundary element method (DRBEM) in spatial
discretization and an unconditionally stable backward implicit finite difference
scheme for the time integration. Due to the coupling and the nonlinearity, an
iterative process is employed between the equations. The boundary only nature of
the DRBEM and the use of the fundamental solution of Laplace equation make
the solution process computationally easier and less expensive compared to other
domain discretization methods. The study focuses on the effects of uniform and
non-uniform heating and concentration of the walls for various values of physical
parameters on the double-diffusive convection in terms of streamlines, isotherms
and isoconcentration lines.

1 Introduction

Double-diffusive convection describes a form of convection driven by two different
density gradients which have different rates of diffusion. In this sense, the double-
diffusive convection generally refers to a fluid flow generated by buoyancy effects
due to both temperature and solute concentration gradients. This type of flow is
encountered in many engineering and geophysical applications, such as nuclear
reactors, solar ponds, geothermal reservoirs, solar collectors, crystal growth in
liquids, electronic cooling and chemical processing equipments. Thus, a clear under-
standing of the interaction between the thermal and mass or solute concentration
buoyancy forces is necessary in order to control these processes.
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In the literature, the double-diffusive heat and mass transfer problems are studied
mostly for square or rectangular geometries with different thermal and solute
boundary conditions by using several experimental and numerical techniques. Lee
et al. [1] studied experimentally the steady natural convection of salt-water solution
due to horizontal temperature and concentration gradients. Cooper et al. [2] carried
experiments to see the effect of buoyancy ratio Rp on the development of double-
diffusive finger convection in a Hele-Shaw cell. They observed that, for low Rp

fingers are rapidly developed and merge with adjacent fingers, while at higher Rp

fingers are slower to evolve and do not interact as dynamically as in the lower Rp

system. On the other hand, the unsteady double-diffusive convection in a square
cavity was solved by Zhan et al. [3] to investigate the advantage of a hybrid method
over commercial CFD codes. A finite volume approach was employed for the
solution of double-diffusion flow in a cavity in [4, 5]. The effect of uniform and
non-uniform heating of the walls on the double-diffusive convection in a lid-driven
square cavity was analyzed by using a staggered grid finite difference method by
Mahapatra et al. [6]. Alsoy et al. [7] solved the mixed convective in a lid-driven
cavity and through channels with backward-facing step by the use of DRBEM.

It is seemed that, to the best of our knowledge, the double-diffusive convection in
a lid-driven cavity with uniformly and non-uniformly heated and concentrated walls
has not been solved by using the DRBEM which gives the solution at a considerably
low computational expense due to its boundary-only nature. In the present study, we
undertake this task varying the thermal Rayleigh numberRaT and the buoyancy ratio
Rp. A comprehensive study of the heat and mass transfer in terms of the flow field,
temperature and concentration distribution is given in details.

2 Governing Equations

The unsteady, laminar, two-dimensional double-diffusive convection flow of an
incompressible, Newtonian and viscous fluid in a lid-driven square cavity is
considered. The thermo-physical properties of the fluid are assumed to be constant
except the density variation in the buoyancy force, which is approximated according
to the Boussinesq approximation. Thus, the non-dimensional unsteady double-
diffusive convection equations in the stream function-vorticity-temperature form are
written as [6]:

r2 D �! (1)

Prr2! D @!

@t
C u:r! � PrRaT

�
@�

@x
C Rp

@S

@x

�
(2)

r2� D @�

@t
C u:r� (3)
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1

Le
r2S D @S

@t
C u:rS (4)

where

RaT D gˇT.Th � Tc/`3

�˛
; RaS D gˇS.Ch � Cc/`

3

�D
; Rp D RaS

RaTLe
;

Pr D �

˛
; Le D ˛

D
:

Here, u D .u; v/,  , w, � , S are the velocity field, stream function, vorticity, tem-
perature, concentration, and Pr and Le are the Prandtl number and Lewis number,
respectively. The physical parameters g, ˛, D, � and l given in the definitions of
the thermal Rayleigh number (RaT) and the solutal Rayleigh number (RaS) are
respectively the gravitational acceleration, thermal diffusivity, molecular (mass)
diffusivity, kinematic viscosity and side length of the cavity. The temperatures and
the concentrations at the hot and cold walls are denoted by Th, Tc and Ch, Cc,
respectively. The buoyancy ratio (Rp) is a ratio of fluid density contributions by
the two solutes and defines the degree of system disequilibrium.

The corresponding dimensionless boundary conditions when t > 0 are shown
in Fig. 1, while all unknowns are initially (at t D 0) taken as zero (i.e.  D w D
� D S D 0, 0 � x; y � `). The thermally insulated top wall of the cavity moves
to the right with a constant velocity ( y D 1,  x D 0), while the no-slip boundary
condition is employed to the remaining walls ( x D  y D 0). Further, the bottom
and left walls of the cavity are either uniformly (� D S D 1) or non-uniformly
(� D S D sin�x at y D 0 and � D S D sin�y at x D 0) heated and concentrated,
while the right wall is kept cold. On the other hand, the unknown boundary vorticity

Fig. 1 Schematic diagram of the problem with boundary conditions
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values will be obtained from the stream function equation 	 D �w by using a
radial basis function approximation.

3 Application of the DRBEM

The governing Eqs. (1), (2), (3), and (4) are transformed into the equivalent
boundary integral equations by using DRBEM with the fundamental solution of
the Laplace equation, u� D � ln .r/=2� , and by treating all the terms on the right
hand side as inhomogeneity. An approximation for these inhomogeneous terms is

b �
NCLX
jD1

˛jfj D
NCLX
jD1

˛jr2 Ouj

as proposed in [8]. Here, N and L are the numbers of boundary and interior nodes,
˛j are sets of initially unknown coefficients, and fj are approximating radial basis
functions linked to particular solutions Ouj with r2 Ouj D fj. The radial basis functions
fj are chosen as linear polynomials (i.e. fj D 1Crj), where rj is the distance between
the source and field points.

By the use of Divergence theorem for the Laplacian terms on both sides of
the equation, domain integrals are transformed into the boundary integrals. Then,
constant elements are used for the discretization of the boundary, which results in
the following DRBEM matrix-vector form of Eqs. (1), (2), (3), and (4)

H �G q D Cf�!g ; (5)

H! �G!q D C

�
1

Pr

�
@!

@t
C u:r! � PrRaT

�
@�

@x
C Rp

@S

@x

���
(6)

H� � G�q D C

�
@�

@t
C u:r�

�
(7)

HS � GSq D C

�
Le

�
@S

@t
C u:rS

��
(8)

where  q D @ =@n, !q D @!=@n, �q D @�=@n, Sq D @S=@n, q� D @u�=@n and H
and G are the usual DRBEM matrices. The matrix C D .H OU�G OQ/F�1 in which the
matrices OU and OQ are constructed by taking each of the vectors Ouj and Oqj as columns,
respectively.

The unconditionally stable backward difference integration scheme defined by

@u

@t

ˇ̌
nC1 D unC1 � un

	t
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is used for the time integration. Here n indicates the time level. Thus, the time
discretized form of DRBEM system of algebraic equations for the stream function,
vorticity, temperature and concentration takes the form

H nC1 �G nC1
q D �Cwn ; (9)

.H � 1

Pr	t
C � 1

Pr
CK/!nC1 � G!nC1

q D � 1

Pr	t
C!n � RaTCDx.�

n C RpS
n/

(10)

.H � 1

	t
C � CK/�nC1 �G�nC1q D � 1

	t
C�n (11)

.H � Le

	t
C � LeCK/SnC1 � GSnC1q D � Le

	t
CSn (12)

where K D unC1Dx C vnC1Dy, Dx D @F

@x
F�1 and Dy D @F

@y
F�1. The resulting

system of coupled Eqs. (9), (10), (11), and (12) is solved iteratively with initial
estimates of !, � and S. In each time level, the required space derivatives of the

unknowns  , !, � and S are obtained by using coordinate matrix F as
@˚

@x
D

@F

@x
F�1˚;

@˚

@y
D @F

@y
F�1˚ , where ˚ represents the unknowns  , !, S or � . The

iterative process is terminated when a preassigned tolerance (e.g. 10�5) is reached
between two successive iterations.

4 Numerical Results

The unsteady double-diffusive convection in a lid-driven square cavity with uni-
formly and non-uniformly heated and concentrated walls is analyzed by using
coupling of the DRBEM with constant elements in space with an unconditionally
unstable backward difference scheme in time. The domain of problem is determined
by taking the side length of the cavity ` D 1. The boundary of the cavity is
discretized by using maximum N D 90 constant boundary elements. Numerical
calculations are carried out for various values of Rayleigh number (RaT D 103; 105)
and buoyancy ratio (�50 � Rp � 50) by fixing Pr D 0:7 and Le D 2.

Figure 2 displays the effect of the Rayleigh number on the flow field, temperature
and concentration at Rp D 1 when the bottom and left walls of the cavity are
(a) uniformly (b) non-uniformly heated and concentrated. A roll with clockwise
rotation is formed inside the cavity since the fluid rises up and flows down,
respectively, along the hot left and cold right vertical walls. As RaT increases from
103 to 105, the values of stream function increase in magnitude and the flow becomes
stagnant in the core of the cavity in both uniform and non-uniform cases. On the
other hand, the isotherms and isoconcentration lines are dispersed in the entire cavity
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RaT = 103 RaT = 105 RaT = 103 RaT = 105

q

y

S

(a () b)

Fig. 2 Effect of the Rayleigh number RaT on the flow field, temperature and concentration at
Rp D 1: bottom and left walls are (a) uniformly (b) non-uniformly heated and concentrated

at RaT D 103, however, lines are concentrated along the cold left vertical wall with
an increase in RaT to 105 in both cases.

Effect of the buoyancy ratio Rp on the flow field, temperature and concentration
at RaT D 103 is shown in Fig. 3 when the bottom and left walls are (a) uniformly
and (b) non-uniformly heated and concentrated. In both uniform and non-uniform
cases, the strength of the flow circulation decreases with a decrease in buoyancy
ratio from Rp D 50 to Rp D 1 (see Fig. 2), while the stream function values increase
in magnitude with a further decrease from Rp D 1 to Rp D �50. At Rp D 50, the
contours of � and S are mainly concentrated near the cold vertical wall and they
are dispersed towards to right wall at Rp D 1 (see Fig. 2) in both cases. However,
when Rp D �50, the isotherms and the isoconcentration lines are concentrated
near the lower and upper half of the cold and hot vertical walls, respectively. They
are almost parallel to horizontal wall in the middle part of cavity at Rp D �50,
indicating that most of the heat transfer is carried out by heat conduction. This is
due to an increase in thermal boundary layer thickness. As Rp increases boundary
layer becomes thinner. This change in flow structure significantly influences the
concentration field, which builds up a vertical stratification of enclosure in both
uniform and non-uniform cases. The uniform heating of bottom and left walls
cause a finite discontinuity for temperature distribution at one edge of bottom wall
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Rp = 50 Rp = −50 Rp = 50 Rp = −50

S

(a () b)

q

y

Fig. 3 Effect of the buoyancy ratio Rp on the flow field, temperature and concentration at RaT D
103: bottom and left walls are (a) uniformly (b) non-uniformly heated and concentrated

while the non-uniform heating removes this singularity and provides a smooth
temperature distribution in the entire cavity. A similar behavior is also observed
for the concentration.

The variation of the average Nusselt and Sherwood numbers at the left vertical
wall .x D 0/ and bottom wall (y D 0) with respect to the buoyancy ratio Rp at
RaT D 103 is shown in Fig. 4 for (a) uniformly and (b) non-uniformly heated and
concentrated walls. The average Nusselt numbers at the bottom and left walls are
defined by

NujyD0 D �
Z 1

0

@�

@y
jyD0 dx; NujxD0 D �

Z 1

0

@�

@x
jxD0 dy

and similarly, the average Sherwood number at the bottom and left walls are

ShjyD0 D �
Z 1

0

@S

@y
jyD0 dx; ShjxD0 D �

Z 1

0

@S

@x
jxD0 dy :

At the bottom wall y D 0, the uniform and non-uniform boundary conditions
produce an S-type of Nu and Sh numbers with their maximum value at right edge of
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x = 0 y = 0 x = 0 y = 0(a () b)

Fig. 4 The average Nusselt and Sherwood numbers at the left vertical wall .x D 0/ and bottom
wall (y D 0) with (a) uniformly and (b) non-uniformly heated and concentrated walls with respect
to buoyancy ratio Rp at RaT D 103

the bottom wall. At the left vertical wall x D 0, Nu and Sh take the same minimum
value for the uniform and non-uniform boundary conditions when Rp D �1.

5 Conclusion

A dual reciprocity boundary element approach in space with an implicit backward
difference in time is applied for the solution of the double-diffusive convection flow
in a lid-driven square cavity. The obtained results show that the flow behavior and
the heat and mass transfer characteristics are significantly influenced by the use
of different combination of RaT and Rp and they are in good agreement with the
ones given in the work [6]. It is observed that the flow field is characterized by a
primary circulation which moves towards the cavity walls with an increase in RaT .
The temperature and concentration fields are significantly influenced according to
the type of boundary conditions. As Rayleigh number increases and buoyancy ratio
decreases, the isotherms become parallel to the adiabatic walls indicating that the
heat transfer is due to the conduction. Furthermore, the heat and mass transfer rates
reduce for values of Rp < 0, while they increase when Rp > 0 along the heated right
wall. However, they show an S-type profile as Rp increases along the bottom wall.
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Complete Flux Scheme for Conservation Laws
Containing a Linear Source

J.H.M. ten Thije Boonkkamp, B.V. Rathish Kumar, S. Kumar, and M. Pargaei

Abstract We present an extension of the complete flux scheme for conservation
laws containing a linear source. In our new scheme, we split off the linear part of the
source and incorporate this term in the homogeneous flux, the remaining nonlinear
part is included in the inhomogeneous flux. This approach gives rise to modified
homogeneous and inhomogeneous fluxes, which reduce to the classical fluxes for
vanishing linear source. On the other hand, if the linear source is large, the solution
of the underlying boundary value problem is oscillatory, resulting in completely
different numerical fluxes. We demonstrate the performance of the homogeneous
flux approximation.

1 Introduction

Conservation laws are ubiquitous in science and engineering, describing a wide
variety of phenomena, such as chemically reacting flow, electrical discharges in
gases, transport in porous media etc. These conservation laws are often of advection-
diffusion-reaction type, describing the interplay between different processes such
as advection or drift, diffusion or conduction and (chemical) reactions or impact
ionization. We restrict ourselves to stationary conservation laws.

Numerical simulation of these equations requires sophisticated space discretiza-
tion methods and efficient (iterative) solvers for the resulting algebraic system.
For space discretization of the conservation law we employ the finite volume
method (FVM); see [2] for a detailed account. For the numerical fluxes in the
discrete conservation law there exist many schemes. Basic schemes are the central
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difference and upwind schemes. The central difference scheme is prone to spurious
oscillations for dominant advection while the upwind discretization is too diffusive.
To remedy this, exponentially fitted schemes were introduced, see [6] and the
many references therein. These schemes combine the central difference and upwind
schemes in such a way that the resulting discretization reproduces the exact solution
of a local one-dimensional and homogeneous boundary value problem (BVP).
Exponentially fitted schemes are especially useful for singularly perturbed problems
[4]. Moreover, these schemes are applied in various disciplines in computational
physics, such as the numerical simulation of reactive flow or plasmas. In the field
of semiconductor device simulation the exponetially fitted scheme is often referred
to as the Scharfetter-Gummel scheme; see e.g. [7] for a general introduction. An
ingenious generalization to nonlinear convection-diffusion problems was introduced
in [3], where an (iterative) procedure is proposed to compute the numerical flux
from a nonlinear, but homogeneous, BVP. Another generalization is the complete
flux scheme, where the flux is derived from a local BVP for the entire equation,
including the source term [8]. Consequently, the numerical flux can be written as
the superposition of a homogeneous flux, which is the exponentially fitted flux
corresponding to the advection-diffusion operator, and an inhomogeneous flux,
taking into account the effect of the source term.

In this contribution, we extend the derivation of the complete flux scheme
to conservation laws containing a linear source. We split off the linear part and
incorporate this term in the homogeneous flux. To that purpose, we solve the
corresponding homogeneous boundary value problem, which describes the balance
between advection, diffusion and a linear source. The remaining (nonlinear) part
of the source is included in the inhomogeneous flux, as usual. The modified
homogeneous and inhomogeneous fluxes reduce to the classical fluxes when the
linear source vanishes. On the other hand, for a dominant linear source, the solution
of the underlying boundary value problem exhibits oscillatory behaviour, resulting
in completely different fluxes. A similar scheme is presented in [5] for the special
case that the characteristic equation of the local BVP has two distinct real roots. Our
scheme also allows for double real or complex (conjugate) roots.

Thus, we consider the model advection-diffusion-reaction equation

d

dx

�
u' � "d'

dx

	
D c' C s.'/; (1)

where, for example, u is an advection velocity, " � "min > 0 a diffusion coefficient,
c' the linear part of the source, and s.'/ the remaining (nonlinear) source. The
unknown ' might be the mass fraction of one of the constituent species in a reacting
flow or plasma. Associated with (1) we introduce the flux f , which is defined by

f D u' � "d'

dx
: (2)
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The conservation law (1) can be concisely written as df=dx D c' C s.'/ with
the flux f defined in (2). In the FVM we cover the domain with a finite number
of control volumes (cells) Ij of size 	x. We choose the grid points xj, where the
variable ' has to be approximated, in the cell centres. Consequently, we have Ij WD
Œxj�1=2; xjC1=2� with xjC1=2 WD 1

2
.xj C xjC1/. Integrating the equation over Ij and

applying the midpoint rule for the integral of c' C s.'/, we obtain the discrete
conservation law

FjC1=2 � Fj�1=2 D 	x


c 'j C s.'j/

�
; (3)

where FjC1=2 and 'j are the numerical approximation of the flux f at the cell edge
xjC1=2 and of the unknown ' at the grid point x D xj, respectively. The complete
flux approximation FjC1=2 is the sum of the homogeneous flux Fh

jC1=2 and the

inhomogeneous flux Fi
jC1=2, i.e.,

FjC1=2 D Fh
jC1=2 C Fi

jC1=2
D ˛jC1=2'j � ˇjC1=2'jC1 C	x




jC1=2s.'j/C ıjC1=2s.'jC1/

�
:

(4)

The coefficients ˛jC1=2 and ˇjC1=2 depend on the homogeneous differential operator,
containing the advection-diffusion operator as well as the linear source, and the
coefficients 
jC1=2 and ıjC1=2 depend on the nonlinear source s.'/.

We have organized our paper as follows. In Sect. 2 we derive expressions for
the homogeneous flux, and subsequently in Sect. 3, we outline the derivation of
the inhomogeneous flux. For the latter we reformulate equation (1) and relation (2)
together as a first order ODE-system. In Sect. 4 we demonstrate the performance of
the homogeneous flux scheme, and finally we present conclusions in Sect. 5.

2 Modification of the Homogeneous Flux

In this section we present the extension of the homogeneous flux scheme to
equation (1). We assume in the sequel of this paper that u, " and c are constant.
The expression for the homogeneous flux Fh

jC1=2 is then derived from the following
local BVP

"' 00 � u' 0 C c' D 0; xj < x < xjC1; (5a)

'.xj/ D 'j; '.xjC1/ D 'jC1; (5b)

including the linear source term c', where the prime .0/ denotes differentiation
with respect to x. Although the source term c' is included, we refer to the
resulting numerical flux as homogeneous, since equation (5a) is homogeneous. The
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inhomogeneous flux takes into account the effect of the nonlinear source s.'/ and
will be discussed in the next section.

The characteristic equation of equation (5a) reads "�2 � u� C c D 0 and has
discriminant D D u2 � 4"c. Let us introduce the auxiliary variables

d D "c

u2
; P D u	x

"
; S D

r
jcj
"
	x: (6)

In (6), P is the well-known Péclet number and S is a dimensionless parameter
measuring the reaction-diffusion ratio. Moreover, in the presentation that follows
we encounter the following functions:

B.z/ D z

ez � 1 ; sinhc.z/ D sinh.z/

z
; sinc.z/ D sin.z/

z
: (7)

Based on the sign of the discriminant D, we can distinguish the following three
cases. First, for D > 0, or equivalently d < 1

4
, the characteristic equation has two

distinct real roots � D u.1˙ r/=.2"/ with r D p1 � 4d. We can solve the BVP (5)
and subsequently compute the numerical flux from (2). We find

Fh
jC1=2 D

"

	x



C.PI r/B.�Pr/'j � C.�PI r/B.Pr/'jC1

�
; (8a)

C.PI r/ D eP.1�2r/=4



cosh


1
4
Pr
�C 1

4
P sinhc



1
4
Pr
��
: (8b)

Note that the numerical flux in (8) is reminiscent of the classical homogeneous
flux, and contains ‘correction factors’ C.PI r/ and C.�PI r/. Second, for D D 0,
and hence d D 1

4
and r D 0, the characteristic equation has the double real root

� D u=.2"/. We find for the numerical flux

Fh
jC1=2 D

"

	x



C.P/'j � C.�P/'jC1

�
; (9a)

C.P/ D eP=4


1C 1

4
P
�
: (9b)

Note that the numerical flux (8) reduces to (9) for r D 0. Finally, for D < 0, or
equivalently d > 1

4
, the characteristic equation has two complex (conjugate) roots

� D u.1˙ir/=.2"/with r D p4d � 1. We simply have to replace in the expressions
in (8) r by ir. For the numerical flux, for example, we find

Fh
jC1=2 D

"

	x



C.PI ir/B.�iPr/'j � C.�PI ir/B.iPr/'jC1

�
; (10)
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so it seems as if the numerical flux is complex-valued! However, using Euler’s
formula, we can show that the numerical flux is real and is given by

Fh
jC1=2 D

"

	x



C.PI r/'j � C.�PI r/'jC1

�
; (11a)

C.PI r/ D eP=4
cos



1
4
Pr
�C 1

4
P sinc



1
4
Pr
�

sinc


1
2
Pr
� : (11b)

Note that this expression is valid provided 1
2
jPjr < � .

It is interesting to investigate some limiting cases. First, for c D 0, we have
D > 0, r D 1 and recover the well-known homogeneous numerical flux for the
advection-diffusion equation given by

Fh
jC1=2 D

"

	x



B.�P/'j � B.P/'jC1

�
; (12)

see [8]. Next, for " D 0 equation (1) is an advection-reaction equation and we also
have D > 0 and r D 1. The numerical flux (8) reduces to the upwind flux. Finally,
for u D 0 equation (1) is a diffusion-reaction equation and we have P D 0 and
D D �4"c. Consequently, we have to distinguish two different cases, i.e., c < 0 and
c > 0. First, for c < 0 it is obvious that D > 0 and the numerical flux (8) reduces to

Fh
jC1=2 D �

"

	x

'jC1 � 'j
sinhc



1
2
S
� : (13)

Finally, for c > 0 and D < 0 the numerical flux (11) is given by

Fh
jC1=2 D �

"

	x

'jC1 � 'j
sinc



1
2
S
� ; (14)

provided 1
2
S < � . Both expressions are in fact the central difference approximation

of the flux divided by the correction factor sinhc


1
2
S
�

or sinc


1
2
S
�
. Alternatively, we

could have computed these numerical fluxes directly from the BVP (5) with u D 0.

3 Modification of the Inhomogeneous Flux

In this section we outline the modification of the inhomogeneous flux for equa-
tion (1); a more elaborate discussion will be presented elsewhere. To derive the
integral representation for the inhomogeneous flux, it is convenient to reformulate
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equation (1) coupled with expression (2) for the flux as the first order ODE-system

v0 D AvC b; xj < x < xjC1; (15a)

'.xj/ D 'j; '.xjC1/ D 'jC1; (15b)

where v, A, and b are given by

v D
�
'

f

�
; A D

 
u
"
� 1
"

c 0

!
; b D

�
0

s.'/

�
: (15c)

This formulation is somewhat unusual, since the second component of v is the flux,
for obvious reasons, instead of the derivative ' 0. The fundamental matrix

V D
 
'1 '2

f1 f2

!
(16)

corresponding to (15) satisfies the BVP

V0 D AV; xj < x < xjC1; (17a)

'1.xj/ D 1; '1.xjC1/ D 0; '2.xj/ D 0; '1.xjC1/ D 1: (17b)

Note that only boundary conditions for the unknown ' are specified. A straightfor-
ward derivation shows that for D > 0 the solutions '1.x/ and '2.x/ are given by

'1.x/ D eP�.x/=2
sinh



1
2
Pr.1 � �.x//�

sinh


1
2
Pr
� ; (18a)

'2.x/ D e�P.1��.x//=2
sinh



1
2
Pr�.x/

�
sinh



1
2
Pr
� ; (18b)

where �.x/ D .x � xj/=	x is the normalized coordinate on .xj; xjC1/. The
corresponding (homogeneous) fluxes f1.x/ and f2.x/ can be readily determined
from (2). Similar expressions hold for D D 0 or D < 0.

Applying variation of constants, we can derive the following representation of
the solution of (15), see also [1]:

v.x/ D V.x/rC
Z xjC1

xj

G.xI y/b.y/ dy; r D
�
'j
'jC1

�
; (19)
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with G.xI y/ the Green’s function given by

G.xI y/ D 
"W.'1; '2/.y/��1
8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

 
�'1.x/f2.y/ '1.x/'2.y/
�f1.x/f2.y/ f1.x/'2.y/

!
for xj < y � x;

 
�'2.x/f1.y/ '2.x/'1.y/
�f2.x/f1.y/ f2.x/'1.y/

!
for x < y < xjC1:

(20)
In (20), W.'1; '2/ is the Wronskian of '1 and '2, which for D > 0 is given by

W.'1; '2/ D
ˇ̌
ˇ̌̌'1 '2
' 01 ' 02

ˇ̌
ˇ̌̌ D 1

	x

eP.�.x/�1=2/

sinhc


1
2
Pr
� : (21)

Note that the relations (19), (20), and (21) define the complete solution, i.e., the
unknown ' and the flux f , on the entire interval Œxj; xjC1�. However, we are only
interested in the flux at the interface x D xjC1=2. The second component of the term
V.xjC1=2/r is the homogeneous flux Fh

jC1=2 as detailed in the previous section. The

inhomogeneous flux f i.xjC1=2/ is the second component of the inhomogeneous term
in (19) evaluated at xjC1=2 and reads

f i.xjC1=2/ D 1

"
Fh
1;jC1=2

Z xjC1=2

xj

'2.x/s.x/

W.'1; '2/.x/
dx

C 1

"
Fh
2;jC1=2

Z xjC1

xjC1=2

'1.x/s.x/

W.'1; '2/.x/
dx:

(22)

The flux values Fh
1;jC1=2 and Fh

2;jC1=2 correspond to f1.x/ and f2.x/ and follow
readily from the expressions (8), (9) or (11) by substituting 'j D 1; 'jC1 D 0 or
'j D 0; 'jC1 D 1, respectively. Applying suitable quadrature rules, we can derive
expressions for the numerical inhomogeneous flux Fi

jC1=2.

4 Numerical Example

As an example we apply the modified homogeneous flux scheme to the following
model problem

d

dx

�
u' � "d'

dx

	
D c'; 0 < x < L; (23a)

'.0/ D 'L; '.L/ D 'R: (23b)
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Fig. 1 Boundary layer solution: numerical solutions (left) and error plots (right). Parameter values
are u D �1, "D 10�2, c D 2, and 	x D 10�1

Fig. 2 Oscillatory solution: numerical solutions (left) and error plots (right). Parameter values are
u D 1, "D 0:5, and c D 2� 102, and 	x D 2:5� 10�3

We consider two cases, viz. a boundary layer solution, characterized by dominant
advection, and an oscillatory solution, for which the source term is dominant. For
the first solution D > 0 and we employ the numerical flux (8), whereas for the
second solution we apply the numerical flux (11) since D < 0.

To assess the (order) of accuracy of the modified scheme, we define the average
discretization error e.	x/ D 	xjj' � '�jj1, with '� the exact solution of (23)
restricted to the grid. A representative numerical solution and the average discretiza-
tion error as function of the grid size are shown in the figures above. From the Fig. 1,
we conclude that for the boundary layer solution the modified homogeneous flux
scheme is much more accurate than the standard scheme, although both schemes
exhibit second order convergence. On the other hand, for the oscillatory solution,
the modified scheme is slightly better, as is evident from Fig. 2. Further research is
needed to investigate this issue further.

5 Concluding Remarks

In this contribution we derived a new complete flux approximation scheme for
conservation laws containing a linear source. We included the linear source in the
homogeneous differential operator to determine the homogeneous flux. The inho-
mogeneous flux contains the effect of the remaining (nonlinear) part of the source.
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In the derivation of the inhomogeneous flux, we reformulated the conservation law
coupled with the expression for the flux as a first order ODE-system. First numerical
results are encouraging, however, more testing is needed.

To be relevant for practical applications, the scheme should be extended to (at
least) two-dimensional problems. This can be achieved if we include the cross-
flux term as an additional source in the one-dimensional model BVP. To close the
discretization, we employ the homogeneous flux scheme for the cross flux; see [8]
were this idea is elaborated for the original CF scheme.
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Second Order Implicit Schemes for Scalar
Conservation Laws

Lisa Wagner, Jens Lang, and Oliver Kolb

Abstract The today’s demands for simulation and optimization tools for water
supply networks are permanently increasing. Practical computations of large water
supply networks show that rather small time steps are needed to get sufficiently good
approximation results – a typical disadvantage of low order methods. Having this
application in mind we use higher order time discretizations to overcome this prob-
lem. Such discretizations can be achieved using so-called strong stability preserving
Runge-Kutta methods which are especially designed for hyperbolic problems. We
aim at approximating entropy solutions and are interested in weak solutions and
variational formulations. Therefore our intention is to compare different space
discretizations mostly based on variational formulations, and combine them with
a second-order two-stage SDIRK method. In this paper, we will report on first
numerical results considering scalar hyperbolic conservation laws.

1 Introduction

Today’s demands for simulation and optimization tools for water supply networks
are permanently increasing. Therefore well adapted numerical methods for the
approximation of water flow in a network of pipes become important. Modeling
the flow through spherical pipes, the water-hammer equations [15] or other systems
of nonlinear hyperbolic balance laws can be used. Considering such systems we
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have to deal with dissipative source terms which demand implicit methods to
yield fast and stable numerical methods. In this paper special emphasis is put on
singly diagonally implicit Runge-Kutta (SDIRK) methods in time. In the context
of hyperbolic equations, the time stepping scheme should possess the high order
strong stability preserving (SSP) property [7–9]. Such methods maintain the total
variation diminishing (TVD) property of the first order explicit Euler method.
This will be described in detail in Sect. 3. Using the method of line approach, we
combine a time stepping scheme with different spatial discretizations including a
continuous finite element method, a finite volume method with flux limiting and
a discontinuous Galerkin approach, see Sect. 2. Finally we show numerical results
for linear and nonlinear test cases in Sect. 4 and compare them to the implicit box
scheme developed in [12]. We end with a conclusion and an outlook to future work.

2 Different Space Discretizations

Before stating different spatial discretizations, we first introduce a prototypical
scalar conservation law. Given the flux function f W R ! R and the interval
˝ D Œ0; 1�, we aim to find u W ˝ �R

C ! R solving

@tu.x; t/C @x f .u.x; t// D 0 in ˝ � R
C: (1)

Additionally we impose the initial data u.x; 0/ D u0.x/ in˝ and periodic boundary
conditions in space, i.e. u.0; t/ D u.1; t/ for t 2 R

C. For analytical results see e.g.
[5].

For the numerical methods we use approximate weak solutions of (1). Therefore
we define Vper D fv 2 L1.˝/ W v.0/ D v.1/ on @˝g and Wper D fw 2 C1.˝/ W
w.0/ D w.1/ on @˝g. An integral formulation of (1) is then to find u 2 Vper such
that

Z
˝

@tu'dxC
Z
˝

@x f .u/'dx D 0 8' 2 Wper.˝/ and t 2 R
C: (2)

For given points 0 D x0 < : : : < xj < : : : < xN D 1, we divide ˝ into intervals
Ij D Œxj�1; xj�. We denote by hj D xj � xj�1 the volume of Ij. Now we can define a
mesh �h D fI1; : : : ; INg and points xj�1=2 D .xj�1 C xj/=2, j D 1; : : : ;N, for later
use.

2.1 Finite Element Method

We first discuss the finite element method although it is unusual in the context
of hyperbolic problems. Nevertheless it has been reported in [11, 12] that an
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implicit box scheme fulfills all the desired stability and convergence properties for
scalar conservation laws with possibly dissipative source terms. This scheme can
be written as finite element method in space and implicit Euler method in time.
Therefore our intention is to use the finite element discretization also in combination
with higher order time integration. It should be noted that for continuous as well as
discontinuous Galerkin methods the resolution of discontinuities which do not lie
on grid points is affected by approximation errors which can result in oscillations,
see Sect. 4.

For the discretization with finite elements, we approximate the solution by uh 2
Vh\C .˝/ � Vper, where Vh is the finite dimensional subspace of periodic functions
consisting of first order polynomials on each Ij. We use a basis f'igiD0;:::;N consisting
of the well-known hat functions. As test functions ' we use piecewise constants on
all Ij which results in a Petrov-Galerkin method. Thus we have for all j 2 f1; : : : ;Ng

Z
Ij

@t

NX
iD0

ui.t/'i.x/� 1 dxC
Z
Ij

@xf .
NX
iD0

ui.t/'i.x//� 1 dx D 0 (3)

where the integral can be computed exactly. Considering the periodic boundary
conditions with u0 D uN , we end up with a system of ordinary differential equations
for uj, j D 1; : : : ;N.

2.2 Finite Volume Method with Flux-Limiting

In this section we shortly introduce a finite volume scheme including a flux limiter
function. In contrast to the finite element method, we compute approximations
of the cell averages of the solution u. Therefore we set Kj D Œxj�1=2; xjC1=2�
for j D 1; : : : ;N � 1 and the cell averages Nuj D 1

dj

R
Kj
u.x; t/dx with dj as the

volume of the cell Kj. For the periodic boundary conditions we define KN WD
Œx0; x1=2� [ ŒxN�1=2; xN � and set xNC1=2 WD x1=2. Using the conservation law (1) with
initial condition above we find, after integration over Kj,

dj@t Nuj.t/ D f .u.xj�1=2; t// � f .u.xjC1=2; t//

on any cell Kj. Following [10, III, Section 1] and assuming f 0.u/ > 0 (which is the
case for our test problems) we approximate the values of u on the cell boundaries
with

ujC1=2 D Nuj C 1

2
 .�j/.NujC1 � Nuj/
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where  .�/ is, e.g., the Koren limiter function

 .�/ D max.0;min.2;
2

3
C 1

3
�; 2�// with �j D Nuj � Nuj�1NujC1 � Nuj :

It is also possible to use different limiter functions like van Leer [10, 14]. Again
repeating this procedure for every cell Kj, we end up with a system of ordinary
differential equations for the cell averages Nuj.

2.3 Discontinuous Galerkin Method

For the discretization with discontinuous finite elements we use again the finite
dimensional subspace Vh � Vper consisting of first order polynomials on all Ij
but without imposing the additional constraint of continuity. Consequently we have
two degrees of freedom at each node, since the polynomials on each element are
independent of each other. We use a basis of Vh also as test functions. Since uh is
discontinuous across the cell interfaces, we have, like for the finite volume method,
to take the boundary terms from partial integration into account. Following [4] we
get locally

Z
Ij

@tuh'i dx �
Z
Ij

f .uh/@x'i dxC fj.t/'.x
�
j / � fj�1.t/'.xCj�1/ D 0; (4)

where fj.t/ D f .uh.x�j ; t// and fj�1.t/ D f .uh.x
C
j�1; t//. Considering the periodic

boundary conditions we set x0 D xN . Boundary fluxes fj.t/ are replaced by the
numerical Roe flux � W R � R! R with

O�.u�h;j; uCh;j/ D
f .u�h;j/C f .uCh;j/

2
C f

2
.u�h;j � uCh;j/ (5)

with uḣ;j D uh.xj̇ ; t/ and

f D
ˇ̌
ˇ̌
ˇ
f .u�h;j/� f .uCh;j/

u�h;j � uCh;j

ˇ̌
ˇ̌
ˇ if u�h;j ¤ uCh;j and f 0.uCh;j/ otherwise: (6)

Note that we recover the upwind flux in the case of the linear transport equation.
This happens for any monotone flux [3]. To avoid oscillations in the nonlinear test
case we limit the slope of the ansatz functions in each element with a generalized
slope limiter. We decide to use the MUSCL limiter from [16] as generalized slope
limiter with the minmod function as limiter function, see also [3, Ch. 2.4].
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3 Discretization in Time

Using any of the methods above, we remain solving a system of ordinary differential
equations of the form

d

dt
U.t/ D F.U.t// (7)

where U represents the vector of ujs and F W RN ! R
N results from the space

discretization. Typically explicit time stepping methods are used in the context of
hyperbolic conservation laws [3]. One class of higher order time discretizations
methods are so called strong-stability preserving Runge Kutta methods (SSPRK).
These were developed for solving systems resulting from hyperbolic conservation
laws. We assume that there exists a constant 	tEE > 0 such that the solution of
the explicit Euler method applied to (7) fulfills the inequality kUnC1k D kUn C
	tF.Un/k � kUnk with Un D U.tn/, for all	t � 	tEE and a (semi)norm k � k, e.g.,
the TV seminorm or the L1 norm. Problem classes (7) that fulfill this property are
strong-stability preserving. Using higher order SSP methods one expects that there
exists cSSP > 1 such that the solution is SSP for all 	t � cSSP	tEE. The largest
coefficient cSSP for which this is fulfilled is called SSP coefficient. In this paper,
we use two implicit time discretization methods which are SSP. First we consider
the implicit Euler method and as an example for a higher order scheme we use a
two-stage singly diagonally Runge Kutta method (short: SDIRK) of order 2 with
Butcher tableau [3]

1=4 1=4 0

3=4 1=2 1=4

1=2 1=2

:

Using an SDIRK scheme has the advantage that the stage values can be computed
subsequently. The method we use is optimal in the sense that there exists no other
two-stage SDIRK method of order two with a larger SSP coefficient. We have
cSSP D 4 [6].

4 Numerical Examples

In this chapter we test the proposed methods for the linear transport equation and
for the Buckley-Leverett equation [1]. We set ˝ D Œ0; 1�, 0 � t � T D 1 and use
periodic boundary conditions in space. We use equidistant meshes and denote by
Nx D 1=	xC 1 and Nt D T=	t C 1 the number of gridpoints in space and time,
respectively. We combine the proposed SDIRK method with a finite element method
(SDIRKFEM), a flux limiting method (SDIRKFLUX), a discontinuous Galerkin
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method (SDIRKDG), and implemented also the implicit box scheme (IBOX) from
[12] for comparison. We compute for all schemes and additionally for the explicit
Euler scheme applied to the different space discretizations the maximal ratio of the
TV-seminorm kykTV D PN

jD1 jj � j�1j with y D .1; : : : ; N/, 0 D N for the
periodic boundary conditions and for all t 2 Œ0; 1=8�. We set

�.	t/ D max

� kunkTV
kun�1kTV W n � 1 with n	t � 1=8

�
: (8)

We determine the corresponding stepsize for the explicit Euler method numerically
to find the stepsize of the SDIRK method, see Sect. 3. Note that in case of the DG
and the finite volume method we compute the ratio for the cell averages. Together
with application of the slope limiter in the linear and nonlinear test case at each
intermediate computation of the Runge Kutta method, it can be proven, that the
SDIRKDG is TVDM (total variation diminishing in the means) [3]. All methods
have been implemented using MATLAB. The systems of equations resulting from
the discretization have been solved using Newton’s method.

4.1 Transport Equation

In this case we have the flux function f .u/ D au, a D 1 and the non-smooth box
profile

u.x; 0/ D 1 if 1=4 � x � 3=4 and u.x; 0/ D 0 otherwise on˝

for the initial data. The results at t D 1 and Nx D 100 are shown in Fig. 1 (left). All
schemes are at least total variation bounded for the applied step sizes and all of them
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Fig. 1 Left (linear case): IBOX, SDIRKFLUX, SDIRKDG and analytical solution for Nx D 100

and Nt D 260 at t D 1. Right (nonlinear case): IBOX, SDIRKFLUX, SDIRKDG and reference
solution for Nx D 100 and Nt D 130 and Nx D 730, Nt D 65 (for IBOX) at t D 0:5
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Table 1 TVD property for
linear case with Nx D 100

and cSSP D 4

EXPEUL SDIRK

	t �.	t/ 	t �.	t/

FEM 2:5� 10�6 1.0230 4� 2:5� 10�6 1.0954

DG(1) 2:5� 10�6 1.0000 4� 2:5� 10�6 1.0003

DG(1)s 5:0� 10�3 1.0000 4� 5:0� 10�3 1.0000

FLUX 2:5� 10�3 1.0000 4� 2:5� 10�3 1.0000

show some numerical diffusion. SDIRKFLUX is the preferably one of the three.
The SDIRKFEM scheme is not shown, since it shows strong oscillations even for
much finer discretizations. Nevertheless considering the IBOX scheme we obtain
solutions without oscillations. Note that the IBOX scheme has to fullfill a lower
bound which can be computed using [12]. For the SDIRKDG method with slope
limiter there are no under- and overshoots as in the case without slope limiters.
Further we compare the values of �.	t/ (8) for different time stepsizes in Table 1.
In the case of the SDIRKFEM TVD-stability is not achieved, but TVB-stability
for a rather small time stepsize. The SDIRKDG scheme shows a difference in the
size of the time stepsize between using slope limiters or not. The SDIRKFLUX
scheme allows sufficiently big time stepsizes to achieve TVD-stability. Note that
for the time stepsize of the explicit Euler method we have to fulfill different CFL
conditions considering different spatial discretizations and test cases (for DG case
see [13]).

4.2 Buckley-Leverett Equation

For the Buckley-Leverett equation with flux function f .u/ D 3u2=.3u2 C .1 � u/2/,
we consider the smooth initial profile u.x; 0/ D 0:4 C 0:5 sin.�x/ on ˝ . The
results at t D 0:5, Nx D 100 and Nt D 130 (for the second order schemes) are
shown in Fig. 1 (right). The reference solution is computed on a very fine grid using
the SDIRKFLUX scheme which again, also using the lower resolution, shows the
best behaviour. The SDIRKDG method with generalized slope limiter is resolving
the shock front roughly. With finer space discretization it becomes sharper. With
a very small grid size (Nx D 730) the IBOX scheme resolves the shock very
sharply. Together with Nt D 65 it fulfills again the lower bound mentioned above.
Similar results to the linear case regarding the TVD-stability are also obtained for
the nonlinear case, cf. Table 2. Table 2 shows that SDIRKDG scheme is TVD
for a bigger stepsize than the SDIRKFLUX. This is not the case for nonsmooth
initial data. The two test cases show that, numerically, the methods generated by the
SDIRKFLUX and SDIRKDG scheme lie in the class of SSP schemes, whereas the
SDIRKFEM does not. For the flux limiting method and the DG method this can be
proven using Harten’s lemma.
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Table 2 TVD property for
nonlinear case with Nx D 100

and cSSP D 4

EXPEUL SDIRK

	t �.	t/ 	t �.	t/

FEM 2:5� 10�7 1.0000 4� 2:5� 10�6 1.0001

DG(1)s 1:0� 10�3 1.0000 4� 1:0� 10�3 0.9991

FLUX 1:59� 10�4 1.0000 4� 1:59� 10�4 1.0004

5 Conclusion

In this paper we analyzed different numerical methods for solving conservation
laws obtained by the combination of a second order two-stage SDIRK method
with a flux limiting method, a discontinuous Galerkin method and a finite element
method. The paper includes numerical results for the linear transport equation and
the Buckley-Leverett equation. We give a brief description of the used methods
and focus on consistency and stability effects. Considering these properties the
SDIRKFLUX method shows the best results. The SDIRKDG scheme works well
with the generalized slope limiter approach, whereas the SDIRKFEM method
oscillates in both cases at the discontinuities even for very small time stepsizes.
For future work we plan to combine WENO (weighted essentially non-oscillatory)
schemes with SDIRK or Rosenbrock methods for time integration and test our
methods for solving one dimensional systems of nonlinear hyperbolic balance laws.
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Flux Approximation Scheme for the
Incompressible Navier-Stokes Equations Using
Local Boundary Value Problems

Nikhil Kumar, J.H.M. ten Thije Boonkkamp, and Barry Koren

Abstract We present a flux approximation scheme for the incompressible Navier-
Stokes equations, that is based on a flux approximation scheme for the scalar
advection-diffusion-reaction equation that we developed earlier. The flux is com-
puted from local boundary value problems (BVPs) and is expressed as a sum of a
homogeneous and an inhomogeneous part. The homogeneous part depends on the
balance of the convective and viscous forces and the inhomogeneous part depends
on source terms included in the local BVP.

1 Introduction

The numerical solution of the incompressible Navier-Stokes equations requires
appropriate spatial and temporal discretisation methods. For the spatial discretisa-
tion we consider a finite volume method (FVM), in which the conservation laws
are integrated over a disjoint set of control volumes. The resulting semi-discrete
conservation laws require fluxes which need to be approximated at the interfaces of
the control volumes. Standard methods for the approximation of the fluxes include
the central difference (CD) and upwind (UW) approximations. These methods are
a consequence of two limit case solutions, i.e., the CD method results from the no-
flow solution whereas the UW method corresponds to inviscid flow. This issue can
be resolved if we use the exponential/hybrid scheme (as described in [1]), in which
the flux approximation is based on the local balance of the convective and viscous
forces, given by the solution of a homogeneous local BVP. The exponential scheme
can be further extended by including the pressure gradient, the gradient of the
transverse flux or the cross-flux and the time derivative of the velocity components
as source terms in the local BVP. In this contribution we restrict ourselves to the
steady computation of the flux and consider only the effects of including the pressure
gradient and the gradient of the cross-flux.
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Our objective in this paper is to formulate a flux approximation scheme, such
that the computed numerical flux not only depends on the convective and viscous
forces, but also includes the effects of the source terms affecting the fluid flow.
Such a scheme should provide a flux approximation which is locally consistent with
the corresponding conservation law. Our scheme is inspired by the complete flux-
scheme for the convection-diffusion-reaction equation described in [2], in which
an integral representation for the flux is derived using local BVPs for the entire
equation, including the source term. In [3, 4] we have presented a similar method for
the computation of the interface velocities required in the discrete convective terms
using local BVPs, including the pressure gradient and the gradient of the cross-flux
in the source term.

In this contribution we consider the case of two-dimensional flow. In Sect. 2
we outline the underlying FVM. Section 3 gives the integral representations of the
fluxes as well as the closure of the flux scheme. In Sect. 4 we use the flux scheme to
simulate flow in a lid-driven square cavity and compare the flux scheme with the CD
scheme and the benchmark results. Finally, we end with a summary and concluding
remarks in Sect. 5.

2 Finite Volume Method

In this section we briefly outline the FVM for the incompressible Navier-Stokes
equations. Consider the two-dimensional incompressible Navier-Stokes equations

r � u D 0; (1a)

ut Cr � 
uu � �ru� D �rp; (1b)

where u D uexCvey is the flow velocity, p is the kinematic pressure and � D 1=Re,
with Re being the Reynolds number of the flow. For the spatial discretisation we use
a staggered grid configuration as shown in Fig. 1. We have different control volumes
for the discretisation of the u- and v-momentum equations. We express equation (1b)
component-wise, as

ut Cr�f u D �r � . p ex/;
�
f u WD .u2 � �ux/ex C .uv � �uy/ey

	
; (2a)

vt Cr�f v D �r � . p ey/;
�
f v WD .uv � �vx/ex C .v2 � �vy/ey

	
: (2b)

Integrating equation (2a) over a control volume ˝u and applying Gauss’ theorem
we get

Z
˝u

ut dAC
I
@˝u

f u � n ds D �
I
@˝u

p ex � n ds;
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(a) (b)

Fig. 1 (a) The staggered grid for the spatial discretization. (b) A control volume ˝u
iC1=2;j for the

spatial discretisation of the u-momentum equation

where n is the outward unit normal vector to the boundary @˝u. This integral form
of the conservation law can be approximated over the control volume˝u

iC1=2;j shown
in Fig. 1 using the mid-point rule as follows:

	y


f u;xiC1;j � f u;xi;j

�C	x 
f u;yiC1=2;jC1=2 � f u;yiC1=2;j�1=2
� D

�	y
piC1;j � pi;j
� �	x	y .ut/iC1=2;j; (3)

where f u;x WD u2 � �ux, f u;y WD uv � �uy and f u;xi;j � f u;x.xi; yj/. Similarly,
equation (2b) can be discretised over the control volume ˝v

i;j as :

	y


f v;xiC1=2;jC1=2�f v;xi�1=2;jC1=2

�C	x 
f v;yi;jC1 � f v;yi;j

� D
�	x
pi;jC1 � pi;j

� �	x	y .vt/i;jC1=2; (4)

with f v;x WD uv � �vx and f v;y WD v2 � �vy.
We begin with the approximation of the flux f u;xiC1;j using the quasi-one-

dimensional formulation of equation (2a), i.e.,

. f u;x/x D s;


s WD �px � .f u;y/y � ut

�
: (5)

Restricting the above equation to the interval x 2 ŒxiC1=2; xiC3=2� and y D yj, the
boundary conditions read

u.xiC1=2; yj/ D uiC1=2;j; u.xiC3=2; yj/ D uiC3=2;j:

The term s acts as the source term for the flux f u;x, giving the forces driving the
flux. We have included the inertial term ut in the source term. However, in this
contribution we focus on the steady computation of the fluxes, i.e., ut D 0.
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The components of the fluxes f u and f v are nonlinear, thereby making the local
BVPs nonlinear. The flux components are linearised using the interface velocities
which are computed at the interface of the control volume. For example, the
nonlinear term u2 in f u;x is linearised as Uu, where U is the approximation of the
interface velocity. The details regarding the iterative computation of the interface
velocities using local BVPs are given in [3, 4]. Thus, for the approximation of the
flux f u;xiC1;j we solve the linearised local BVP

.Uu � �ux/x D �px � .f u;y/y; x 2 ŒxiC1=2; xiC3=2�; y D yj; (6a)

u.xiC1=2; yj/ D uiC1=2;j; u.xiC3=2; yj/ D uiC3=2;j: (6b)

In the next section we give the details regarding the solution of the above local BVP.

3 Integral Representation of the Fluxes

The flux approximation scheme is based on the computation of the flux for the scalar
advection-diffusion-reaction equation as described in [2]. The model equation is
given by 't C .a' � �'x/x D s, where the scalar flux is defined as f D a ' �
� 'x, ' being the unknown quantity. We outline the computation of the scalar flux
using a local BVP and then extend the scheme to the Navier-Stokes equations. The
computation of the flux fiC1 at the cell edge xiC1 D 1

2
.xiC1=2 C xiC3=2/ is based on

the following model BVP:

.a ' � � 'x/x D s; xiC1=2 < x < xiC3=2; (7a)

'.xiC1=2/ D 'iC1=2; '.xiC3=2/ D 'iC3=2: (7b)

For the solution of the above local BVP we need the following variables:

� WD a

�
; P WD �	x; �.x/ WD

Z x

xiC1

�.�/d�; S.x/ WD
Z x

xiC1

s.�/d�;

with 	x D xiC3=2 � xiC1=2 and where P is the (grid) Péclet number. From [2], we
get that the flux fiC1 is the sum of a homogeneous (f h) and an inhomogeneous (f i)
part, i.e.,

fiC1 D f h
iC1 C f i

iC1; (8a)

f h
iC1 D

�
e��iC1=2'iC1=2 � e��iC3=2'iC3=2

	
=

Z xiC3=2

xiC1=2

��1e��dx; (8b)

f i
iC1 D �

Z xiC3=2

xiC1=2

��1e��S dx =
Z xiC3=2

xiC1=2

��1e��dx: (8c)
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For the incompressible Navier-Stokes equations, we first linearise the flux com-
ponent f u;x by defining Qf u;x D Uu � �ux, which can be computed using the model
BVP (7). In the following we restrict ourselves to the approximation of the linearised
flux Qf u;x. Now, the source term is given by s D �px � .f u;y/y. To simplify the
computation of the inhomogeneous part, we make the following assumptions for
the source term:

1. Pressure gradient: The pressure p is taken to be piecewise linear, consequently
the pressure gradient is piecewise constant, given by its CD approximation:

px.x; yj/ �
(
.ıxp/iC1=2;j D 1

	x .piC1;j � pi;j/; xiC1=2 � x � xiC1;
.ıxp/iC3=2;j D 1

	x .piC2;j � piC1;j/; xiC1 < x � xiC3=2:

2. Cross-flux gradient: the gradient of the cross-flux .f u;y/y is taken to be piecewise
constant, given by the CD approximation:

. f u;y/y.x; yj/ �
(
Cu
iC1=2;j; xiC1=2 � x � xiC1;

Cu
iC3=2;j; xiC1 < x � xiC3=2;

with

Cu
iC1=2;j D

1

	y

�
Fu;y
iC1=2;jC1=2 � Fu;y

iC1=2;j�1=2
	
;

Fu;y being the numerical approximation of the linearised flux component Qf u;y.
From the above we get that s is piecewise constant over the domain making S
piecewise linear. Moreover, we also have that U and � are constants on the domain
xiC1=2 < x < xiC3=2. Thus, evaluating expressions (8b) and (8c), we get that Fu;x

iC1;j,
is given by

Fu;x
iC1;j D Fu;x;h

iC1;j C Fu;x;i
iC1;j; (9a)

Fu;x;h
iC1;j D

�

	x



B.�Pu/uiC1=2;j � B.Pu/uiC3=2;j

�
; (9b)

Fu;x;i
iC1;j D 	x



W.�Pu/siC1=2;j �W.Pu/siC3=2:j

�
; (9c)

where Pu D U	 x=� and

B.z/ WD z

ez � 1 ; W.z/ WD ez=2 � 1 � z=2

z.ez � 1/ :

We further split the inhomogeneous part into terms depending on the gradient
of the cross-flux term (Fu;x;c) and the pressure gradient (Fu;x;p), using siC1=2;j D
�.ıxp/iC1=2;j � Cu

iC1=2;j in equation (9c).
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Fig. 2 Plots of the functions (a) A.jzj/, (b) W.z/ with varying Péclet numbers

Thus, we have computed the numerical flux Fu;x
iC1;j as the sum of a homogeneous

and an inhomogeneous part using local BVPs. Observe that the homogeneous flux
component can be expressed as a weighted mean of the CD flux (Fcd) and the UW
flux (Fuw) as follows

Fh D 
1 � A.jPuj/�Fuw C A.jPuj/Fcd; (10)

where A.z/ is a weight function defined as A.z/ WD 2.1 � B.z//=z. Figure 2 for the
function A.z/, shows that for diffusion dominated flows (Pu ! 0), the homogeneous
scheme reduces to the CD scheme, whereas for convection dominated flows (jPuj 	
1), it reduces to the UW scheme. Analogously, the discrete source terms siC1=2;j
and siC3=2;j involved in the inhomogeneous part have equal contributions, when the
Péclet number is zero. For higher Péclet numbers the upwind source term has a
larger contribution to the inhomogeneous flux part (Fig. 2).

3.1 Closure of the Scheme

So far we have derived an expression for the approximation of the flux component
Fu;x
iC1;j: For the semi-discrete momentum equation (3) we also need to approximate

the cross-flux f u;y. For the closure of the scheme we restrict ourselves to the
homogeneous flux part for the cross-flux component. Thus, the flux f u;yiC1=2;jC1=2 is
computed from the local BVP :

.Vu� �uy/y D 0; x D xiC1=2; yj � y � yjC1; (11a)

u.xiC1=2; yj/ D uiC1=2;j; u.xiC1=2; yjC1/ D uiC1=2;jC1; (11b)
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where V is the estimate of the interface velocity at .xiC1=2; yjC1=2/. On solving the
above homogeneous local BVP we find that the flux is given by :

Fu;y
iC1=2;jC1=2 D

�

	y



B.�Pv/uiC1=2;j � B.Pv/uiC1=2;jC1

�
;
�
Pv D V	y=�

	
:

Similarly, the fluxes and the cross-fluxes in equation (4) are also computed from
local BVPs. The flux f v;yi;jC1 is computed using the inhomogeneous local BVP :

.Vv � �vy/y D �.ıyp/� .f v;x/x; x D xi; yjC1=2 � y � yjC3=2; (12a)

v.xi; yjC1=2/ D vi;jC1=2; v.xi; yjC3=2/ D vi;jC3=2; (12b)

for which expressions analogous to (9) can be derived. Again, for the computation
of the cross-flux f v;xiC1=2;jC1=2 we solve the homogeneous local BVP :

.Uv � �vx/x D 0; xi � x � xiC1; y D yjC1=2;

v.xi; yjC1=2/ D vi;jC1=2; v.xiC1; yjC1=2/ D viC1;jC1=2:

In the following section we test the flux schemes described in this section for the
lid-driven flow.

4 Numerical Results

In this section we apply the flux schemes to the flow in a lid-driven cavity, in order
to assess the accuracy of the scheme. The lid-driven cavity flow is well suited to
investigate the effects of including the cross-flux term in the source term. We use
the results from Ghia-Ghia-Shin [5] as the reference. Figures 3 and 4 show the u-
velocity profile along the vertical center-line of the cavity. In Fig. 3 we compare the
homogeneous flux scheme, the 1-D flux scheme (including the pressure-gradient
as the source term), and the 2-D flux scheme (including both cross-flux and the
pressure-gradient), computed on a coarse 20�20 grid, with the finer grid (128�128)
Ghia-Ghia-Shin solution for Re D 100. Since the pressure gradient is practically
zero across the domain, we do not see much difference between the homogeneous
and the 1-D flux scheme. However the inclusion of the cross-flux term in the source
term gives us a higher accuracy.

Next, we compare the flux scheme with the CD scheme for Re D 400, (see
Fig. 4). Again we compare the coarse-grid solution (20 � 20) with the Ghia-Ghia-
Shin results. We can observe that the flux schemes exhibit higher accuracy compared
to the CD scheme. The difference between the flux schemes becomes very small,
with the 2-D flux scheme still being more accurate than the others though.
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Fig. 3 u-velocity profiles along the vertical centerline of the cavity for Re D 100
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5 Conclusion

In the preceding sections we presented methods for the approximation of the fluxes
derived from local BVPs. The computed flux is the sum of a homogeneous and an
inhomogeneous part. The homogeneous part is a weighted mean of the UW and CD
scheme and the inhomogeneous part depends on the source term in the BVP, i.e.,
the pressure-gradient and the cross-flux gradient. The inclusion of the source terms
provides higher accuracy to the flux approximation schemes, as observed from the
case of lid-driven cavity flow.

The scheme can be further extended by including the time derivative of the
velocity-component in the source term in the local BVP for the flux computation,
giving the transient flux scheme (TFS). The TFS combined with implicit Runge-
Kutta methods, should provide an accurate temporal discretisation method.
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On the Full and Global Accuracy of a Compact
Third Order WENO Scheme: Part II

Oliver Kolb

Abstract Recently, we showed in (O. Kolb, SIAM J. Numer. Anal., 52 (2014),
pp. 2335–2355) for which parameter range the compact third order WENO recon-
struction procedure introduced in (D. Levy, G. Puppo, and G. Russo, SIAM J. Sci.
Comput., 22 (2000), pp. 656–672) reaches the optimal order of accuracy (h3 in
the smooth case and h2 near discontinuities). This is the case for the parameter
choice " D Khq in the weight design with q � 3 and pq � 2, where p � 1 is the
exponent used in the computation of the weights in the WENO scheme. While these
theoretical results for the convergence rates of the WENO reconstruction procedure
could also be validated in the numerical tests, the application within the semi-
discrete central scheme of (A. Kurganov, and D. Levy, SIAM J. Sci. Comput., 22
(2000), pp. 1461–1488) together with a third order TVD-Runge-Kutta scheme for
the time integration did not yield a third order accurate scheme in total for q > 2.
The aim of this follow-up paper is to explain this observation with further analytical
and numerical results.

1 Introduction

We are interested in the numerical solution of hyperbolic conservation laws

@

@t
u.x; t/C @

@x
f .u.x; t// D 0 (1)

with given initial conditions u.x; 0/ D u0.x/. One major difficulty arises here due
to the fact that even for smooth initial data, the solutions of (the weak form of) (1)
may contain discontinuities after finite time. At the same time, one is interested in
resolving complex smooth solution structures with high order of accuracy. Based
on the pioneering works [9, 15], the approach of so-called weighted essentially
non-oscillatory (WENO) schemes allows the combination of high resolution with
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a stable behaviour in the presence of discontinuities. The key ingredient of such
schemes is a weighting of discretization stencils or reconstruction polynomials
based on smoothness indicators.

As already noted in [11], WENO reconstructions may not attain the optimal order
at critical points and meanwhile there are several fixes for that problem like [2–4, 6,
8, 10, 16–18]. Based on the smoothness indicator of [11], Aràndiga et al. recently
proposed in [1] to choose the parameter ", which occurs in the denominator within
the weight design, proportional to the square of the mesh size, h2. For the compact
third order WENO (CTO-WENO) reconstruction procedure introduced in [14], we
recently showed in [12] that it reaches the optimal order of accuracy (h3 in the
smooth case and h2 near discontinuities) for the parameter choice " D Khq with q �
3 and pq � 2, where p � 1 is the exponent used in the computation of the weights
in the WENO scheme. While these theoretical results for the convergence rates of
the CTO-WENO reconstruction procedure could also be validated in the numerical
tests, the application within the semi-discrete central scheme of [13] together with
a third order TVD-Runge-Kutta scheme from [7] for the time integration did not
yield a third order accurate scheme in total for q > 2. Meanwhile, in [5], our results
of [12] have been extended to the case of nonuniform meshes (for ".h/ D h and
".h/ D h2), where the dependency of " on h is substantial. The remaining question
is the explanation of the observed order reduction in the case q > 2 and it is the
aim of this follow-up paper to explain this observation with further analytical and
numerical results.

2 Numerical Scheme

We begin with a brief description of the considered discretization scheme. The
underlying CTO-WENO reconstruction procedure is described for the scalar case
in Sect. 2.1, and also the new results in Sect. 3 refer to the scalar case. Nevertheless,
the fully discrete scheme in Sect. 2.2 is given for the system case.

2.1 Reconstruction Procedure

The CTO-WENO reconstruction procedure from [14] based on cell averages builds
a core part of the analysed scheme. As in [12] we consider u D u.x/ as function
of the spatial variable only since the procedure is independent of the time variable.
Further, we assume a uniform grid with spatial grid size h, grid points xj D x0 C jh
and corresponding finite volumes Ij D Œxj � h

2
; xj C h

2
� D Œxj� 1

2
; xjC 1

2
�. The task is

to reconstruct the function u by a piecewise polynomial approximation P given the
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cell averages over all Ij,

Nuj D 1

h

x
jC 1

2Z
x
j� 1

2

u.x/dx :

For this, we will use (in each cell Ij) a convex combination of three polynomials PL,
PC and PR,

P.x/ D wLPL.x/C wCPC.x/C wRPR.x/ (2)

with wi � 0 for all i 2 fL; C; Rg and wL C wC C wR D 1. To improve the readability,
we leave out the index j indicating the considered interval for the polynomials and
other terms, wherever it is clear from the context.

The polynomials PL and PR are one-sided linear reconstructions,

PL.x/ D Nuj C Nuj � Nuj�1
h

.x � xj/ ; PR.x/ D Nuj C NujC1 � Nuj
h

.x � xj/ :

For the third polynomial PC we need the parabola Popt, which is the unique parabola
that conserves the three cell averages Nuj�1, Nuj, NujC1. Then, for given (positive)
constants cL, cR and cC D 1 � cL � cR, PC is chosen in such a way that

Popt.x/ D cLPL.x/C cCPC.x/C cRPR.x/ (3)

holds. For the weights in (2) we use

wi D ˛iP
k
˛k
; where ˛i D ci

.".h/C ISi/p
i; k 2 fL; C; Rg (4)

and the smoothness indicators

ISi D
2X

kD1

x
jC 1

2Z
x
j� 1

2

h2k�1


P.k/i .x/

�2
dx i 2 fL; C; Rg : (5)

In (4) we apply ".h/ D Khq (with K D 1 in all examples) and usually p D 2. For
the constants ci in (3) and (4), we use cL D cR D 0:25 as in [14] and accordingly
cC D 1 � cL � cR D 0:5.
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2.2 Fully Discrete Scheme

We now give a brief description of a complete numerical scheme to solve (1) based
on the CTO-WENO reconstruction procedure presented in Sect. 2.1 (cf. [12, 13]).
Note that the whole scheme can be applied to systems of conservation laws, where
the reconstruction procedure can for instance be applied componentwise. First, for
a given mesh size h, we average (1) over all intervals Ij. This yields the initial
conditions

Nuj.0/ D 1

h

x
jC 1

2Z
x
j� 1

2

u0.x/dx (6)

for the cell averages in each interval Ij, and the evolution equation

d

dt
Nuj.t/ D �1

h



f .u.xjC 1

2
; t// � f .u.xj� 12 ; t//

�
: (7)

Next, the fluxes f .u.xj˙ 1
2
; t// at the cell boundaries are replaced/approximated by a

numerical flux Hj˙ 1
2
.t/ – here, corresponding to the central scheme in [13], by the

local Lax-Friedrichs flux

HjC 1
2
.t/ D

f .uC
jC 1

2

.t//C f .u�
jC 1

2

.t//

2
�

ajC 1
2
.t/

2



uC
jC 1

2

.t/ � u�
jC 1

2

.t/
�

(8)

with

ajC 1
2
.t/ D max

u2C.u�

jC 1
2

.t/;uC

jC 1
2

.t//
�

�
@f

@u
.u/

�
(9)

and

u�
jC 1

2

.t/ D Pj.xjC 1
2
; t/ and uC

jC 1
2

.t/ D PjC1.xjC 1
2
; t/ :

The polynomials Pj and PjC1 are reconstructed from the cell averages at time t
according to the procedure described in Sect. 2.1. Further, �.A/ denotes the spectral
radius of the matrix A and C.u�

jC 1
2

.t/; uC
jC 1

2

.t// is the curve in the phase space that

connects u�
jC 1

2

.t/ and uC
jC 1

2

.t/ via a Riemann fan.
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Finally, the third order TVD Runge-Kutta scheme of [7] is used for the time
integration of the semi-discretized problem

d

dt
Nuhj .t/ D �

1

h



HjC 1

2
.t/ � Hj� 12 .t/

�

with approximate solution Nuh and initial conditions from (6).

3 New Results

3.1 A Sufficient Condition in the Linear Case

A usual argumentation for an mth order scheme (with respect to the spatial semi-
discretization) goes as follows: The exact evolution of the cell averages in each
interval Ij is given by (7). Now assume that the numerical flux satisfies

HjC 1
2
.t/ D f .u.xjC 1

2
; t//C d.xjC 1

2
; t/ hm CO.hmC1/ (10)

with a Lipschitz continuous function d.x; t/ with Lipschitz constant Ld (with respect
to x). Then,

HjC 1
2
.t/ �Hj� 12 .t/

h
D

f .u.xjC 1
2
; t// � f .u.xj� 12 ; t//

h

C 
 d.xjC 1
2
; t/ � d.xj� 12 ; t/„ ƒ‚ …
k:::k�Ldh

�
hm�1 C O.hm/

and further (as desired)

d

dt
Nuj.t/ D �1

h



HjC 1

2
.t/ �Hj� 12 .t/

�C O.hm/ :

In the simplest case of a linear flux function, f .u/ D au with a > 0 (w.l.o.g.),
the local Lax-Friedrichs flux (8) reduces to HjC 1

2
.t/ D au�

jC 1
2

.t/ and the “sufficient

condition” (10) directly reduces to an accuracy condition

u�
jC 1

2

.t/ � u.xjC 1
2
; t/ D Qd.xjC 1

2
; t/ hm C O.hmC1/ (11)

with a Lipschitz continuous function Qd.x; t/ D d.x; t/=a (with respect to x). Further,
since u�

jC 1
2

.t/ D Pj.xjC 1
2
; t/, we have to take a closer look at the accuracy of the

reconstruction polynomials Pj given by (2). Actually, we are interested in the case
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m D 3 (a third order scheme in the smooth case). From the proof of Theorem 2.1
in [12], we see that the deviation

ci � wi D O.h/

from the optimal weights is essential to get third order accuracy in the reconstruction
since this deviation is multiplied with the interpolation error of the single polyno-
mials Pi, which is at least O.h2/ (in the smooth case). To also fulfill (11), it would
be sufficient to have

ci � wi D di.xj; t/ hC O.h2/ (12)

with Lipschitz continuous functions di.

3.2 Failure of q > 2: Numerical Evidence

According to the sufficient condition (12), it should be revealing to look at ci�wi
h for

h ! 0. Therefore, we consider the initial conditions of the first “failing” example
of [12] (originally from [10]),

u0.x/ D sin


�x � sin.�x/=�

�

on the computational domain x 2 Œ�1; 1� (with periodic boundary conditions). For
Nx D 2n grid cells with n 2 f10; 15; 20g, corresponding to h D 2 � 2�n, we apply
the CTO-WENO reconstruction with ".h/ D h3 and evaluate ci�wi

h for each cell and
i 2 fL; C; Rg.

Figure 1 shows the corresponding results. Note the different scales on the y-axes
and the different behaviour for i 2 fL; Rg in comparison to i D C. Obviously, the
quotient ci�wi

h seems to be unbounded at least for i 2 fL; Rg and h ! 0 close to
the zeros of u00 (at approximately ˙0:597). At the first view, this observation even
seems to be contradictory to the results of [12], but the quotient is bounded for each
fixed position xj so that finally wi D ci C O.h/ holds for arbitrary x also in the
considered case ".h/ D h3. Nevertheless, this behaviour is much different from the
results one observes in the case ".h/ D hq with q � 2 and it obstructs the “sufficient
condition” (12).
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Fig. 1 Differences ci�wi
h for i 2 fL; C; Rg, h D 2 � 2�n with n2f10; 15; 20g, ".h/ D h3. The plots

in the right column are zoomed from the plots in the left column

3.3 Failure of q > 2: Analytical Evidence

Next, we aim to explain the observation above from the analytical point of view.
First, the proof of Theorem 3.3 in [12] gives us for any fixed xj

ci � wi D �pfihr C O.hrC1/

with r � 1 and fi D �P
k
ckeik, where the eik are given by

ISi � ISk
".h/C ISk

D eikh
r C O.hrC1/ :



60 O. Kolb

The term on the left-hand side can be expressed as

ISi � ISk
".h/C ISk

D cikh2sC2 C dikh2sC3 C O.h2sC4/
Khq C akh2sC2 C bkh2sC3 C O.h2sC4/

(13)

with s D sj (multiplicity of the zero of u0 at xj, or 0 if u0.xj/ ¤ 0) and appropriate
constants ai and bi, cik D ai � ak and dik D bi � bk from

ISi D aih
2sC2 C bih

2sC3 C O.h2sC4/

and

ISi � ISk D cikh
2sC2 C dikh

2sC3 C O.h2sC4/ :

Motivated by the numerical results above, we take a closer look at the zeros of
u0. Considering sj > 0 for q 2 .2; 3� gives

ISi � ISk
".h/C ISk

D dikh2sC3�q CO.h2sC4�q/
K C akh2sC2�q C O.h2sC3�q/

D dik
K

h2sC3�q C O.h2sC4�q/ ;

for even sj (where cik D 0 according to [12]), and for odd sj

ISi � ISk
".h/C ISk

D cikh2sC2�q C O.h2sC3�q/
K C akh2sC2�q C O.h2sC3�q/

D cik
K
h2sC2�q C O.h2sC3�q/ :

Due to the dominant role of the constant K in the denominator (and 2sC2�q � 1),
this case seems to be uncritical. The real problem are the points close to the zeros
of u0: In the case sj D 0, we get for q 2 .2; 3�

ISi � ISk
".h/C ISk

D dikhC O.h2/

Khq�2 C ak C bkhC O.h2/
D dik

ak
hC O.hq�1/ ; (14)

where again cik D 0 according to [12]. From the proof of Lemma 3.1 in [12], we
know that ak D



u0.xj/

�2
here, whereas bk and therewith dik are proportional to

u0.xj/u00.xj/. For any fixed xj with u0.xj/ ¤ 0, Eq. (14) is sufficient to finally get
third order accuracy for the CTO-WENO reconstruction, but obviously the factor
eik D dik

ak
, which is proportional to u00.xj/=u0.xj/, is not bounded uniformly in x

close to zeros of u0 (unless also u00 vanishes in that point). This clearly explains the
increase of the quotient ci�wi

h for h! 0 close to the zeros of u0 and therewith finally
leads to the observed order reduction.

Remark 1 Obviously, for q � 2 the term ".h/ D Khq is always part of the dominant
term in the denominator of (13) (as already noted in [12]) and therefore the quotient
ci�wi
h stays bounded in that case and even the sufficient condition (12) is fulfilled.
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Remark 2 Reconsidering the scalar accuracy tests from [12], one actually observes
that third order accuracy is achieved by the fully discrete scheme with ".h/ D h3

apart from critical points.

4 Conclusion

The aim of this work was to explain the order reduction one observes for a fully
discrete scheme based on the CTO-WENO reconstruction procedure with ".h/ D
Khq with q 2 .2; 3�, whereas the pure spatial reconstruction is (pointwise) third
order accurate. Therefore, we took a closer look at the error expansions and found
numerical as well as analytical evidence for the “failure” of this parameter range.
Consequently, at least for the usual choice p D 2 in the weight design, the region
of practical interest is q 2 Œ1; 2�, for which meanwhile third order accuracy has also
been shown for the case of nonuniform meshes in [5].
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The Application of the Boundary Element
Method to the Theory of MHD Faraday
Generators

Adrian Carabineanu

Abstract The problem in dimensionless variables reduces to three systems of
equations for the stream function and the electric potential in three regions of a strip
(the rectangular domain bounded by the electrodes and two half-strips). The singular
integral equations obtained from the integral representation of the solutions and the
matching conditions are disctretized and a linear system of algebraic equations is
obtained. The velocity, the electric field and the generator power are calculated.

1 The MHD Faraday Generator

In the domain bounded by the electrodes, a magnetic field is transversely applied
to the motion of an electrically conducting fluid flowing inside an insulated duct
(Fig. 1). Electrically charged particles (ions and electrons) flowing with the fluid
determine an induced electric field which drives an electric current. The electric
current flowing across the electroconductive plasma between the electrodes is the
Faraday current which is collected by the electrodes and flows in an external load
circuit. It provides the main electrical output of the MHD power generator. In this
paper we present a simplified version of the MHD generator theory.

2 The Boundary Value Problem

In the book [3], Chapter 7, L. Dragoş reduced the problem of MHD generators to
a boundary value problem in a strip (see Fig. 2). The segments y D 1; jxj < a and
y D �1; jxj < a represent the electrodes.
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Fig. 1 MHD Faraday generator

Fig. 2 Geometry of the domain in the case of plane-parallel motion

2.1 The Equations

The unknown functions are  , the perturbation of the stream function, ', the
electric potential and � the harmonic conjugate of '. We have to solve the following
equations:

– in D�a�1 D f.x; y/ ; x < �a;�1 < y < 1g W

	� D 0; 	 D 0; (1)
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– in Da�a D f.x; y/ ;�a < x < a;�1 < y < 1g

	 D �N
�
@'�

@x
C @ 

@x

�
xD�aC0

; (2)

	'� D N

�
@'�

@x
C @ 

@x

�
xD�aC0

; '�.x; y/ D '.x; y/C 'wy: (3)

– in D1a D f.x; y/ ; a < x;�1 < y < 1g W

	� D 0; (4)

	 D N

�
@'�

@x
C @ 

@x

�
xDa�0

� N

�
@'�

@x
C @ 

@x

�
xD�aC0

: (5)

The constant N is the Stuart number.

2.2 Boundary and Matching Conditions

The boundary conditions are

 .x;˙1/ D 0;�1 < x <1; '.x;˙1/ D 
'w H) '�.x;˙1/ D 0; (6)

@'.x;˙1/
@y

D 0; jxj > a

lim
x!˙1 grad' D 0

9>=
>; H) �.x;˙1/ D 0; jxj > a: (7)

The matching conditions are

@�.�a; y/
@y

� @'
�.�a; y/
@x

� @ .�a; y/
@x

D 0; (8)

@�.a; y/

@y
� @'

�.a; y/
@x

� @ .a; y/
@x

D 0; (9)

Œ'�xD˙a D 0 H) '�.˙a; y/C
Z y

0

@�.˙a; y/
@x

dy D 'wy: (10)
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3 Singular Equations

In the integral representations we pass to limit for x ! ˙a ˙ 0; we use Plemelj

formulas and we take into account that
@g.�; yI �; /

@�
D 0.

For x! �a � 0 we have

1

2
�.�a; y/ D

Z 1

�1
@�.�a; /

@�
g.�a; yI �a; /d; (11)

1

2
 .�a; y/ D

Z 1

�1
@ .�a; /

@�
g.�a; yI �a; /d: (12)

For x! �aC 0 we have

1

2
 .�a; y/ D

Z 1

�1

�
@ .a; /

@�
g.�a; yI a; /� @g.�a; yI a; /

@�
 .a; /

�
d� : : :

�
Z 1

�1
@ .�a; /

@�
g.�a; yI �a; /dC : : :

N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�

�
Ga�a.�a; yI /d; (13)

1

2
'� .�a; y/ D

Z 1

�1

�
@'�.a; /

@�
g.�a; yI a; /� @g.�a; yI a; /

@�
'�.a; /

�
d � : : :

�
Z 1

�1
@'�.�a; /

@�
g.�a; yI �a; / : : :

C N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�

�
Ga�a.�a; yI /d; (14)

1

2
'� .�a; y/ D

Z 1

�1

�
@'�.a; /

@�
g.�a; yI a; /� @g.�a; yI a; /

@�
'�.a; /

�
d � : : :

�
Z 1

�1
@'�.�a; /

@�
g.�a; yI �a; / : : :

� N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�

�
Ga�a.�a; yI /d: (15)
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For x! a � 0 we have

1

2
 .a; y/ D

Z 1

�1
@ .a; /

@�
g.a; yI a; /d� : : :

�
Z 1

�1

�
@ .�a; /

@�
g.a; yI �a; /� @g.a; yI �a; /

@�
 .�a; /

�
dC : : :

N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�

�
Ga�a.a; yI /d; (16)

1

2
'� .a; y/ D

Z 1

�1
@'�.a; /

@�
g.a; yI a; /d� : : :

�
Z 1

�1

�
@'�.�a; /

@�
g.a; yI �a; /� @g.a; yI �a; /

@�
'�.�a; /

�
d� : : :

� N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�

�
Ga�a.a; yI /d: (17)

For x! aC 0 we have

1

2
� .a; y/ D �

Z 1

�1
@�.a; /

@�
g.x; yI �a; /d; a < x; (18)

1

2
 .a; y/ D �

Z 1

�1
@ .a; /

@�
g.a; yI a; /d� : : :

�N
Z 1

�1

�
@'�.�a; /

@�
C @ .�a; /

@�
� : : :

�@'
�.a; /
@�

� @ .a; /
@�

�
G1a .a; yI /d: (19)

We denoted the Green function for the strip

g .x; yI �; / D � 1

4�
ln

cosh
�

2
.x � �/C cos

�

2
.yC /

cosh
�

2
.x � �/ � cos

�

2
.y � /

; (20)

and Ga�a.x; yI / D
R a
�a g.x; yI �; /d�, G1a .x; yI / D

R1
a g.x; yI �; /d�.
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3.1 The Unknown Functions

We have 8 singular integral equations (with logarithmic singularity) and 4 matching

conditions for determining the 12 unknown functions �.�a; y/; @�.�a; y/
@x

; �.a; y/;

@�.a; y/

@x
; '�.�a; y/; @'

�.�a; y/
@x

; '�.a; y/;
@'�.a; y/

@x

and  .�a; y/; @ .�a; y/
@x

;  .a; y/;
@ .a; y/

@x
.

Some theoretical results enable us to presume the following behaviour:

@�.�a; y/
@x

D ��x .�a; y/p
1 � y2

;
@�.a; y/

@x
D ��x .a; y/p

1 � y2
;
@'�.�a; y/

@x
D '�x .�a; y/p

1 � y2
;

@'�.a; y/
@x

D '�x .a; y/p
1 � y2

;
@ .�a; y/

@x
D  �x .�a; y/p

1 � y2
;
@ .a; y/

@x
D  �x .a; y/p

1 � y2
;

where ��x .�a; y/; ��x .a; y/; '�x .�a; y/; '�x .a; y/;  �x .�a; y/;  �x .a; y/ are bounded
for �1 � y � 1.

4 Discretization

We split the segments x D �a;�1 � y � 1 and x D a;�1 � y � 1 into n panelsn
�
.�a/
j

o
jD1;:::;n respectively

n
�
.a/
j

o
jD1;:::;n such that

�
.�a/
j D

n
.�a; y/ I �1C .1/j � y � �1C .1/jC1

o
; 
.1/
j D �1C

2. j� 1/
n

;

�
.a/
j D

�
.a; y/ I �1C 2. j� 1/

n
� y � �1C 2j

n

�
:

In every panel we take the midpoints


�a; j� D �1C 2j � 1
n

; j D 1; : : : ; n

We approximate the functions with piecewise constant functions

Z 1

�1
@ .a; /

@�
g.�a; iI a; /d �

�
nX

jD1
 �� .�a; j/g.�a; iI �a; j/

�
arcsin .1/jC1 � arcsin .1/j

	
;
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Z 1

�1
@g.�a; yI a; /

@�
 .a; /d � 1

n

nX
jD1

 .�a; j/
@g.�a; iI a; j/

@�
;

Z
�
.�a/
j

@�.�a; /
@�

g.�a; iI �a; /d D
Z
�
.�a/
j

��� .�a; /p
1 � 2 g.�a; iI �a; /d �

� ��� .�a; j/
Z
�
.�a/
j

g.�a; iI �a; /p
1 � 2 d �

� ��� .�a; j/g.�a; iI �a; j/
�

arcsin .1/jC1 � arcsin .1/j

	
; i ¤ j;

Z
�
.�a/
i

��� .�a; /p
1� 2 g.�a; iI �a; /d � ��� .�a; i/

Z
�
.�a/
i

g.�a; iI �a; /p
1 � 2 d �

� ��� .�a; i/
0
@Z 1

�1
g.�a; iI �a; /p

1 � 2 d �
nX

j¤i;jD1

Z
�
.�a/
j

g.�a; iI �a; /p
1 � 2 d

1
A �

��� .�a; i/
 
�

n

nX
˛D1

g

�
�a; iI �a; cos

.2˛ � 1/�
2n

�
�

�
nX

j¤i;jD1
g.�a; iI �a; j/

�
arcsin .1/jC1 � arcsin .1/j

	1A :
Z 1

�1
@ .�a; /

@�
Ga�a.a; yI /d �

�
nX

jD1
 �� .�a; j/

�
arcsin .1/jC1 � arcsin .1/j

	 Ga�a.a; yI .1/j /C Ga�a.a; yI .1/jC1/
2

:

From the matching condition

'�.˙a; y/C
Z y

0

@�.˙a; y/
@x

dy D 'wy

we get the linear equations

'�.˙a; j/� '�.˙a; j�1/C

C�
�
� .˙a; j/C ��� .˙a; j�1i/

2

�
arcsin .1/j � arcsin .1/j�1

	
D 2'w

n
; j D 2; ::n;

'�.˙a; .1/1 /C ��� .˙a; 1/ arcsin .1/1 D
'w

n

and so on.
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4.1 The Linear System

After discretizing the integral equations and matching equations we obtain a linear
non-singular algebraic system. The unknowns are

�.�a; i/, ��� .�a; i/, �.a; i/, ��� .a; i/, '�.�a; i/, '�� .�a; i/, '�.a; i/,
'�� .a; i/,  .�a; i/,  �� .�a; i/,  .a; i/,  �� .a; i/; i D 1; : : : ; n.

5 The Velocity and the Electric Current

We denote by .xl; yk/ the coordinates of the points of a grid in the strip �1 < y <
1; x 2 R. The velocity in the grid points is:

Vx.xl; yk/ D 1C @ .xl; yk/

@y
;Vy.xl; yk/ D �@ .xl; yk/

@x
:

The electric current for jxj > a is

Jx.xl; yk/

Rm
D �@�.xl; yk/

@y
;
Jy.xl; yk/

Rm
D @�.xl; yk/

@x
:

and for jxj < a

Jx.xl; yk/

Rm
D �@�.xl; yk/

@y
� @ .xl; yk/

@y
;
Jy.xl; yk/

Rm
D @�.xl; yk/

@x
C @ .xl; yk/

@y
� 1

where Rm is the magnetic Reynolds number. In Fig. 3 we present the nondimen-
sional velocity, streamlines and the electric current for some values of the length of
electrodes, electric potential on electrodes and Stuart number.

6 The Output Power

The useful power developed by the MHD generator is

W D �'wRm
Z a

�a
�
Jy .x;�1/C Jy .x; 1/


dx:

In Fig. 4 we present the useful output powerW/'w for various values of the length
of electrodes a and N.

We notice that for N D 0 the numerical results almost coincide with the
analytical results obtained using the results from papers [1, 2].
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Fig. 3 Velocity, streamlines and electric current

Fig. 4 Useful output power
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Part II
Finite Element Methods



How to Avoid Mass Matrix for Linear
Hyperbolic Problems

Rémi Abgrall, Paola Bacigaluppi, and Svetlana Tokareva

Abstract We are interested in the numerical solution of linear hyperbolic problems
using continuous finite elements of arbitrary order. It is well known that this kind of
methods, once the weak formulation has been written, leads to a system of ordinary
differential equations in R

N , where N is the number of degrees of freedom. The
solution of the resulting ODE system involves the inversion of a sparse mass matrix
that is not block diagonal. Here we show how to avoid this step, and what are the
consequences of the choice of the finite element space. Numerical examples show
the correctness of our approach.

1 Introduction

We are interested in the numerical approximation of the hyperbolic problem

@u

@t
C div f.x; u/ D 0 x 2 ˝ � R

d (1a)

by means of a finite element like technique. In this paper, we focus on the linear
case where f.x; u/ D a.x/u. The vector field a may depend on the spatial location
x. The problem (1a) is also supplemented with initial and boundary conditions:

u.x; 0/ D u0.x/ (1b)

and

u.x; t/ D g.x/ if x 2 @˝; t � 0: (1c)
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Obviously, (1c) has to be understood in the weak sense, i.e. that u D g on the inflow
characteristics.

The physical space is covered by a conformal tessellation T . For ease of
exposition, we assume that

˝ D [K2T K:

The solution of the problem is approximated by an element of the space Vh defined
by:

Vh D fuh 2 C0.˝/ such that for any K;uh
jK is a polynomial of degree rg:

We denote by P
r the set of polynomials of degree r. In this paper, we consider

r D 1; 2 only.
It is well known that any finite element technique applied to (1a) will lead to a

formulation of the type

M
dU

dt
C F D 0

where U denotes the vector of degrees of freedom,F is an approximation of the term
div f and M is a mass matrix. In the case of continuous elements, this matrix is sparse
but not block diagonal, contrarily to what happens for the Discontinuous Galerkin
methods where the global continuity requirement is not made. Hence, in order to
use any standard ODE solver, we need to invert M. This is considered cumbersome
by many practitioners and this has been, in our opinion, one of the factors that has
led to supremacy of DG methods in the current development of high order schemes.

Several researchers have proposed methods that avoid this step. More precisely,
their methods are designed in such a way that the actual mass matrix is diagonal, so
that the problem amounts to finding a “good” lumping integration formula. The first
work we are aware of in that direction is [4], where the wave equation is considered,
and the finite element space is made of functions belonging to a subspace of PkC1
that contains P

k. This amounts to adding one degree of freedom to the “natural”
quadratic elements. This work has been followed, in the same spirit, by [9] where
higher accuracy could be obtained. However, the elements become more and more
complex and, what is even more important, the stability condition on the time step
becomes dramatically restrictive.

In these notes we describe some preliminary results about a new method for
which no inversion of the mass matrix is needed, while a typical finite element
approximation can be kept for the description of the divergence term. In this
approach, there is no need to change the degrees of freedom. The method presented
here can be seen as an extension of [10] where only P

1 elements and second order
approximation in time have been considered.

The rest of the paper is organized as follows. In the first section, we describe
the approximation of the divergence term of (1a). These are classical stabilized
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finite element methods. In the second section, we describe and somewhat justify our
approach. The last section provides numerical examples that justify the correctness
of our approach. A more involved analysis and description will be made elsewhere.
We conclude by giving some perspectives.

2 Description of the Scheme

We start by describing the two spatial approximations we consider, then explain
how to avoid the mass matrix inversion. We are given a triangulation of Rd. Here
we assume d D 2, but the discussion is general. The elements are denoted by
K and assumed to be simplices. In each element, we assume that the solution is
approximated by a polynomial of degree r and that the approximation is globally
continuous. Let us denote the approximate solution by uh. The function uh is fully
defined by its control parameter u� at all the degrees of freedom � . We define by S
the set of degrees of freedom, so that

uh D
X
�2S

u�'� :

We denote by Vh D span f'�; � 2 S g. For now, we can think of u� as the
value of uh at � and thus '� is the Lagrange basis, but we will need slightly less
conventional approximation later.

We assume that we have a good integrator of the steady version of (1), and that
this scheme writes: for any degree of freedom � , uh satisfies:

X
K3�

˚K;x
� .uh/ D 0:

Examples are given by:

1. The SUPG residual, [7, 8]:

˚x
� .u

h/ D
Z
@K
'� f.uh/ � n d` �

Z
K
r'� � f.uh/ dx

C hK

Z
K

�
ruf.uh/ � r'�

�
�

�
ruf.uh/ � ruh

�
dx

(2)

with � > 0. We take:

.hK�/
�1 D

X
�2K
jaK � r'� j

where aK is the value of a at the centroid of K.
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2. The Galerkin scheme with jump stabilization [3]:

˚x
� .u

h/ D
Z
@K
'� f.uh/ � n d` �

Z
K
r'� � f.uh/ dx

C
X
edges

� h2e

Z
e
Œru� � Œr'� �C d`

(3)

with � > 0. Here, since the mesh is conformal, any edge (or face in 3D) is
the intersection of the element K and an other element denoted by KC. We
define Œru� D rujK � rujKC and Œr'� �C D .'�/jK . Here, we have taken
� D max.aK ; aKC/. See [3] for more details.

This streamline formulation implies formally that the exact solution cancels the
residuals. In the case of the stabilisation by jumps, we can only write that

˚K
� D

Z
K
'�div f.u/dxC R� .u

h/

where
P

�2K R� .uh/ D 0. The additional term R� is non-zero, except for the exact
solution unless this solution has continuous normal gradients. For steady solutions,
both methods can be shown to converge as hkC1=2, see [3, 8] for more details.

2.1 Formulation for Unsteady Problems

We use a deferred correction (DeC) approach. We start from the ODE:

dy

dt
D f .y; t/; y.0/ D y0: (4)

We follow the main ideas of [6]. Between tn and tnC1, the solution of (4) satisfies

y.t/ D y.tn/C
Z t

tn

f .y.s/; s/ds:

Given 0 D �0 < �1 < : : : < �l < : : : < �MC1 D 1, and we consider the times
tn;l D tn C �l	t with 	t D tnC1 � tn. If we know fn;l � f .y.tn;l/; tn;l/, we can
consider the Lagrange interpolant IMC1 of f with data given by .tn;l; fn;l/, therefore
we get the approximation:

yn;l D yn;0 C
Z tn;l

tn

IMC1Œ f .y. : /; : /�.tn C �	t/d�:

This is in general a non-linear implicit equation.
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The idea of the DeC method is to consider the first order scheme, for M � l � 1:

yn;l D yn;l�1 C ˛l	tf .y.tn;l�1/; tn;l�1/; yn;0 � y.tn/

where ˛l D �l � �l�1. Then, we introduce the vector v D .yn;1; : : : ; yn;MC1/T . The
first order scheme can be rewritten as L1.v/ D 0 where

L1.v/ D

0
BBBBBBB@

yn;1 � yn;0 �	t
R �1
0

I0Œ f .y. : /; : /�.tn C �	t/d�
:::

yn;l � yn;0 �	t
R �l
0
I0Œ f .y. : /; : /�.tn C �	t/d�

:::

yn;MC1 � yn;0 �	t
R �M
0

I0Œ f .y. : /; : /�.tn C �	t/d�

1
CCCCCCCA

where I0 is the first order interpolant of f : for 1 � l � M C 1,

I0Œ f .y. : /; : /�.s/ D f .yn;l�1; tn;l�1/ for s 2 Œtn;l�1; tn;lŒ:

Note that L1.v/ D 0 can be solved explicitely.
Similarly, we define L2 by:

L2.v/ D

0
BBBBBBB@

yn;1 � yn;0 �	t
R �1
0 IMC1Œ f .y. : /; : /�.tn C �	t/d�

:::

yn;l � yn;0 �	t
R �l
0
IMC1Œ f .y. : /; : /�.tn C �	t/d�

:::

yn;MC1 � yn;0 �	t
R �M
0

IMC1Œ f .y. : /; : /�.tn C �	t/d�

1
CCCCCCCA
:

The DeC formulation is defined as follows:

1. v0 D .yn; : : : yn/T and yn;0 D yn,
2. For k D 1; : : :M C 1, vk is defined as

L1.vk/ D L1.vk�1/� L2.vk�1/

Since L1 is explicit, the method is completely explicit. One can show that L2�L1 D
O.	t/ so that the scheme is .M C 1/-th order accurate.

Similar to what is done for ODEs, we could integrate (1) in time and get:

u.x; tnC1/ D u.x; tn/C
Z tnC1

tn

div f.u.x; s//ds;
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This can be approximated by

u.x; tn C �i	t/ � u.x; tn/C
Z �i

0

div IrC1Œf.u.x; : /�.tn C �	t/ds

D 	t
rX

lD0
!i
ldiv f.u.x; �j/ds

(5)

IrC1Œf.u.x; : //� is the Lagrange interpolant of f.u.x; : // at the points
ftn; ; : : : ; �i	t; : : : ; tnC1g and !i

l are the weights.
This suggests the algorithm we describe now. For any V 2 VM

h , V� D
.V�1 ; : : : ;V

�
MC1/T is a vector of control parameters at the degree of freedom � 2

S : V D P
�2S V�'� . Then, we can consider the following deferred correction

approximation: we introduce tn;i D tn C �i.tnC1 � tn/ so that tn;0 D tn and
tn;rC1 D tnC1, and define

1. for any � 2 S , the operator L1� as

L1� .V1; : : : ;VrC1/ D

0
BBBBBBBBB@

jC� j.V�rC1 � V�0 /C
P
K3�

Z tn;rC1

tn;0

I0Œ˚
x
� �


tn C s	t

�
ds

jC� j.V�r � V�0 /C
P
K3�

Z tn;r

tn;0

I0Œ˚
x
� �


tn C s	t/

�
ds

:::

jC� j.V�1 � V�0 /C
P
K3�

Z tn;1

tn;0

I0Œ˚
x
� �


tn C s	t

�
ds

1
CCCCCCCCCA
(6a)

Here, V�0 D .un� ; : : : ; unj�/T 2 R
M .

2. and the operator L2� as

L2� .V1; : : : ;VrC1/ D

0
BBBBBBBBBBBB@

P
K3�

 Z
K
��


VrC1 � V0

�
dxC

Z tn;rC1

tn;0
IrC1Œ˚x

� �


tn C s	t

�
ds

P
K3�

 Z
K
��


Vr � V0

�
dxC

Z tn;r

tn;0
IrC1Œ˚x

� �


tn C s	t

�
ds

:::

P
K3�

 Z
K
��


V1 � V0

�
dxC

Z tn;1

tn;0
IrC1Œ˚x

� �


tn C s	t

�
ds

1
CCCCCCCCCCCCA

(6b)
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Last, we define the operators L1 and L2 on the finite element set Vh as

L1 D .L1� /�2S ; L2 D .L1� /�2S :

The step of the method between tn and tnC1 is defined as follows.

1. Knowing un� , we set V0� D .un� ; : : : ; un�/.
2. For k D 1; : : : ;M, we construct Vk as the solution of

L1.VkC1/ D L1.Vk/ � L2.Vk/:

3. Then we define unC1� as

unC1� D .VrC1
� /M:

This method provides a decent approximation of the solution because one can
show [1] that, for the L2 norm,

jjL1 � L2jj � C	t; (7)

where the constant C depends only on the mesh. Then, using standard results for
deferred correction methods, one can show that we have an .rC1/-th order accurate
scheme if M D rC 1, provided L1 is invertible. The overall cost is not larger than a
standard Runge-Kutta method.

Let us now have a look at the invertibility of L1. Not every finite element
approximation can work. The reason is that we have not yet specified what should
be the parameters C� in relation (6a). It is easy to see that we must have

C� D
Z
˝

'�dx;

and in order that L1 be invertible, we need C� > 0. For P1 elements, there is no
problem because the basis functions are positive, but it is well known that this
condition is not met for higher order finite elements. For example, in the case of two-
dimensional quadratic Lagrange interpolation, we have six basis functions. Three of
them are associated to the vertices, and it is well known that their integral vanishes,
so that in the end C� D 0 for the vertices. For other finite elements, we can have
C� < 0.

In order to circumvent this restriction, and since we are interested in the
approximation order and not on the practical representation, i.e. the physical
meaning of the degrees of freedom, a simple way is to replace classical Lagrange
elements of degree r by their Bezier counterparts. If

� dC1X
jD1

xj

�r

D
X

PdC1
kD1 jkDr

� rj1:::jdC1
x1

j1 : : : xjdC1
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is the binomial expansion, then the Bezier polynomials are simply

Br
j1:::jdC1

D � rj1:::jdC1
�

j1
1 : : : �jdC1

where the �j are the standard barycentric coordinates. Since

Z
K
Br
j1:::jdC1

.x/dx > 0;

and since this family is a basis of Pr, there are no more problems. In the simulations
done in this paper, we have chosen P

1 elements (i.e. Bézier of degree 1), and
quadratic Bézier elements. Note that this kind of approximation has already been
used for steady problems [2], and has some links with isogeometrical analysis [5],
but for completely different reasons.

3 Numerical Illustrations

3.1 Parameters

In the numerical experiments we present, we have chosen a temporal scheme that
is third order in time. It is based on the Lagrange interpolation in Œ0; 1�, where the
data are given at the points t D 0, 1

2
and 1. This results in the following formula that

defines the operator L2:

Z 1=2

0

I2. f /ds D 5

24
f .0/C 1

3
f .
1

2
/� 1

24
f .1/

Z 1

0

I2. f /ds D 1

6
f .0/C 4

6
f .
1

2
/C 1

6
f .1/

We have used the same temporal scheme for P1 and B
2 elements.

3.2 Simulations

The velocity field at .x; y/ is given by a D 2�.�y; x/. The initial condition is given
by:

u0.x; y/ D e�40.x2Cy2/:
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Fig. 1 Exact solution after n rotations (n 2 N) and plot of the degrees of freedoms

The domain is a circle with center .0; 0/ and radius R D 1. The mesh representing
all the degrees of freedom is displayed in Fig. 1: The quadratic elements have 6
degrees of freedom (the vertices and the mid-points of the edges). These degrees
of freedom are also used for the linear element just by mesh refinement. There are
7047 degrees of freedom here, so h � p

�
7047
� 0:021 which is relatively coarse.

On the same figure, we represent the exact solution. The time step is evaluated as
the minimum of the 	tK defined by:

	tK D CFL
hK
jjaK jj

where hK is the length of the smallest edge of K and aK is the speed at the
centroid. Since the elements for the P1 simulations are obtained from those of the B2

simulation by splitting, the parameter hK , for theP1 simulations, is half of the one for
the B2 simulations. For that reason, the CFL number for the quadratic approximation
is half of the one chosen for the linear simulations, namely 0:6 instead of 0:3: we
run with the same time step. By the way, we have not yet conducted a rigorous study
of the CFL condition, but all experiments indicate that the quadratic simulations can
be safely run with CFL D 0:5.

Figure 2 displays the results for the P
1 approximation, while Fig. 3 shows those

obtained for the quadratic approximation. The baseline schemes are the SUPG and
the Galerkin scheme with jumps.

In Fig. 2, the same isolines are represented for the three results. We can see that
after 10 rotations, the results of the Galerkin+jump scheme look pretty good despite
the coarse resolution. The minimum and maximum are �0:012 and 0:762. For the
SUPG results, after 1 rotation, the minimum/maximum are �0:004 and 1:02. After
2 rotations we have�0:047 and 1:02. This is better that what is obtained for Fig. 2c,
but the dispersive effects are much more important for the SUPG scheme as it can
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Fig. 2 Results for the P
1 approximation: (a) with SUPG, after 1 rotation, (b) with SUPG after 2

rotations, (c) with Galerkin+Jump after 10 rotations. The same isolines are represented

be seen on Fig. 2b: this is why we have not shown further results for the SUPG/P1
case.

In Fig. 3, we show similar results obtained with the quadratic approximation.
Again, the Galerkin+jump method is way less dispersive that the SUPG (stopped
after only one rotation this time). We have found that if we perform 4, 6 or 8
iterations of the defect correction, the quality of the SUPG improves a lot, but
the cost becomes prohibitive with respect to the Galerkin+jump method for which,
after 10 rotations, the min/max are �0:0044 and 0:95. We also see that the solution
improves a lot with respect to linear elements, for example in terms of min/max
values. There is however some dispersion, if we compare with the exact solution.
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Fig. 3 Results for the B
2 approximation: (a) with Galerkin+Jump after 10 rotations, (b) with

SUPG after 1 rotations, (c). The same isolines are represented

4 Conclusions, Perspectives

The paper deals with the numerical approximation of linear scalar hyperbolic
problems. We have shown, by carefully choosing the spatial approximation, and
by using a non standard time step discretization, that it is possible to avoid the use
of mass matrix in this problem, contrarily to what is usually thought about. The
cost, on paper, is similar to a standard Runge-Kutta scheme, at least if we consider
second and third order in time. In a preliminary work, we have had similar results
for the 1D advection problem, which are not shown here. We had also obtained the
expected convergence slope.

A lot remains to be done. First, we have found experimental CFL conditions but
this has to be rationalized by a numerical analysis. This method needs to be extended
to non-linear problems. Preliminary results seems promising, but the results need to
be checked on a wider range of problems, this is why we have not reported them
here. Last, this method needs to be extended to systems, for example the Euler
equations of fluid mechanics.
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Two-Dimensional H.div/-Conforming Finite
Element Spaces with hp-Adaptivity

Philippe R.B. Devloo, Agnaldo M. Farias, Sônia M. Gomes,
and Denise de Siqueira

Abstract The purpose of the paper is to analyse the effect of hp mesh adaptation
when discretized versions of finite element mixed formulations are applied to elliptic
problems with singular solutions. Two stable configurations of approximation
spaces, based on affine triangular and quadrilateral meshes, are considered for
primal and dual (flux) variables. When computing sufficiently smooth solutions
using regular meshes, the first configuration gives optimal convergence rates of
identical approximation orders for both variables, as well as for the divergence
of the flux. For the second configuration, higher convergence rates are obtained
for the primal variable. Furthermore, after static condensation is applied, the
condensed systems to be solved have the same dimension in both configuration
cases, which is proportional to their border flux dimensions. A test problem with
a steep interior layer is simulated, and the results demonstrate exponential rates of
convergence. Comparison of the results obtained with H1-conforming formulation
are also presented.

1 Introduction

Several methods have been developed for the construction of H.div/-conforming
approximation spaces to be applied in flux approximations of the mixed finite
element formulation. In some contexts the vector basis functions are constructed
on the master element, which is mapped to the elements of the partition using Piola
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transformations, as described in [1, 2, 8]. The constructions of hierarchical high
order spaces in [5, 7, 10, 11] are based on the properties of the De Rham complex.

Another methodology is proposed in [9] for the construction of hierarchical
high order H.div/-conforming approximation spaces based on affine triangular or
quadrilateral elements, which has been extended to hp-adaptive meshes in [6], and
to three-dimensional affine tetrahedral, hexahedral and prismatic meshes in [4]. The
principle is to choose appropriate constant vector fields, based on the geometry of
each element, which are multiplied by an available set of H1 hierarchical scalar
basis functions to form vectorial shape functions. The assemblage of them, having
the characteristic property of H.div/-conforming functions of continuous normal
components over element interfaces, is a direct consequence of the properties of the
properly chosen vector fields, and of the continuity of the scalar basis functions.

As described in [4], these vectorial shape functions can be combined in dif-
ferent ways to form H.div/-conforming approximation spaces to be applied for
flux approximations in discretized versions of the mixed formulation for elliptic
problems. In all configurations, the divergence of the dual space and the primal
approximation space coincide. There is a first configuration that gives optimal
convergence rates of identical approximation orders for primal and dual (flux)
variables, as well as for the divergence of the flux, when computing sufficiently
smooth solutions using regular meshes. For a second configuration, the accuracy
of the primal variable can be enhanced by increasing its approximation order and
by enriching the dual space with some properly chosen internal shape functions.
Using static condensation, the global condensed matrices to be solved in these two
types of space configuration have the same dimension, which is proportional to the
dimension of border fluxes.

The purpose of the present paper is to analyse the effect of hp mesh adaptation
on these space configurations when applied to singular problems. A test problem
with a steep interior layer is simulated, and the results demonstrate exponential
rates of convergence. Comparison of the results obtained with H1-conforming
formulation are also presented. The implementations are performed in the NeoPZ 1

computational platform, which is an open-source object-oriented project providing
a comprehensive set of high performance tools for finite element simulations,
including hp adaptivity [3].

2 Approximation Spaces in H.div; ˝/

Let � be a mesh on a domain ˝ � R
2 formed by elements K. The approximation

subspaces in

H.div;˝/ D ˚q 2 L2.˝/ � L2.˝/I r:q 2 L2.˝/
�
;

1http://github.com/labmec/neopz

http://github.com/labmec/neopz
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which are defined piecewise over the elements of � , require that the local pieces
qK D qjK should be assembled by keeping continuous normal components across
common element edges. We shall be concerned with affine triangular or quadri-
lateral meshes, without any limitation on hanging sides, and varying approximation
order distribution k D .kK/. The proposed methodology used for the construction of
such kind of approximation subspaces follows a sequence of steps described below.
For more details, we refer to [9], in the case of regular meshes, and to [6] for the
case of hp-adaptive meshes.

1. For each element K, there is an affine geometric mapping x W OK ! K,
associating each point � 2 OK of the (rectangular or triangular) master element OK
to a point p D x.�/ 2 K.

2. A family of hierarchical bases BK
kK
D f˚g is given, where the parameter kK refers

to the degree of the polynomials in PkK used in their definitions (of maximum
degree, for quadrilateral elements, or of total degree, for triangular elements), as
proposed in [9]. The principle is to choose appropriate constant vector fields v,
based on the geometry of the element, which are multiplied by an available set of
H1 hierarchical scalar basis functions ' to form a vectorial shape function ˚ D
' Ov. There are shape functions of interior type, with vanishing normal components
over all element edges. Otherwise, ˚ is classified as of edge type, and its normal
component on the edge associated to it coincides with the restriction of the scalar
shape function ' used in its definition, and vanishes over the other edges.

3. Construction of approximation subspaces of H.div;˝/ formed by functions q 2�
L2.˝/

2
, which are defined piecewise over the elements of � by local functions

qK D qjK 2 span BK
kK
� H.div;K/. As described in [6], the pieces can be easily

assembled to get continuous normal components on the elements interfaces. This
property is obtained as a consequence of the particular properties satisfied by
the proposed vectorial shape functions, and the continuity of the scalar shape
functions used in their construction.

3 Application to Mixed Finite Element Formulation

Given f 2 L2.˝/, boundary values uD and g for Dirichlet and Neumann conditions
enforced on @˝D and @˝N , consider the variational mixed formulation of finding
u 2 L2.˝/ and � 2 V D fq 2 H.div;˝/I � � �j@˝N D �gg, such that, for all
v 2 L2.˝/, and q 2 V0 D fq 2 H.div;˝/Iq � �j@˝N D 0g,

Z
˝

� � q d˝ �
Z
˝

u r � q d˝ D �
Z
@˝D

uD q � � ds;

�
Z
˝

r � � v d˝ D �
Z
˝

fv d˝:
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Approximation Spaces Following the developments in [4], we shall consider two
stable configuration cases for approximation spaces to be used for primal u and
dual � variables in discretized versions of the mixed formulation. In both cases,
the primal variable is approximated in subspaces of L2.˝/ formed by piecewise
functions ujK D uK , without any continuity constraint, as in typical discretized
mixed formulations [2].

The first configuration considers polynomials uK 2 PkK , and the dual variable
� is sought in approximation spaces � H.div;˝/ formed by vectorial functions q
such that qK D qjK 2 span BK�

kK
, where the bases BK�

kK
� BK

kKC1 are formed by
enriching BK

kK
with interior shape functions ˚ 2 BK

kKC1 whose divergence r � ˚ 2
PkK . The resulting set of approximations spaces is classified as being of P�k Pk type.

Another type of approximation configuration is classified as being of P��k PkC1
type, where the primal approximations uK are in PkKC1, and P��k refers to vectorial
approximation spaces spanned by bases BK��

kK
� BK�

kKC1, where the edge functions
are restricted to those ones of P�k type.

As explained in [4], when computing sufficiently smooth solutions using P�k Pk

space configurations based on affine regular meshes, optimal convergence rates of
identical approximation orders k C 1 are obtained for primal and dual variables, as
well for r � � . For the P��k PkC1 configuration, higher convergence rate of order
k C 2 is obtained for the primal variable. Furthermore, after static condensation is
applied, the condensed systems to be solved only involve the flux edge terms and a
constant value for u in each element, and thus they have the same dimension in both
configuration cases.

Test Problem The problem is defined over the domain of ˝ D Œ0; 1� � Œ0; 1�, and
the load function f is chosen such that the model problem has exact solution given
by

u.x; y/ D �

2
� arctan

h
˛
�p

.x � 1:25/2 C .yC 0:25/2 � �
3

	i
;

having strong gradients with magnitude determined by the parameter ˛ D 200 in
the proximity to the circumference centred at the point .1:25;�0:25/, with radius
�=3. Plots of the exact solution u.x; y/ and its gradient magnitude are presented in
Fig. 1.

Adaptive hp-Refinement Process We consider a sequence of hp-adaptive meshes
with either quadrilateral or triangular geometries, with variable polynomial degree
distributions. To construct them, firstly, split the domain into two regions: the region
near the singularity and the smooth part, elsewhere. In the region where the solution
is smooth, p refinement is adopted in order to produce exponential convergence
rates there. In the central region, hp refinement is employed in order to generate
approximation spaces which better capture the singular behaviour. The initial mesh
is composed of uniform elements with mesh size 2�3, and p D 2 in the smooth part,
and mesh size 2�4 and p D 3 in the region of the singularity. Then, the refinement
process follows a sequence of steps ` D 2; 3, and 4 by first increasing by 1 the
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Fig. 1 Exact solution: primal (left side) and dual (right side) variables

Fig. 2 Illustration of the hp refinement process: initial mesh (top-side), and mesh at the final
refinement step (bottom-side) for quadrilateral (left-side) and triangular (right-side) geometries

approximation order of all elements of the previous step, and then by subdividing
the elements intersecting a layer of diameter 2�` around the singularity curve, and
by further increasing their approximation order by 1. Figure 2 illustrates the hp
refinement process at the initial step, and at the final refinement level.
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Fig. 3 L2-error curves in terms of the number of degrees of freedom for the dual (left side) and
primal (right side) variables using mixed formulation and approximation spaces of type P�

k Pk

(continuous curves), and P��

k PkC1 (dashed curves) based on hp-meshes with quadrilateral (top-
side) and triangular (bottom-side) geometries. The dashed-dotted curves correspond to simulations
for uniform meshes with P�

2 P2 configuration. For comparison, results for H1-conforming
formulation based on the same hp-meshes are also included (dotted curves)

Our purpose is to use these kinds of meshes for the simulation of the test
problem by the mixed formulations using the space configurations of P�k Pk and
P��k PkC1 types. As expected, the application of hp refinement to the singular
problem improves considerably the performance of the methods, with exponential
rates of convergence. Furthermore, the accuracy in the primal variable improves
when P��k PkC1 configuration is applied in the mixed formulation. Figure 3
shows the calculated L2-norms of the dual � and primal u errors using these
sequences of hp-adaptive meshes versus the number of equations solved after static
condensation. For comparison, results for the H1-conforming formulation based on
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Fig. 4 Percentage of condensed degrees of freedom in the mixed method using the P�

k Pk space
configuration (continuous lines) and in the H1-conforming method (dashed-dotted lines), applied
to quadrilateral and triangular hp-meshes

the same hp-meshes, and for the mixed formulation with uniform meshes and P�2 P2

configuration are plotted. For the experiments with H1 conforming approximations,
the performance in terms of accuracy versus degrees of freedom is similar to the
experiments with the mixed formulation.

The effect of static condensation is also verified in terms of the size reduction of
the global system to be solved, which is more significant in the mixed formulation,
with increasing order of approximation, and with quadrilateral meshes, as compared
with triangular ones. At the finest levels of mesh refinement, the number of
condensed equations in the mixed formulation amounts to more than 90%, as shown
in Fig. 4, meaning that the size of the condensed system to be solved is less than
10% of the total number of equations. This fact demonstrates the potential benefit
of using H.div/ approximation spaces in parallel computers.
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Finite Elements for the Navier-Stokes Problem
with Outflow Condition

Daniel Arndt, Malte Braack, and Gert Lube

Abstract This work is devoted to the Directional Do-Nothing (DDN) condition as
an outflow boundary condition for the incompressible Navier-Stokes equation. In
contrast to the Classical Do-Nothing (CDN) condition, we have stability, existence
of weak solutions and, in the case of small data, also uniqueness. We derive an
a priori error estimate for this outflow condition for finite element discretizations
with inf-sup stable pairs. Stabilization terms account for dominant convection and
the divergence free constraint. Numerical examples demonstrate the stability of the
method.

1 Introduction

The classical do-nothing condition is very often prescribed at outflow boundaries
for fluid dynamical problems. However, in the case of the Navier-Stokes equations
in a domain ˝ � R

d, d 2 f2; 3g, not even existence of weak solutions can be
shown, see [10]. The reason is that this boundary condition does not exhibit any
control about inflow across such boundaries, see [4]. This has also severe impact
onto the stability of numerical algorithms for flows at higher Reynolds numbers.
Denoting the velocity field by u and the pressure by p, the directional do-nothing
(DDN) boundary condition

�ru � n� pn � ˇ.u � n/�u D 0 at S1 (1)

on S1 � @˝ with normal vector n and a parameter ˇ � 0 is one possibility to
circumvent this disadvantage. Here, .u � n/�.x/ D min.0;u.x/ � n.x// denotes the
negative part of the flux across the boundary at x 2 @˝ . In particular, existence of
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weak solutions is proved in [4], and in several applications the stability is enhanced
compared to the classical do-nothing condition (ˇ D 0), see e.g. [2, 12].

In the case of pure outflow, i.e. if u �n � 0 on S1, this condition is identical to the
classical do-nothing condition (CDN). In particular, it reproduces Poiseuille flow
for a laminar flow in a tube with parabolic inflow.

The outflow condition (1) has similarities with the convective boundary condition
in [5, 6], but no reference solution nor Stokes solution on a larger domain is needed.
We also like to refer to the recent work [8] where a different open boundary
condition is proposed which makes use of a smoothed step function and overcomes
backflow instabilities as well.

2 Variational Formulation

The variational spaces for velocity and pressure are given by

V WD fu 2 H1.˝/d j u D 0 a.e. on S0g;
Q WD L2.˝/;

respectively. The norm in L2.!/ (and in L2.!/d) for ! � ˝ is denoted by jj � jj! .
For ! D ˝ we surpress the index. The H�1.˝/-norm is denoted by jj � jj�1. In
order to formulate the Navier-Stokes system in variational form we consider the
decomposition

..w � r/u;�/ D 1

2
...w � r/u;�/ � .u; .w � r/�///C 1

2

Z
@˝

.w � n/u � � ds;

of the convective term for divergence free vector fields w and use the notation

c.wIu;�/ WD 1
2
..w � r/u;�/ � 1

2
.u; .w � r/�/

C
Z
S1



1
2
.w � n/ � ˇ.w � n/�

�
u � � ds:

Lemma 1 The nonlinear convective term can be expressed by

c.wIu;�/ D ..w�r/u;�/C 1
2
.divwu;�/� ˇ

Z
S1

.w � n/�u � � ds

for all w;u;� 2 V.

Proof This identity follows easily by integration by parts.

The semi-linear form for the Navier-Stokes system with DDN condition reads

A.wIu; pI�; �/ WD c.wIu;�/C .�ru;r�/ � . p; div �/C .divu; �/:
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We seek .u; p/ 2 V � Q s.t.

.@tu;�/C A.uIu; pI�; �/ D h f ;�i 8� 2 V;8� 2 Q: (2)

Diagonal testing with the solution, � WD u, � WD p, results in

1

2
@tjjujj2 C �jjrujj2 C

Z
S1

�
1

2
.u � n/C C

�
1

2
� ˇ

�
.u � n/�

�
juj2ds

� jjf jj�1jjrujj:

For ˇ � 1=2 the arising boundary integral is non-negative. This property is needed
to show existence of weak solutions, see techniques in [4]. Moreover, the solution
is unique in the case of small data, see [3].

3 Finite Element Discretization

For the discretization of (2) in space we use inf-sup stable finite elements of order
k for uh, for instance the classical Taylor-Hood element Q2=Q1 on quadrilaterals
(for d D 2). Due to the fact that we use a divergence-free projection in the
analysis below, we require for d D 3 on hexahedrons Q3=Q2 elements, see [9].
It is well-known that the convective terms and the divergence-free constraint should
be stabilized in order to obtain more accurate discrete solutions with enhanced
divergence properties and less over- and undershoots. We use a combination of div-
div stabilization and local projection (LPS) of the convective terms

Sh.wIu;�/ WD
X

M2Mh


M.divu; div �/M C ˛M.�MŒ.wM �r/u�; �MŒ.wM �r/��/M

with local fluctuation operator �M W L2.M/ ! L2.M/ on patches M, and piecewise
constant approximation wM of w. We allow for the one-level (M 2 Th) or the two-
level (M 2 T2h) variant, but the common requirements according to [11] should be
satisfied. The stabilization parameter 
M for the divergence stabilization is patch-
wise constant in the following range:

0 < 
0hmax � 
M � 
max; (3)

with positive constants 
0; 
max > 0 and the maximal mesh size hmax D maxfhT W
T 2 Thg. The LPS parameter ˛M must be non-negative (may vanish) and may
depend on uM but is bounded (˛0 � 0):

0 � ˛M � ˛0juMj�2: (4)
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Similar to the work [1] we assume for the a priori estimate the following local
approximation property:

jju � uMjjL1.M/ � CjjujjL1.M/: (5)

The semi-discrete system consists in seeking uh 2 Vh, ph 2 Qh s.t.

.@tuh;�/C A.uhIuh; phI�; �/C Sh.uhIuh;�/ D h f ;�i (6)

for all � 2 Vh and all � 2 Qh.

4 A Priori Estimate

For the a priori estimate we split the error eu WD u � uh into interpolation error
�u WD u � ihu and projection error �u WD ihu � uh. Here, ih W V ! Vh is a
divergence-free projection. We use the following norm in V:

jjjujjj2uh D �jjrujj2 C
Z
S1



1
2
.uh � n/C C . 12 � ˇ/.uh � n/�

� juj2d�
CSh.uhIu;u/:

A bound on the interpolation error �u is well-known, see [9]. Therefore we focus on
the projection error.

Theorem 2 Under the previous assumptions (3), (4) and (5), enough regularity of
the continuous solution u, p, and ˇ > 1=2 it holds for the projection error:

jj�ujj2L1.0;TIL2.˝// C
Z T

0

jjj�u.t/jjj2uhdt � C
Z T

0

eCG.t��/X
M

�M.�/d�

with the Gronwall constant

CG WD c.1CjujL1.0;TIW1;1.˝// C hjjujj2L1.0;TIW1;1.˝//
C .1C��1/jjujjL1.S1//;

and the quantity �M depending on u and on the interpolation errors �u, p:

�M WDjj@t�ujj2M C .c1 C c3/jjr�ujj2M C c2jj�ujj2M C c3jj�M.ru/jj2M C c4jjpjj2M;

and coefficients c1; : : : ; c4:

c1 D � C 
M; c2 D h�2M C ��1jjujj2L1.M/; c3 D ˛Mjuj2M; c4 D .� C 
M/�1:
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This bound is similar to the one published in [1] (for S1 D ;). The difference is the
additional term ��1jjujjL1.S1/ in the Gronwall constant.

Proof In the first step we subtract (2) and (6) and perform diagonal testing. Due to
the additive splitting of the error, eu D �uC�u, and after reordering terms we arrive
at

1

2
@tjj�ujj2 C jjj�ujjj2uh D �.@t�u; �u/ � �.r�u;r�u/C .div �u; p/�.div �u; �p/

�c.uIu; �u/C c.uhI ihu; �u/C Sh.uhI ihu; �u/

Using Lemma 1 we obtain

�c.uIu; �u/C c.uhI ihu; �u/

D �.u � ru; �u/C .uh � rihu; �u/C 1
2
.divuh ihu; �u/

Cˇ
Z
S1

˚
.u � n/�u � .uh � n/�ihu

� � �uds

D �.eu � ru; �u/� .uh � r�u; �u/C 1
2
.divuh ihu; �u/

Cˇ
Z
S1

˚
.u � n/�u � .uh � n/�ihu

� � �uds:

Integration by parts a second time yields

.uh � r�u; �u/ D �.�u;uh � r�u/ � .divuh �u; �u/C
Z
S1

.uh � n/�u � �u ds:

We obtain the identity

1

2
@tjj�ujj2 C jjj�ujjj2uh D RC T;

with volume integrals

R WD �.@t�u; �u/� �.r�u;r�u/C .div �u; p/ � .div �u; �p/

�.eu � ru; �u/C 1
2
.divuh ihu; �u/C .�u;uh � r�u/

C.divuh �u; �u/C Sh.uhI ihu; �u/;

and boundary integrals

T WD
Z
S1

˚
ˇ.u � n/�u � ˇ.uh � n/�ihu� .uh � n/�u

� � �uds:
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For R we may use the result of [1]:

R � 1

2
jj@t�ujj2 C CGjj�ujj2 C

1

4
jjj�ujjj2uh C 2

X
M

�M:

The techniques in [1] do not require any further integration by parts. Therefore, the
approach for the Dirichlet case without any outflow condition also applies to bound
R in our case. The remaining terms of T will be bounded in the sequel. A basic
calculus yield

T D T1 C T2

with

T1 WD �
Z
S1

f.uh � n/C C .1 � ˇ/.uh � n/�g�u � �u ds;

T2 WD ˇ

Z
S1

f.u � n/� � .uh � n/�gu � �u ds:

Since the triple-norm includes control on the boundary fluxes, T1 is bounded by
jjj � jjjuh provided ˇ > 1

2
:

T1 D �
Z
S1

f.uh � n/C C .1 � ˇ/.uh � n/�g�u � �u ds

� max

 
2;
jˇ � 1j
ˇ � 1

2

!
jjj�ujjjuh jjj�ujjjuh :

T2 can be bounded by the trace theorem in L1-norm and the product rule with
arbitrary � > 0:

T2 D ˇ

Z
S1

f.u � n/� � .uh � n/�gu � �u ds

� cSjjujjL1.S1/jjjeujj�ujjjW1;1.˝/

� cSjjujjL1.S1/.jjjeujj�ujjjL1.˝/ C jjr.jeujj�uj/jjL1.˝//
� cSjjujjL1.S1/.1C ��1/.jj�ujj2 C jj�ujj2/C �.jjj�ujjj2uh C jjj�ujjj2uh/:

Hence, the sum of the two terms T1 and T2 can now be bounded by

T � CG.jj�ujj2 C jj�ujj2/C .� C cˇ�
�1/jjj�ujjj2uh C �jjj�ujjj2uh ;
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with a still arbitrary parameter � > 0. In combination with the upper bound for R
we arrive for � D 1

4
at

@tjj�ujj2 C jjj�ujjj2uh � jj@t�ujj2 C 4
X
M

�M C CG.jj�ujj2 C jj�ujj2/C c0̌ jjj�ujjj2uh :

Application of the Gronwall lemma yields the assertion. ut
Remark 3 If the solution u is sufficiently smooth, the previous Theorem can be used
to derive an upper bound of the projection error in terms of powers of hM by using

�M.�/ � Ch2kM

�
jj@tu.�/jj2H2.M/ C .c5 C c6/jju.�/jj2HkC1.M/

C c4jjp.�/jj2Hk.M/

	

with c4 D .� C 
M/�1, c5 D 1C � C 
max C ˛0, and c6 D h2M�
�1jjujj2L1.M/.

Remark 4 The term c6 in the previous Remark can be avoided by using a different
bound in the proof of Theorem 2, see Dallmann [7] (page 44). However, this leads
to a larger Gronwall constanteCG D CG C jjuhjj2L1.˝/.

5 Numerical Results

We want to support the above analysis by numerical examples that show the desired
convergence results in space. In particular we like to see that the error does not blow
up in time or space, even if there is inflow at the boundary S1.

The considered domain is given by ˝ WD .0; 2�/ � .��; �/. We use the
directional do-nothing (DDN) at S1 WD f.2�; y/ W �� � y � �g with the parameter
ˇ D 1, and Dirichlet boundary at S0 WD @˝ n S1. Let � W R ! Œ0; 1� defined as
�.y/ D 1 if y < 0, and �.y/ D 0 for y � 0. The exact solution in analytical form
and the corresponding right hand side are given by

u.x; y/ D .sin.y/ cos.t/2; 0/T ;

p.x; y/ D � 1
2
�.y/ sin.y/2 cos.t/4;

f .x; y/ D .� sin.2t/ sin.y/C cos.t/2 sin.y/�;��.y/ cos.y/ sin.y/ cos.t/4/T :

We investigate the convergence behavior for the classical Taylor-Hood pair Q2=Q1.
Since we are not interested in the error due to time discretization we set 	t D 10�4
and evaluate the error at T D 10�2.

In Fig. 1 we depict the L2-errors with respect to velocity and pressure, jju � uhjj
and jjp � phjj, in dependence of a uniform mesh size h for various viscosities �. We
compare with (
 D 1) and without (
 D 0) div-div stabilization. For the velocity
error in L2 we observe convergence of third order in the case 
 D 1. Without div-div
stabilization the convergence order of jju� uhjj is reduced. For the pressure, second



102 D. Arndt et al.

h h

10-1 10010-1 100

10-2
10-2

102

100

10-4

100

Fig. 1 L2-errors of u and p for Taylor-Hood (Q2=Q1) elements

h h

10-1 10010-1 100

10-2

100

10-2

100

Fig. 2 Errors jjdiv .u� uh/jj and ju� uhj1 for Taylor-Hood (Q2=Q1) elements

order convergence can be observed which is in line with our analysis. The pressure
error does essentially not depend on any of the parameters.

In Fig. 2 we show the errors ju � uhj1, and jjdiv .u � uh/jj. Both quantities
show quadratic convergence, i.e. at optimal rate, if div-div stabilization is used. For
the velocity energy error jju � uhjj and the H1.˝/ error the results deviate from
the optimal rate of convergence (h3 resp. h2) if no div-div stabilization is used.
However, the biggest impact of the stabilization can be seen for the divergence
error jjdiv .u � uh/jj. For sufficiently small viscosity the error stays nearly constant
if no div-div stabilization is used. Optimal convergence rates can be recovered
if div-div stabilization is used. With respect to the LPS stabilization we did not
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observe any significant influence for the considered norms. Compared to results in
[1] for Dirichlet boundary conditions the div-div stabilization seems to play a more
important role.
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Quasi-Optimality Constants for Parabolic
Galerkin Approximation in Space

Francesca Tantardini and Andreas Veeser

Abstract We consider Galerkin approximation in space of linear parabolic initial-
boundary value problems where the elliptic operator is symmetric and thus induces
an energy norm. For two related variational settings, we show that the quasi-
optimality constant equals the stability constant of the L2-projection with respect
to that energy norm.

1 Introduction

A Galerkin method S for a variational problem is quasi-optimal in a norm k�k if
there exists a constant q such that

ku �USk � q inf
v
ku � vk ; (1)

where u is any variational solution, US its associated Galerkin approximation and
v varies in the discrete trial space. The quasi-optimality constant qS is the best
constant q in (1), and thus measures how well the Galerkin method S exploits the
approximation potential offered by the discrete trial space. The determination or
estimation of qS is therefore the ideal first step in an a priori error analysis.
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Here we are interested in Galerkin approximation in space for linear parabolic
initial-boundary value problems like

@tu �	u D f in ˝ � .0;T/;
u D 0 on @˝ � .0;T/; u.�; 0/ D w in ˝:

(2)

Whereas for the stationary case, i.e. elliptic problems, quasi-optimality results like
Céa’s lemma are very common, such results have been less explored for parabolic
problems. A common assumption of such results is that the L2-projection onto the
underlying discrete space is H1-stable; see, e.g., [4, 5, 7], where the norm in (1) is
either the one of H1.H�1/ \ L2.H1/ or the one of L2.H1/. Recently, the authors
[8] have clarified the role of this assumption by showing that it is also necessary.
This follows by applying the inf-sup theory [2, 3] to two weak, essentially dual
formulations: the standard weak formulation with trial space H1.H�1/ \ L2.H1/

and the ultra-weak formulation with trial space L2.H1/.
This short note underlines the close relationship between parabolic quasi-

optimality and the H1-stability of the L2-projection. It improves the results of [8]
in the special case of a time-independent symmetric elliptic operator. For the model
problem (2) and both variational formulations, this improvement reads as follows:
the quasi-optimality constant of a Galerkin approximation with values in a discrete
subspace S of H1

0 is given by the operator norm in H1
0 of the L2-projection onto S:

qstdIS D kPSkL .H10/
D qultIS: (3)

2 Petrov-Galerkin Framework and Quasi-Optimality

This section, which is taken from [8], provides the general framework for the
derivation of our quasi-optimality results. Let .H1; k�k1/ and .H2; k�k2/ be two real
Hilbert spaces. The dual space H�2 of H2 is equipped with the usual dual norm
k`kH�

2
D supk'k2D1 `.'/ for ` 2 H�2 . Moreover, let b be a real-valued bounded

bilinear form on H1 � H2 and set Cb WD supkvk1Dk'k2D1 jb.v; '/j. We consider the
problem

given ` 2 H�2 , find u 2 H1 such that 8' 2 H2 b.u; '/ D `.'/ (4)

and say that it is well-posed if, for any ` 2 H�2 , there exists a unique solution that
continuously depends on `. This holds if and only if there hold the following two
conditions involving the so-called inf-sup constant cb, cf. [3]:

cb WD inf
kvk1D1

sup
k'k2D1

b.v; '/ > 0 (uniqueness); (5a)

8' 2 H2 n f0g 9v 2 H1 b.v; '/ > 0 (existence): (5b)



Quasi-Optimality Constants for Parabolic Galerkin Approximation in Space 107

If (5) is satisfied, we have the duality

inf
kvk1D1

sup
k'k2D1

b.v; '/ D inf
k'k2D1

sup
kvk1D1

b.v; '/: (6)

For notational simplicity, we take the viewpoint that a Petrov-Galerkin method
for problem (4) is characterized by one pair of subspaces, instead of a family of
pairs. Let Mi � Hi, i D 1; 2, be nontrivial and proper subspaces. The Petrov-
Galerkin method M D .M1;M2/ for (4) reads

given ` 2 H�2 , find UM 2 M1 such that 8' 2 M2 b.UM; '/ D `.'/: (7)

Problem (7) is well-posed if and only if there hold the semidiscrete counterparts
of (5), involving the semidiscrete inf-sup constant cM:

cM WD inf
v2M1Wkvk1D1

sup
'2M2Wk'k2D1

b.v; '/ > 0;

8' 2 M2 n f0g 9v 2 M1 b.v; '/ > 0:

A method M is quasi-optimal if there exists a constant q � 1 such that, for any
` 2 H�2 , there holds

ku �UMk1 � q inf
v2M1

ku � vk1 : (8)

The quasi-optimality constant qM of the method M is the smallest constant
verifying (8). The formula for qM in [8, Theorem 2.1] or combining [2, 3] with
[9] imply

cb
cM
� qM � Cb

cM
: (9)

3 Two Weak Formulations of Linear Parabolic Problems

In order to cast parabolic initial-boundary value problems in the form (4), we briefly
recall two suitable weak formulations thereof.

Let V and W be two separable Hilbert spaces such that V � W � V�
forms a Hilbert triplet. The scalar product in W as well as the duality pairing of
V� � V is denoted by h�; �i. The norms are indicated by k�kV , k�kW , and k�kV� D
supkvkVD1 h�; vi.
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Let A 2 L .V;V�/ be a linear and continuous operator arising from a symmetric
bilinear form a via hAv; 'i D a.v; '/. We assume that a is bounded and
coercive, i.e.

�a WD inf
kvkVD1

a.v; v/ > 0; Ca WD sup
kvkVDk'kVD1

a.v; '/ <1: (10)

In view of (10) and the symmetry of a, the energy norm k�ka D hA�; �i1=2 and
the dual energy norm k�kaI� WD supk'kaD1 h�; 'i are equivalent to k�kV and k�kV� ,
respectively. Moreover, for every ` 2 V� we have

k`kaI� D sup
k'kaD1

˝
A';A�1`

˛ D ��A�1`��
a
D
p
h`;A�1`i: (11)

Finally, given a final time T > 0 and a Hilbert space X, we set I WD .0;T/ and
denote with L2.X/ WD L2.IIX/ the space of all Lebesgue-measurable and square-
integrable functions of the form I ! X. In addition, if Y is another Hilbert space,
we set H1.X;Y/ WD fv 2 L2.X/ j v0 2 L2.Y/g and write H1.X/ for H1.X;X/.

3.1 Standard Weak Formulation

The standard weak formulation is very common, also for some nonlinear parabolic
problems. In the above setting, it reads

given f 2 L2.V�/ and w 2 W; find u 2 H1.V;V�/ such that

u0 C Au D f in I; u.0/ D w
(12)

and can be cast in the form (4) by choosing H1 D H1.V;V�/ and H2 D f' D
.'0; '1/ j '0 2 W; '1 2 L2.V/g with norms

kvk21 D kv.T/k2W C
Z
I
kvk2a C

��v0��2
aI� ; k'k22 D k'0k2W C

Z
I
k'1k2a : (13)

Bilinear form and right-hand side are given, respectively, by

b.v; '/ D bstd.AI v; '/ WD hv.0/; '0i C
Z
I

˝
v0; '1

˛C hAv; '1i (14)

and `.'/ D hw; '0i C
R
I h f ; '1i. We denote the constants of bstd by Cstd etc.

The norm k�k1 in (13) slightly differs from the corresponding definition in [8]
because it involves v.T/ instead of v.0/. This modification offers the following
advantage, which was already observed in [1]: the norms in (13) mimic the energy
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norm for a linear elliptic problem in that the operator v 7! b.v; �/ is an isometry. We
provide a proof because its arguments will be used in what follows.

Proposition 1 (Isometry) For every v 2 H1, we have kb.v; �/kH�

2
D kvk1 :

Proof In view of
R
I hv0; vi D kv.T/k2W � kv.0/k2W , the symmetry of A and (11), we

have the identity

kv.0/k2W C
Z
I

��A�1v0 C v��2
a
D kv.T/k2W C

Z
I

��A�1v0��2
a
C kvk2a D kvk21 (15)

for every v 2 H1. On the one hand, this gives, for every v 2 H1, ' 2 H2,

b.v; '/ D hv.0/; '0i C
Z
I

˝
v0; '1

˛C hAv; '1i

�
�
kv.0/k2W C

Z
I

��A�1v0 C v��2
a

�1=2
k'k2 D kvk1 k'k2 ;

which implies kb.v; �/kH�

2
� kvk1. On the other hand, choosing

'0 D v.0/; '1 D v0 C A�1v (16)

and using again (15), we get k'k2 D kvk1 and

b.v; '/ D kv.0/k2W C
Z
I

˝
v0; v

˛C ˝v0;A�1v˛C hAv; vi D kvk21 :
Hence, kb.v; �/kH�

2
� kvk1. ut

Corollary 2 (Standard bilinear form) The bilinear form b in (14) is continuous
and satisfies the inf-sup condition with Cstd D cstd D 1.
Proof The equalities follow readily from Proposition 1. The proof of the non-
degeneracy condition (5b) can be found in [8, Prop. 3.1]. ut

3.2 Ultra-Weak Formulation

Discontinuous Galerkin methods, applications in optimization and stochastic PDEs
motivate to consider solution notions with less regularity in time. In order to obtain
such a solution notion for (12), one may multiply the differential equation with a
test function

' 2 H1
T.V;V

�/ WD f' 2 L2.IIV/ j ' 0 2 L2.I;V�/; '.T/ D 0g;
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integrate in time and by parts. This results in the ultra-weak formulation, which can
be cast in the form (4) by choosing H1 D L2.V/, and H2 D H1

T.V;V
�/, with norms

kvk21 D
Z
I
kvk2V ; k'k22 D

Z
I
k'k2a C

��' 0��2
aI� :

Here, bilinear form and right-hand side are given, respectively, by

b.v; '/ D bult.AI v; '/ WD
Z
I
� ˝' 0; v˛C hAv; 'i (17)

and `.'/ D hw; '.0/i C R
I h f ; 'i C h' 0; f1i, with f 2 L2.V�/, f1 2 L2.V/ and

w 2 W. We denote the constants of bult by Cult etc. Every solution of the standard
weak formulation is one of the ultra-weak formulation.

Corollary 3 (Ultra-weak bilinear form) The bilinear form b in (17) is continuous
and satisfies the inf-sup condition with Cult D cult D 1.
Proof We exploit the duality with the standard weak formulation. Setting �v.t/ WD
v.T � t/, t 2 I D .0;T/ and using the symmetry of A, we have

8v1 2 L2.V/; v2 2 H1
T.V;V

�/ bult.AI v1; v2/ D bstd.AI �v2; �v1/I (18)

see [8, Lemma 4.1]. Since Proposition 1 holds also with H1
0.V;V

�/ WD fv 2
H1.V;V�/ j v.0/ D 0g in place of H1.V;V�/, we thus deduce Cult D Cstd D 1

and cult D cstd D 1 with the help of (6). ut

4 Galerkin Approximation in Space and Quasi-Optimality
Constants

We review Galerkin approximation in space for the standard and the ultra-weak for-
mulation and then derive identities for the corresponding quasi-optimality constants.

Let S be a finite-dimensional, nontrivial, and proper subspace of V . Observe that
S is also a subspace of W and, with the identification S� D S, also of V�. As a
subspace of V�, we can equip S D S� with

k`kaI� D sup
'2V
h`; 'i
k'ka

as well as k`kaIS� WD sup
'2S
h`; 'i
k'ka

:

The following relationship, which can be found, e.g., in [8, Proposition 2.5], will be
crucial:

sup
`2S
k`kaI�
k`kaIS�

D kPSkL .V;k�ka/ WD sup
kwkaD1

kPSwka ; (19)
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where PS is the W-orthogonal projection onto S satisfying hPSw; 'i D hw; 'i for all
' 2 S and every w 2 W.

4.1 Standard Weak Formulation

We first consider the standard weak formulation and define the spaces H1, H2, their
norms and the bilinear form b as in Sect. 3.1. The Galerkin approximation with
values in S is characterized by (7) with M D .M1;M2/ where

M1 D H1.S/ � H1; M2 D S � L2.S/ � H2: (20)

In order to determine the associated inf-sup constant cstdIS in (5a), we first derive a
discrete counterpart of Proposition 1. To this end, we define on M1 the following
S-dependent variant of k�k1:

kvk21IS WD kv.T/k2W C
Z
I
kvk2a C

��v0��2
aIS�

;

where we replaced the dual norm k�kaI� of the time derivative with the discrete dual
norm k�kaIS� . This gives rise to

QcstdIS WD inf
v2M1

sup
'2M2

b.v; '/

kvk1IS k'k2
; QCstdIS WD sup

v2M1

sup
'2M2

b.v; '/

kvk1IS k'k2
and

inf
v2M1

kvk1IS
kvk1

QcstdIS � cstdIS � inf
v2M1

kvk1IS
kvk1

QCstdIS: (21)

Proposition 4 (Discrete isometry) For every v 2 M1, we have

kb.v; �/kM�

2
WD sup

'2M2

b.v; '/

k'k2
D kvk1IS :

Proof In order to proceed as in the proof of Proposition 1, we introduce the discrete
counterpart of A, namely the operator AS W S ! S� given by hASv; 'i D a.v; '/,
for every v, ' 2 S. In analogy to (11), we have

˝
`;A�1S `

˛ D kA�1S `k2a D k`k2aIS� . We
thus conclude as in the proof of Proposition 1, upon replacing ' D .'0; '1/ in (16)
with '0 D v.0/ 2 S, '1 D v C A�1S v0 2 L2.S/. ut
Consequently, the counterparts of the identities in Corollary 2 are

QcstdIS D QCstdIS D 1; (22)
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which imply a symmetric error estimate for k�k1IS, similar to the one in [6]. For k�k1
instead, we have:

Theorem 5 (Quasi-optimality in H1.V; k�ka IV�; k�kaI�/) The quasi-optimality
constant of the Galerkin method (20) is given in terms of the W-projection onto S by

qstdIS D kPSkL .V;k�ka/ :

Proof Identity (19) entails that the ratio of the two norms in the trial space is

sup
v2M1

kvk1
kvk1IS

D kPSkL .V;k�ka/ ; (23)

see [8, Proposition 2.5 and (3.14)]. We thus deduce

qstdIS D c�1stdIS D sup
v2M1

kvk1
kvk1IS

D kPSkL .V;k�ka/ : (24)

by using Corollary 2 in (9) and (22) in (21). ut
Remark 6 (Non-symmetric case) If a is not symmetric, Theorem 5 can be general-
ized to

��1a kPSkL .V;k�ka/ � qstdIS � �a kPSkL .V;k�ka/ ;

where k�ka is given by the symmetric part of a and �a depends on Ca and �a,
with �a D 1 whenever a is symmetric. To this end, the bilinear form is split
into its symmetric and skew-symmetric part, where the latter part is treated as
a perturbation. An alternative and more general approach is offered by [8]. That
analysis appears to be simpler but we only have �a D

p
2 if a is symmetric and one

adopts the above energy-norm setting.

4.2 Ultra-Weak Formulation

We turn to Galerkin approximation based upon the ultra-weak formulation. Let the
spaces H1, H2, their norms and the bilinear form b be given as in Sect. 3.2. The
corresponding Galerkin approximation with values in S is characterized by (7) with
M D .M1;M2/ where

M1 D L2.S/ � H1; M2 D H1
T.S/ WD H1.S/\H1

T.V;V
�/ � H2: (25)
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Also, the Galerkin approximation of the ultra-weak formulation generalizes the
Galerkin approximation of the standard weak formulation. Moreover:

Theorem 7 (Quasi-optimality in L2.V; k�ka/) The quasi-optimality constant of
the ultra-weak Galerkin method (25) is determined in terms of the W-projection
onto S by

qultIS D kPSkL .V;k�ka/ :

Proof We exploit again duality. To this end, notice first that Proposition 4 and (23)
hold also if H1.S/ is replaced by H1

0.S/ WD fv 2 H1.S/ j v.0/ D 0g. Hence, the
discrete inf-sup constant does not change under this replacement and (18) yields
cultIS D cstdIS. We thus obtain

qultIS D c�1ultIS D c�1stdIS D kPSkL .V;k�ka/

by using Corollary 3 in (9) and (24). ut
Theorems 5 and 7 with W D L2.˝/, V D H1

0.˝/ and A D �	 yield (3).
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Numerical Studies on a Second Order Explicitly
Decoupled Variational Multiscale Method

Mine Akbas, Songul Kaya, and Leo Rebholz

Abstract Projection based variational multiscale (VMS) methods are a very
successful technique in the numerical simulation of high Reynolds number flow
problems using coarse discretizations. However, their implementation into an
existing (legacy) codes can be very challenging in practice. We propose a second
order variant of projection-based VMS method for non-isothermal flow problems.
The method adds stabilization as a decoupled post-processing step for both velocity
and temperature, and thus can be efficiently and easily used with existing codes.
In this work, we propose the algorithm and give numerical results for convergence
rates tests and coarse mesh simulation of Marsigli flow.

1 Introduction

We consider the Boussinesq system on an open, simply connected domain˝ � R
d,

d D 2 or 3, with boundary @˝ subject to no slip boundary conditions

ut � �	uC .u � r/uCrp D Rih0; �i C f; (1)

r � u D 0; in˝ (2)

�t � �	� C .u � r/� D 
; (3)

ujtD0 D 0 � jtD0 D 0; on @˝; (4)

where the Richardson number is denoted by Ri, Rih0; �i is a vector, u is the fluid
velocity, p the pressure, � the temperature, and f and 
 are the prescribed forcing
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and source, respectively. The kinematic viscosity � is inversely proportional to the
Reynolds number, Re, and � D Re�1Pr�1, where Pr is the Prandtl number.

This report proposes and tests a second order projection-based variational
multiscale (VMS) method for non-isothermal flow simulations. The success of VMS
methods and different realizations have been documented in many works [3–8]. Our
proposed method adds stabilizations with the L2 orthogonal projections for both
velocity and temperature such that they truncate the scales at the optimal place, i.e.
at the spacial mesh-width. These additional projection and stabilization steps are
post-processing steps and thus can be used to incorporate VMS into existing codes.
The novel idea of explicitly decoupled VMS methods was originally proposed for
the NSE by Layton et al. in [9], and was extended to a first order method for non-
isothermal flows in [1]. The purpose of this work is to extend idea from [1] to a
second order method.

The paper is organized as follows. In Sect. 2, we present a second-order
projection based VMS method for (1), (2), (3) and (4). Sect. 3 presents numerical
experiments for the proposed algorithm. Finally, Sect. 4 is devoted to the conclu-
sions of the paper.

2 Numerical Scheme

We consider conforming finite element approximations of velocity, pressure, and
temperature in subspaces of X WD ŒH1

0.˝/�
d;Q WD L20.˝/;W WD H1

0.˝/. The
coarse and fine mesh are denoted by ˘H and ˘h. We assume that the finite element
spaces satisfy the inf-sup compatibility condition.

We denote skew-symmetric trilinear forms by

b�.u; v;w/ WD 1

2
Œ..u � r/u;w/� ..u � r/w; v/�; (5)

c�.u; �; �/ WD 1

2
Œ..u � r/�; �/ � ..u � r/�; �/�; (6)

and the L2 orthogonal projections are defined by PH
� (where � D u; �) into LH �

L WD .L2.˝//d�d on the coarse mesh ˘H.

Remark 1 Numerical studies have shown the choice of LH is crucial in numerical
experiments. In this report, we assume that LH is selected for both velocity and
temperature so that it has lower order than Xh;Qh and Wh, on the same grid.

We study the following second order 2-step fully discrete version of (1), (2), (3)
and (4).

Algorithm Let f 2 L1.0;TIH�1.˝/d/, 
 2 L1.0;TIH�1.˝//, and u0 2 L2.˝/d

and �0h 2 L2.˝/. Choose a finite end time T, and time step 	t > 0 such that
T D M	t and tnC1 D .n C 1/	t, n D 1; 2; : : : ;M � 1. Denote the fully discrete
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solutions by

unC1
h WD uh.tnC1/; pnC1h WD ph.t

nC1/; �nC1h WD �h.tnC1/;

for all n D 1; 2; : : : ;M � 1: Define u�1h D u0h and ��1h D �0h to be the
nodal interpolants of u0 and �0, respectively. Then for user-selected eddy viscosity
parameters are denoted by ˛1 D ˛1.x; h/, ˛2 D ˛2.x; h/, find .unC1h ; pnC1h ; �nC1h / 2
.Xh;Qh;Wh/ via the following two steps:

Step 1: Find .wnC1
h ; pnC1h ; �nC1

h / 2 .Xh;Qh;Wh/ such that

1

	t



wnC1
h � unh; vh

�C �.rwnC1=2
h ;rvh/C b�

�
3

2
un
h �

1

2
un�1h ;wnC1=2

h ; vh

�

�.pnC1h ;r � vh/ D Ri..0;
3

2
�nh �

1

2
�n�1h /; vh/C .f .tnC1=2/; vh/ (7)

.r � wnC1
h ; qh/ D 0; (8)

1

	t



�nC1
h � �nh ; �h

�C �.r�nC1=2
h ;r�h/C c�

 
unh C wnC1

h

2
; �

nC1=2
h ; �h

!

D .
.tnC1=2/; �h/: (9)

for all .vh; qh; �h/ 2 .Xh;Qh;Wh/:

Step 2: Find .unC1h ; �nC1h ; �nC1h / 2 .Xh;Qh;Wh/ satisfying

1

	t



wnC1
h � unC1h ;'h

� D .�nC1h ;r � 'h/C ˛1

runC1h ;r'h

�

�˛1


PH
u rwnC1

h ;r'h

�
(10)

.r � unC1h ; rh/ D 0; (11)

1

	t



�nC1
h � �nC1h ;  h

� D ˛2 
r�nC1h ;r h
� � ˛2 
PH

� r�nC1
h ;r h

�
(12)

for all .'h; rh;  h/ 2 .Xh;Qh;Wh/:

Remark 2 In our experiments, we choose ˛1 D O.h2/ and ˛2 D O.h2/. This is the
choice that was used in the first order method, and was found successful. In future
work, we plan to perform an analysis of the proposed method to see, among other
things, what choices of ˛1 and ˛2 can be made that will provide optimal accuracy.
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3 Numerical Experiments

In this section, we present two numerical experiments that demonstrate the perfor-
mance of the method for the following two test problems:

3.1 Numerical Experiment 1: Convergence Rate Verification

The proposed numerical scheme for the Boussinesq system is expected to be a
second order in time due to Crank-Nicolson-type timestepping, and a second order
in space due to the stabilization method. To verify the order of convergence of the
Algorithm, we choose the prescribed solution as

u D
�

cos.�y/
sin.�x/

�
.1C exp.t//;

p D sin.�.xC y//.1C exp.t//;

� D sin.�x/C y exp.t/:

We have chosen the parameters

Re D 1:0; Pr D 1:0; Ri D 1:0; � D 1:0:

in our computations.
The right hand side functions f and 
 are chosen such that .u; p;T/ fulfill

the Boussinesq system. We present computations with the finite element spaces
.P2;P1;P2/, for the velocity, pressure and temperature, respectively. Here P2, is the
space of continuous piecewise quadratic functions and P1 is the space continuous
piecewise linears. These conforming pairs of finite element spaces for the velocity
and pressure satisfy the inf-sup condition. In addition to these finite element spaces,
for the coarser space, we have chosen LH D P1 and the parameters are chosen
as H D h, ˛1 D ˛2 D h2. We have carried out all computations with the end
time T D 0:05 and decreasing value of 	t and h. The errors are calculated in the
following norm:

kjvjkL2.0;TIH1.˝// WD
�
	t

M�1X
nD0
krvnC1k2

�1=2
:

We present results for kju � uhjkL2.0;TIH1.˝// and kj� � �hjkL2.0;TIH1.˝//. The
second order convergence of the errors in both velocity and temperature can be
clearly observed in Table 1.
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Table 1 Velocity and temperature convergence rate results with T D 0:05

	t h kju� uhjkL2.0;TIH1.˝// Rate kj� � �hjkL2.0;TIH1.˝// Rate

T=1 1=2 1.306e�1 — 4.646e�2 —

T=2 1=4 3.387e�2 1.947 1.127e�2 2.044

T=4 1=8 8.875e�3 1.932 2.729e�3 2.046

T=8 1=16 2.289e�3 1.955 6.833e�4 1.998

T=16 1=32 5.838e�4 1.971 1.715e�4 1.994

T=32 1=64 1.477e�4 1.982 4.297e�5 1.997

3.2 Numerical Experiment 2: Marsigli’s Flow with Re D 2;000

In this numerical experiment, we simulate a physical situation described by Marsigli
in 1681, which reveals that when two fluids with different densities come across, the
fluids with lower density tends to move onto the top of the fluid with higher density.
This situation was simulated by H. Johnston et al. in [10], which is the study of the
Boussinesq system with the fourth order finite difference scheme.

We consider the domain to be a box with width 8 and height 1, and prescribe
no-slip boundary conditions for the velocity on all sides (u D 0 on @˝), and perfect
insulation on all sides that (r� � n D 0 on the boundary). The initial velocity is
taken to be at rest, and the initial temperature is discontinuous, with � D 1:5 on the
left half of the box (x � 4) and � D 1 for the right half (x > 4). We choose flow
parameters of Re D 2;000, Ri D 4, and Pr D 1.

For the direct numerical simulation (DNS) of the no-model, we refer the results
in [11]. In this work, the velocity, pressure and temperature spaces are chosen as
.P2;P1;P2/. Then the approximate solutions of the no-model (no-model solutions
mean that Step 1 solutions of Algorithm) are calculated with the time step 	t D
0:002 on a triangular mesh with the mesh-width h D 0:01, which corresponds to
a grid 800 � 100. The main goal in our numerical experiment is to compare the
approximate solutions of Algorithm with the no-model solutions on a coarse mesh,
and our expectation is to get more accurate approximate solutions for the proposed
algorithm. To do this, we take the time step 	t D 0:002 and choose finite element
spaces .P2;P1;P2/. Then, we compute the solutions of no-model on a coarse mesh,
which provides 14;762 degrees of freedom (d.o.f.) for the velocity , 1891 d.o.f. for
the pressure and 7381 d.o.f. for the temperature at t D 4 and t D 8.

All computations used FreeFem++ [2], and the results at t D 4 and t D 8

are presented in Fig. 1 for no-model, and for the decoupled VMS model in Fig. 2.
Significant oscillations can be seen in velocity and temperature solutions for the
no-model solution. However, the VMS solution provides a good qualitative solution
without oscillations, which demonstrates that the algorithm is much more successful
on the coarse mesh.
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Fig. 1 Temperature contours and velocity streamlines for the Re D 2;000, Ri D 4, Pr D 1

Marsigli flow test with t D 4, and 8, respectively, with only Step 1
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Fig. 2 Temperature contours and velocity streamlines for the Re D 2;000, Ri D 4, Pr D 1

Marsigli flow test with t D 4, and 8, respectively, with Step 1 and Step 2
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4 Conclusions

Our experiments reveal the proposed decoupled VMS method for non-isothermal
flows is second order, and performs well on the Marsigli flow test problem. A next
step for this method is to perform a full numerical analysis of it, which could reveal
further improvements.
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Numerical Experiments for Multiscale Problems
in Linear Elasticity

Orane Jecker and Assyr Abdulle

Abstract This paper gives numerical experiments for the Finite Element Hetero-
geneous Multiscale Method applied to problems in linear elasticity, which has been
analyzed in Abdulle (Math Models Methods Appl Sci 16:615–635, 2006). The main
results for the FE-HMM a priori errors are stated and their sharpness are verified
though numerical experiments.

1 Introduction

Consider the linear elasticity equation in a bounded domain ˝ � R
d with a

Lipschitz continuous boundary @˝ ,

� @

@xj

�
a"ijkl

@u"k
@xl

�
D fi; in ˝;

u"i D 0; on @˝;
(1)

for i D 1; : : : ; d and where f 2 L2.˝/d. Further assume that a".x/ is a fourth-order
tensor indexed by " describing the microscopic scale of the problem. We define

jMj D .M W M/1=2 D
�Pd

i;jD1M2
ij

	1=2
for any square matrix M. The tensor is such

that a"ijkl.x/ 2 L1.˝/, for all i; j; k; l D 1; : : : ; d, and

a"ijkl D a"jikl D a"klij; (2)

˛jMj2 � a"M W M; for any symmetric matrix M; (3)

ja"Mj � ˇjMj; for any symmetric matrix M; (4)
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where 0 < ˛ � ˇ <1. We define the linearized strain tensor e, for i; j D 1; : : : ; d,
by

e.u"/ D .eij.u"//1�i;j�d; eij.u
"/ D 1

2

�
@u"i
@xj
C @u"j
@xi

�
:

The weak formulation of problem (1) reads: find u" 2 H1
0.˝/

d such that

B.u"; v/ WD
Z
˝

a".x/e.u"/ W e.v/dx D
Z
˝

fvdx DW F.v/; (5)

for all v 2 H1
0.˝/

d. Problem (5) is well-posed thanks to the first Korn inequality,
that is

kvkH1.˝/ � C

�Z
˝

je.v/j2dx
�1=2

:

Solving (5) with standard FEM requires the mesh size to be smaller than the
fine scale, which is prohibitive if " is small. However, the effective dynamics
of the problem can be described using homogenization theory [6, 9]. Using the
theory of H-convergence [5, 8], it can be established that a subsequence of the
family of solutions fu"g converges weakly to an effective solution u0, satisfying
the homogenized formulation

B0.u
0; v/ WD

Z
˝

a0.x/e.u0/ W e.v/dx D F.v/; 8v 2 H1
0.˝/

d: (6)

The homogenized tensor a0 verifies the properties (2), (3), and (4) for some
constants 0 < ˛0 � ˇ0 < 1. Under additional information on the small scale
of the tensor, such as periodicity

(H1) a".x/ D a.x="/ D a.y/ is Y-periodic in y, where Y D .0; 1/d,

explicit equations are available to compute the homogenized tensor a0

a0ijkl D
1

jYj
Z
Y
aijkl.y/C

dX
h;mD1

aijhm.y/
@�klh .y/

@ym
dy:

The functions �klh 2 Wper.Y/ are solutions of the micro problems

� @

@yj

�
aijhm

@�klh
@ym

�
D @aijkl

@yj
; in Y; for i D 1; : : : ; d; (7)
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with periodic boundary conditions. The space Wper.Y/ is defined as

Wper.Y/ D fv 2 H1
per.Y/

d j
Z
Y
vidy D 0; i D 1; : : : ; dg:

Remark Problem (1) can be easily adapted to non-homogeneous Dirichlet and
Neumann boundary conditions. A lifting of the Dirichlet data should be considered
and extra terms are added to the weak formulations (5) and (6).

In Sect. 2, we state the FE-HMM method for linear elasticity [1] and in Sect. 3 we
recall the a priori error estimates derived in [1, 2]. Finally, in Sect. 4, we illustrate
the sharpness of the convergence rates with numerical examples.

2 Finite Element Heterogeneous Multiscale Method
for Linear Elasticity

The FE-HMM gives us a macroscopic solution based on a macro to micro modeling
without knowing the homogenized tensor a0.

Macro Problem Let TH be a mesh over ˝ with mesh size H 	 " given by
H D maxK2TH hK . In each macro element K, we consider integration nodes
xj;K and weights !j;K , for j D 1; : : : ; J, and construct sampling domains Kıj D
xj;K C ıŒ�1=2; 1=2�d. We define a macro FE space of degree p by

Vp.˝;TH/ D fvH 2 H1
0.˝/

d j vHjK 2 Rp.K/d; 8K 2 THg;

where Rp.K/ is the space Pp.K/ of polynomials on K of degree at most p if K
is a triangle, or the space Qp.K/ of polynomials on K of degree at most p in each
variables if K is a rectangle. We construct a macro bilinear form

BH.v
H ;wH/ WD

X
K2TH

JX
jD1

!j;K

jKıj j
Z
Kıj

a".x/e.vhj / W e.wh
j /dx;

where vhj (resp. wh
j ) is the solution of the micro problem (9) on the sampling domain

Kıj . The FE-HMM solution uH verifies

BH.u
H; vH/ D F.vH/; 8vH 2 Vp.˝;TH/: (8)

Micro Problem Let Th be a micro partition over Kıj , for j D 1; : : : ; J, of mesh size
h << ", with h D maxK2Th hK . For each Kıj , we define a micro FE space of degree
q as

Sq.Kıj ;Th/ D fvh 2 W.Kıj / j vhjK 2 Rq.K/d; 8K 2 Thg:
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The micro problems read: find uhj such that .uhj � uHlin;j/ 2 Sq.Kıj ;Th/ and

Z
Kıj

a".x/e.uhj / W e.vhj /dx D 0; 8vhj 2 Sq.Kıj ;Th/; (9)

where uHlin;j.x/ D uH.xj;K/ C .x � xj;K/e.uH.xj;K// is a linearization of uH taken at
the quadrature node xj;K . The space W.Kıj / sets the coupling between the micro and
macro solvers and depends on the choice of boundary conditions in problem (9),

W.Kıj /D Wper.Kıj / for periodic coupling, or ;

W.Kıj /D Wdir.Kıj/ D H1
0.Kıj /

d for Dirichlet coupling.

3 A Priori Error Estimates

In this section we give a priori error estimates for the FE-HMM method, details can
be found in [1, 2]. The error is decomposed into the macro, modeling, and micro
error,

ku0 � uHk � eMAC C eMOD C eMIC:

We assume that the micro solution �lm (solution of Eq. (7)) are smooth enough,
i.e.,

(H2) "�lm 2 HqC1.Kıj /d with kD˛."�lm/kL1.Kıj /
� C"�j˛jC1 , for ˛ � qC 1 and

l;m D 1; : : : ; d.

Theorem 1 ([1]) Let u0 and uH be solutions of (6) and (8), respectively. Assume
that u0 2 HrC1.˝/d, for some r > 0, and that the hypothesis (H2) holds. Then,

ku0 � uHkH1.˝/ � C

 
Hs C

�
h

"

�2q
C eMOD

!
;

ku0 � uHkL2.˝/ � C

 
HsC1 C

�
h

"

�2q
C eMOD

!
; s D min.r; p/:

If in addition, the hypothesis (H1) holds, the modeling error is given by

eMOD D 0; for periodic coupling with ı=" 2 N
�;

eMOD D "

ı
; for Dirichlet coupling with ı > ":
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The homogeneous tensor can be approximated during the assembling process of
the FE-HMM. For general tensors and sampling domains, we have, in each macro
element K 2 TH,

a0;hijkl.xm;K/ D
1

jKım j
Z
Kım

a".x/e.'h
m;i;j/ W e.'h

m;k;l/dx; (10)

where xm;K is a quadrature point in K, and Kım is the sampling domain around xm;K .
The functions 'h

m;i;j 2 W.Kım/ are solutions of (9) for i; j 2 f1; : : : ; dg. Then, note
that if (H1) holds, the tensors a0 and a0;h are constants in ˝ . The error introduced
by computing a0 is given by the following Lemma.

Lemma 2 Assume that (H1) holds and that periodic coupling is used with ı=" 2
N
�. Let a0;h D .a0;hijkl/ be defined in (10). It holds

ja0ijkl � a0;hijklj � C

�
h

"

�2q
:

Proof Follows from [1] (see also [3, 4]).

4 Numerical Experiments

In this section we present numerical examples to verify the sharpness of the bounds
obtained in Theorem 1 and Lemma 2. In Table 1, we show the best refinement
strategies for the optimal H1 and L2 convergence rates with minimal computational
cost.

We start by showing that the macro convergence rates in H are sharp. Let " D
1=10, and consider Eq. (1) in ˝ D Œ0; 1�2 with homogeneous Dirichlet boundary
condition, a right-hand side f D 1, and a tensor a".x/ D a.x="/ D a.y/ given by

a.y/ D
0
@sin.2�y1/C 2 0 0

0 sin.2�y2/C 2 0

0 0 10

1
A ; a0 D

0
@
p
3 0 0

0
p
3 0

0 0 10

1
A :

Table 1 Best refinement strategies for optimal convergence rates

Macro FE u0 Micro FE H1 norm L2 norm

P1 H2.˝/ P1
p
Nmac D Nmic Nmac D Nmic

P2 N1=4mac D Nmic
p
Nmac D Nmic

P2 H3.˝/ P1 Nmac D Nmic N3=2mac D Nmic

P2
p
Nmac D Nmic N3=4mac D Nmic
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Fig. 1 Error between u0 (solution of (6)) and uH (solution of (8)) in˝ for (a) P1 macro and micro
FE spaces and (b) P2 macro and micro FE spaces. The setting in (c) is similar to (b) but with
! � ˝
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Fig. 2 (a) Reference solution. Finite element solution uH for P1 macro and micro FE (b), and P2

macro and micro FE (c)

A reference solution for u0 is computed on a very fine mesh. We use periodic
coupling with ı D " in order to have zero modeling error. Further, the micro
degrees of freedom is chosen such that the micro error can be neglected, and take
H D 1=8; 1=16; 1=32; 1=64; 1=128. In Fig. 1a, we monitor the H1 and L2 errors
to u0 for the piecewise macro and micro FE-HMM. The solution u0 is in H2.˝/

and one can see the linear and quadratic rates for the piecewise H1 and L2 errors,
respectively. However, as one can see in Fig. 1b, u0 is not smooth enough to observe
the H2 and H3 convergence rates for the quadratic H1 and L2 norms, respectively.
The optimal rates can be seen in Fig. 1c where we restrict the errors to a subdomain
! � ˝ to avoid corner singularities.

Consider now problem (1) with f D 1, on a L-shaped domain centered around
.0; 0/ with width 2. We impose free Neumann boundary condition on fx D 0; y 2
Œ�1; 0�g and fy D 0; x 2 Œ0; 1�g, and homogeneous Dirichlet boundary condition
elsewhere.

In Fig. 2a one can see the reference displacement in comparison to the initial
coarse mesh. Using periodic coupling and ı D ", we compute the FE-HMM
solutions for P1 macro and micro FE and for P2 macro and micro FE; they are
shown in Fig. 2b, c, respectively.
In Fig. 3a, b, we plot the H1 and L2 convergence rates for P1 macro and micro FE
spaces. The optimal refinement follows the ratio given in Table 1.
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Fig. 3 H1 (a) and L2 (b) errors between u0 and uH for piecewise macro and micro FE spaces
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Fig. 4 H1 error (a) and L2 error (b) between the homogenized solution and the FE-HMM with
Dirichlet coupling for ı D 5=3" (dashed) and ı D 1:1" (dotted). The error ı D " ( full) is
obtained with periodic coupling

We show next the influence of the modeling error on the same problem with
sampling domains Kı with ı > ". We take H D 1=8; 1=16; 1=32; and 1=64; with
micro mesh size sufficiently small to eliminate the micro error. We use piecewise
FE for the macro and micro problems. The size of the sampling domains Kı are
ı D 5=3" and ı D 1:1", and for those values we solve the micro problems (9) with
homogeneous Dirichlet boundary conditions. In Fig. 4a, b, we see that the choice of
ı has an important influence in the error. Increasing the size of the sampling domain
from ı D 1:1" to ı D 5=3" improves the quality of the error, as expected from
Theorem 1. The periodic coupling with ı D " gives the optimal convergence rate
since the modeling error is zero, as predicted by Theorem 1.

Modeling error and random coefficients The use of artificial boundary conditions
for the micro problem (9) leads to a modeling (or resonance) error of size O."=ı/ for
elliptic problems. Such error terms also appear for problems with random stationary
fields, where (9) is usually defined in the whole R

d [10]. Truncations using
either Dirichlet or periodic boundary conditions can then be used for numerical
approximation. In [7], a reduction of this resonance error is obtained by adding a
zero-order term the cell problem (9) and using a suitable Richardson extrapolation
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Fig. 5 Convergence rates
ja0 � a0;hj with respect to
N�1
mic for P1(full) and

P2(dashed) micro FE spaces
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of the modified cell problem. Such strategies could also be of interest for elastic
problems.
Finally, we study the bound in Lemma 2. We use piecewise FE for the macro prob-
lem and compare the exact homogenized tensor with the numerical homogenized
tensor. In Fig. 5, we show the convergence rate

ja01111 � a0;h1111j D j
p
3 � a0;h1111j;

for piecewise (full lines) and quadratic (dashed lines) micro FE, and observe the
expected rates.
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The Skeleton Reduction for Finite Element
Substructuring Methods

Christian Wieners

Abstract We introduce an abstract concept for decomposing spaces with respect to
a substructuring of a bounded domain. In this setting we define weakly conforming
finite element approximations of quadratic minimization problems. Within a saddle
point approach the reduction to symmetric positive Schur complement systems on
the skeleton is analyzed. Applications include weakly conforming variants of least
squares and minimal residuals.

We consider general weakly conforming substructuring methods and its hybridiza-
tion for the approximation of linear differential equations on Lipschitz domains
˝ � R

D. The discretization is based on a decomposition ˝h D S
K2K K into

convex open subdomains K � ˝ with weak continuity constraints on the skeleton
� D S

@K D ˝ n˝h. Here we present a general concept for the analysis of such
discretizations based on corresponding saddle point formulations, and following [7]
we consider the reduction to degrees of freedom to the skeleton. For comparison,
we also summarize the DPG method [4] in this setting using formal trace mappings
arising from integration by parts and quotient spaces replacing trace spaces.

1 Substructuring, Trace Spaces, and Minimization

Let L be a linear first-order differential operator with Lv 2 L2.˝;RM/ for v 2
C10.˝;R

N/, and let Lad be its adjoint operator with

.Lv;w/˝ D .v;Ladw/˝ ; v 2 C10.˝;R
N/ ; w 2 C10.˝;R

M/ :
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We define for L in ˝ (and analogously for Lad and for open subsets of ˝/

H.L;˝/ D ˚
v 2 L2.˝;RN/W f 2 L2.˝;RM/ exists with

. f ;w/˝ D .v;Ladw/˝ for all w 2 C10.˝;R
M/
�
:

Then, L extends to this space, and H.L;˝/ is a Hilbert spaces with respect to the

graph norm kvkL;˝ D
q
kvk2˝ C kLvk2˝ .

For open subsets K � ˝ we define the bilinear map


K.v;w/ D .Lv;w/K � .v;Ladw/K ; v 2 H.L;K/ ; w 2 H.Lad;K/

and the kernels

H0.L;K/ D
˚
v 2 H.L;K/W 
K.v;w/ D 0 for all w 2 H.Lad;K/

�
;

H0.L
ad;K/ D ˚

w 2 H.Lad;K/W 
K.v;w/ D 0 for all v 2 H.L;K/
�
:

By definition, we have 
K.v;w/ D 
K.v C v0;w C w0/ for v 2 H.L;K/, v0 2
H0.L;K/, w 2 H.Lad;K/, w0 2 H0.Lad;K/, so that 
K.�; �/ extends to the quotient
spaces

OH.L;K/ D H.L;K/=H0.L;K/ ; OH.Lad;K/ D H.Lad;K/=H0.L
ad;K/

with equivalence classes Ov D v C H0.L;K/, Ow D wC H0.Lad;K/ and norms

k OvkL;@K D inf
OvDvCH0.L;K/

kvkL;K ; k OwkLad ;@K D inf
OwDwCH0.Lad;K/

kwkLad ;K :

By construction, 
K.�; �/ is continuous, i.e.,

j
K.v;w/j � k OvkL;@Kk OwkLad ;@K � kvkL;KkwkLad ;K

for v 2 H.L;K/, w 2 H.Lad;K/, Ov D v C H0.L;K/, Ow D v C H0.Lad;K/.

Lemma 1 (cf. Lem. 2.2 in [3]) We have

k OvkL;@K D sup
Ow2 OH.Lad;K/


K. Ov; Ow/
k OwkLad ;@K

; k OwkLad ;@K D sup
Ov2 OH.L;K/


K. Ov; Ow/
k OvkL;@K :

Proof For given Ov 2 OH.L;K/ define w Ov 2 H.Lad;K/ solving

.w Ov;w/Lad ;K D 
K. Ov;w/ ; w 2 H.Lad;K/ : (1)
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Then we set v Ov D �Ladw Ov , and (1) yields for w 2 C10.K;R
M/

0 D .w Ov;w/Lad ;K D .w Ov;w/K � .v Ov;Ladw/K :

Thus, v Ov 2 H.L;K/, Lv Ov D w Ov , and kv OvkL;K D kw OvkLad ;K . Moreover,


K. Ov;w/ D .w Ov;w/Lad ;K D .Lv Ov;w/K � .v Ov;Ladw/K D 
K.v Ov;w/

for w 2 H0.Lad;K/, i.e., Ov D v Ov CH0.L;K/. This finally yields

k OvkL;@K � kv OvkL;K D kw OvkLad ;K D 
K. Ov;w Ov/
kw OvkLad ;K

� sup
w2H.Lad ;K/


K. Ov;w/
kwkLad ;K

D sup
Ow2 OH.Lad;K/


K. Ov; Ow/
k OwkLad ;@K

� kOvkL;@K : ut

On the broken spaces H.L;˝h/ D QK H.L;K/ and H.Lad;˝h/ we define


h.v;w/ D
X
K


K.vK ;wK/ ; v 2 H.L;˝h/ ; w 2 H.Lad;˝h/ ;

where we use the notation vK D vjK and wK D wjK . Again, 
h.�; �/ extends to the
quotient spaces OH.L;˝h/ D QK

OH.L;K/ and OH.Lad;˝h/.

Boundary conditions In many cases, the space H0.L;˝/ is too small, but L is not
injective on H.L;˝/. Thus we select a subspace V � H.L;˝/ with H0.L;˝/ � V
such that CV > 0 exists satisfying

kvk˝ � CV kLvk˝ ; v 2 V ; (2)

see [7, Sect.2] for various examples. The adjoint space is given by

W D ˚w 2 L2.˝;RM/W 9g 2 L2.˝;RN/ with .Lv;w/˝ D .v; g/˝ ; v 2 V
�
:

Then, W � H.Lad;˝/, and we observe

V D ˚
v 2 H.L;˝h/W 
h.v;w/ D 0 for all w 2 W

�
;

W D ˚
w 2 H.Lad;˝h/W 
h.v;w/ D 0 for all v 2 V

�
;

cf. [5] and Thm. 2.1 in [2]. The corresponding trace spaces are

OV D ˚

vK C H0.L;K/

�
K2K 2 OH.L;˝h/W v 2 V

�
;

OW D ˚

wK C H0.L

ad;K/
�
K2K 2 OH.Lad;˝h/Ww 2 W

�
:
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Minimization On the broken space we consider the quadratic functional

Jh.v/ D 1

2
ah.v; v/ � . f ; v/˝ ; v 2 H.L;˝h/ (3)

with a symmetric bilinear form ah.v; v/ DPK aK.vK ; vK/ satisfying

˛ kvk2L;˝ � ah.v; v/ � Cakvk2L;˝h
; v 2 V ;

and f 2 L2.˝;RN/. Then, a unique minimizer u 2 V of J.�/ D Jh.�/jV exists
characterized by ah.u; v/ D . f ; v/˝ for v 2 V , and we directly obtain:

Lemma 2

(a) Let .u; O�/ 2 H.L;˝h/ � OW be a saddle point of

Fh.v; Ow/ D Jh.v/C 
h.v; Ow/ ; .v; Ow/ 2 H.L;˝h/ � OW :

Then, we have u 2 V, and u is a minimizer of J.�/.
(b) Let .u; O�; Ou/ 2 H.L;˝h/ � OH.Lad;˝h/ � OV be a saddle point of

OFh.v; Ow; Ov/ D Jh.v/C 
h.v � Ov; Ow/ ; .v; Ow; Ov/ 2 H.L;˝h/ � OH.Lad;˝h/ � OV :

Then, .u; O�/ 2 V � OW is a saddle point of Fh.�; �/, and

Ou D 
uK C H0.L;K/
�
K2K :

This applies to ah.v; v/ D .Lv;Lv/˝h with ˛ D .1C C2V/
�1 and Ca D 1.

2 Weakly Conforming Approximation

We select discrete spaces VK � H.L;K/ and WK � H.Lad;K/ for all K, and on
˝h we define the broken discrete spaces VK D Q

VK � H.L;˝h/ and WK DQ
WK � H.Lad;˝h/. The conforming space Wh D WK \ W defines the weakly

conforming approximation space

Vh D
˚
vh 2 VK W 
h.vh;wh/ D 0 for all wh 2 Wh

�
:

We define Vh.K/ D VhjK � VK , Wh.K/ D WhjK � WK , the kernel spaces

V0;h;K D
˚
vK 2 Vh.K/W 
K.vK ;wK/ D 0 for all wK 2 Wh.K/

�
;

W0;h;K D
˚
wK 2 Wh.K/W 
K.vK ;wK/ D 0 for all vK 2 Vh.K/

�
;

W0;K D
˚
wh 2 WK W 
h.vh;wh/ D 0 for all vh 2 VK

�
;
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and the quotient spaces OVh D QVh.K/=V0;h;K , OWh D QWh.K/=W0;h;K , and OWK D
WK =W0;K . Then, we obtain

Vh D
˚
vh 2 VK W 
h.vh; Owh/ D 0 for all Owh 2 OWh

�
;

OWh D
˚ Owh 2 OWK W 
h. Ovh; Owh/ D 0 for all Ovh 2 OVh

�
:

We assume that the quadratic form ah.�; �/ is also uniformly convex in Vh. In addi-
tion, inf-sup stability is required. Therefore, the selection of the discrete spaces
VK ;WK has to be well balanced such that ˛0; ˇ0 > 0 exists with

ah.vh; vh/ � ˛0 kvhk2L;˝h
; sup

vK2VK


K.vK ; OwK/

kvKkL;K � ˇ0k OwKkLad ;@K (4)

for all vh 2 Vh and wK 2 WK . Note that we have ˛0 � ˛ and ˇ0 � 1.
From saddle point theory [1, Prop. 2.5, 2.5, 2.7] we obtain:

Theorem 3

(a) A unique minimizer uh 2 Vh of Jh.�/ exists solving ah.uh; vh/ D . f ; vh/˝ for
vh 2 Vh. The error is bounded by

ku � uhkL;˝h �
�
1C Ca

˛0

	
inf
vh2Vh
ku � vhkL;˝h C

1

˛0
sup
�h2Vh

ah.u; �h/� . f ; v/˝
k�hkL;˝h

:

(b) A unique saddle point .uh; O�h/ 2 VK � OWh of Fh.�; �/ exists, and we have

ku � uhkL;˝h� .˛0CCa/.1Cˇ0/
˛0ˇ0

inf
vh2VK

ku � vhkL;˝hC˛�10 inf
Owh2 OWh

k O� � OwhkLad ;@˝ ;

k O� � O�hkLad ;@˝h
� Ca

ˇ0
ku � uhkL;˝h C

1

ˇ0
inf
Owh2 OWh

k O� � OwhkLad ;@˝ :

Moreover, uh 2 Vh, and uh is a minimizer of Jh.�/.
(c) A unique saddle point .uh; O�h; Ouh/ 2 VK � OWK � OVh of OFh.�; �; �/ exists. Then,

.uh; O�h/ 2 Vh � OWh, .uh; O�h/ is a saddle point of of Fh.�; �/, and 
h.Ouh;wh/ D

h.uh;wh/ for all wh 2 Wh.

The skeleton reduction. Now we define the operators AK 2 L .VK ;V 0K/, BK 2
L .VK ; OW 0K/ and ORK 2 L . OVh; OW 0K/ and the functional `K 2 V 0K by

hAKvK ; QvKi D aK.vK ; QvK/ ; vK ; QvK 2 VK ;

hBKvK ; OwKi D 
K.vK ; OwK/ ; vK 2 VK ; OwK 2 OWK ;

h ORK Ovh; OwKi D 
K. Ovh; OwK/ ; Ovh 2 OVh ; OwK 2 OWK ;

h`K ; vKi D . f ; vK/K ; vK 2 VK :
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Then, a critical point .uh; O�h; Ouh/ 2 VK � OWK � OVh of the Lagrange functional

OFh.vh; Owh; Ovh/ D
X
K

1

2
hAKvK ; vKi � h`K ; vKi C hBKvK � ORK Ovh; OwKi

is characterized by

AKuK � `K C B0K O�K D 0 ;

BKuK � ORK Ouh D 0

for all K and

X
K

OR0K O�K D 0 : (5)

This yields locally for K

�
AK B0K
BK 0

��
uK
O�K

�
D
�
`K
ORK Ouh

�
: (6)

Inserting the solution of (6) in (5) reduces the global saddle point problem to the
self-adjoint Schur complement system OSh Ouh D Òh with

OShD�
X
K

�
0
ORK

�0�
AK B0K
BK 0

��1�
0
ORK

�
; Òh D

X
K

�
0
ORK

�0�
AK BK

B0K 0

��1�
`K

0

�
:

Lemma 4 (similar to Lem. 6 in [7]) The local problems (6) are well-posed and
OSh 2 L . OVh; OV 0h/ satisfies the spectral bounds

˛0k Ovhk2L;@˝h
� h OSh Ovh; Ovhi � C2a

˛20ˇ
2
0

k Ovhk2L;@˝h
; Ovh 2 OVh :

Thus, the Schur complement system has a unique solution Ouh, and the local
solutions .uK ; O�K/ can be reconstructed from (6).

3 Minimal Residuals

Now we consider the DPG method in the framework of abstract trace spaces.
Therefore, we introduce the minimal residual functional

OJ.v; Ov/ D sup
w2H.Lad;˝h/

.v;Ladw/˝h C 
h. Ov;w/ � . f ;w/˝
kwkLad ;˝h

; .v; Ov/ 2 L2.˝;R
N/ � OV:
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The assumption (2) yields that L is injective and that the range H D L.V/ is closed.
Furthermore, we assume H.Lad;˝h/ � L.V/ and that Lad is injective.

Lemma 5 Let .�; u; Ou/ 2 H.Lad;˝h/ � L2.˝;RN/ � OV be a saddle point of

Fmr
h .w; v; Ov/ D

1

2
kwk2Lad ;˝h

C .v;Ladw/˝h C 
h. Ov;w/ � . f ;w/˝ :

Then, .u; Ou/ is a minimizer of OJ.�; �/ in L2.˝;RN/ � OV, Moreover, u 2 V, Ou D
uC H0.L;˝/, � D 0 and OJ.Ou; u/ D 0, and Lu D f .

To show that a unique saddle point .�; u; Ou/ 2 H.Lad;˝h/ � H � OV of Fmr
h .�; �; �/

exists, we verify inf-sup stability with respect to the norm

k.v; Ov/k˝IL;@˝h D
�
kvk2˝ C kOvk2L;@˝h

	1=2
:

Theorem 6 We have for .v; Ov/ 2 H � OV

sup
w2H.Lad;˝h/

.v;Ladw/˝h C 
h. Ov;w/
kwkLad ;˝h

� 1q
4C2V C 2

k.v; Ov/k˝IL;@˝h :

Proof In the first step, we show that the operator B 2 L .H � OV;H.Lad;˝h/
0/

defined by hB.v; Ov/;wi D .v;Ladw/˝h C 
h. Ov;w/ is injective. Therefore, assume
that hB.v; Ov/;wi D 0 for all w 2 H.Lad;˝h/. Then, .v;Ladw/˝h D 0 for w 2
C10.L

ad;˝h/, i.e., v 2 H.L;˝h/ and Lv D 0. This shows that 0 D hB.v; Ov/;wi �
.Lv;w/˝h D 
h. Ov � v;w/ for all w 2 H.Lad;˝h/. Testing with w 2 W yields

h.v;w/ D 0, i.e., v 2 V . Together with Lv D 0 and (2) we obtain v D 0. Then,

h. Ov;w/ D 0 for w 2 H.Lad;˝h/ yields also Ov D 0. This finally shows that B is
injective. Thus, by duality it is sufficient to prove

sup
.v; Ov/2H� OV

.v;Ladw/˝h C 
h. Ov;w/
k.v; Ov/k˝IL;@˝h

� 1q
4C2V C 2

kwkLad ;˝h
; w 2 H.Lad;˝h/ :

For given w 2 H.Lad;˝h/ we choose vw 2 V with Lvw D w, and we set Ovw D
vw C H0.L;˝h/. Then, k.vw; Ovw/k2˝IL;@˝h

� .C2V C 2/kwk2˝h
and

sup
.v; Ov/2H� OV

.v;Ladw/˝h C 
h. Ov;w/
k.v; Ov/k˝IL;@˝h

� .vw;Ladw/˝h C 
h. Ovw;w/
k.v; Ov/k˝IL;@˝h

� kwk˝hq
C2V C 2

:

Now, testing with .v; Ov/ D .Ladw; 0/ yields the assertion as in [7, Lem. 9]. ut
Now, we select HK � L2.˝h;R

N/, WK � H.Lad;˝h/, and OVh � OV .
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Lemma 7 Let .�h; uh; Ouh/ 2 WK �HK � OVh be a saddle point of Fmr
h .�; �; �/. Then

.uh; Ouh/ 2 HK � OVh minimizes

OJh.vh; Ovh/ D sup
wh2WK

.vh;Ladwh/˝h C 
h. Ovh;wh/� . f ;wh/˝

kwhkLad ;˝h

;

and we have k�hkLad ;˝h
D OJh.uh; Ouh/.

The discretization is analyzed as in [6, Thm. 2.1] and [7, Thm. 6].

Theorem 8 Assume that Ǒ0 > 0 exists such that for all .vh; Ovh/ 2 HK � OVh

sup
wh2WK

.vh;Ladwh/˝h C 
h. Ovh;wh/

kwhkLad ;˝h

� Ǒ0k.vh; Ovh/k˝IL;˝h :

Then, a unique saddle point .�h; uh; Ouh/ 2 WK �HK � OVh of Fmr
h exists with

k.u � uh; Ou � Ouh/k˝IL;@˝h �
2

q
1C C2V
Ǒ
0

inf
.vh; Ovh/2HK � OVh

k.u � uh; Ov � Ovh/k˝IL;@˝h :

For the skeleton reduction of the minimal residual method, we define DK 2
L .WK ;W 0K/, BK 2 L .HK ;W 0K/, RK 2 L . OVh;W 0K/, and `K 2 W 0K by

hDKwK ; QwKi D .wK ; QwK/Lad ;K ; wK ; QwK 2 WK ;

hBKvK ;wKi D .vK ;LadwK/K ; vK 2 HK ;wK 2 WK ;

hRK Ovh;wKi D 
K. Ovh;wK/ ; Ovh 2 OVh ;wK 2 WK ;

h`K ;wKi D . f ;wK/K ; wK 2 WK :

A critical point .�h; uh; Ouh/ 2 WK �HK � OVh of Fmr
h is characterized by

DK�K C BKuK C RK Ouh � `K D 0 ; B0K�K D 0 ;
X
K

R0K�K D 0 :

This yields

�
0 B0K
BK DK

��
uK
�K

�
D
�

0

`K � RK Ouh
�

and OSmr
h Ouh D Òmr

h with

OSmr
h D

X
K

�
0

RK

�0�
0 B0K
BK DK

��1�
0

RK

�
; Òmr

h D
X
K

�
0

RK

�0�
0 B0K
BK DK

��1�
0

`K

�
:
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Lemma 9 (Lem. 6 in [7]) We have

Ǒ2
0q

4C2V C 2
k Ovhk OVh

� h OSmr Ovh; Ovhi � kOvhk2L;@˝h
; Ovh 2 OVh :
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Iterative Coupling of Variational Space-Time
Methods for Biot’s System of Poroelasticity

Markus Bause and Uwe Köcher

Abstract In this work we present an iterative coupling scheme for the quasi-static
Biot system of poroelasticity. For the discretization of the subproblems describing
mechanical deformation and single-phase flow space-time finite element methods
based on a discontinuous Galerkin approximation of the time variable are used. The
spatial approximation of the flow problem is done by mixed finite element methods.
The stability of the approach is illustrated by numerical experiments. The presented
variational space-time framework is of higher order accuracy such that problems
with high fluctuations become feasible. Moreover, it offers promising potential for
the simulation of the fully dynamic Biot–Allard system coupling an elastic wave
equation for solid’s deformation with single-phase flow for fluid infiltration.

1 Introduction

Many physical and technical problems in mechanical, environmental and petroleum
engineering involve interactions between flow and mechanical deformation in
porous media. Important applications in environmental and petroleum engineering
include waste disposal, hydraulic and thermal fracturing, carbon sequestration,
subsurface incidence, compaction drive and oil recovery. In mechanical engineering
applications arise in vibro-acoustic modeling for vehicle engineering. Promising
possibilities also hold for biomechanics, medicine and earthquake engineering. In
biomechanics, a poroelasticity model can be used to estimate tumor induced stress
levels in the brain, and thereby assist in a clinical diagnostic setting. Poroelasticity
helps also in the development of prosthetic devices. In medicine, the characteriza-
tion of porous media such as trabecular bone is useful for diagnosing osteoporosis,
bone disease that is manifested by the deterioration of bone microstructure. In
earthquake engineering poroelastic computer simulations are used to design ways
to mitigate liquefaction, the state in which the fluid pressure in a porous medium
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becomes greater than the forces holding the soil together, and this converting the
solid-like structure into a more fluid-like structure.

Vivid examples (e.g., borehole damage by the shifting surface) indeed remind
that the effect of fluid-induced deformations and fluid-solid interactions cannot be
ignored. Therefore, the ability to simulate coupled mechanical deformations and
flow in porous media phenomena is of particular importance from the point of
view of physical realism. However, numerical modeling of such coupled processes
is complex due to the structure of the model equations and continues to remain
a challenging task [12]. In applications of practical interest the ratio of the
characteristic intrinsical time length over the characteristic reservoir time scale is
sometimes small. Then, in the singular limit of vanishing contrast coefficients the
fully dynamic Biot–Allard system of poroelasticity (cf. [12]) simplifies to the quasi-
static Biot system

�r � .� 0 C C W ".u/ � b. p � p0/I/ D �bg ; (1)

@t

�
1

M
pCr � .bu/

�
Cr � q D f ; q D �K




rp � �f g� ; (2)

p.0/ D p0 ; u.0/ D 0 ; (3)

to be satisfied in the domain ˝ � R
d, with d D 2 or d D 3, for t 2 .0;T/.

The quasi-static feature is due to negligence of the solid’s acceleration in (1). This
prevents the applicability of the model (1), (2) to some classes of problems, e.g. the
simulation of noise protection with tiny poroelastic layers.

In (1), (2), and (3) we denote by u the unknown displacement field, p the
unknown fluid pressure, ".u/ D .ruC .ru/>/=2 the linearized strain tensor, C the
Gassmann rank-4 tensor of elasticity, � 0 the reference state stress tensor, b Biot’s
coefficient, �b D ��fC.1��/�s the bulk density with porosity � and fluid and solid
phase density �f and �s, p0 the reference state fluid pressure, M Biot’s modulus and,
finally, by q Darcy’s velocity or the fluid flux. The second of the equations in (2) is
the well-known Darcy law with permeability field K and fluid viscosity . Further,
g denotes gravity or, in general, some body force and f is a volumetric source.
The quantities , M, �f and �s are positive constants. The permeability field K is
supposed to be a symmetric uniformly positive definite matrix. Furthermore, for
any symmetric matrix B we assume that .CB/ W B � ajBj2 C Kdrtr.B/2 is satisfied
with some fixed constant a > 0, where Kdr is the drained bulk modulus [14]. Finally,
we assume that �b is independent of time and that �bg D �r � � 0 is satisfied. Then,
for ˝ D .0;L/d, I D .0;T/, under periodic boundary conditions for u and p with
period L and for smooth L-periodic functions p0, f and � 0 the Biot system (1), (2),
and (3) admits an unique periodic solution [13]

fu; pg 2 C.IIH1
per.˝/\ L20.˝// �H1.˝ � I/\ C.IIH1

per.˝// :
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Further, for g 2 C10 .RCIL20.˝//, f � 0 and homogeneous initial conditions it is
shown in [12] that the solution of Biot’s system is smooth in time with

fu; pg 2 Hk.IIH1
per.˝//� Hk.IIH1

per.˝// (4)

for all k 2 N. For existence and uniqueness results in the general situation involving
boundary conditions for displacement and traction as well as for pressure and flux,
prescribed on portions of the boundary, we refer to [15].

In this work we study the numerical approximation of the Biot system (1), (2),
and (3) by means of an iterative splitting scheme. Recently, these approaches in
coupling flow and mechanics in porous media have attracted researchers’ interest;
cf., e.g., [9, 12–15]. Their appreciable advantage is that by coupling the model
components iteratively existing and highly developed modeling and simulation tools
for each of the subproblems, including discretization, software implementation and
linear solver technology, can be used fully. In recent works [2, 3, 10, 11] the authors
presented space-time finite element methods for the numerical approximation of
elastic wave propagation in composite material and single-phase porous media
flow. Variational time discretization schemes have become of increasing importance
since they offer appreciable advantages like the natural construction of higher order
methods [6, 10] and the applicability of a posteriori error control by the dual
weighted residual approach [1] for a simultaneous space-time adaptivity. Error
analyses of these methods are also available [3, 5, 8]. In [2, 10] discontinuous
and continuous finite element approximations of the time variable were combined
with mixed finite element discretizations of the spatial variables and used for
simulating single-phase porous media flow. In this work the described space-time
discretizations are applied to the quasi-static Biot system within an iterative splitting
scheme. In the numerical experiments a lowest order and a higher order time
discretization of the family of discontinuous Galerkin methods are considered. To
the best of our knowledge, the application of higher order schemes represents an
innovation over previous works on Biot’s system. Moreover, Biot’s system serves
as a building block for the fully dynamic Biot–Allard equations [12] for that our
methods offer large potential.

2 Iterative Coupling Scheme and Space-Time
Approximation of the Subproblems

In the literature [9, 13–15] four iterative coupling procedures, the undrained split,
the fixed stress, the drained split and the fixed strain split, for solving the Biot
system (1), (2), and (3) were proposed and studied. In [9] it was shown by a von
Neumann stability analysis that the latter two methods exhibit stability problems.
In [13] the stability and convergence were proved for the undrained split and the
fixed stress split method by showing that these schemes define contraction maps
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with respect to appropriately chosen metrics. In this work we restrict ourselves
to considering the fixed stress split iterative method that is useful in employing
reservoir simulators; cf. e.g., [14].

The fixed stress split consists in imposing constant volumetric mean total stress
�v D �v;0 C Kdrr � u� b. p� p0/ in the first half-time step resulting in

�
1

M
C b2

Kdr

�
@tp

kC1 Cr � qkC1 D f � br � @tuk C b2

Kdr
@tp

k ;

qkC1 D �K



rpkC1 � �f g�
(5)

on ˝ � I, where pkC1 is periodic in x with period L and pkC1.0/ D p0. In each
iteration step Eq. (5) is decoupled from the mechanical deformation subproblem and
can be solved independently. In the second half-time step the effective deformation
is then obtained by solving

� r � 
� 0 C C W ".ukC1/
�C br � 
. pkC1 � p0/I

� D �bg (6)

on ˝ � I, where ukC1 is periodic in x with period L and ukC1.0/ D 0. The operator
S W .uk; pk/ 7! .ukC1; pkC1/ maps D D ffu; pg 2 V � W j u.0/ D 0 ; p.0/ D
0g into itself where without loss of generality it may be assumed that p0 D 0.
Here, V D fz 2 C.IIH1

per.˝/ \ L20.˝// j @t".z/ 2 L2.˝/g and W D fr 2
H1.˝� I/ j r 2 C.IIH1

per.˝//g. In [13] it is shown that S is a contraction mapping
on D in a properly chosen metric such that S has an unique fixed point in D .
Boundary conditions involving displacement and traction as well as pressure and
flux, prescribed on portions of the boundary,

pkC1 D pD on �p � I ; qkC1 � n D qv on �q � I ; (7)

ukC1 D uD on �u � I ; � .ukC1; pkC1/n D tN on �t � I ; (8)

with the total stress � .u; p/ D � 0 C C W ".u/ � b. p � p0/I, can be treated by the
same analysis as presented in [13]. In terms of the boundary conditions (7) and (8)
we define the function spaces H0.divI˝// D fv 2 H.divI˝// j vj�q � n D 0g and
H 0 WD fu 2 H1.˝/ j uj�u D 0g.

Next, we shall describe the discretization of (5) and (6) equipped with the
boundary conditions (7), (8), respectively, by space-time finite element methods.
We decompose the time interval .0;T� into N subintervals In D .tn�1; tn�, where n 2
f1; : : : ;Ng and 0 D t0 < t1 < � � � < tN�1 < tN D T and � D maxnD1;:::;N .tn� tn�1/.
Further we denote by Th D fKg a finite element decomposition of mesh size h of
the polyhedral domain ˝ into closed subsets K, quadrilaterals in two dimensions
and hexahedrals in three dimensions. For the spatial discretization of (5) we use a
mixed finite element approach. We choose the class of Raviart–Thomas elements
for the two-dimensional case and the class of Raviart–Thomas–Nédélec elements
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in three space dimensions where Ws
h � L2.˝/ and Vs

h � H.divI˝/ denote the
corresponding inf-sup stable pair of finite element spaces; cf. [2, 4, 16]. Here, s
denotes the maximum polynomial order in each variable in the approximation of
the scalar variable p on the reference cube OK D Œ0; 1�d, with d D 2 or d D 3.
Further, we let Vs

h;0 D fvh 2 Vs
h j vhj�q � n D 0g. For the spatial approximation

of the displacement field u of (6) we discretize the space variables by means of
a continuous Galerkin method with finite element space Hl

h;0 D fzh 2 C.˝/ j
zhjK ı TK 2 Ql ; zhj�u D 0g; cf. [16]. For the discretization of the time variable
we use a discontinuous Galerkin approach [2, 10]. Then we define the fully discrete
space-time finite element spaces as

W r;s
�;h D fw�;h 2 L2.IIL2.˝// j w�;hjIn 2Pr.InIWs

h/ ; w�;h.0/ 2 Ws
hg ;

V r;s
�;h D fv�;h 2 L2.IIH0.divI˝// j v�;hjIn 2Pr.InIVs

h;0/ ; v�;h.0/ 2 Vs
h;0g ;

H r;l
�;h D fz�;h 2 L2.IIH 0/ j z�;hjIn 2Pr.InIHl

h;0/ ; z�;h.0/ 2 Hl
h;0g ;

where Pr.InIX/ denotes the space of all polynomials in time up to degree r � 0

on In with values in X. We choose l D sC 1 to equilibrate the convergence rates of
the spatial discretization for the three unknown variables u, p and q; cf. [15, Part I,
Thm. 5.2].

The space-time finite element approximation of the flow problem (5), (7) reads
as follows: Let uk

�;h 2 Ihud CH r;sC1
�;h , pk�;h 2 W r;s

�;h be given and

lkp.w�;h/ D
˝
f � br � @tuk�;h C ˇ@tpk�;h;w�;h

˛
; (9)

lkq.v�;h/ D h�f g; v�;hi � hpD; v�;h � niL2.�p/ (10)

for w�;h 2 W r;s
�;h and v�;h 2 V r;s

�;h. Find pkC1�;h 2 W r;s
�;h and qkC1�;h 2 ˘ hqv C V r;s

�;h such
that

NX
nD1

( Z tn

tn�1

h Q̌ @tpkC1�;h ;w�;hi dtC
Z tn

tn�1

hr � qkC1�;h ;w�;hi dt

C
D
Œ Q̌ pkC1�;h �n�1;w�;h.t

C
n�1/

E)
D

NX
nD1

( Z tn

tn�1

lkp.w�;h/ dt

�
D
bŒr � uk�;h�n�1;w�;h.tCn�1/

E
C
D
ˇŒ pk�;h�n�1;w�;h.tCn�1/

E)
;

(11)
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NX
nD1

( Z tn

tn�1

h QK�1qkC1�;h ; v�;hi dt �
Z tn

tn�1

hpkC1�;h ;r � v�;hi dt
)

D
NX

nD1

( Z tn

tn�1

lkq.v�;h/ dt

) (12)

for all w�;h 2 W r;s
�;h and v�;h 2 V r;s

�;h.

In the variational problem we use the abbreviations ˇ D b2K�1dr , Q̌ WD M�1 C ˇ,
QK WD K=. We use the notation p�;h.tṅ / D limt!tn˙0 p�;h.t/ and Œp�;h�n D
p�;h.tCn / � p�;h.t�n /. Further we assume that ud 2 H1.˝/ satisfies ud D uD on
the Dirichlet boundary part �u for almost every t 2 .0;T/ (cf. Eq. (8)) and that Ih is
a suitable interpolation operator for the underlying finite element space. Similarly,
we let qv 2 H.divI˝/ such that qv � n D qv on the Neumann (flux) part �q of the
boundary for almost every t 2 .0;T/ (cf. Eq. (8)) and ˘ h W H.divI˝/ 7! Vs

h denote
the usual linear interpolation operator of the mixed finite element method (cf. [4]).

The space-time finite element approximation of the problem (6), (8) of the
mechanical deformation reads as follows: Let pkC1�;h 2 W r;s

�;h be given and

lkC1u .z�;h/ D h�bg; z�;hi C bh. pkC1�;h � p0/I; ".z�;h/i

� h� 0; ".z�;h/i C htN ; z�;hiL2.�t/ :
(13)

for z�;h 2H r;t
�;h. Find u

kC1
�;h 2 Ihud CH r;sC1

�;h such that

NX
nD1

Z tn

tn�1

hC W ".ukC1�;h /; ".z�;h/i dt D
NX

nD1

Z tn

tn�1

lkC1u .z�;h/ dt (14)

for all z�;h 2H r;sC1
�;h .

Algebraic formulations of (9), (10), (11), (12), (13) and (14), respectively, can
be obtained along the usual lines of applying finite element methods. In particular,
for the time discretization we choose a basis of Lagrangian functions with support
in a single subinterval In only and with respect to the rC 1 Gauss quadrature points
of this subinterval. For the derivation of the algebraic forms and the presentation of
efficient preconditioning and solution techniques for the resulting linear systems of
equations we refer to [2, 10].

3 Numerical Experiments

Now we demonstrate the application of the iteration scheme (9), (10), (11), (12),
(13), (14) and study its performance properties. For this we choose the classical
Terzaghi problem of consolidation of a finite layer; cf. Fig. 1. It is an uniaxial
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Fig. 1 Drained compaction test: problem setting (left), y-component of displacement (center) at
t D 0:2 and iterations over time steps for the discontinuous time discretization with r D 0 (dG(0))
and r D 1 (dG(1)) (right)

compaction test in that uniform compressive traction is applied at the top surface.
Exemplarily, we consider it under drained conditions where an open boundary is
modeled at the top surface by prescribing a constant pressure at that portion of the
boundary and zero flux conditions elsewhere. For all material parameters we use
the values given in [7, Sec. 5.1]. The drained bulk modulus in (5) is chosen as
Kdr D 2E.1� �/=..1� 2�/.1C �//; cf. [14].

For our simulations we use the discontinuous Galerkin approach for the dis-
cretization of the time variable with piecewise constant and piecewise linear
polynomials in time corresponding to r D 0 and r D 1, respectively, in the discrete
problems (9), (10), (11), (12), (13) and (14). For r D 0 we choose the time step
size � D 1:0e-3. For r D 1 we use the double step size � D 2:0e-3 in order to
balance the number of unknown coefficient vectors in the algebraic systems for a
macro step with � D 2:0e-3. The higher order approach is used to illustrate its
feasibility and stability. In the future we plan to apply our methods to problems with
a higher dynamical behaviour in time such that the higher order approach can reveal
its superiority. The mixed finite element approach in (11) and (12) is applied with
s D 1which amounts to a piecewise bilinear approximation of the pressure variable.
The temporal and spatial convergence rates thus coincide (cf. [3]) for the parameters
r D 1 and s D 1 in the definition of the finite element spaces. For all iterations, i.e.
for the fixed point iteration and for the iterations of the linear system solvers, we
choose the tolerance tol D 1:0e-10. For the fixed point iteration this means that
for each of the arising finite element coefficient vectors of the algebraic formulation
(cf. [10]) the difference between two iterates, measured in the Euclidean norm, is
required to be smaller than the prescribed tolerance tol.

In Fig. 1 we visualize the y-component of the displacement field u at the time
t D 0:2. The solution agrees with the expected behaviour of the system and also
with the analytical solution. The proposed iteration scheme shows a robust and
stable behaviour that is documented in the right plot of Fig. 1 showing the number
of fixed point iterations that are performed in each of the time steps in the interval
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t 2 .0; 0:5/ for the piecewise constant (r D 0; dG(0)) and piecewise linear (r D 1;
dG(1)) approximation in time. The discontinuous Galerkin approximation in time
with piecewise linear polynomials requires more fixed point iterations within the
time steps, but the time step size is doubled compared with the piecewise constant
approximation. Calculating for both time discretization schemes, with r D 0 and
r D 1, the total number of iterations over all time steps shows that both methods
perform almost the same number of fixed point iterations. Finally, we still note that
the discontinuous Galerkin approach in time incorporates the initial conditions in a
weak form only and thereby helps to improve the stability of the iteration in the first
time step.

4 Summary

In this work we presented a space-time finite element approach to the quasi-static
Biot system of poroelasticity with a discontinuous Galerkin discretization of the
time variable. The approach is based on an iterative splitting scheme such that
the subproblems of single-phase flow and elastic deformation are decoupled and
solved sequentially. The performance properties of our approach was illustrated
by a numerical experiment and for a higher order member of our family of time
discretization schemes. As a work for the future we plan to compare the iterative
splitting scheme with a monolithic approach in that the subproblems are solved fully
coupled in a single system of equations. Moreover, we plan to use the proposed
techniques for the approximation of the fully dynamic Biot–Allard system [12]
for that higher order time discretization schemes offer large potential and are of
significant relevance [10].
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Part III
Discontinuous Galerkin Methods for PDEs



Discontinuous Galerkin Method for the Solution
of Elasto-Dynamic and Fluid-Structure
Interaction Problems

Miloslav Feistauer, Martin Hadrava, Adam Kosík, and Jaromír Horáček

Abstract This paper is concerned with the numerical solution of dynamic elasticity
by the discontinuous Galerkin (dG) method. We consider the linear and nonlinear St.
Venant-Kirchhoff model. The dynamic elasticity problem is split into two systems
of first order in time. They are discretized by the discontinuous Galerkin method
in space and backward difference formula in time. The developed method is tested
by numerical experiments. Then the method is combined with the space-time dG
method for the solution of compressible flow in a time dependent domain and used
for the numerical simulation of fluid-structure interaction.

1 Description of the Dynamic Elasticity Problem

Let us consider an elastic body represented by a bounded polygonal domain ˝b �
R
2. We assume that @˝b D � b

D [ � b
N and � b

D \ � b
N D ;. On � b

D and � b
N we

prescribe the Dirichlet boundary condition and the Neumann boundary condition,
respectively. The deformation of the body is described by the displacement u W
˝b � Œ0;T� ! R

2 and the deformation mapping '.X; t/ D X C u.X; t/, X 2
˝b; t 2 Œ0;T�, where Œ0;T� with T > 0 is a time interval. Further, we introduce the
deformation gradient F D r', the Jacobian J D detF > 0 and the Green strain
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tensor E 2 R
2�2,

E D 1

2



FTF � I

�
; E D .Eij/

2
i;jD1; (1)

with the components

Eij D 1

2

�
@ui
@Xj
C @uj
@Xi

�
C 1

2

2X
kD1

@uk
@Xi

@uk
@Xj

: (2)

We set tr.E/ D P2
iD1 Eii and by I we denote the unit tensor. By the symbol CofF

we denote the cofactor of the matrix F defined as CofF D J.F�1/T . Further, we
introduce the first Piola-Kirchhoff stress tensor P. Its form depends on the chosen
elasticity model.

The general dynamic elasticity problem is formulated in the following way: Find
a displacement function u W ˝b � Œ0;T�! R

2 such that

�b
@2u
@t2
C CM�

b @u
@t
� divP D f in ˝b � Œ0;T�; (3)

u D uD in � b
D � Œ0;T�; (4)

Pn D gN in � b
N � Œ0;T�; (5)

u.�; 0/ D u0;
@u
@t
.�; 0/ D z0 in ˝b; (6)

where f W ˝b � Œ0;T� ! R
2 is the density of the acting volume force, gN W

� b
N � Œ0;T� ! R

2 is the surface traction, uD W � b
D � Œ0;T� ! R

2 is the prescribed
displacement, u0 W ˝b ! R

2 is the initial displacement, z0 W ˝b ! R
2 is the initial

deformation velocity, �b > 0 is the material density and CM � 0 is the damping
coefficient.

We consider two elasticity models (see [2]).
St. Venant-Kirchhoff material. In this case we set

˙ D �btr.E/IC 2�bE; P D F˙ ; (7)

where ˙ is the second Piola-Kirchhoff stress tensor. The Lamé parameters �b and
�b are expressed with the aid of the Young modulus Eb and the Poisson ratio �b:

�b D Eb�b

.1C �b/.1 � 2�b/ ; �b D Eb

2.1C �b/ : (8)

Linear elasticity model is the simplest elasticity model obtained by the assump-
tion of small deformations. By this assumption the second term in (2) is neglected
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and the linear approximation of E (linear with respect to the gradient F) is denoted
by e and called the small strain tensor. Then E D e D .eij/2i;jD1 and

eij D 1

2

�
@ui
@Xj
C @uj
@Xi

�
: (9)

In this case we write

P D �btr.e/IC 2�be: (10)

As we see, in general, F D F.u/;E D E.u/;˙ D ˙ .u/;P D P.u/:
For the time discretization of problem (3), (4), (5) and (6) we rewrite the dynamic

elasticity problem as the following system of first-order in time for the displacement
u W ˝b � Œ0;T�! R

2 and the deformation velocity z W ˝b � Œ0;T�! R
2:

�b
@z
@t
C CM�

bz� divP D f ;
@u
@t
� z D 0 in ˝b � Œ0;T�; (11)

u D uD in � b
D � Œ0;T�; (12)

Pn D gN in � b
N � Œ0;T�; (13)

u.�; 0/ D u0; z.�; 0/ D z0 in ˝b: (14)

2 Discrete Problem

The discretization of the dynamic elasticity problem will be carried out by the dG
method in space and the backward difference formula (BDF) method in time.

Let T b
h be a partition of the closure ˝

b
formed by a finite number of closed

triangles with disjoint interiors.
Let us consider a partition of the time interval Œ0;T� formed by time instants

tk D k� , k D 0; : : : ;M, whereM is a sufficiently large positive integer and � D T=M
is the time step. (The generalization to a nonuniform partition is possible.)

Let p > 0 be an integer. By Shp we denote the space of piecewise polynomial
functions on the triangulation T b

h ,

Shp D
˚
v 2 L2.˝b

h/I vjK 2 Pp.K/ 8K 2 T b
h

�
; (15)

where Pp.K/ denotes the space of polynomial functions of degree � p on the
element K. The approximate solution will be sought in Shp D Shp � Shp at each
time level.

By F b
h we denote the system of all faces of all elements K 2 T b

h and
F bB

h ;F
bD
h ;F bN

h and F bI
h will denote the sets of all boundary, Dirichlet, Neumann

and inner faces, respectively. We set F bID
h D F bI

h [F bD
h . Further, for each � 2 F bI

h
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there exist two neighbouring elements K.L/� ;K.R/� 2 T b
h such that � � @K.L/� \@K.R/� .

For each � 2 F b
h we define a unit normal vector n� . We assume that for � 2 F bB

h
the normal n� has the same orientation as the outer normal to @˝b. We use the
convention that n� is the outer normal to @K.L/� and the inner normal to @K.R/� . For

v 2 Shp we introduce the following notation: vj.L/� D the trace of vj
K
.L/
�

on � ,

vj.R/� D the trace of vj
K
.R/
�

on � , hvi� D 1
2

�
vj.L/� C vj.R/�

	
, Œv�� D vj.L/� � vj.R/� ,

where � 2 F bI
h . If � 2 F bB

h , then there exists an element K.L/� 2 T b
h such that

� � K.L/� \ @˝b
h and we set vj.L/� D the trace of vj

K
.L/
�

on � , hvi� D Œv�� D vj.L/� .

Finally, we set h� D .hK.L/� C h
K
.R/
�

/=2.

In the derivation of the space discretization by the dG method the following
process is essential. We multiply the governing system by a test function v 2 Shp,
integrate the resulting relations over elements K 2 T b

h , apply Green’s theorem to
the term containing P, add some mutually vanishing terms, use boundary conditions
and sum over all elements. In this way we get the following forms:

abh.u; v/ D
X
K2T b

h

Z
K
P .u/ W rv dx �

X
� 2FbID

h

Z
�

.hP .u/in/ � Œv� dS; (16)

Jbh.u; v/ D
X

� 2FbID
h

Z
�

Cb
W

h�
Œu� � Œv� dS; (17)

`bh.v/ D
X
K2T b

h

Z
K
f � v dxC

X
� 2FbN

h

Z
�

gN � v dSC
X

� 2FbD
h

Z
�

Cb
W

h�
uD � v dS; (18)

Ab
h D abh C Jbh ; (19)

.u; v/˝b D
Z
˝b

u � v dx D
X
K2T b

h

Z
K
u � v dx; (20)

where u; v 2 Shp and Cb
W > 0 is a sufficiently large constant.

For k D 0; : : : ;M we use the approximations u.tk/ � ukh 2 Shp and z.tk/ � zkh 2
Shp. A general backward difference formula approximating the time derivative reads

@u
@t
.tkC1/ � 1

�

lX
jD0

clu
kC1�j
h ; (21)

where l is the order of the method and cj, j D 0; : : : ; l, are the coefficients.



Discontinuous Galerkin Method for Elasto-Dynamics and FSI 159

The BDF-dG approximate solution of problem (11)–(14) is defined as a couple
of sequences fukhgMkD0, fzkhgMkD0 such that

a/ ukh; z
k
h 2 Shp; k D 0; : : : ;M; (22)

b/

0
@�b
�

lX
jD0

clz
kC1�j
h ; vh

1
A
˝b

h

C 
CM�
bzkC1h ; vh

�
˝b

h
C Ab

h.u
kC1
h ; vh/

D `bh.vh/.tkC1/ 8vh 2 Shp;

c/

0
@�b
�

lX
jD0

clu
kC1�j
h ; vh

1
A
˝b

h

� 
zkC1h ; vh
�
˝b

h
D 0 8vh 2 Shp;

k D 0; : : : ;M � 1;
d/ .u0h � u0; vh/˝b

h
D 0; .z0h � z0; vh/˝b

h
D 0 8vh 2 Shp:

The initial values ukh, z
k
h, k D 1; : : : ; l are obtained by k-step BDF schemes.

In the first order BDF method we have l D 1, c0 D 1, c1 D �1 and in the second
order BDF method l D 2 and c0 D 3=2, c1 D �2, c2 D 1=2.

The discrete nonlinear problems are solved on each time level by the Newton
method. For the solution of linear subproblems either direct UMFPACK solver or
GMRES method with block diagonal preconditioning are used.

3 Numerical Experiments

3.1 A Benchmark Problem

The applicability and accuracy of the BDF-dG method is tested by the comparison
with the benchmark denoted by CSM3 proposed by J. Hron and S. Turek in [4],
where they used a different solution approach. We consider a 2D domain formed by
the rigid cylinder with an attached elastic beam, as is shown in Fig. 1.

The following data are used: f D 

0;�2�b�T Œm:s�2�; �b D 103 Œkg:m�3�,

on the left part � b
D of the boundary connected with the rigid body we prescribe

Fig. 1 Rigid cylinder with an elastic beam of the nonlinear elasticity benchmark problem
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Fig. 2 The deformation of the beam in case CSM3: St. Venant-Kirchhoff model (left), linear
elasticity model (right)

Table 1 CSM3: comparison of the position of the point A for BDF2, St. Venant-Kirchhoff
material and different time steps � . The values are written in the format “mean value˙ amplitude
[frequency]”

Method � u1
��10�3


u2
��10�3


Ref �14:305˙ 14:305 Œ1:0995� �63:607˙ 65:160 Œ1:0995�

BDF2 0.04 �10:566˙ 9:963 Œ1:0675� �64:866˙ 45:218 Œ1:0675�

BDF2 0.02 �13:477˙ 13:462 Œ1:0850� �64:133˙ 61:177 Œ1:0850�

BDF2 0.01 �14:119˙ 14:111 Œ1:0900� �63:905˙ 64:212 Œ1:0900�

BDF2 0.005 �14:454˙ 14:453 Œ1:0925� �64:384˙ 64:939 Œ1:0925�

homogeneous Dirichlet boundary condition uD D 0 and on the rest part � b
N of the

boundary we prescribe the Neumann boundary condition with no surface traction
gN D 0. The initial conditions u0 D z0 D 0. The material is characterized by the
Young modulus Eb D 1:4 � 106 and the Poisson ratio �b D 0:4.

Figure 2 shows the deformation of the beam at several time instants computed by
the linear model and St. Venant-Kirchhoff model. The linear model does not give
results correct from the physical point of view in contrast to the nonlinear case.
Table 1 presents the comparison between the reference results of the benchmark
with our computation carried out by the second-order BDF2 time discretization with
several time steps on a relatively coarse mesh with 722 elements and polynomial
degree p D 1. According to [4], the time dependent displacement is represented
by its mean value mean D 1=2.maxC min/, amplitude D 1=2.max � min/ and
frequency. Table 1 shows a good agreement with the reference data from [4].

3.2 Example of Fluid-Structure Interaction

The BDF-dG method described above is combined with the solution of compressible
flow in a time dependent domain˝t and the resulting coupled problem is applied to
the simulation of fluid-structure interaction. The boundary of ˝t is formed by three
disjoint parts: @˝t D �I [ �O [ �Wt ; where �I is the inlet, �O is the outlet and �Wt

represents impermeable time-dependent walls. The time dependence of the domain
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˝t is taken into account with the aid of the Arbitrary Lagrangian-Eulerian (ALE)
method (see, e.g., [3], Chap. 10). It is based on a regular one-to-one ALE mapping of
the reference configuration˝0 onto the current configuration˝t. The compressible
Navier-Stokes system transformed to the ALE formulation is discretized by the
space-time discontinuous Galerkin method, see [1] or [3].

In the FSI simulation the common interface between the fluid and structure at
time t is defined as Q�Wt D fx D X C u.X; t/IX 2 � b

N g � �Wt . The flow and
structural problems are coupled by the transmission conditions

v.x; t/ D @u.X; t/
@t

; P.u.X; t//n.x/ D � f .x; t/Cof.F.u.X; t///n.x/; (23)

X 2 � b
N ; x D XC u.X; t/; �

f
ij D �p ıij C �ıijdivvC 2�dij.v/;

dij.v/ D 1

2

�
@vi

@xj
C @vj

@xi

�
:

Here v denotes the fluid velocity, p is the fluid pressure and � > 0 and � D �2�=3
are the fluid viscosity coefficients. The fluid-structure interaction problem is solved
with the aid of a coupling procedure, see [3], Chap. 10.

As an example of the FSI problem we present the simulation of vibrations
of vocal folds model excited by the airflow in a simplified geometry of vocal
tract and vocal folds shown in Fig. 3. Figure 4 presents the velocity field con-
taining a number of vortices in the deformed vocal tract at time instants t D
0:0336; 0:0360; 0:0384; 0:0408s. The light shades correspond to low velocity,
whereas the dark shades represent higher velocity. The pressure is in the range
between 88200 and 99950 Pa. The prescribed outlet pressure is 97611 Pa. The inlet
velocity is 4ms�1. The deformation of the vocal folds was computed with the use
of St. Venant-Kirchhoff model. The Young modulus and the Poisson ratio have
values Eb D 12000Pa and �b D 0:4, respectively, the structural damping coefficient
cM D 1 s�1 and the material density �b D 1040 kg m�3.

Fig. 3 Computational domain with the mesh at time t D 0 and the description of its size: LI D
50mm, Lg D 15:4mm, LO D 94:6mm, H D 16mm. The width of the channel in the narrowest
part is 1:6mm
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Fig. 4 The velocity field. The values of velocity magnitude (white to black) at time instans t D
0:0336; 0:0360; 0:0384; 0:0408 s

4 Conclusion

This paper is concerned with the application of the discontinuous Galerkin method
in space combined with the BDF time discretization to the numerical solution of
dynamic nonlinear elasticity problems using St. Venant-Kirchhoff material model.
The method was tested on the benchmark proposed by J. Hron and S. Turek with
satisfactory results. It is also shown that the method can be successfully applied to
fluid-structure interaction.

Our further goal is a deeper analysis of the vocal folds vibrations using more
complex geometry of vocal tract. Moreover, theoretical analysis of the developed
method will be carried out.
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Stable Discontinuous Galerkin FEM Without
Penalty Parameters

Lorenz John, Michael Neilan, and Iain Smears

Abstract We propose a modified local discontinuous Galerkin (LDG) method for
second–order elliptic problems that does not require extrinsic penalization to ensure
stability. Stability is instead achieved by showing a discrete Poincaré–Friedrichs
inequality for the discrete gradient that employs a lifting of the jumps with one
polynomial degree higher than the scalar approximation space. Our analysis covers
rather general simplicial meshes with the possibility of hanging nodes.

1 Introduction

It is well–known that the local discontinuous Galerkin (LDG) method for second–
order elliptic problems can be formulated, in part, by replacing the differential
operators in the variational formulation by their discrete counterparts [3–5]. For
example, on the space of discontinuous piecewise polynomials of degree at most k,
the discrete gradient operator is composed of the element-wise gradient corrected
by a lifting of the jumps into the space of piecewise polynomial vector fields. The
original formulation of the LDG method [3] employs liftings of same polynomial
degree k as the scalar finite element space, while liftings of order k�1 have also been
considered, see the textbook [5] and the references therein. Part of the motivation
for these choices of the order of the lifting is the correspondence to the order of
the element-wise gradient and reasons of ease of implementation. However, unlike
the continuous gradient acting on the space H1

0 , the discrete gradient operators with
liftings of order k � 1 or k fail to satisfy a discrete Poincaré–Friedrichs inequality.
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Therefore, the LDG method requires additional penalization with user–defined
penalty parameters to ensure stability.

In this note, we construct a modified LDG method with guaranteed stability
without the need for extrinsic penalization. This result is obtained by simply
increasing the polynomial degree of the lifting operator to order kC1 and exploiting
properties of the piecewise Raviart–Thomas–Nédélec finite element space. Our
analysis covers the case of meshes with hanging nodes under a mild condition of
face regularitywhich we introduce in this work. We recall that the order of the lifting
in the LDG method does not alter the dimension or stencil of the resulting stiffness
matrix. As a result, the proposed method has a negligible increase of computational
cost and inherits the advantages of the standard LDG method in terms of locality
and conservativity.

The rest of the paper is organized as follows. In Sect. 2 we give the notation used
throughout the manuscript and state some preliminary results. We define the lifted
gradient operator with increased polynomial degree in Sect. 3 and show that the L2

norm of this operator is equivalent to a discrete H1 norm on piecewise polynomial
spaces. We establish by means of a counterexample that the increased polynomial
degree is necessary to obtain this stability estimate in Sect. 4. In Sect. 5 we propose
and study the modified LDG method in the context of the Poisson equation.

2 Notation

Let ˝ � R
d, d 2 f2; 3g, be a bounded polytopal domain with Lipschitz boundary

@˝ . Let fThgh>0 be a shape- and contact–regular sequence of simplicial meshes on
˝ , as defined in [5, Definition 1.38]. For each element K 2 Th, let hK :D diamK,
with h D maxK2Th hK for each mesh Th. We define the faces of the mesh as in [5,
Definition 1.16], and we collect all interior and boundary faces in the sets F i

h and
F b

h , respectively, and let Fh :D F i
h [F b

h denote the skeleton of Th. In particular,
F 2 F i

h if F has positive .d � 1/-dimensional Hausdorff measure and if F D @K1 \
@K2 for two distinct mesh elements K1 and K2. For an element K 2 Th, we denote
F .K/ the set of faces of K, i.e. E 2 F .K/ if E is the closed convex hull of d vertices
of the simplex K. Note that on a mesh with hanging nodes, a mesh face may be a
proper subset of an element face, see Fig. 1, hence the notions of mesh faces and
element faces do not need to coincide. In this work, the meshes are allowed to have
hanging nodes, provided that they satisfy the following notion of face regularity.

Definition 1 A face F 2 Fh is called regular with respect to the element K if
F 2 F .K/. We say that the mesh Th is face regular if every face of Fh is a regular
face with respect to at least one element of Th.

Figure 1 illustrates the notion of face regularity with two examples. We remark
that any matching mesh is face regular. On a face regular mesh, any boundary face
is necessarily regular with respect to the element to which it belongs. It appears that
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Fig. 1 Face regularity of meshes: the mesh on the left has interior faces F i
h D fFig3iD1, each of

which is regular to at least one element in the sense of Definition 1, even though F2 and F3 fail to
be regular with respect to the element K, since F2 and F3 are only proper subsets of the elemental
face F2 [ F3. Since all boundary faces are also regular, the mesh on the left is face regular in the
sense of Definition 1, whereas the mesh on the right is not: the mesh face NF3 fails to be regular
with respect to any element of the mesh

meshes of practical interest are most likely to be face regular, so this restriction is
rather mild in practice.

For integrable functions � defined piecewise on either Th or Fh, we use the
convention

Z
˝

� dx D
X
K2Th

Z
K
� dx;

Z
Fh

� ds D
X
F2Fh

Z
F
� ds:

For the integer k � 1, we define the discontinuous finite element spaces Vh;k

as the space of real-valued piecewise-polynomials of degree at most k on Th, and
˙ h;kC1 the space of vector-valued piecewise-polynomials of degree at most k C 1
on Th. We define the mesh-dependent norm k�k1;h on Vh;k by

kvhk21;h :D
X
K2Th

krvhk2L2.K/ C
X
F2Fh

1

hF
k�vh�k2L2.F/ 8 vh 2 Vh;k; (1)

where hF :D diamF for each face F 2 Fh.
We shall also make use of the (local) Raviart–Thomas–Nédélec space [7] defined

by

RTNkC1.K/ :D �k.K/˚ QPk.K/ x � �kC1.K/;

where �k.K/ is the space of vector-valued polynomials of degree at most k on K,
and QPk.K/ is the space of real-valued homogeneous polynomials of degree k on K.
We recall that �h 2 RTNkC1.K/ is uniquely determined by the moments

R
K �h ��h dx

and
R
E.�h � nE/ vh ds for all �h 2 Pk�1.K/ and vh 2 Pk.E/ for each E 2 F .K/,

where nE denotes a unit normal vector of E. We also recall that if all facial moments
of �h vanish on an elemental face E, then �h � nE vanishes identically on E.
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For a face F 2 Fh belonging to an element Kext, we define the jump and average
operators by

�w�jF :D wjKext
� wjKint

; fwg jF :D 1
2



wjKext

C wjKint

�
; if F 2 F i

h;

�w�jF :D wjKext
; fwg jF :D wjKext

; if F 2 F b
h ;

where w is a sufficiently regular scalar or vector-valued function, and in the case
where F 2 F i

h, Kint is such that F D @Kext \ @Kint. Here, the labelling is chosen so
that nF is outward pointing with respect to Kext and inward pointing with respect
to Kint. Let � 2 L2.Fh/, then the lifting operators rhWL2.Fh/ ! ˙ h;kC1 and
rhWL2.Fh/! Vh;k are defined by

Z
˝

rh.�/ � � h dx D
Z
Fh

� f� h � nFg ds 8 � h 2 ˙ h;kC1; (2a)

Z
˝

rh.�/ vh dx D
Z
F i

h

� fvhg ds 8 vh 2 Vh;k: (2b)

For quantities a and b, we write a . b if and only if there is a positive constant
C such that a � Cb, where C is independent of the quantities of interest, such as
the element sizes, but possibly dependent on the shape-regularity parameters and
polynomial degrees.

3 Stability of Lifted Gradients

We define the lifted gradient GhWVh;k ! ˙ h;kC1 by

Gh.vh/ D rhvh � rh.�vh�/ 8 vh 2 Vh;k; (3)

where rh denotes the element-wise gradient operator. We note that Gh is usually
defined with a lifting using polynomial degrees k or k � 1, see for instance [5].
However, as we shall see, by increasing the polynomial degree of the lifting to kC1,
we obtain the following key stability result.

Theorem 2 Let fThgh>0 denote a shape regular, contact regular and face regular
sequence of simplicial meshes on ˝ . Let the norm k�k1;h be defined by (1) and let
the lifted gradient operator Gh be defined by (3). Then, we have

kuhk1;h . kGh.uh/kL2.˝/ . kuhk1;h 8 uh 2 Vh;k: (4)
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Proof The upper bound kGh.uh/kL2.˝/ . kuhk1;h is standard and we refer the reader
to [5, Sec. 4.3] for a proof. To show the lower bound, consider an arbitrary uh 2 Vh;k.
Since Gh.uh/ 2 ˙ h;kC1, we have

kGh.uh/kL2.˝/ D sup
�h2˙ h;kC1nf0g

R
˝
Gh.uh/ � �h dx

k�hkL2.˝/
;

with the supremum being achieved by the choice �h D Gh.uh/. Therefore, to
show (4), it is sufficient to construct a �h 2 ˙ h;kC1 such that

kuhk21;h .
Z
˝

Gh.uh/ � �h dx; (5)

k�hkL2.˝/ . kuhk1;h: (6)

Let �K 2 RTNkC1.K/ be defined by

Z
K

�K � �h dx D
Z
K
ruh � �h dx 8�h 2 �k�1.K/; (7a)

Z
E
.�K � nE/ vh ds D

(
� RE 1

hE
�uh� vh ds if E 2 Fh;

0 if E … Fh;
(7b)

where (7b) holds for all vh 2Pk.E/, for each element face E 2 F .K/. In particular,
if the element face E 2 Fh, i.e. E is also a mesh face, then we require that nE agrees
with the choice of unit normal used to define the jump and average operators. If
E … Fh, then �K �nE vanishes identically on E, and the orientation of nE on the left-
hand side of (7b) does not matter. The global vector field �h 2 ˙ h;kC1 is defined
element-wise by �hjK D �K .

Since the mesh Th is assumed to be face regular, for every F 2 Fh there exists
an element K 2 Th and an elemental face E 2 F .K/ such that E D F; then E
satisfies the first condition in (7b). Therefore, the facts that f�h � nFg jF and �uh�jF
both belong to Pk.F/ together with (7b) imply that for each F 2 Fh, one of only
three situations may arise:

1. F is a boundary face and hence F 2 F .K/. In this case, we have f�h � nFg jF D
�h�1F �uh�jF .

2. F is an interior face which is regular with respect to both elements to which it
belongs. In this case, we have f�h � nFg jF D �h�1F �uh�jF .

3. F is an interior face which is regular with respect to only one of the elements
to which it belongs. In this case, we have f�h � nFg jF D � 12h�1F �uh�jF , since
�hjK0 � nF � 0 for the element K0 with respect to which F is not regular.
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Therefore, since �h 2 ˙ h;kC1, the definition of the lifting operator in (2a) implies
that

Z
˝

Gh.uh/ � �h dx D
X
K2Th

Z
K
ruh � �h dx �

X
F2Fh

Z
F
f�h � nFg �uh� ds

�
X
K2Th

kruhk2L2.K/ C
1

2

X
F2Fh

1

hF
k�uh�k2L2.F/

� 1

2
kuhk21;h;

where the second line follows from (7) and from the fact that ruhjK 2 �k�1.K/
for each K 2 Th. Hence (5) is satisfied, and we now verify (6). A classical scaling
argument using the Piola transformation [2, p. 59] yields

k�hkL2.K/ . sup
�h2�k�1.K/nf0g

R
K �h � �h dx

k�hkL2.K/

C
X

E2F .K/

sup
vh2Pk.E/nf0g

h1=2E

R
E.�h � nE/vh ds

kvhkL2.E/
8K 2 Th:

Therefore, it follows from (7) that, for each K 2 Th,

k�hk2L2.K/ . kruhk2L2.K/ C
X

F2F .K/\Fh

hFkh�1F �uh�k2L2.F/: (8)

Summing (8) over all elements therefore implies (6). ut

4 Counterexample to Stability for Equal-Order Liftings

Theorem 2 shows the stability of the lifted gradient operator Gh provided that the
lifting operator rh has polynomial degree kC1. In this section, we verify by means of
a counterexample that the stability estimate does not generally hold for lower-order
liftings, including in particular the case of equal-order liftings, which are commonly
used in practice; our example simplifies a similar counterexample in [1].

Example Let ˝ D .�1; 1/2, and consider the finite element space Vh;k defined on
a criss-cross mesh with four triangles, as depicted in Fig. 2, using piecewise linear
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Fig. 2 Counterexample of
Sect. 4: the domain
˝ D .�1; 1/2 and the
criss-cross mesh Th

considered in the example

polynomials, i.e. k D 1. Let uh 2 Vh;1 be the piecewise linear function defined by

uhjK1 D yC 2

3
; uhjK2 D x � 2

3
;

uhjK3 D �yC
2

3
; uhjK4 D �x �

2

3
:

Direct calculations show that fuhgjF � 0 on all interior faces F 2 F i
h, and thatR

K uh dx D 0 for all elements K 2 Th. Consequently, if the lifting operator Qrh is
defined in (2a) with the polynomial degree k C 1 replaced by k, and if QGh.uh/ :D
rhuh � Qrh.�uh�/ denotes the equal-order lifted gradient, then we have for all �h 2
˙ h;1,

Z
˝

QGh.uh/ � �h dx D
X
K2Th

Z
K
rhuh � �h dx �

X
F2Fh

Z
F
f�h � nFg �uh� ds

D �
X
K2Th

Z
K
uh.rh � �h/ dxC

X
F2F i

h

Z
F
fuhg��h � nF� ds D 0:

Since QGh.uh/ 2 ˙ h;1, we deduce that QGh.uh/ D 0, and thus it is found that no bound
of the form kuhk1;h . k QGh.uh/kL2.˝/ is possible. ut

5 A Modified LDG Method Without Penalty Parameters

As an application of Theorem 2, consider the discretization of the homogeneous
Dirichlet boundary-value problem of the Poisson equation by a modified LDG
method [3, 4] as follows. For f 2 L2.˝/, let u 2 H1

0.˝/ be the unique solution
of

Z
˝

ru � rv dx D
Z
˝

f v dx 8 v 2 H1
0.˝/: (9)

Let the bilinear form ahWVh;k � Vh;k ! R be defined by

ah.uh; vh/ D
Z
˝

Gh.uh/ � Gh.vh/ dx 8 uh; vh 2 Vh;k; (10)
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where the lifted gradient operator Gh was defined in (3). The bilinear form ah.�; �/
defines a modified LDG method for (9): find uh 2 Vh;k such that

ah.uh; vh/ D
Z
˝

f vh dx 8vh 2 Vh;k: (11)

It follows from Theorem 2 that ah.�; �/ is uniformly stable with respect to the norm
k�k1;h, and thus (11) is well-posed for each h. Moreover, the discrete Poincaré
inequality [5] implies that kuhk1;h . k fkL2.˝/ for all h, so that the numerical
solutions uh are uniformly bounded with respect to the mesh-dependent norms
k�k1;h. The a priori error analysis for the numerical method defined by (11) may
be developed following the frameworks of [3, 5, 6], although for reasons of space
we do not present the arguments here.

An interesting feature of the modified LDG method (11) is that it does not
require any additional stabilization, such as added penalty terms of the formR
Fh

�F
hF

�uh��vh� ds for some user-defined parameter �F . The absence of such penalty
terms enables us to show the following discrete conservation property. We define
the lifted divergence DhW˙ h;kC1 ! Vh;k by

Dh.� h/ D divh � h � rh.�� h � nF�/; � h 2 ˙ h;kC1; (12)

where divh denotes the element-wise divergence operator, and where rh is the
scalar lifting operator defined in (2b). We note that we have the integration-by-parts
identity

Z
˝

� h � Gh.vh/ dx D �
Z
˝

Dh.� h/ vh dx 8 vh 2 Vh;k; � h 2 ˙ h;kC1; (13)

which should be compared with the analogous continuous identity between the
spaces H1

0.˝/ and H.div;˝/. Therefore, the numerical scheme (11) can be
equivalently expressed in the strong form

�
Z
˝

Dh.Gh.uh// vh dx D
Z
˝

f vh dx; (14)

which implies that the numerical solution uh 2 Vh;k solves

� Dh.Gh.uh// D ˘ k
h f ; (15)

in the pointwise sense on each element K, where ˘ k
h f denotes the element-wise

L2-projection of f into Vh;k. Although we have shown here how the lifted gradient
operator Gh of degree k C 1 may be used to achieve a stable discretization of
the Poisson equation, it is by no means restricted to this model problem, as the
lifted gradients may be used to discretize the second-order terms of more general
differential operators.
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6 Conclusions

In this article, we studied an intrinsically stable modified LDG method without
additional parameter dependent penalization. For this, we showed that increasing the
degree of the lifting operator by one order leads to stability of the discrete gradient
operator on face regular meshes with hanging nodes.
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Time-Space Adaptive Method of Time Layers
for the Advective Allen-Cahn Equation

Murat Uzunca, Bülent Karasözen, and Ayşe Sarıaydın-Filibelioğlu

Abstract We develop an adaptive method of time layers with a linearly implicit
Rosenbrock method as time integrator and symmetric interior penalty Galerkin
method for space discretization for the advective Allen-Cahn equation with a
non-divergence-free velocity field. Numerical simulations for advection-dominated
problems demonstrate the accuracy and efficiency of the adaptive algorithm for
resolving the sharp layers occurring in interface problems with small surface
tension.

1 Introduction

Interfacial dynamics has great importance in modeling of multi-phase flow in
material sciences. We consider the Allen-Cahn equation with advection as a model
of diffuse interface for two phase flows [9]

@u

@t
D L u � 1

�
f .u/ in ˝ � .0;T�; (1)

under homogeneous Neumann boundary condition. The elliptic linear operator L
contains the diffusive and advective parts of the system, i.e. L u D �	u�r � .Vu/.
The function f .u/ D F0.u/ D 2u.1 � u/.1 � 2u/ stands for the cubic bistable
nonlinearity with the double–well potential F.u/ of the two phases, and � describes
the surface tension. We consider a prescribed fixed velocity field V D .V1;V2/T . In
coupled incompressible fluid mechanics and diffusive interface models, the velocity
field satisfies the Navier–Stokes equations [9], and therefore is divergence free, i.e.
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r � V D 0. We consider in this work non-divergence-free velocity fields which are
either expanding (r � V > 0) or sheering (r � V < 0) [9].

The dynamics of surface tension in two-phase fluids are studied numerically by
different methods, among them by the level–set algorithm method and the diffuse
interface method [9]. The advective Allen-Cahn equation (1) describes the diffuse
interface dynamics associated with surface energies, and has two different time
scales; the small surface tension, and the advective time scale. Both time scales
cause computational stiffness [9].

In this work we apply the adaptive method of time layers (AMOT) [4], or
adaptive Rothe method. The advective Allen-Cahn equation (1) is discretized first
in time then in space, in contrast to the usual method of lines approach. The spatial
discretization is considered as a perturbation of the time integration. AMOT was
applied to linear and nonlinear partial differential equations using linearly implicit
time integrators in several papers [3–8]. We have chosen the linearly three stage
Rosenbrock (ROS3P) method [7] as the time integrator. ROS3P solver is third order
convergent in time, L-stable and can efficiently deal with stiff equations. It does not
show any order reduction in time in contrast to other Rosenbrock methods of order
higher than two [7]. Unlike the fully implicit schemes, it requires only the solution of
three linear systems per time step with the same coefficient matrix. In non-stationary
models, the potential internal/boundary layers moves as the time progresses. The
time step-sizes have to be adapted properly to resolve these layers accurately. The
simple embedded a posteriori error estimator as the difference of second and third
order ROS3P solvers allows the construction of an efficient adaptive time integrator.
To resolve the sharp layers and oscillations in advection-dominated regimes, we
apply the adaptive symmetric interior penalty Galerkin (SIPG) method [1, 10] for
space discretization with the residual-based a posteriori error estimator [11, 12] to
handle unphysical oscillations. The spatial mesh is refined or coarsened locally
to obtain an accurate approximation. We show in numerical experiments that the
proposed time-space algorithm AMOT is capable of damping the oscillations which
may vary as the time progresses.

The paper is organized as follows. In Sect. 2 we give the fully discrete formula-
tion of the advective AC model (1). The time-space adaptive algorithm is described
in Sect. 3. In Sect. 4, results of numerical experiments for advection-dominated
expanding and sheering flows are presented.

2 Time-Space Discretization

In this section we apply the method of time layers to discretize the model (1) in time.
The resulting sequence of elliptic problems are discretized by the SIPG method at
each time step. We consider the partition of a time interval Œ0;T�, as Ik D .tk�1; tk�
with time step-sizes �k D tk � tk�1, k D 1; 2; : : : ; J. The approximate solution at
a time t D tk is denoted by uk � u.tk/. We apply the 3-stage Rosenbrock solver
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ROS3P [7] with an embedded error estimator in time:

�
1


�k
� Jk�1

�
Ki D L



zi
� � 1

�
f


zi
�C

i�1X
jD1

cij
�k
Kj; j D 1; 2; 3; (2)

where zi D uk�1 C Pi�1
jD1 aijKj and Jk�1 WD J.uk�1/ is the Jacobian J.u/ D

@u.L u � f .u/=�/ at uk�1. The second order and the third order solutions Ouk and
uk, respectively, are given by

Ouk D uk�1 C Om1K1 C Om2K2 C Om3K3;
uk D uk�1 C m1K1 C m2K2 C m3K3;

(3)

with the same stage vectors Ki. The parameter values of the ROS3P solver can be
found in [7]. The difference of the solutions uk and Ouk can be used as an error
indicator in the time-adaptivity. Due to the linearly implicit nature of the Rosenbrock
methods, the stage vectors Ki in (2) are solved by linear systems with the same
coefficient matrix, which increases the computational efficiency in time integration
of nonlinear PDEs [4, 6].

The semi-discrete systems (2) are discretized in space by the SIPG method with
upwinding for the advective term [2]. On a time interval In D .tk�1; tk�, we consider
a family T k

h of shape regular elements (triangles) E 2 T k
h . The meshT k

h is obtained
by local refinement/coarsening of the mesh T k�1

h from the previous time step. Then,
with the dG finite element space Vk

h WD Vh.T
k
h /, on a time interval In D .tk�1; tk�,

the fully discretized scheme of (1) reads as: for all vkh 2 Vk
h , find ukh (or Oukh) in (3)

with Ki 2 Vk
h , i D 1; 2; 3, satisfying

��
1


�k
� Jk�1h

�
Ki; v

k
h

�
D �ah.zih; vkh/� bh.z

i
h; v

k
h/C

0
@ i�1X

jD1

cij
�k
Kj; v

k
h

1
A ; (4)

where zih D uk�1h C
Pi�1

jD1 aijKj, Jk�1h D J.uk�1h / and .�; �/ stands for the discrete inner
product .�; �/L2.T k

h /
. The bilinear forms ah.ukh; v

k
h/ and bh.ukh; v

k
h/ are given by

ah.u
k
h; v

k
h/ D

X
E2T k

h

Z
E
�rukh � rvkhdxC

X
E2T k

h

Z
E
.V � rukh C .r � V/ukh/vkhdx

C
X
E2T k

h

Z
@E�n� �

h

V � nE..u
out
h /

k � .uinh /k/vkhds

�
X
E2T k

h

Z
@E�\��

h

V � nE.u
in
h /

kvkhdsC
X
e2� k

h

��

he

Z
e
Œukh� � Œvkh�ds
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�
X
e2� k

h

Z
e
.f�rvkhg � Œukh�C f�rukhg � Œvkh�/ds;

bh.u
k
h; v

k
h/ D

X
E2T k

h

Z
K

1

�
f .ukh/v

k
hdx;

where uouth and uinh denote the traces on an edge from outside and inside of an element
E, respectively, he is the length of an edge e, � k

h is the set of interior edges, @E�
and � �h are the sets of inflow boundary edges of an element E 2 T k

h and on
the boundary @˝ , respectively. The parameter � is called the penalty parameter
to penalize the jumps in dG schemes, and Œ�� and f�g stand as the jump and average
operators, respectively [10].

3 Adaptive Method of Time Layers (AMOT)

The AMOT scheme adjusts the time step-size and the spatial mesh adaptively on
each time interval Ik D .tk�1; tk�. It aims, by suitable temporal and spatial estimators,
to bound the total error ku.tk/�Oukhk, where u.tk/ is the true solution of the continuous
model (1) and Oukh is the second order (in time) discrete solution of the fully discrete
system (4) on T k�1

h , at the time t D tk. In order to define the temporal and
spatial estimators separately, we replace the true solution u.tk/ by the best available

approximation uk;Ch which is the third order discrete solution of the fully discrete

system (4) on an auxiliary very fine mesh T k
h  T k�1

h . We add and subtract in the
total error the term ukh which is the third order (in time) discrete solution of the fully
discrete system (4) on T k�1

h at the time t D tk. Then, similar to [4, Sec. 9.2], we get

ku.tk/ � OukhkL2.T k�1
h / � kuk;Ch � OukhkL2.T k�1

h / D kuk;Ch � ukh C ukh � OukhkL2.T k�1
h /

� kuk;Ch � ukhkL2.T k�1
h /„ ƒ‚ …

WD"S

Ckukh � OukhkL2.T k�1
h /„ ƒ‚ …

WD"T

(5)

� TOLS C TOLT � TOL

for a user prescribed tolerance TOL, and further, we set TOLT D ˛TOL and
TOLS D .1 � ˛/TOL with 0 < ˛ < 1. In (5), the term "T controls the temporal
adjustment, while the term "S controls the acceptance of spatial mesh. Note that the
temporal error estimator "T is nothing but the difference of the second and third
order solutions of the fully discrete system (4) on T k�1

h at the time t D tk. As a
result, on each time interval Ik, AMOT scheme starts on the spatial mesh T k�1

h by
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determining the time step-size �k according to the relation [4]

�� D 3

s
�TOLT
"T

�k (6)

with a safety factor � � 0:9, and the computed time step-size �� is accepted if
"T � TOLT .

After time step-size adjustment, AMOT scheme continues with the refinement
and coarsening of the spatial mesh T k�1

h to obtain the new spatial mesh T k
h

according to the spatial estimator "S D P
E."S/E in (5). The local elements

E 2 T k�1
h are refined for large ."S/E and the ones are coarsened for small

."S/E. To determine which elements E 2 T k�1
h have to be refined, we use the

condition ."S/E > 0:005 � TOLS, whereas for the coarsening, we use the condition
."S/E < 10�13. For computation of the spatial estimator "S, we need the best

available approximation uk;Ch which is the solution of the discrete system (4) on

a very fine auxiliary mesh T k
h  T k�1

h . The auxiliary fine mesh T k
h is constructed

by using a local error indicator to decide which elements E 2 T k�1
h to be refined.

We use residual-based error indicator [11]

 D
0
@ X

E2T k�1
h

2E

1
A
1=2

; 2E D 2ER
C 2E0 C 2E@ ; (7)

where ER denote the cell residuals

2ER
D �2E

����u
k
h � uk�1h

�k
� �	ukh Cr � .Vukh/C

1

�
f .ukh/

����
2

L2.E/

;

for a weight function �E, while E0 and E@ stand for the edge residuals coming
from the jump of the numerical solution on the interior and Neumann boundary
edges, respectively, [11, 12]. Using the local error indicators E in (7), we construct
the auxiliary fine mesh T k

h by refining the elements E 2 ME � T k�1
h . To determine

the set ME, the following bulk criterion is used

X
E2ME

2E � �
X

E2T k�1
h

2E

with a user prescribed 0 < � < 1. In our simulations we take � D 0:9 since we need
a very fine auxiliary mesh. The AMOT algorithm, Algorithm 1, terminates when the
temporal and spatial acceptance conditions "S � TOLS and "T � TOLT are satisfied.
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Algorithm 1 AMOT algorithm on a single time step Ik D .tk�1; tk�
Input: uk�1

h , ��, T k�1
h , TOLS, TOLT

Output: uk;Ch , �k, ��, T k
h

do
�k D ��

compute ukh and Oukh on T k�1
h

if "T > TOLT
compute new step-size �� according to (6)

end if
compute error indicator  and construct the auxiliary fine mesh T k

h

compute the best available approximation uk;Ch on T k
h

if "S > TOLS
refine elements E 2 T k�1

h with ."S/E > 0:005 � TOLS
coarsen elements E 2 T k�1

h with ."S/E < 10�13

construct the new spatial mesh T k
h

end if
compute uk;Ch on T k

h
until "T � TOLT and "S � TOLS

4 Numerical Experiments

In this section, we demonstrate the accuracy and efficiency of the proposed AMOT
algorithm for expanding and sheering flow examples. In all examples, we set the
tolerance TOL D 0:001, the parameter ˛ D 0:5 and the diffusion coefficient � D
0:01. The spatial domain is taken as ˝ D Œ�1; 1�2 and the time interval is Œ0; 06�.
For the SIPG discretization we use piecewise discontinuous linear polynomials.
Numerical solutions on uniform meshes in space are computed with the constant
time step-size � D 0:001 and using a 64 � 64 uniform spatial mesh with DoFs
24576.

4.1 Sheering Flow

We consider (1) with the sheering velocity field V D .0;�100x/, and with the
initial condition as 1 on Œ�0:1; 0:1�2 otherwise 0 [9]. In Fig. 1, left, the unphysical
oscillations of the solution on uniform mesh can be clearly seen. The oscillations
are damped out by the AMOT algorithm, in Fig. 1, middle, and adaptive mesh is
concentrated in the region where the sharp layers occur.
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Fig. 1 Sheering flow: solution profiles at final time obtained by uniform (left) and adaptive
(middle) schemes, and adaptive mesh at final time (right)
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Fig. 2 Sheering flow: evolution of time step size (left) and DoFs (right)

The refinement and coarsening of AMOT algorithm works well as shown in
Fig. 2, right. The mesh becomes finer at the very beginning and then, gets coarser
around t D 0:02 as the size of the interior layer becomes smaller due to the sheering
and the time step-size increases monotonically, Fig. 2, left.

4.2 Expanding Flow

As the second example, we consider the expanding velocity field V D .10x; 10y/.
The initial condition is taken as 1 in the square Œ�0:3; 0:3�2 and 0 otherwise [9].
The unphysical oscillations are damped again in Fig. 3, middle. The mesh is refined
slightly and time step-size increases at the beginning, and then refinement and
coarsening proceed simultaneously, Fig. 4. Time step-size slightly decreases after
t D 0:02 following refinement/coarsening.
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Fig. 3 Expanding flow: solution profiles at final time obtained by uniform (left) and adaptive
(middle) schemes, and adaptive mesh at final time (right)
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Fig. 4 Expanding flow: evolution of time step sizes (left) and DoFs (right)
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Semi-implicit DGM Applied to a Model
of Flocking

Andrea Živčáková and Václav Kučera

Abstract We present the numerical solution of a hydrodynamics model of flocking
using a suitable modified semi-implicit discontinuous Galerkin method. The inves-
tigated model describing the dynamics of flocks of birds or other individual entities
forming herds or swarms was introduced by Fornasier et al. (Physica D 240(1):21–
31, 2011). The main idea of this model comes from the well known Cucker-Smale
model. The resulting equations consist of the Euler equations for compressible flow
with an additional non-local non-linear source term.

The model is discretized by the semi-implicit discontinuous Galerkin method
for the compressible Euler equations of Feistauer and Kučera (J Comput Phys
224(1):208–221, 2007). We show that with a suitable treatment of the source term
we can use this method for models like the model of flocking and find a numerical
solution very efficiently.

1 Continuous Problem

In the paper [4], a hydrodynamic limit of a modification of the famous Cucker-Smale
model is derived. The equations describe, using macroscopic quantities, the dynam-
ics of flocks of birds or other self-organizing entities. The equations are highly
nonlinear and nonlocal and are therefore extremely expensive to treat numerically, in
[4] a first simple simulation was performed using the finite volume method. In this
paper, we discretize the model more efficiently using the discontinuous Galerkin
method.
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Let ˝ D .0; 1/ � R and for 0 < L < C1, we set QL WD ˝ � .0;L/. We treat
the following problem: Find �; u;E W QL ! R such that

@�

@t
C div.�u/ D 0;

@


�u
�

@t
C div



�u2 C p

� D �A.�; u/;
@E

@t
C div



u .EC p/

� D �B.�; u;T/;

(1)

where � denotes the density, u velocity, E energy, T temperature and p pressure. The
right-hand side functions A and B are given by

A.�; u/.x; t/ D
Z
R

b.jx � yj/
�
u.y; t/� u.x; t/

	
�.x; t/�.y; t/ dy;

B.�; u;T/.x; t/ D
Z
R

b.jx � yj/�.x; t/
�
�.y; t/u.x; t/u.y; t/ � 2E.y; t/

	
dy;

where

b.jx � yj/ D K

.�C jx � yj2/ˇC1

for K; � > 0 and ˇ � 0 given constants. The relations between E; p;T are

E D �
 3
2
T C 1

2
u2
�
; p D �T:

By omitting the right-hand side terms A;B from (1), we obtain the compressible
Euler equations for a 1D monoatomic gas. In this light, we rewrite system (1) as a
system of conservation laws with right-hand side source terms:

@w
@t
C f .w/

@x
D g.w/ in QL; (2)

where

w D .�; �u;E/> 2 R
3;

f .w/ D 
 f1.w/; f2.w/; f3.w/�T D 
�u; �u2 C p; .EC p/u
�>
;

g.w/ D �
0;A.w/;B.w/�>:
(3)

The vector-valued function w is called the state vector and the function f is the
so-called Euler or inviscid flux. In (3), we write the right-hand side terms A;B as
functions of the state vector w, although in (1), they are written in terms of the
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nonconservative variables. ExpressingA;B in w in a suitable way is a key ingredient
in our scheme and will be described in Sect. 2.3.1.

The resulting system is equipped with the initial condition

w.x; 0/ D w0.x/; x 2 ˝;

and periodic boundary conditions, for simplicity.
The Euler flux is a homogeneous function, which implies

f .w/ D A .w/w; (4)

where A D Df
Dw . Furthermore, the Jacobi matrix of the Euler flux is diagonally

hyperbolic. In 1D this means the matrix

P.w; n/ WD A .w/n

is diagonalizable with real eigenvalues, where n D ˙1. I.e. there exists a matrix
T.w; n/ 2 R

3;3 and a diagonal matrix D .w; n/ 2 R
3;3 with eigenvalues �1; �2; �3 2

R such that

P.w; n/ D TDT
�1; where D .w; n/ D diag.�1; �2; �3/: (5)

2 Discretization

We shall use the multidimensional notation for ˝ � R
d, although in our

computations we have d D 1. Let Th be triangulation of˝ and Fh the system of all
faces (nodes in 1D) of Th. For each � 2 Fh we choose a unit normal n� D ˙1,
which, for � � @˝ , has the same orientation as the outer normal to ˝ . For each
interior face � 2 Fh there exist two neighbours K.L/� ; K.R/� 2 Th such that n� is the

outer normal to K.L/� . For v piecewise defined on Th and � 2 Fh we introduce vj.L/�
is the trace of vj

K
.L/
�

on � , vj.R/� is the trace of vj
K
.R/
�

on � and Œv�� D vj.L/� � vj.R/�
is the jump of v. On @˝; we define vj.L/� ; vj.R/� using periodic boundary conditions.

If Œ� �� ; vj.L/� ; vj.R/� appear in an integral over � 2 Fh, we omit the subscript � .
Let p 2 N and let Pp.K/ be the space of polynomials on K 2 Th of degree � p.

The approximate solution will be sought in the space of discontinuous piecewise
polynomial functions

Sh WD ŒSh�3; where Sh D fvI vjK 2 Pp.K/;8K 2 Thg:
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2.1 Discontinuous Galerkin Space Semidiscretization

To derive the discrete problem, we assume that w is a classical solution of
problem (2). We multiply (2) by a test function 'h 2 Sh, integrate over K 2 Th
and apply Green’s theorem in the convective terms. Summing over all K 2 Th and
rearranging, we obtain

Z
˝

@w
@t
� ' dxC

Z
Fh

f .w/n � Œ'� dS�
X

K2Th

Z
K
f .w/ � @'

@x
dx D

Z
˝

g.w/ � ' dx:

The discrete approximation of w will be sought in Sh, we need to give proper
meaning to the boundary integral term. Similarly as in the finite volume method,
we to approximate the physical flux f .w/n through an edge � 2 Fh by a so-called
numerical flux H.w.L/;w.R/; n/

Z
Fh

f .w/n � Œ'� dS �
Z
Fh

H.w.L/;w.R/;n/ � Œ'� dS: (6)

The specific choice of H will be discussed in Sect. 2.2.
For w;' 2 H1.˝; Th/, we can define the following forms.

Convective form:

bh.w;'/ D
Z
Fh

H.w.L/;w.R/; n/ � Œ'� dS �
X
K2Th

Z
K
f .w/ � @'

@x
dx;

right-hand side source term form:

lh.w;'/ D �
Z
˝

g.w/ � ' dx:

Finally, we introduce the space semi-discrete problem: We seek wh 2
C1.Œ0;T�ISh/ such that for all 'h 2 Sh and for all t 2 .0;T/

d

dt
.wh.t/;'h/C bh.wh.t/;'h/C lh.wh.t/;'h/ D 0: (7)

2.2 Numerical Flux

The choice of the numerical flux is a very important question in the finite volume
and DG schemes. As such, it has been extensively studied from theoretical and
practical points of view and many different constructions exist. Here, we will use the
Vijayasundaram numerical flux, cf. [5], which is suitable for our semi-implicit time
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discretization. This numerical flux is based on the flux vector splitting concept, and
can be viewed as an extension of the upwind numerical flux to nonlinear systems of
equations. We use the diagonal hyperbolicity (5) and define the positive and negative
parts of matrix P:

P
˙.w; n/ D T.w; n/D˙.w; n/T�1.w; n/; D

˙.w; n/ D diag.�1̇ ; �2̇ ; �3̇ /;
(8)

where �C D max f0; �g, �� D min f0; �g. Then P.w; n/ D P
C.w; n/ C P

�.w; n/
and we can define the Vijayasundaram numerical flux as

HVS.wL;wR; n/ D P
C 
wLCwR

2
; n
�
wL C P

� 
wLCwR
2

; n
�
wR: (9)

Explicit formulas for P;T;T�1 and D can be found e.g. in [3].

2.3 Time Discretization

After choosing some basis of the space Sh, Eq. (7) represents a system of nonlinear
ordinary differential equations, which must be discretized with respect to time.
Due to severe time step restrictions, we want to avoid using an explicit scheme.
However an implicit time discretization is also very expensive due to its nonlinearity.
Therefore we choose the semi-implicit scheme of [2] as a basis and apply it to our
problem.

Let 0 D t0 < t1 < t2 < : : : be a partition of time interval Œ0;T� and define
�k D tkC1 � tk. We approximate wk

h � wh.tk/, where wk
h 2 Sh. We use a first order

backward difference approximation for the time derivative. The resulting scheme
reads

�wkC1
h � wk

h

�k
;'h

	
C bh.wkC1

h ;'h/C lh.wkC1
h ;'h/ D 0; 8 'h 2 Sh; (10)

for all k D 0; 1; : : : . Equation (10) is nonlinear with respect to the unknown wkC1
h ,

therefore we linearize the scheme.
In the convective form, we linearized the interior terms using the homogeneity (4)

as f .wkC1
h / � A .wk

h/w
kC1
h . In the boundary terms, we use the Vijayasundaram

numerical flux (9) and linearize by taking the matrices PC and P
� at tk. Thus we get

the linearized convective form

Qbh.wk
h;w

kC1
h ;'h/ D �

X
K2Th

Z
K
A .wk

h/w
kC1
h � @'h

@x
dx

C
Z
Fh

�
P
C
hwk

hi; n
�
wkC1;.L/
h C P

�
hwk
hi; n

�
wkC1;.R/
h

	
� Œ'h� dS:
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As for the source terms, they also need to be linearized to obtain the approximation
lh.wkC1

h ;'h/ � Qlh.wk
h;w

kC1
h ;'h/. The specific form of this linearization will be

derived in the following. Collecting all these considerations, we obtain the semi-
implicit DG scheme:

We seek wk
h 2 Sh; k D 0; 1; : : :, such that for all 'h 2 Sh

�wkC1
h � wk

h

�k
;'h

	
C Qbh.wk

h;w
kC1
h ;'h/C Qlh.wk

h;w
kC1
h ;'h/ D 0: (11)

Equation (11) represents a linear equation for the unknown wkC1
h . If we choose a

basis of the space Sh consisting of functions whose support is exactly one element,
we can rewrite Eq. (11) as a system of linear algebraic equations for the coefficients
ofwkC1

h in the chosen basis. If Qlh � 0 (i.e. we solve the Euler equations), by grouping
together basis functions with a common supporting element, the structure of the
system matrix is block-tridiagonal with lower-left and upper-right corner blocks
corresponding to the periodic boundary conditions. Such systems can be efficiently
solved e.g. by a direct solver, in our case UMFPACK, [1].

2.3.1 Linearization of the Source Terms lh

First, it is necessary to rewrite the right-hand side integrals A;B in terms of w. For
A, we obtain

A D
Z
R

b.jx � yj/
�
�.x; t/„ƒ‚…
w1.x;t/

�.y; t/u.y; t/„ ƒ‚ …
w2.y;t/

� �.y; t/„ƒ‚…
w1.y;t/

�.x; t/u.x; t/„ ƒ‚ …
w2.x;t/

�
dy

D
Z
R

b.jx � yj/
�
w1.x; t/w2.y; t/ � w1.y; t/w2.x; t/

�
dy

D
Z
R

b.jx � yj/w.x; t/ � 
w2.y; t/;�w1.y; t/; 0� dy:

Similarly, we can write B as

B D
Z
R

b.jx� yj/
�
�.x; t/u.x; t/„ ƒ‚ …

w2.x;t/

�.y; t/u.y; t/„ ƒ‚ …
w2.y;t/

�2 �.x; t/„ƒ‚…
w1.x;t/

E.y; t/„ƒ‚…
w3.y;t/

�
dy

D
Z
R

b.jx� yj/
�
w2.x; t/w2.y; t/ � 2w1.x; t/w3.y; t/

�
dy

D
Z
R

b.jx� yj/w.x; t/ � 
 � 2w3.y; t/;w2.y; t/; 0� dy:
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Therefore, we can rewrite the vector g.w/ as

g.w/.x; t/ D �
Z
R

b.jx � yj/U2


w.y; t/

�
w.x; t/ dy; (12)

where U2.w/ 2 R
3�3 is the matrix

U2.w/ D
0
@ 0 0 0

w2 �w1 0
�2w3 w2 0

1
A :

If we approximate w.x; t/ � wkC1
h .x/ and w.y; t/ � wk

h.y/, we obtain the linearized
form

Qlh.wk
h;w

kC1
h ;'h/ D

Z
R

�Z
R

b.jx� yj/U2


wk
h.y/

�
dy

�
wkC1
h .x/ � 'h.x/ dx: (13)

For a basis for Sh formed by functions whose support is only one element,
adding (13) does not change the structure of the system matrix, since it contributes
only to the block-diagonal. This is important, since other expressions than (12) are
possible, however they lead to a full system matrix.

The computation of (13) is very time consuming due to the nonlocal nature. Even
if the basis functions of Sh are local, in order to evaluate Qlh, we must compute the
inner integral

R
R
b.jx � yj/U2



wk
h.y/

�
dy, which is expensive due to the slow decay

of the function b.jx � yj/. We note that in our implementation, we do not compute
this integral over the whole of R, but only over one periodically taken copy of ˝
centered at point x.

3 Numerical Experiment

In this numerical experiment, we set the initial density to have a Gaussian
distribution �.x/ D exp.�10.x�0:5/2/. The temperature is taken constant, T D 10,
and the velocity is given by u.x/ D � sin.2�x/. We used 400 piecewise quadratic
elements. We observed the formation of a sharp peak in the density, as seen in
Fig. 1. Due to the discontinuities in the solution, artificial diffusion was added, as
described in [2]. Furthermore, in large regions of˝ , a state close to vacuum occurs,
i.e. � � 0;T � 0. In fact, the minimum density and temperature over ˝ seems to
decay exponentially, cf. Fig. 2. To avoid this complication, at each time step, the wk

h
was postprocessed to avoid the vacuum state. Specifically, if � < ", then set � WD "
and recompute the energy, so that T > ", where " WD 10�5 in our case. A uniform
time step � D 10�3 was chosen as a balance between discretization error in time
and computational efficiency.
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Fig. 1 Time evolution of the density distribution
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4 Conclusion

We have presented an efficient numerical method for the solution of a complicated
nonlinear and nonlocal version of the compressible Euler equations describing the
dynamics of flocks of birds, cf. [4]. To avoid severe time step restrictions and
consequently the need to evaluate the expensive nonlocal terms too many times,
a semi-implicit discontinuous Galerkin scheme is applied. A suitable treatment of
the nonlocal terms is given, which leads to sparse matrices. Shock capturing and
postprocessing of vacuum must be added to obtain a stable scheme.
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Discontinuous and Enriched Galerkin Methods
for Phase-Field Fracture Propagation
in Elasticity

Prashant Mital, Thomas Wick, Mary F. Wheeler, and Gergina Pencheva

Abstract In this work, we introduce discontinuous Galerkin and enriched Galerkin
formulations for the spatial discretization of phase-field fracture propagation. The
nonlinear coupled system is formulated in terms of the Euler-Lagrange equations,
which are subject to a crack irreversibility condition. The resulting variational
inequality is solved in a quasi-monolithic way in which the irreversibility condition
is incorporated with the help of an augmented Lagrangian technique. The relaxed
nonlinear system is treated with Newton’s method. Numerical results complete the
present study.

1 Introduction

Fracture propagation in elasticity, plasticity, and porous media is currently one of the
major research topics in mechanical, energy, and environmental engineering. In this
paper, we concentrate specifically on fracture propagation in elasticity. We consider
a variational approach for brittle fracture introduced in [6], which has been later
formulated in terms of a thermodynamically-consistent phase-field technique [8]. In
fact, variational and phase-field formulations for fracture are active research areas
as attested in recent years, e.g., [1–4, 9, 10]. Our motivations for employing a phase-
field model are that fracture nucleation, propagation, kinking, and curvilinear paths
are automatically included in the model; post-processing of stress intensity factors
and remeshing resolving the crack path are avoided. Furthermore, the underlying
equations are based on continuum mechanics principles that can be treated with
adaptive Galerkin finite elements.

In this work, we extend existing Galerkin formulations for phase-field fracture
with regard to two major aspects:
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– Spatial discretization of the displacement field with discontinuous Galerkin (DG)
finite elements resulting in NIPG [12] and IIPG methods [5] and an enriched
Galerkin (EG) formulation [13];

– Formulation of a quasi-monolithic augmented Lagrangian iteration for the
nonlinear coupled displacement-phase-field system.

These frameworks are formulated in Sects. 2, 3 and 4 and are substantiated with
numerical tests in Sect. 5.

2 The Phase-Field Fracture Model

We limit our attention to 2-dimensional problems and let ˝ 2 R
2, be a smooth,

open, connected and bounded set. We denote the L2 scalar product with .�; �/, and
assume that the crack C is a 1-dimensional set, not necessarily connected, contained
in ˝ . Using the variational/phase-field approach to fracture [3, 6], the crack C is
represented using a continuous phase-field variable ' W ˝ ! Œ0; 1�. This value
of the phase-field variable interpolates between the broken (' D 0) and unbroken
(' D 1) states of the material. The diffusive transition zone between these two states
is controlled by a regularization parameter " > 0. Imposing a crack irreversibility
condition ' � 'n�1 (where 'n�1 WD '.tn�1/ denotes the previous time step
solution), and further ingredients for a thermodynamically consistent phase-field
framework [8] result in the following Euler-Lagrange formulation:

Formulation 1 For the loading steps n D 1; 2; 3; : : :: Find vector-valued displace-
ments and a scalar-valued phase-field variable fun; 'ng WD fu; 'g 2 fNu C Vg �W
such that

�

.1 � �/'2 C ���.u/; e.w/	 D 0 8w 2 V; (1)

as well as,

.1 � �/.'�.u/ W e.u/;  � '/

C Gc

�
� 1
"
.1 � '; � '/C ".r';r � '/

�
� 0 8 2 Win \ L1.˝/;

(2)

where V WD H1
0.˝/, Win WD fw 2 H1.˝/jw � 'n�1 � 1 a.e. on ˝g and

W WD H1.˝/. Furthermore, � D �.u/ D 2�se C �str.e/I is the stress tensor
with �s; �s > 0, and e.u/ D 0:5.ru C ruT/ is the linearized strain tensor. The
critical energy release rate is Gc > 0. The domain is subject to boundary conditions,
and we assume �D ¤ ;, with the possibly non-homogeneous and time-dependent
Dirichlet boundary conditions Nu. Moreover, � is a regularization parameter for the
elastic energy bounded below by 0, such that � � ", see e.g., [3].
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Algorithm 2 Solution algorithm
For each time tn:
Let m D 0; choose initial �m 2 L2.˝/, 
 > 0.
repeat

Let k D 0; choose initial QUk 2 Vh �Wh.
repeat

Find ıUk solving A0.Uk/.ıUk ; �/ D �A.Uk/.�/

Update QUkC1 QUk C ıUk

Update k kC 1
until Stopping criterion kUk � Uk�1k � TOL2 is satisfied.
Set UmC1 D .umC1; 'mC1/ D QUk

Update �mC1 D min.0; �m C 
'mC1/C .�m C 
.'mC1 � 'n�1//C

Update m mC 1
until Stopping criterion max.kumC1 � umk ; k�mC1 � �mk/ � TOLi is satisfied.
Set Un WD fun; 'ng D fumC1; 'mC1g

To treat crack irreversibility, we use the augmented-Lagrangian formulation
described in [14]. To apply this method, we begin by approximating the time
derivative @t' using the backward difference

@t' � @	t' D ' � 'n�1

	t
) 1

	t

�
.�C 
.' � 'n�1//C

�
; 	t D tn � tn�1:

Here, � and 
 are a penalization function and parameter, respectively, and 'n�1 is
the phase-field solution at the previous time step. Moreover, .x/C WD maxf0; xg.

3 A Quasi-monolithic Incremental Formulation

We choose a quasi-monolithic approach [7] as this reduces algorithmic complexity
and has been demonstrated to be numerically robust and efficient when ' is replaced
by the extrapolation Q' in the first term of Formulation 2. The reason for choosing Q'
is the need to circumvent the non-convexity of the underlying energy functional.

Formulation 2 For n D 1; 2; 3; : : :: Find Un WD U WD fu; 'g 2 fNu C Vg � W,
where V WD H1

0.˝/ and W WD H1.˝/, such that

A.U/.�/ D 0 8� WD fw;  g 2 V �W; (3)

where A.�/.�/ is the following semi-linear form

A.U/.�/ D
�

.1 � �/ Q'2 C ���.u/; e.w/	C .1 � �/.'�.u/ W e.u/;  /

C Gc

�
� 1
"
.1 � '; /C ".r';r /

�
C 1

	t

�
.�C 
.' � 'n�1//C;  

�
: (4)
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Here Q' is a linear extrapolation of time-lagged ', i.e. ' � Q' WD Q'.'n�1; 'n�2/,
with 'n�1; 'n�2 denoting solutions to previous time steps. Solving the nonlinear
variational problem (4) is performed with Newton’s method and line search
backtracking. The resulting solution algorithm is outlined in Algorithm 2.

4 Spatial Discretization with DG and EG

In this section we establish key notations for DG and EG followed by the mathe-
matical statement of the discrete variational forms. On a conforming subdivision Eh

of a polygonal domain ˝ subdivided into elements E we define the discontinuous
finite element subspace to be

Dk.Eh/ D fv 2 L2.˝/ W 8E 2 Eh; vjE 2 Pk.E/g; (5)

where Pk.E/ denotes the space of piecewise polynomials of total degree less than or
equal to k on E. We also define the space of CG approximating polynomials enriched
with discontinuous piecewise constants

DC0
k .Eh/ WD DC

k .Eh/[D0.Eh/: (6)

Here DC
k .Eh/ is the CG approximating space defined as

DC
k .Eh/ D fv 2 C.˝/ W 8E 2 Eh; vjE 2 P

C
k .E/; vj�D D 0g; (7)

where PC
k .E/ denotes the space of continuous piecewise polynomials of total degree

less than or equal to k on E.
In order to describe the vector-valued displacements, we consider the spaces

of vector functions that generalize (5) and (6): D k.Eh/ D .Dk.Eh//
d;DC0

k .Eh/ D
.DC0

k .Eh//
d;where d is the number of spatial dimensions. We note that the functions

in Dk.Eh/ and DC0
k .Eh/ are discontinuous along the edges (or faces) of the mesh.

Now, consider two neighboring elements Ee
1 and Ee

2 that share a common side e.
Naturally then, there are two traces of w 2 Dk.Eh/ along e (see Fig. 1). We consider
ne to be the normal vector associated with e to be oriented from Ee

1 to Ee
2 and define:

fwg D 1
2
.wjEe

1
/C 1

2
.wjEe

2
/; Œw� D .wjEe

1
/� .wjEe

2
/ 8e D @Ee

1 \ @Ee
2: We extend

this definition to elements on the boundary @˝ as: fwg D Œw� D .wjEe
1
/ 8e D

@Ee
1 \ @˝: Further, we denote by jej the length of an edge e in d D 2. We now state

the equations corresponding to a discontinuous spatial discretization directly from
inspection of the monolithic formulation (4) and the DG-scheme for pure linear
elasticity, e.g., [11]. We pursue a discontinuous representation of the displacement
variable u only, recognizing that the regularization in the case of the phase-field
variable ' enforces its continuity across the crack.
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DC
2 (Eh)DC
2 (Eh) D2(Eh)D2(Eh)

D1(Eh)D1(Eh)DC
1 (Eh)DC
1 (Eh) DC0

1 (Eh)DC0
1 (Eh)

DC0
2 (Eh)DC0
2 (Eh)

)b( )b()a( )a( )c( )c(

Fig. 1 Support points for bilinear and biquadratic basis functions. (a) CG: all support points
in red. (b) DG: support points for left element in red, for right element in blue. The common
edge has two sets of support points – one from each element. (c) EG: support points from CG
approximating space in red, piecewise constants in blue. Only the piecewise constant degree of
freedom is discontinuous across the common edge

We augment (4) with the jump and penalization terms to define the discrete
incremental semi-linear form

A.Uh/.�h/ D
X
E2Eh

Z
E

�
.1� �/ Q'2 C ���.u/; e.w/	

� X
e2�h[�D

Z
e

˚
..1� �/ Q'2 C ���.u/ � ne

�
Œw�CX

e2�h

Z
e

˚
..1� �/ Q'2 C���.w/ � ne

�
Œu�

CX
e2�D

Z
e

�
..1� �/ Q'2 C ���.w/ � ne

	
.u� gD/C

X
e2�h

ıe

jejˇ
Z
e
Œu�Œw�CX

e2�D

ıe

jejˇ
Z
e
.u� gD/w

C.1��/.'�.u/ W e.u/;  /CGc

�
�1
"
.1� ';  /C".r';r /

�
C 1

	t

�
.�C
.' � 'n�1//C;  

�
;

(8)

where  D 1 (NIPG) or  D 0 (IIPG); and ıe > 0 and ˇ > 0 (here ˇ D 1) are
the DG-penalization and superpenalization parameters, respectively. The DG-CG
variational problem reads: Find Uh WD fu; 'g 2 fNuh C VDG

h g �WCG
h such that

A.Uh/.�h/ D 0 8�h WD fw;  g 2 VDG
h �WCG

h : (9)
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The EG-CG variational problem reads: Find Uh WD fu; 'g 2 fNuh C VEG
h g � WCG

h
such that

A.Uh/.�h/ D 0 8�h WD fw;  g 2 VEG
h �WCG

h : (10)

The test and trial spaces are VDG
h WD ŒDk.Eh/�

2;VEG
h WD ŒDC0

k .Eh/�
2;WCG

h WD
DC

k .Eh/: Our formulation enforces both Dirichlet and Neumann boundary condi-
tions weakly. The use of homogeneous Neumann boundary conditions for u and
' results in a formulation exclusively dependent on �D. The directional derivative
of (8) needed for the Newton iterations is computed analytically.

5 A Numerical Test: Single Edge Notched Tension

The single edge notched tension test is a widely used experimental methodology
used to characterize the fracture toughness of various materials in plane-strain.

We consider a square plate with a horizontal notch placed at half-height, running
from the right outer surface to the center of the specimen. The plate is subject to
zero displacement boundary conditions on the bottom surface, and time-dependent
displacement on the top surface. The left and right surfaces are considered to
be traction-free. The problem setup is shown in Fig. 2. The material parameters
are chosen as � D 121:1538 kN/mm2, � D 80:7692 kN/mm2 and Gc D 2:7 �
10�3 kN/mm. The displacement boundary condition on the top surface is taken to
be Nuy.t/ D t N̨ with N̨ D 1mm=s: The expected response of this test is the build-
up of the stress concentration in the vicinity of the crack-tip, followed by unstable,
catastrophic crack growth.

ū = (0, ūy(t))ū = (0, ūy(t))

0.50.5

0.50.5

0.50.50.50.5

Fig. 2 Schematic of the single-edge-notched tension test (left), the final phase-field crack pattern
at T D 6:6 � 10�3 s (middle), and comparison of load-displacement curves from our monolithic
scheme with CG, DG-IIPG and EG-IIPG against results reported by Miehe et al. [9] and Heister et
al. [7]
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Fig. 3 We fix � and " on the coarsest mesh level and vary h. Left: CG. Middle: DG-IIPG. Right:
EG-IIPG. Spatial convergence is observed for all schemes

Our first objective is to study h-convergence for fixed ". We choose 	t D 1:0 �
10�4 s for the first 50 loading steps, after which	t D 1:0�10�5 s. This adaptivity in
the time step is necessary to capture the rapid movement of the crack tip. We choose
" D 4:4 � 10�2 mm, � D 1:0 � 10�12, and run our code for h1 D 4:4 � 10�2 mm,
h2 D 2:2� 10�2 mm, and h3 D 1:1� 10�2 mm. We evaluate the surface load vector
on the top surface of ˝ as � D .Fx;Fy/ D

R
@˝top

�.u/nds: In this example, we
are particularly interested in Fy. Our findings for the surface load evolution with
varying h are shown in Fig. 3 for the IIPG flavors of EG and DG. It is observed that
our approach is stable with spatial mesh refinement, and that our solution converges
as we use finer meshes. Comparison to literature values are displayed in Fig. 2 at
right.

Results obtained from DG-NIPG and EG-NIPG are very similar and are therefore
not presented here. The SIPG method ( D �1) yields unsatisfactory findings,
which are not shown in this work.

With the results of our scheme duly validated, we proceed to study the relative
efficiency of the schemes by comparing the number of Newton iterations taken
by each of them to converge. We first investigate the variation in the number of
Newton steps taken with the penalization parameter ıe. Note that when we multiply
Equations (8) throughout by 	t, our effective penalization of the jump becomes
ıe	t. This is an important detail that cannot be overlooked while using DG/EG for
the phase-field equations because for instance, using ıe D 105 with	t D 1�10�5 s
gives an effective penalization of ıe	t D 1 which is not sufficiently large and
produces spurious results. In the case of an adaptive time step size (we usually
take 	t D 1 � 10�4 s for the first 50 steps, and a smaller time step thereafter), the
product ıe	t is reported for the smaller time step. We vary the values of the effective
penalization and plot the cumulative number of Newton steps as a function of time
for h D 1:1�10�2 mm, " D 2 hŒmm�, and � D 1:0�10�12. The results of this study
with IIPG and NIPG are shown in Fig. 4. In Fig. 5, we observe that DG and EG



202 P. Mital et al.

Fig. 4 Newton convergence performance with h D 1:1 � 10�2 mm, 	t D f10�4; t <

0:005I 10�5; t � 0:005g, " D 2 hŒmm�, and � D 10�12 and varying penalty ıe. Left: DG-
NIPG. Right: EG-NIPG. Left: DG-IIPG. Right: EG-IIPG. Convergence is faster for higher values
of penalization

Fig. 5 Single edge notched tension test results using CG, DG-IIPG and EG-IIPG. Left: load vs.
displacement curve. Right: Newton convergence performance for constant 	t D 10�5 s

schemes take much fewer Newton iterations to converge than CG especially after
the onset of crack growth (approximately t D 0:0055 s).

For a better comparison of the efficiency, we run a test with the same physical
parameters as above, but with a uniform time step of 	t D 10�5 s throughout.
The motivation is to suppress the effect of adaptive time stepping on the Newton
performance and to give an unbiased comparison. Since the computational burden
with such a simulation is significant, we only consider the IIPG case with ıe	t D
102. These results are shown in Fig. 5. As we can see, DG and EG take roughly
the same number of Newton iterations (1800) while CG takes significantly more
(2520). We also observe that the load-displacement curves for all three methods are
in reasonable agreement. Hence, we can conclusively state that the Newton method
converges in fewer iterations for the DG and EG schemes than for the CG scheme.
Furthermore by inspecting Fig. 1, we see that EG has significantly fewer degrees of
freedom than DG.
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Numerical Method Based on DGM for Solving
the System of Equations Describing Motion
of Viscoelastic Fluid with Memory

Ivan Soukup

Abstract We present a numerical method for the solution of integro-differential
equations describing motion of an incompressible viscoelastic fluid with memory.
In particular, the system of equations consists of the momentum conservation
equation with the Cauchy stress tensor divided in a viscous and an elastic parts
which depend non-linearly on the symmetric part of velocity gradient and non-
linearly on the past values of the Finger strain tensor, respectively. The momentum
conservation equation is completed with system of equations that describes relation
between the velocity gradient and the Finger strain tensor. The method is based on a
discontinuous Galerkin method in the spatial variables and the BDF methods in the
time variables.

1 Introduction

Viscoelastic fluids appear in many aspects of life – from the nature to man-made
materials. The need to understand the behaviour of such fluids is evident. One of
the way to achieve a better understanding is to apply simulation tools that involves
numerical methods for solving PDEs.

Mathematically, the system of equations describing an incompressible and an
isothermal viscoelastic fluid motion is expressed by the continuity and momentum
equations

r � v D 0; Dv

Dt
D �r� Cr � � C f ;

where D
Dt denotes the material derivative, r� and r denote the divergence and the

gradient operators, respectively. The velocity is denoted by v, � stands for the
pressure, � denotes the stress tensor and f represents the external body force. In

I. Soukup (�)
Charles University in Prague, Sokolovská 83, Prague, Czeh Republic
e-mail: soukup@karlin.mff.cuni.cz

© Springer International Publishing Switzerland 2016
B. Karasözen et al. (eds.), Numerical Mathematics and Advanced
Applications ENUMATH 2015, Lecture Notes in Computational Science
and Engineering 112, DOI 10.1007/978-3-319-39929-4_21

205

mailto:soukup@karlin.mff.cuni.cz


206 I. Soukup

order to complete the above system of equations, we have to specify the constitutive
law.

Basically, there are two classes of constitutive equations for viscoelastic fluids,
differential and integral. We focus here on the integral type since it is more general
and usually the most physically precise approach. Most of the integral models we
are interested in have separated viscous and elastic part of the stress tensor, i.e.

� D � n C � e:

We work in the Eulerian framework and assume the following description of the
Newtonian component of the stress tensor

� n D �D;

where D denotes the symmetric part of the velocity gradient and � is the viscosity
constant. Further, the elastic part is assumed to be in the form

� e D
Z t

�1
G .t � s/H .B0.x; t; s//ds;

where G denotes a so-called memory function, H is in general non-linear tensor
operator and B0 stands for the Finger strain tensor. Let us remind the definition
of the Finger strain tensor. Consider a moving fluid particle, that has a position
vector x at the present time t and had a position vector x0 at some past time s. The
deformation gradient tensor E is defined by Eij D @xi

@xj0
, i; j D 1; : : : ; d, (d D 2; 3)

and expresses displacement of the particle moving from the point x0 to x. Then the
Finger strain tensor is defined by B0.�; t; s/ D E.�; t; s/ � ET.�; t; s/. Let us note that
the Finger strain tensor can be understood as a field that measures the deformation
of the fluid element currently (at time t) present at the position x, with respect to
the reference time s somewhere in the past. The time evolution of the Finger strain
tensor is governed by the equation

DB0

Dt
D rv �B0 CB0 � rvT :

Let us note that this general framework covers most of the integral models
like Oldroyd-B, Doi Edwards, K-BKZ, Rivlin-Sawyers, Wagner, PSM and many
others. In the development of the numerical method we follow mainly the work
[2] where the concept of deformation fields is presented. Our method is based on
a discontinuous Galerkin method in the spatial variables and BDF methods in time
variables. That is in contrast with standard FEM methods and TDG/BDF used in
[2] and others like [1, 3, 6] or [4]. The implementation is carried out in FEniCS
environment.
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2 Problem Formulation

Let ˝ � R
d, d D 2; 3 be a bounded domain and T > 0. We set QT D ˝ � Œ0;T�

and by @˝ we denote the boundary of˝ which consists of two disjoint parts, @˝ D
�D[�N . Following [2] we introduce the age � D t�s as a new independent variable
instead of s and define the Deformation field tensor

B.x; t; �/ � B0.x; t; t � �/:

All together we are interested in finding .v; �;B/ such that

r � v D 0 in QT

@v

@t
C v � rv D �r� C f Cr �

�
�DC

Z C1
0

G .�/H .B.x; t; �//d�

�
in QT

@B

@t
C @B

@�
C v � rB D rv �B CB � rvT ; x 2 ˝; t 2 Œ0;T�; � 2 Œ0;C1/:

We complete this system with the initial conditions v.x; 0/ D v0.x/ in ˝ ,
B.x; 0; �/ D Bold.x; �/ in ˝ � Œ0;C1/ and boundary conditions v D vD on
�D � .0;T/, �Dn� �I D 0 on �N � .0;T/ and B.x; t; 0/ D I in QT , where Bold is
a given function representing all the past deformations of the flow.

3 Discretization

The numerical scheme relies heavily on the use of the backward Euler time
discretization of Navier-Stokes equations and the forward Euler time discretization
of the equations describing the time evolution of the Deformation field tensor. This
semi-implicit approach allows us at first to evaluate the Deformation field tensor
and afterwards to compute separately a new velocity field.

Moreover, the spatial discretization of the Navier-Stokes equations is based on
the IIPG discretization with the use of upwinding scheme (see [5]). The spatial
discretization of the evolution equation of the Deformation field tensor is based on
a DG approach with the upwinding as well and the discretization with respect to the
age variable is carried through by BDF-2 method.



208 I. Soukup

3.1 Finite-Dimensional Spaces and Subdivision of Time
Intervals

Let us start with spatial discretization and let Th be a regular subdivision of ˝ . We
seek an approximation of the velocity, the pressure and the Deformation field tensor
in the finite-dimensional spaces

Vhp D fv 2 L2.˝/d W 8K 2 Th; v 2 .Pp.K//
dg;

Rhq D fr 2 L2.˝/ W 8K 2 Th; r 2Pq.K/g;
Qhp D fB 2 L2.˝/d�d W 8K 2 Th;B 2 .Pp.K//

d�dg;

where Pp.K/ and Pq.K/ denotes the space of all polynomials on K of degree � p
and � q, respectively.

Let 0 D t0 < t1 < : : : < tN D T be a partition of the interval .0;T/ and
	tk D tk � tk�1, k D 1; : : : ;N, and let 0 D �1 < �2 < : : : < �N� be a partition of
.0; �N� /, where �N� �1.

3.2 Discretization of the Navier-Stokes Equations

Let us approximate � e in the following way

Z C1
0

G .�/H .B.x; t; �//d� �
N�X
kD1

!kH .B.x; t; �k//;

!k D
Z �kC1

�k

G .�/d�; k D 1; : : : ;N� � 1;

!N� D
Z 1
�N�

G .�/d�:

We denote n the unit normal vector for � � @K, K 2 Th, and we recall the usual
notation for jumps and averages

for x 2 � W vL
� .x/ D lim"!0;">0 v.xC "n/; vR

� .x/ D lim"!0;">0 v.x � "n/;
Œv� D vL � vR; hvi D 1

2
.vL C vR/:
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Now, we define for all v;w;' 2 Vhp, �; r 2 Rhq and � > 0 the following forms

Ah.v;'/ D �ah.v;'/C J�h .v;'/

ah.v;'/ D
X
K2Th

Z
K
D.v/D.'/dx �

X
� 2� ID

Z
�

hD.v/in Œ'� dS

J�h .v;'/ D
X
� 2� ID

Z
�

� Œv� Œ'� dS

bh.�;'/ D �
X
K2Th

Z
K
� div.'/dxC

X
� 2� ID

Z
�

h�ni Œ'� dS

ch.v;w;'/ D �1
2

X
K2Th

Z
K

vwr'dxC
X

� 2� IDN

Z
�

H.v;w;n/ Œ'� dS;

where

H.v;w;n/ D 1

2
vL
� w

L
� n; if

1

2
.wL

� C wR
� /n > 0

D 1

2
vR
� w

R
� n; else.

Moreover, for all n D 1; : : : ;N

Ln.';B/ D .f .tn/;'/C
X
� 2� D

Z
�

�'vD.tn/dS

�
N�X
kD1

!k

"Z
˝

H .B.x; tn; �k//D.'/dx �
X

� 2� IDN

Z
�

hH .B.x; tn; �k//inŒ'�dS
#

R.q/ D
X
� 2� D

Z
�

qvDndS:

Now, by v0h we denote the projection of v0 on Vhp and for given � > 0, Bh 2 Qhp

and n 2 f1; : : : ;Ng we consider .vn
h; �

n
h / 2 Vhp �Rhq the approximate solution of

the Navier-Stokes equations at the time tn, if for all 'h 2 Vhp and for all rh 2 Rhq,
respectively, it holds

.vn
h � vn�1

h ;'h/

	tn
C Ah.v

n
h;'h/C bh.�

n
h ;'h/ Cch.vn

h; v
n�1
h ;'h/

D Ln.'h;Bh/;

bh.rh; v
n
h/ D R.rh/:
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3.3 Discretization of the Evolution Equation for the Finger
Strain Tensor

Let us denote @K�n � fx 2 @K n @˝ W hvh.x; tn/in < 0g as the inlet part of
the boundary of K 2 Th, A � B � faijbijgdi;jD1 2 R

d�d for all A;B 2 R
d�d and�

u; v
	
K
D RK u � vdx, for all u; v 2 Qhp.

Further, let ˛i, i D 1; 2; 3 be the BDF-2 coefficients depending on 	�k D �k �
�k�1 and	�k�1.

Let us also denote Bnk
h .�/ D Bh.�; tn; �k/ 2 Qhp an approximate solution to the

evolution equation for the Deformation field tensor at the time tn and the age �k.
Now, using standard DG spatial discretization together with the use of the

upwinding scheme, the BDF-2 method for the age discretization and the forward
Euler method for the discretization in the time t variable we get the numerical
scheme: For given n D 0; : : : ;N � 1 and given vn

h 2 Vhp find Bnk
h 2 Qhp such

that for all v
h
2 Qhp and for all k D 1; : : : ;N� holds

	�k
X
K2Th

�
B.nC1/k

h ; v
h

	
K
D 	�k

X
K2Th

�
Bnk

h ; vh

	
K

�	tnC1
X
K2Th

�
˛0B

nk
h C ˛1Bn.k�1/

h C ˛2Bn.k�2/
h ; v

h

	
K

�	tnC1	�k
X
K2Th

�
vn
h � rBnk

h ; vh

	
K

C	tnC1	�k
X
K2Th

�
rvn

h �Bnk
h �Bnk

h � r.vn
h/

T ; v
h

	
K

C	tnC1	�k
X
K2Th

Z
@K�

n n@˝


n.vn

h/
T
�
Bnk

h


x

� � v
h
dS;

where n denotes the unit normal vector. Here we use the initial condition
B.x; 0; �/ D Bold.x; �/ in ˝ � Œ0;C1/ and boundary condition B.x; t; 0/ D I

in QT . Also, let us mention that for k D 1 we use backward Euler discretization
instead of BDF-2, i.e. we set Bn.�1/

h D 0, ˛0 D 1 and ˛1 D �1.

4 Numerical Experiment

We present two numerical experiments in the similar geometry but for different
models. We consider a 2-dimensional problem of a fluid flow through a channel
with an obstacle. The fluid enters the channel through the left vertical boundary
and exits through the right one. At the inflow boundary we assume the following
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Fig. 1 The domain and its mesh for hD 0:2

Table 1 Half-step method error estimate for the UCM. The l parameter defines the level of
discretization, i.e. l D 1 corresponds to the discretization parameters presented above, l D 2

corresponds to the discretization parameters of a half size, etc

l kvl � vl=2k k�l � �l=2k kBl � Bl=2k
1:0 1e� 08 5e� 11 1e� 05
0:5 3e� 09 5e� 11 3e� 06
0:25 8e� 10 4e� 11 8e� 07

parabolic velocity field

v.x1; x2/ D .x2.1 � x2/; 0/:

On the outflow we assume a zero Neumann condition and on the rest of @˝ the
velocity is set to 0. The domain with basic mesh is shown in Fig. 1.

Further, we set h D 0:2 and the time discretization steps to be equidistant with
	t D 0:05,N D 8. The choice of the age discretization steps loosely follows [2], i.e.
N� D 43 and	�0 D 0:05,	�kC1 D 1:0778	�k, k D 0; : : : ;N� �1. The polynomial
degrees of approximations are set to p D 2 and q D 1.

In the first numerical experiment we test the method on the Upper Convected
Maxwell (UCM) model, i.e. we assume that � D 0, G .�/ D e�� and H .B/ DB.
Table 1 presents the error estimates obtained by the half-step method (i.e. in the
error computation we take as a precise solution the solution of the problem with
h D h=2, 	t D 	t=2, N D 2N, N� D 2N� � 1 and we insert new age nodes in the
middle of each two following original nodes).
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Table 2 Half-step method error estimate for Oldroyd-B

l kvl � vl=2k k�l � �l=2k kBl � Bl=2k
1:0 5e� 11 4e� 09 1e� 05
0:5 6e� 12 1e� 09 3e� 06
0:25 1e� 12 3e� 10 8e� 07

Fig. 2 The velocity field and streamlines for the first experiment. The red colour corresponds to
higher velocity magnitude and the blue colour corresponds to lower velocity magnitude

The second numerical experiment is performed for the Oldroyd-B model with � D
0:0035 (i.e. the viscosity of blood), G .�/ D e�� and H .B/ DB. Table 2 presents
the error estimates obtained by the half-step method.

5 Conclusion

Numerical experiments show that the method converges, measured by the half-step
method. We also observe in Fig. 2 that the flow behaves in a reasonable way.

Thus, the method seems to be working although it was tested on simple problems.
In future we plan to test the method on more benchmarks and more importantly
to analyze the age discretization error and the spatial discretization error of the
evolution equation of the Finger strain tensor.
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Stability Analysis of the ALE-STDGM
for Linear Convection-Diffusion-Reaction
Problems in Time-Dependent Domains

Monika Balázsová and Miloslav Feistauer

Abstract In this paper we investigate the stability of the space-time discontinuous
Galerkin method (STDGM) for the solution of nonstationary, linear convection-
diffusion-reaction problem in time-dependent domains formulated with the aid of
the arbitrary Lagrangian-Eulerian (ALE) method. At first we define the continuous
problem and reformulate it using the ALE method, which replaces the classical
partial time derivative with the so called ALE-derivative and an additional con-
vective term. In the second part of the paper we discretize our problem using the
space-time discontinuous Galerkin method. The space discretization uses piecewise
polynomial approximations of degree p � 1, in time we use only piecewise linear
discretization. Finally in the third part of the paper we present our results concerning
the unconditional stability of the method.

1 Formulation of the Continuous Problem

We consider an initial-boundary value nonstationary, linear convection-diffusion-
reaction problem in a time-dependent bounded domain:

Find a function u D u.x; t/ with x 2 ˝t; t 2 .0;T/ such that

@u

@t
C v � ru � �4uC cu D g in ˝t; t 2 .0;T/; (1)

u D uD on @˝t; t 2 .0;T/; (2)

u.x; 0/ D u0.x/; x 2 ˝0: (3)

We assume that v D .v1; v2/; c; g; uD; u0 are given functions and � > 0 is a
given constant. Moreover let QT D f.x; t/I t 2 .0;T/; x 2 ˝tg, and let us assume
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that there exist constants cv; cc > 0, such that

v 2 C.Œ0;T�I W1;1.˝t//; jrvj � cv; jvj � cv in QT ;

c 2 C.Œ0;T�;L1.˝t//; jc.x; t/j � cc in QT :

Problem (1)–(3) will be reformulated using the so called arbitrary Lagrangian-
Eulerian (ALE) method. It is based on a regular one-to-one ALE mapping of the
reference domain˝0 onto the current configuration˝t:

At W ˝0 ! ˝ t;

X 2 ˝0 ! x D x.X; t/ D At.X/ 2 ˝ t; t 2 Œ0;T�:

We assume that At 2 C1.Œ0;T�IW1;1.˝t//; i.e. the mapping At belongs to the
Bochner space of continuously differentiable functions in Œ0;T� with values in the
Sobolev space W1;1.˝t/. We define the ALE velocity by

Qz.X; t/ D @

@t
At.X/; t 2 Œ0;T�; X 2 ˝0;

z.x; t/ D Qz.A �1t .x/; t/; t 2 Œ0;T�; x 2 ˝t:

Let jz.x; t/j; jdiv z.x; t/j � cz for x 2 ˝t; t 2 .0;T/: Further, we define the ALE
derivative Dt f D Df=Dt of a function f D f .x; t/ for x 2 ˝t and t 2 Œ0;T� as

Dtf .x; t/ D D

Dt
f .x; t/ D @Qf

@t
.X; t/;

where Qf .X; t/ D f .At.X/; t/; X 2 ˝0; and x D At.X/ 2 ˝t. The use of the chain
rule yields the relation

Df

Dt
D @f

@t
C z � rf ; (4)

which allows us to reformulate problem (1)–(3) in the ALE form:
Find u D u.x; t/ with x 2 ˝t; t 2 .0;T/ such that

DtuC .v � z/ � ru � �4uC cu D g in ˝t; t 2 .0;T/; (5)

u D uD on @˝t; (6)

u.x; 0/ D u0.x/; x 2 ˝0: (7)

In what follows, we shall use the notation w D v � z for the ALE transport
velocity.

Numerical methods for linear convection-diffusion-reaction equations in a
domain ˝ independent of time were analyzed e.g. in [5]. In the case, when
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problem (1)–(3) is considered in a fixed domain, error estimates for the space-
time discontinuous Galerkin discretization were derived in [4]. These results were
generalized to the case of nonlinear convection and diffusion (cf. [3]). The paper [1]
is devoted to the proof of unconditional stability of the space-time discontinuous
Galerkin method (STDGM) applied to nonlinear convection-diffusion problems.
The STDGM was used with success for the numerical solution of compressible
flow in time-dependent domains and also for the dynamical linear and nonlinear
elasticity (see [3]). In [2], the stability of the time discontinuous Galerkin semi-
discretization of problem (5)–(7) was analyzed. Here we are concerned with the
investigation of the stability of the complete STDGM applied to problem (5)–(7) in
a time-dependent domain.

2 Space-Time Semidiscretization

In the time interval Œ0;T� we construct a partition formed by time instants 0 D t0 <
t1 < : : : < tM D T and set Im D .tm�1; tm/ and �m D tm � tm�1 for m D 1; : : : ;M.
Further we set � D maxmD1;��� ;M �m. For a function ' defined in

SM
mD1 Im we denote

one-sided limits at tm as 'ṁ D '.tm˙/ D limt!tm˙ '.t/ and the jump as f'gm D
'.tmC/ � '.tm�/:

For any t 2 Œ0;T� we denote by Th;t a partition of the closure ˝ t into a finite
number of closed triangles with mutually disjoint interiors. We set hK D diam.K/
for K 2 Th;t. The boundary of the domain will be divided into two parts: @˝t D
@˝�t [ @˝Ct :

w.x; t/ � n.x/ < 0 on @˝�t ;8t 2 Œ0;T� (inflow boundary)

w.x; t/ � n.x/ � 0 on @˝Ct ;8t 2 Œ0;T� (outflow boundary);

where n denotes the unit outer normal to @K: Similarly for each K 2 Th;t we set

@K� .t/ D fx 2 @KI w .x; t/ � n .x/ < 0g ;
@KC .t/ D fx 2 @KI w .x; t/ � n .x/ � 0g :

By Fh;t we denote the system of all faces of all elements K 2 Th;t. It consists
of the set of all inner faces F I

h;t and the set of all boundary faces F B
h;t: Fh;t D

F I
h;t [ F B

h;t: Each � 2 Fh;t will be associated with a unit normal vector n� . By

K.L/� and K.R/� 2 Th;t we denote the elements adjacent to the face � 2 Fh;t. We

shall use the convention that n� is the outer normal to @K.L/� . Over a triangulation
Th;t, for each positive integer k, we define the broken Sobolev space Hk.˝t;Th;t/ D
f'I'jK 2 Hk.K/ 8K 2 Th;tg:
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If ' 2 H1.˝t;Th;t/ and � 2 Fh;t, then 'j.L/� ; 'j.R/� will denote the traces of ' on

� from the side of elements K.L/� ;K.R/� adjacent to � . For � 2 F I
h;t we set

h'i� D
1

2

�
'j.L/� C 'j.R/�

	
; Œ'�� D 'j.L/� � 'j.R/� ;

h.� / D
h
K
.L/
�

C h
K
.R/
�

2
for � 2 F I

h;t; h.� / D h
K
.L/
�

for � 2 F B
h;t:

If u; ' 2 H2.˝t;Th;t/, � 2 R and cW > 0, we introduce the following forms.

Convection form:

bh.u; '; t/ D
X

K2Th;t

Z
K
w � ru ' dx

�
X

K2Th;t

Z
@K�\@˝t

w � nu' dS �
X

K2Th;t

Z
@K�n@˝t

w � nŒu�' dS;

Diffusion form:

ah.u; '; t/ D
X

K2Th;t

Z
K
ru � r' dx

�
X

� 2F I
h;t

Z
�

.hrui � n� Œ'�C � hr'i � n� Œu�/ dS

�
X

K2Th;t

Z
@K�\@˝t

.ru � n� ' C �r' � n� u � �r' � n� uD/ dS;

Interior and boundary penalty:

Jh.u; '; t/ D cW
X

� 2F I
h;t

h.� /�1
Z
�

Œu� Œ'� dS

CcW
X

K2Th;t

h.� /�1
Z
@K�\@˝t

u ' dS;

Ah.u; '; t/ D �ah.u; '; t/C � Jh.u; '; t/;
Reaction form:

ch.u; '; t/ D
X

K2Th;t

Z
K
cu' dx;
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Right-hand side form:

lh.'; t/ D
X

K2Th;t

Z
K
g' dxC � cW

X
� 2FB

h;t

h.� /�1
Z
�

uD ' dS:

Let us note that in integrals over faces we omit the subscript � . We consider
� D 1, � D 0 and � D �1 and get the symmetric (SIPG), incomplete (IIPG)
and nonsymmetric (NIPG) variants of the approximation of the diffusion terms,
respectively.

Further, we set

.';  /! D
Z
!

' dx; k'k! D
�Z

!

j'j2 dx
�1=2

;

kkw;� D
���pjw � nj 

���
L2.�/

;

where ! � R
2, � is either a subset of @˝ or @K and n denotes the corresponding

outer unit normal to @˝ or @K, provided the integrals make sense.
Let p; q � 1 be integers. For any m D 1; : : : ;M and t 2 Œ0;T� we define the

finite-dimensional spaces

Sph;t D
˚
' 2 L2.˝t/I 'jK 2 Pp.K/; K 2 Th;t; t 2 Œ0;T�

�
;

Sp;qh;� D
˚
' 2 L2.QT/I ' D '.x; t/; for each X 2 ˝0

the function '.At.X/; t/ is a polynomial

of degree � q in t; '.�; t/ 2 Sph;t for every t 2 Im; m D 1; : : : ;M
�
:

Definition 1 We say that functionU is an approximate solution of problem (5)–(7),
if U 2 Sp;qh;� and

Z
Im



.DtU; '/˝t

C Ah.U; '; t/C bh.U; '; t/C ch.U; '; t/
�
dt (8)

C.fUgm�1; 'Cm�1/˝tm�1
D
Z
Im

lh.'; t/ dt 8' 2 Sp;qh;� ; m D 1; : : : ;M;

U�0 2 Sph;0; .U�0 � u0; vh/ D 0 8vh 2 Sph;0: (9)

3 Analysis of the Stability

In our further considerations for each t 2 Œ0;T�we introduce a system of conforming
triangulations fTh;tgh2.0;h0/, where h0 > 0. We assume that it is shape regular and
locally quasiuniform. Under these assumptions, the multiplicative trace inequality
and the inverse inequality hold.
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Moreover, we assume that Th;t D fKt D At.K0/IK0 2 Th;0g: This assumption
is usually satisfied in practical computations, when the ALE mapping At is a
continuous, piecewise affine mapping in ˝0 for each t 2 Œ0;T�.

In the space H1.˝;Th;t/ we define the norm

k'kDG;t D
0
@ X

K2Th;t

j'j2H1.K/ C Jh.'; '; t/

1
A
1=2

:

Moreover, over @˝ we define the norm

kuDkDGB;t D
0
@cW X

K2Th;t

h�1.� /
Z
@K�\@˝t

juDj2 dS
1
A
1=2

:

If we use ' WD U as a test function in (8), we get the basic identity

Z
Im



.DtU;U/˝t

C Ah.U;U; t/C bh.U;U; t/C ch.U;U; t/
�
dt (10)

C.fUgm�1;UCm�1/˝tm�1
D
Z
Im

lh.U; t/ dt:

Let us denote

�.U/ D 1

2

X
K2Th;t

�
kUk2w;@K\@˝ C kŒU�k2w;@K�n@˝

	
: (11)

For a sufficiently large constant cW , whose lower bound is determined by the
constants from the multiplicative trace inequality, inverse inequality and local
quasiuniformity of the meshes, we can prove the coercivity of the diffusion and
penalty terms:

Z
Im

Ah.U;U; t/ dt � �

2

Z
Im

kUk2DG;t dt �
�

2

Z
Im

kuDk2DGB;t dt: (12)

Furthermore, if k1 > 0, then the following inequalities for the convective term,
reaction term and for the right-hand side form hold:

bh.U;U; t/ D �.U/� 1
2

Z
˝t

U2r � w dx; (13)

Z
Im

jch.U;U; t/j dt � cc

Z
Im

kUk2˝t
dt; (14)
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Z
Im

jlh.U; t/j dt � 1

2

Z
Im


kgk2˝t
C kUk2˝t

�
dt (15)

C�k1
Z
Im

kuDk2DGB;t dtC
�

k1

Z
Im

kUk2DG;t dt:

In what follows, we are concerned with the derivation of inequalities based on
estimating the expression

R
Im
.DtU;U/˝t dt. By some manipulation we find that

Z
Im

.DtU;U/˝t dtC

fUgm�1;UCm�1�˝tm�1

(16)

� 1

2

�
kU�m k2˝tm

� kU�m�1k2˝tm�1
C kfUgm�1k2˝tm�1

	

�1
2

Z
Im

.U2;r � z/˝t dt;

and
Z
Im

.DtU;U/˝t dtC .fUgm�1;UCm�1/˝tm�1
(17)

� 1

2
.kU�mk2˝tm

C 1

2
kUCm�1k2˝tm�1

/ � .U�m�1;UCm�1/˝tm�1

�1
2

Z
Im

.U2;r � z/˝t dt:

Taking into account that �.U/ � 0 and w D v� z, from (10), (14) and (12)–(16)
and putting k1 D 4, we get the relation

kU�mk2˝tm
� kU�m�1k2˝tm�1

�
Z
Im

.U2;r � v/˝t dt (18)

C
Z
Im

.2c � 1;U2/˝t C
�

2

Z
Im

kUk2DG;t dt

� c1

Z
Im


kgk2˝t
C kuDk2DGB;t

�
dt

with a constant c1 independent of data, h and � .
First, let us assume that

2c � r � v � 1: (19)
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Then the summation of (18) over m D 1; : : : ; k � M yields the estimate

kU�k k˝tk
C �

2

kX
m�1

Z
Im

kUk2DG;t dt (20)

� kU�0 k2˝0 C c1

kX
m�1

Z
Im


kgk2˝t
C kuDk2DGB;t

�
dt;

which proves the stability.
If condition (19) is not valid, then the stability analysis is more complicated. In

this case, instead of (18) we get the inequality

kU�m k2˝tm
� kU�m�1k2˝tm�1

C �

2

Z
Im

kUk2DG;t dt (21)

� c1

kX
m�1

Z
Im


kgk2˝t
C kuDk2DGB;t

�
dtC c2

Z
Im

kUk2˝t
dt:

It is necessary to estimate the term
R
Im
kUk2˝t

dt. It is rather technical and the proof
has been carried out for q D 1, i.e., for piecewise linear time discretization. Then it
is possible to show that there exist constants L1 and M1 such that

kUCm�1k2˝tm�1
C kU�mk2˝tm

� L1
�m

Z
Im

kUk2˝t
dt; (22)

kUCm�1k2˝tm�1
� M1

�m

Z
Im

kUk2˝t
dt:

This allows to prove that there exists a constant c� > 0 depending on c2 and L1 such
that
Z
Im

kUk2˝t
dt � 2c1

L1
�m

Z
Im


kgk2˝t
C kuDk2DGB;t

�
dtC 8M1

L21
�mkU�m�1k2˝tm�1

(23)

holds, if 0 < �m � c�.
Now, by virtue of (21) and (23), the summation over m D 1; : : : ; k � M and the

application of the discrete Gronwall lemma we get the following result.
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Theorem 2 Let q D 1 and 0 < �m � c�. Then there exists a constant c3 > 0 such
that

kU�m k2˝tm
C

mX
jD1
kfUj�1gk2˝tj�1

C ˇ0

2

mX
jD1

Z
Ij

kUk2DG;j dt (24)

� c3

0
@kU�0 k2˝t0

C
mX
jD1

Z
Ij

Rj dt

1
A ; m D 1; : : : ;M; h 2 .0; h0/;

where

Rj D c1

�
1C 2c2

L1
�j

��
kgk2˝j

C kuDk2DGB;t
	
:
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A Posteriori Error Estimates for Nonstationary
Problems

Vít Dolejší, Filip Roskovec, and Miloslav Vlasák

Abstract We apply continuous and discontinuous Galerkin time discretization
together with standard finite element method for space discretization to the heat
equation. For the numerical solution arising from these discretizations we present
a guaranteed and fully computable a posteriori error upper bound. Moreover, we
present local asymptotic efficiency estimate of this bound.

1 Introduction

We consider the heat equation, which represents a model problem to more general
linear parabolic problems. We discretize this problem by standard finite element
method in space and by either continuous or discontinuous Galerkin method in time.

Recently, time discretizations of Galerkin type start to be very popular. They
represent higher order and very robust schemes for solving ordinary differential
equations. When combined with classical Galerkin space discretizations, e.g. with
finite element method (FEM), it is possible to analyze the complete discretization
in a unified framework. For a survey about Galerkin time discretizations see [1]
and [2]. A nice result presenting the connection of these discretizations to classical
Runge–Kutta methods can be found in [8].

In this paper we shall focus on a posteriori error analysis of proposed problem.
Our aim is to present a guaranteed, cheap and fully computable upper bound
to chosen error measure that provides local efficiency at least asymptotically.
To achieve these properties we use the technique of so-called equilibrated flux
reconstruction, see e.g. [5]. We have been influenced by [4], where lower order
time discretizations are considered, and by [2], where Galerkin time discretizations
are analyzed and nodal superconvergence is derived via a posteriori error estimates.

V. Dolejší • F. Roskovec • M. Vlasák (�)
Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83,
186 75 Prague 8, Czech Republic
e-mail: dolejsi@karlin.mff.cuni.cz; roskovec@gmail.com; vlasak@karlin.mff.cuni.cz

© Springer International Publishing Switzerland 2016
B. Karasözen et al. (eds.), Numerical Mathematics and Advanced
Applications ENUMATH 2015, Lecture Notes in Computational Science
and Engineering 112, DOI 10.1007/978-3-319-39929-4_23

225

mailto:dolejsi@karlin.mff.cuni.cz
mailto:roskovec@gmail.com
mailto:vlasak@karlin.mff.cuni.cz


226 V. Dolejší et al.

2 Continuous Problem

Let ˝ � Rd (d D 1; 2; 3) be a bounded polyhedral domain with Lipschitz
continuous boundary @˝ and T > 0. Let us consider the following initial–boundary
value problem

@u

@t
�	u D f in ˝ � .0;T/; (1)

u D 0 in @˝ � .0;T/;
u D u0 in ˝:

We assume that the right-hand side f 2 C.0;T;L2.˝// and the initial condition
u0 2 L2.˝/.

Let .:; :/ and k:k be the L2.˝/-scalar product and norm, respectively. Let us
denote the time derivative u0 D @u

@t . We define spaces X D L2.0;T;H1
0.˝// and

Y D fv 2 X W v0 2 L2.0;T;L2.˝//g; (2)

Y0 D fv 2 X W v0 2 L2.0;T;L2.˝//; v.0/ D u0g:

It is well known that the spaces Y and Y0 are subsets of C.Œ0;T�;L2.˝//.

Definition 1 We call u 2 Y0 the weak solution of problem (1), if

Z T

0

. f ; v/ � .u0; v/ � .ru;rv/dt D 0; 8v 2 X: (3)

We assume that there exists a unique weak solution of problem (3).

3 Discretization

We consider a space partition Th consisting of a finite number of closed, d -
dimensional simplices K with mutually disjoint interiors and covering ˝, i.e.
˝ D [K2ThK. We assume conforming properties, i.e. neighbouring elements share
an entire edge or face. We set hK D diam.K/ and h D maxKhK . By �K we denote the
radius of the largest d-dimensional ball inscribed into K. We assume shape regularity
of elements, i.e. hK=�K � C for all K 2 Th, where the constant does not depend on
Th for h 2 .0; h0/.

We set the space for the semidiscrete solution

Xh D fv 2 H1
0.˝/ W vjK 2 Pp.K/g; (4)
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where Pp.K/ denotes the space of polynomials up to the degree p � 1 on K. We
define˘ p

˝ W H1
0.˝/! Xh to be the L2-orthogonal projection.

In order to discretize problem (3) in time, we consider a time partition 0 D
t0 < t1 < : : : < tr D T with time intervals Im D .tm�1; tm/, time steps �m D
jImj D tm � tm�1 and � D maxmD1;:::;r �m. Let .:; :/K;m and .:; :/K be the local L2-
scalar products over K � Im and K, respectively, and k:kK;m be the local L2.K � Im/-
norm. In the forthcoming discretization process we will assume two variants of the
time discretization, the conforming and the nonconforming one. In the conforming
case, the approximate solution will be sought in the spaces of piecewise polynomial
functions

Y�0h D fv 2 Y W vjIm D
qC1X
jD0

vj;mt
j; vj;m 2 Xh; v.0/ D ˘ p

˝u
0g (5)

and in the nonconforming case in the space

X�h D fv 2 X W vjIm D
qX

jD0
vj;mt

j; vj;m 2 Xhg: (6)

The spaces Y�0h and X�h represent natural discrete spaces to Y0 and X, respectively.
The space Y�0h consists of functions that are one degree higher in time than
the functions from the space X�h . On the other hand the functions from Y�0h are
continuous with respect to time with fixed starting value at 0. Altogether, both these
spaces have the same dimension r.qC 1/ dimXh.

For a function v 2 X�h we define the one–sided limits

vm˙ D v.tm˙/ D lim
t!tm˙

v.t/ (7)

and the jumps

fvgm D vmC � vm�; m � 1 and fvg0 D v0C � u0: (8)

We omit the subscript˙ for continuous functions v 2 Y, since v.tm˙/ D v.tm/.
Now, we are able to formulate two variants of discrete schemes – the conforming

version:

Definition 2 We say that the function u�h 2 Y�0h is the discrete solution of
problem (3) obtained by time continuous Galerkin – finite element method (cG–
FEM), if the following conditions are satisfied

Z
Im

..u�h/
0; v/C .ru�h;rv/dt D

Z
Im

.f ; v/dt (9)

8m D 1; : : : ; r; 8v 2 X�h ;
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and the nonconforming version:

Definition 3 We say that the function u�h 2 X�h is the discrete solution of problem (3)
obtained by time discontinuous Galerkin – finite element method (dG–FEM), if the
following conditions are satisfied

Z
Im

..u�h/
0; v/C .ru�h;rv/dtC .fu�hgm�1; vm�1C / D

Z
Im

.f ; v/dt (10)

8m D 1; : : : ; r; 8v 2 X�h :

It is evident that the exact solution u 2 Y0 defined by (3) satisfies both relations (9)
and (10).

The methods (9) and (10) can be viewed as a generalization of classical one–
step methods for parabolic problems. It is possible to show that setting q D 0,
i.e. piecewise linear continuous approximation in time for cG–FEM or piecewise
constant approximation in time for dG–FEM, is equivalent (up to suitable quadrature
of the right–hand side) to Crank–Nicolson, resp. backward Euler method, in time
and FEM in space.

4 A Posteriori Error Analysis

In this section we shall propose suitable error measure and derive a posteriori error
estimate of this measure.

4.1 Error Measure

Let dK;m > 0 be an arbitrary parameter associated with space-time element K � Im,
e.g. d2K;m D h2K C �2m or dK;m D 1 or dK;m D hK or d2K;m D .h�2K C ��2m /�1. Let us
define the space

Y� D fv 2 X W v0jIm 2 L2.Im;L
2.˝//g (11)

of piecewise continuous functions with respect to time. We define the norm

kvk2Z;K;m D
h2Kkrvk2K;m C �2mkv0k2K;m

d2K;m
; kvk2Z D

X
K;m

kvk2Z;K;m: (12)
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Since Y� � X, we gain from (3) that the exact solution u 2 Y satisfies

Z
Im

.f ; v/ � .u0; v/ � .ru;rv/dt � .fugm�1; vm�1C / D 0 (13)

8m D 1; : : : ; r; 8v 2 Y� :

The existence of the solution u of problem (13) comes clearly from the existence
of the solution of problem (3). We shall focus on uniqueness of the solution
of problem (13). Let us assume that there exists another solution u1 2 Y� of
problem (13). After subtracting the equation for u from the equation for u1 and
setting v D 2.u� u1/ we gain

0 D
Z
Im

2.u0 � u01; u � u1/C 2kr.u � u1/k2dt (14)

C2.fu� u1gm�1; .u � u1/
m�1C /

D k.u � u1/
m�k2 � k.u � u1/

m�1� k2 C kfu � u1gm�1k2

C2
Z
Im

kr.u � u1/k2dt

Summing this relation over m D 1; : : : ; r and using the fact u0� D u0 D u01� we gain

k.u � u1/
r�k2 C

rX
mD1
kfu � u1gm�1k2 C 2

Z T

0

kr.u � u1/k2dt D 0; (15)

which implies u D u1.
It is natural to define error measure EST for both variants of discretization as

residual of (13)

EST.w/ D sup
0¤v2Y�

1

kvkZ

 X
K;m

.f ; v/K;m � .w0; v/K;m (16)

�.rw;rv/K;m � .fwgm�1; vm�1C /K

!

for w 2 X�h .
It is possible to show that the uniqueness of the solution of problem (13) implies

that EST.u�h/ D 0, if and only if u�h is equal to the exact solution u.
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4.2 Reconstruction of the Solution with Respect to Time

Since the exact solution u 2 Y0 � C.Œ0;T�;L2.˝//, i.e. u is continuous in time
and u.0/ D u0, we will reconstruct the discrete solution u�h in such a way, that the
reconstruction satisfies these properties too. For conforming variant of discretization
(cG-FEM) this task is easier, since the solution is already continuous in time, but
the initial condition can still be violated. For nonconforming version we need to
reconstruct for both reasons.

Let rm 2 PqC1.Im/ be the right Radau polynomial on Im, i.e. rm.tm�1/ D
1, rm.tm/ D 0 and rm is orthogonal to Pq�1. Then there exists a polynomial
reconstruction R�h D R�h.u

�
h/ for both variants of discretization such that

R�h.t/ D u�h.t/ � fu�hgm�1rm.t/; 8t 2 Im: (17)

Since the cG-FEM solution u�h is continuous in time, the reconstruction R�h is equal
to u�h except I1. It is still necessary to reconstruct the discrete initial condition˘ p

˝u
0

on I1, see (8).
The resulting function R�h is continuous in time and satisfies the initial condition,

i.e. R�h 2 Y0. Moreover,

Z
Im

..R�h/
0; v/dt D

Z
Im

..u�h/
0; v/ � r0m.fu�hgm�1; v/dt

D
Z
Im

..u�h/
0; v/dtC

Z
Im

rm.fu�hgm�1; v0/dt (18)

�rm.tm/.fu�hgm�1; vm�/C rm.tm�1/.fu�hgm�1; vm�1C /

D
Z
Im

..u�h/
0; v/dtC .fu�hgm�1; vm�1C /; 8v 2 Pq.Im;L

2.˝//:

Such a reconstruction is used to show the equivalence among Radau IIA Runge–
Kutta method, Radau collocation method and discontinuous Galerkin method. For
the details see, e.g. [6] and [7]. Such a reconstruction is also used for proving a
posteriori nodal superconvergence in [2].

4.3 Reconstruction of the Solution with Respect to Space

It is possible to show that the exact solution satisfies ru 2 L2.0;T;H.div//. Since
ru�h … L2.0;T;H.div// in general, we reconstruct also ru�h. Let
RTNp.K/ be the Raviar-Thomas-Nedelec space of order p, i.e. RTNp.K/ D
Pp.K/d C xPp.K/. Let us denote the patch Ta D S

a2K K of vertex a. Then we
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can define RTN spaces on Ta

RTNN;0
p .Ta/ D fv 2 RTNp.Ta/ W v � n D 0 8e � @Tag; a … @˝; (19)

RTNN;0
p .Ta/ D fv 2 RTNp.Ta/ W v � n D 0 8e � @Ta n @˝g; a 2 @˝:

Let us denote by Pp�.Ta/ piecewise polynomials of order p for a 2 @˝ . Moreover,
Pp�.Ta/ consists of functions with zero mean value for a … @˝ . Let us denote  a

piecewise linear “hat” function associated with vertex a with  .a/ D 1,  D 0 on
@Ta.

We formulate space–time version of patch–wise reconstruction from [3]. We seek
��a jTa�Im 2 Pq.Im;RTNN;0

p .Ta// and r�a 2 Pq.Im;P
p�.Ta// such that

.��a ; v/Ta;m � .r�a ;r � v/Ta;m D . aru�h; v/Ta;m; (20)

8v 2 Pq.Im;RTN
N;0
p .Ta//;

.r � ��a ; q/Ta;m D . a.f � .R�h/0/; q/Ta;m C .r a � ru�h; q/Ta;m;

8q 2 Pq.Im;P
p�.Ta//:

Then

��h D
X
a

��a : (21)

The reconstructions ��a and ��h , exist and satisfy

0 D .f � .R�h/0 Cr � ��h ; v/K;m (22)

D .f � .u�h/0 Cr � ��h ; v/K;m � .fu�hgm�1; vm�1C /K ;

8v 2 Pq.Im;P
p.K//:

4.4 Upper Error Bound

In this section we will present a posteriori upper bound for EST.u�h/, i.e. we will
present the estimate of EST.u�h/ in terms of data f and u0, discrete solution u�h (both
versions of time discretizations are covered) and functionsR�h and ��h that are derived
and easily computable from the discrete solution u�h.

Theorem 4 (Upper error bound) Let u 2 Y0 be the solution of (3) and u�h 2 X�h
be arbitrary. Let R�h be the reconstructions obtained from u�h by (17) and ��h be the
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reconstruction obtained from u�h by (20) and (21). Then

EST.u�h/ �
 X

K;m

�
dK;m
�
k f � .R�h/0 Cr � ��h kK;m C

dK;m
hK
k��h � ru�hkK;m C

dK;m
�m
k.R�h � u�h/

0kK;m
�2!1=2

(23)

The proof of Theorem 4 is a straightforward application of (17) and (22), but it is
quite long. For this reason we omit it.

4.5 Asymptotic Lower Error Bound

The goal of this section is to show that the local individual terms from a posteriori
estimate (23) are locally effective, i.e. provide a local lower bound to EST.u�h/, at
least in asymptotic sense.

To be able to apply the result in a local way, we need following notation. Let
TK be a patch consisting of elements surrounding K and K itself. Let M � ˝, e.g.
M D K or M D TK . We define local version of space Y�

Y�M;m D fv 2 Y� W supp.v/ � M � Img; (24)

and local version of EST.w/

ESTM;m.w/ D sup
0¤v2Y�M;m

1

kvkZ

 X
K;m

.f ; v/K;m � .w0; v/K;m (25)

�.rw;rv/K;m � .fwgm�1; vm�1C /K

!
:

For the purpose of the effectivity analysis let us assume that f is a space–time
polynomial. Otherwise, it is necessary to deal with the classical oscillation term.

Theorem 5 (Local effectivity estimate) Let u 2 Y0 be the solution of (3) and
u�h 2 X�h be arbitrary. Let R�h be the reconstructions obtained from u�h by (17) and
��h be the reconstruction obtained from u�h by (20) and (21). Let f be a space–time
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polynomial. Then there exists a constant C > 0 such that

d2K;mkf � .R�h/0 � r � ��h k2K;m C
d2K;m
�2m
kR�h � u�hk2K;m (26)

Cd2K;m
h2K
k��h � ru�hk2K;m � CESTTK ;m.u

�
h/
2:

The proof of Theorem 5 is very technical and quite long. For these reasons we shall
skip it in this paper.
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3. D. Braess, J. Schőberl, Equilibrated residual error estimator for edge elements. Math. Comput.
77(262), 651–672 (2008)

4. V. Dolejší, A. Ern, M. Vohralík., A framework for robust a posteriori error control in unsteady
nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51(2), 773–793 (2013)

5. A. Ern, M. Vohralík. Polynomial-degree-robust a posteriori estimates in a unified setting
for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J.
Numer. Anal. 53(2), 1058–1081 (2015)

6. E. Hairer, S.P. Norsett, G. Wanner. Solving Ordinary Differential Equations I, Nonstiff Problems.
Springer Series in Computational Mathematics, vol. 8 (Springer, Berlin/Heidelberg/New York,
2000)

7. E. Hairer, G. Wanner. Solving Ordinary Differential Equations II, Stiff and Differential-
Algebraic Problems (Springer, Berlin, 2002)

8. B.L. Hulme One-step piecewise polynomial Galerkin methods for initial value problems. Math.
Comput. 26, 415–426 (1972)



Part IV
Numerical Linear Algebra and High

Performance Computing



Multigrid at Scale?

Mark Ainsworth and Christian Glusa

Abstract The reduced reliability of next generation exascale systems means that
the resiliency properties of a numerical algorithm will become an important factor
in both the choice of algorithm, and in its analysis. The multigrid algorithm is the
workhorse for the distributed solution of linear systems but little is known about
its resiliency properties and convergence behavior in a fault-prone environment. In
the current work, we propose a probabilistic model for the effect of faults involving
random diagonal matrices. We summarize results of the theoretical analysis of the
model for the rate of convergence of fault-prone multigrid methods which show
that the standard multigrid method will not be resilient. Finally, we present a
modification of the standard multigrid algorithm that will be resilient.

1 Introduction

Exascale computing is anticipated to have a huge impact on computational sim-
ulation. However, as the number of components in a system becomes larger, the
likelihood of one or more components failing or functioning abnormally during an
application run increases. The problem is exacerbated by the decreasing physical
size of basic components such as transistors, and the accompanying increased
possibility of quantum tunneling corrupting logic states [7, 8].

Current day petascale systems already exhibit a diverse range of faults that
may occur during computation. These faults can arise from failures in the physical
components of the system, or intermittent software faults that appear only in certain
application states. One source of faults is cosmic radiation with charged particles,
which can lead to memory bit-flips or incorrect behavior of logic units. Future HPC
systems are expected to be built from even larger numbers of components than
current systems, and the rate of faults in the system will increase accordingly. It
is generally accepted that future large-scale systems must operate within a 20 MW
power envelope. This will require the usage of lower voltage logic thresholds.
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Moreover, cost constraints will result in greater utilization of consumer grade
components, with accompanying reduced reliability [8].

Roughly speaking, faults can be classified as follows [3]: hard or stop-fail
faults are faults which would otherwise lead to an immediate program termination,
unless treated on the system level. Soft faults are those leading to program or data
corruption, and which might only result in an erroneous program termination after
some delay.

Reported fault rates seem to vary significantly from system to system. On current
machines, hard faults have been reported as often as every 4–8 h on the Blue Waters
system [8], and (detected) L1-cache soft errors as often as every 5 h on a large
BlueGene/L system [9]. The next-generation supercomputers could have a mean-
time to failure of about 30 min [24].

Many of the existing algorithms in use today were derived and analyzed without
taking account of the effect of these kinds of faults. We believe that the dawning
of the exascale era poses new, and exciting, challenges to the numerical analyst in
understanding and analyzing the behavior of numerical algorithms on a fault-prone
architecture. Our view is that on future exascale systems, the possible impact of
faults on the performance of a numerical algorithm must be taken fully into account
in the analysis of the method.

In order to alleviate the impact of faults and ensure resilience in a fault-
prone environment, several techniques have been proposed and implemented in
various parts of the hardware-software stack. Checkpointing on the system and
the application level as well as replication of critical program sections are widely
used [6, 8, 17]. These techniques can be coupled with statistical analysis, fault
models, and hardware health data [8]. On the application level, Algorithm-Based
Fault Tolerance (ABFT) describes techniques that duplicate application data to
create redundancy [18]. ABFT has been explored in the context of sparse linear
algebra [22, 23], and specifically for matrix-vector products in stationary iterative
solvers [9, 11, 12, 19, 25]. All methods have in common that a balance needs to be
struck between protecting against corruption of results and keeping the overhead
reasonable.

The multigrid method is the workhorse for distributed solution of linear systems
but little is known about its resiliency properties and convergence behavior in a
fault-prone environment. The current article presents a summary of our recent work
addressing this problem [1].

The outline of the remainder of this article is as follows: We give a short
introduction to multi-level methods in Sect. 2. In Sect. 3, we introduce a model
for faults and show simulations of the convergence behavior of a fault-prone two-
level method for a finite element method. Section 4 is dedicated to the analysis
of products of random matrices and its application to stationary linear iterative
methods. Finally, we apply the framework to two- and multi-level methods in
Sect. 5, give analytic bounds on the convergence rate, and illustrate their behavior
with further simulations. We refer the interested reader for further details and proofs
to the articles [1, 2].
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2 Multi-level Methods

Let ˝ � R
d be a polygonal domain and set V WD H1

0 .˝/. Starting from
an initial triangulation T0 of ˝ into simplices, we obtain Tl through uniform
refinement of Tl�1. We define the finite element spaces Vl WD fv 2 H1

0 .˝/ \
C

 N̋ � such that v

ˇ̌
K 2 P1 .K/ ; 8K 2 Tlg, and set nl WD dimVl. For f 2 H�1 .˝/,

consider the well-posed problem:

Find u 2 V such that a.u; v/ D L.v/; 8v 2 V;

where a.u; v/ D R
˝
ru � rv and L.v/ D R

˝
fv. The discretized problem is:

Find u 2 Vl such that a.u; v/ D L.v/; 8v 2 Vl:

Let �.i/l for i D 1; : : : ; nl be the global shape function basis of Vl, and �l the vector
of global shape functions. Then the stiffness matrix and the load vector are defined
as Al WD a.�l; �l/ and bl WD L.�l/, so that the problem becomes:

Find u D �l � xl 2 Vl such that Alxl D bl: (1)

Since Vl�1 � Vl, there exists a restriction matrix rllC1 satisfying �l D rllC1�lC1
along with the corresponding prolongation matrix plC1l D 
rllC1�T . In particular, this
means that the stiffness matrix on level l can be expressed in terms of the matrix at
level lC 1:

Al D a .�l; �l/ D rllC1a .�lC1; �lC1/ plC1l D rllC1AlC1plC1l :

We shall omit the sub- and superscripts on r and p whenever it is clear which
operator is meant. We shall consider solving the system (1) using the multigrid
method[5, 15, 16, 21, 26]. The coarse-grid correction is given by xl  xl C
pA�1l�1r .bl � Alxl/, and has iteration matrix Cl WD I � pA�1l�1rAl, while the damped
Jacobi smoother is given by Sl D I � �D�1l Al, where Dl is the diagonal of Al and
� is the relaxation parameter. The multi-level method for the solution of ALxL D bL
is given in Algorithm 1. Here, �1 and �2 are the number of pre- and post-smoothing
steps, and 
 is the number of coarse-grid corrections.

For the analysis we will use the spectral norm jjZjj2 WD �


ZZT

� 1
2 as well as the

energy norm jjZjjA D
ˇ̌
ˇ̌
ˇ̌
ˇ̌A 1

2

l ZA
� 12
l

ˇ̌
ˇ̌
ˇ̌
ˇ̌
2

for matrices Z 2 R
nl�nl . The convergence of the

multi-level method can be proven using the following classical assumptions (see
[16]):

(A1) Smoothing property: There exists  W N ! R�0 satisfying lim�!1 .�/ D
0 and such that for all levels l
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Algorithm 1 Multi-level method Ml

Function Ml.right-hand side bl; initial guess xl/

if l D 0 then return A�1
0 x0 (Exact solve on coarsest grid)

else

for i 1 to �1 do

xl  xl C �D�1
l .bl � Alxl/ (Pre-smoothing)

dl�1  r .bl � Alxl/ (Restriction to coarser grid)

e.0/l�1  0

for j 1 to 
 do

e.j/l�1  Ml�1

�
dl�1; e

.j�1/
l�1

	
(Solve on coarser grid)

xl  xl C pe.
/l�1 (Prolongation to finer grid)

for i 1 to �2 do

xl  xl C �D�1
l .bl � Alxl/ (Post-smoothing)

return xl

ˇ̌̌̌
AlS

�
l

ˇ̌̌̌
2
� .�/ jjAljj2 ; � � 0:

(A2) Approximation property: There exits a constant CA such that for all levels l

ˇ̌̌̌
ClA
�1
l

ˇ̌̌̌
2
� CA

jjAljj2
:

(A3) The smoother is non-expansive, i.e. � .Sl/ D jjSljjA � 1, and there exists a
non-increasing function CS W N! R�0 such that for all levels l and � � 1

ˇ̌̌̌
S�l
ˇ̌̌̌
2
� CS .�/ :

(A4) There exist positive constants Cp and Cp such that for all levels l

C�1p jjxjj2 � jjpxjj2 � Cp jjxjj2 8x 2 R
nl :

The iteration matrix of the two-level method is given[16] by ETG;L .�1; �2/ D
S�2L CLS

�1
L . (A1) and (A2) imply that

� .ETG;L .�; 0// � CA .�/ :

The bound is independent of L and, for large enough �, smaller than 1. A similar
argument can be made for the case involving pre- and post-smoothing using
the projection property of the coarse-grid correction CL. The convergence of the
multi-level method for 
 � 2 follows using a perturbation argument [16]. Let
EL .�1; �2; 
/ be the iteration matrix of the multi-level method with finest level L.
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Then

� .EL .�1; �2; 
// �
8<
:





�1 �; 
 � 2;
2

1Cp1�4C
�
�
�; 
 D 2;

where � D maxl�L jjETG;l .�2; �1/jj2 and C� depends on �1, �2 but not on l. The
method converges for sufficiently many smoothing steps.

3 Fault Model

The first issue is to decide on how the effect of a fault should be incorporated into
the analysis of the algorithm. The simplest and most convenient course of action if
a component is subject to corruption, or fails to return a value, is to overwrite the
value by zero. We therefore propose to model the effect of a fault on a vector using
a random diagonal matrix� , of the form

� D
0
B@
�1
: : :

�n

1
CA ; �i D

(
1 with probability 1 � q;

0 with probability q:
(2)

In particular, if a vector x 2 R
n is subject to faults, then the corrupted version of x is

given by � x. If all �i are independent, we will call the random matrix a matrix of
component-wise faults. More generally, we shall make the following assumption on
the set S of all the involved faults matrices� :

(A5) There exist constants v; Ce � 0, and for each� 2 S there exists e� � 0
such that for all� 2 S

(a) � is a random diagonal matrix.
(b) jjVar Œ� �jj2 D maxi;j

ˇ̌
Cov

��ii;�jj
ˇ̌ � v.

(c) E Œ� � D e� I.
(d) je� � 1j � Cev.

We will think of v as being small. This means that each of the fault matrices
� is close to the identity matrix with high probability. Obviously, the model for
component-wise faults introduced above satisfies these assumptions.

In the remainder of this work, we write random matrices in bold letters. If a
symbol appears twice, the two occurrences represent the same random matrix and
are therefore dependent. If the power of a random matrix appears, we mean the
product of identically distributed independent factors.

In summary, we shall model the application of a fault-prone Jacobi smoother as

xl  xl C� . pre/post/
l �D�1l .bl � Alxl/ ;
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which has the same form as a standard Jacobi smoother in which the iteration matrix
has been replaced by a random iteration matrix

S. pre/post/
l D I �� . pre/post/

l �D�1l Al:

Here and in what follows, � .�/
l are generic fault matrices. Suppose that only the

calculation of the update can be faulty, and that the previous iterate is preserved.
This could be achieved by writing the local components of the current iterate to
non-volatile memory or saving it on an adjacent node. The matrices � . pre/post/

l and
D�1l commute, so that without loss of generality, we can assume that there is just one
fault matrix, because any faults in the calculation of the residual can be included in
� . pre/post/

l as well. Moreover, while the application of D�1l and Al to a vector is fault-
prone, we assume that the entries of D�1l and Al itself are not subject to corruption,
since permanent changes to them would effectively make it impossible to converge
to the correct solution. The matrix entries are generally computed once and for all,
and can be stored in non-volatile memory which is protected against corruption. The
low writing speed of NVRAM is not an issue since the matrices are written at most
once.

The fault-prone two-level method has iteration matrix

ETG;l .�1; �2/ D
�
S. post/
l

	�2
Cl

�
S. pre/

l

	�1
;

where

Cl D I �� .p/
l pA�1l�1� .r/

l�1r� .A/
l Al:

Similar arguments as for the smoother can be used to justify the model of faults
for the coarse-grid correction. The fault-prone multi-level algorithm is given in
Algorithm 2.

In order to illustrate the effect of the faults on the convergence of the algorithm,
we apply the two-level version of Algorithm 2 with one step of pre- and post-
smoothing using a damped Jacobi smoother with optimal smoothing parameter
� D 2

3
to a piecewise linear discretization of the Poisson problem on a square

domain.
The domain is partitioned by a uniform triangulation (Fig. 1), and we inject

component-wise faults as given in Eq. (2). We plot the evolution of the residual
norm over 30 iterations for varying number of degrees of freedom nL and different
probabilities of faults q in Fig. 2 on page 244. We can see that as q increases,
the curves start to fan out, with a slope depending on the number of degrees of
freedom nL.
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Algorithm 2 Fault-prone multi-level method Ml

Function Ml.right-hand side bl; initial guess xl/

if l D 0 then return A�1
0 x0 (Exact solve on coarsest grid)

else

for i 1 to �1 do

xl  xl C� . pre;i/
l �D�1

l .bl � Alxl/ (Pre-smoothing)

dl�1  � .r/
l�1r� .A/

l .bl � Alxl/ (Restriction to coarser grid)

e.0/l�1  0

for j 1 to 
 do

e
.j/
l�1  Ml�1

�
dl�1; e

.j�1/
l�1

	
(Solve on coarser grid)

xl  xl C� .p/
l pe.
/l�1 (Prolongation to finer grid)

for i 1 to �2 do

xl  xl C� . post;i/
l �D�1

l .bl � Alxl/ (Post-smoothing)

return xl

Fig. 1 Mesh for the square domain

4 Lyapunov Exponents

Now, having replaced the iteration matrices by a random quantities, we need to
replace the convergence conditions � .ETG;l/ < 1 and � .El/ < 1, as the spectral
radius has lost its meaning as the asymptotic rate of convergence.

Let A be a random matrix of size n � n with distribution �. We will assume that
� is a probability distribution on a finite set A � GLn.

We define the Lyapunov exponent 
.A/ as


.A/ WD lim
N!1

1

N
E
�
log

ˇ̌̌̌
AN
ˇ̌̌̌ 
:

(Remember that according to our notation AN D QN
jD1 Aj, where Aj are all

independent and of the same distribution as A.) This quantity does not depend on the
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Fig. 2 Evolution of the norm of the residual of the two-level method for the 2d Poisson problem
on square domain and component-wise faults in prolongation, restriction, residual and smoother
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choice of the norm jj�jj as all norms are equivalent in finite dimension. The definition
is motivated by Gelfand’s formula log �.A/ D limN!1 1

N log
ˇ̌̌̌
AN
ˇ̌̌̌

that holds for
non-random matrices A.

Furstenberg and Kesten [14] showed that provided that E
�
log .A/C


<1, 
 .A/

exists and


 .A/
a.s.D lim

N!1
1

N
log

ˇ̌̌̌
ANx0

ˇ̌̌̌
:

We will instead work with the Lyapunov spectral radius

% .A/ WD e
.A/
a.s.D lim

N!1
ˇ̌̌̌
ANx0

ˇ̌̌̌ 1
N

as it is the quantity corresponding to the spectral radius of a non-random matrix.
% .A/ < 1 means that the product of random matrices is convergent, whereas
% .A/ > 1 means that it is divergent.

We also define the generalized Lyapunov exponents L.A; ˛/ for ˛ ¤ 0 as

L.A; ˛/ WD lim
N!1

1

N
logE

hˇ̌̌̌
AN
ˇ̌̌̌ ˛i

and the generalized Lyapunov spectral radii %˛ .A/ as

%˛ .A/ WD e
1
˛ L.A;˛/:

It can be shown (see [4, 10]) that 1
N log

ˇ̌̌̌
ANx0

ˇ̌̌̌
satisfies a large deviation principle

with a rate function I which means that

P

�
1

N
log

ˇ̌̌̌
ANx0

ˇ̌̌̌ D �
�
� e�NI.�/:

From the above, we find that I satisfies

I .
 .A// D 0; I0 .
 .A// D 0; I00 .
 .A// > 0:

We can approximately calculate

E

hˇ̌̌̌
ANx0

ˇ̌̌̌ ˛i D E

h
eN˛

1
N logjjANx0jji �

Z
eN˛�e�NI.�/ d� � eN sup�f˛��I.�/g

and hence L.A; ˛/ D sup� ˛� � I.�/. This means that L is the Fenchel-Legendre
transform of the rate function I. For each ˛�, there is a characteristic growth rate
�� that corresponds to it, given by @L

@˛
.˛�/ D ��. Therefore, the values of L.A; ˛�/

depend on the unlikely sequences
˚
ANx0

�
N

with growth rate �� different from 
 .A/.
We have by Jensen’s inequality for ˛ > 0

%�˛ .A/ �% .A/ �%˛ .A/ :
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Moreover, if A is a non-random matrix, we find % .A/ D %˛ .A/ D �.A/. The
theory of Lyapunov exponents is thoroughly discussed in the book by Bougerol
and Lacroix[4].

The following example adapted from [10] shows that the interaction between the
values taken by A can be important:

Example 1 Let a 2 R and let the random matrix A take values

�
2 0

0 1
4

�
with probability .1� p/ and

�
0 1

1 0

�
with probability p:

Obviously, we have % .A/ D 2 > 1 for p D 0 and % .A/ D 1 for p D 1. It can also
be shown by decomposition into cycles that

% .A/ D lim
N!1

ˇ̌̌̌
AN
ˇ̌̌̌ 1

N D 2 p�1
2 < 1 for 0 < p < 1:

Intuitively, this is the case since expanding and contracting directions are switched
by the second matrix and the contracting factor 1

4
is stronger than the expanding

factor 2. This shows that the Lyapunov spectral radius can be discontinuous with
respect to the weights and matrices in the support of A. In particular, this means that
we cannot conclude from � .ETG;l/ < 1 that %



ETG;l

�
< 1 for small perturbations.

The next example shows that measuring unlikely sequences can lead to serious
over-estimation of the convergence rate:

Example 2 Let A be a random 1�1matrix taking values 2a with probability 1
a and 1

with probability a�1
a . Hence the growth rates of all possible sequences are between

1 and 2a. Then

% .A/ D 2; %˛ .A/ D
�
1

a
2a˛ C a � 1

a

� 1
˛

;

and for large a we find % .A/� %˛ .A/, ˛ > 0.

We can approximate the Lyapunov spectral radius % .A/ by Monte-Carlo simu-
lations of a trajectory XN.!/ D QN

jD1 Aj.!/x0 for normalized random initial vector

x0 and calculating % .A/ � jjXN.!/jj 1N . This makes sense because of the almost sure
convergence of the latter towards the Lyapunov spectral radius. In order to avoid
over- and underflow of the components of the vector XN.!/, we renormalize after
every step, i.e. we set

QXj WD Aj.!/ QXj�1.!/ˇ̌̌̌
Aj.!/ QXj�1.!/

ˇ̌̌̌ ; ˛j WD
ˇ̌̌̌
Aj.!/ QXj�1.!/

ˇ̌̌̌
;



Multigrid at Scale? 247

and approximate

% .A/ � exp
1

N

NX
jD1

log˛j:

The disadvantage of this method is its poor rate of convergence. While the
computational estimation of Lyapunov exponents is straightforward, but slow, their
analytic calculation is a hard problem, as shown by Tsitsiklis and Blondel [27].
Techniques for small matrices[13] or small support of the distribution[20], as well
as small perturbations with respect to the mean value[10] have been developed.

The iteration matrices given in the previous section have dimension nl and their
support has size that is proportional to 2nl , and the perturbations with respect to
the mean value are large in size. We therefore will have to resort to finding an
upper bound for the Lyapunov spectral radius. We already saw that for ˛ > 0,
the generalized Lyapunov spectral radius majorizes the Lyapunov spectral radius.
For positive even values of ˛, its expression can be greatly simplified:

Lemma 3 (Replica trick [10]) Let A be a random square matrix. Then

%2k .A/ D �


E
�
A˝2k

� 1
2k

for k 2 N, where Z˝k WD Z ˝ Z ˝ � � � ˝ Z„ ƒ‚ …
k times

.

The attraction of the above expression for the generalized Lyapunov exponent
stems from the fact that the mean is taken directly of a random matrix, not of a
nonlinear function. Hence the method is well suited for linear perturbations. Since
the generalized Lyapunov spectral radius increases with ˛, we use the smallest value
allowable in the Replica trick, ˛ D 2, and bound

% .A/ �
q
�


E
�
A˝2

�
:

As seen in Example 2, this bound is not necessarily sharp, so it is advisable to
compare with Monte-Carlo simulations of the Lyapunov spectral radius.

5 Summary of Results on Convergence

With a framework for the analysis of fault-prone stationary iterations in place, we
can give the following results whose proofs can be found in [1, 2].

Theorem 4 Let @˝ 2 C2 or ˝ convex and let Al be the stiffness matrices
associated the finite element discretization of a second order elliptic PDE on a
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hierarchy of quasi-uniform meshes, and let

ETG;L .�1; �2/ D
�
S. post/
L

	�2
CL

�
S. pre/
L

	�1

be the iteration matrix of the two-level method with component-wise faults of rate q
in prolongation, restriction, residual and smoother:

CL D I �� .p/
L pA�1L�1� .r/

L�1r� .A/
L AL;

S. pre/post/
L D I �� . pre/post;i/

L D�1L AL:

Assume that Assumptions (A1)–(A4) hold. Then

%


ETG;L .�1; �2/

� � jjETG;L .�1; �2/jjA C C

8̂̂
<
ˆ̂:
qn

4�d
2d

L d < 4;

q .log nL/
1
2 d D 4;

q d > 4;

where ETG;L is the unperturbed two-level iteration matrix. C is independent of L
and q.

In Fig. 3 (top) on page 249, we plot the estimated rate of convergence of the two-
level method for the 2d Poisson problem introduced above. We use 1000 iterations to
estimate %



ETG;L .1; 1/

�
for component-wise faults with varying probability q and

varying problem size nL. Moreover, we plot the behavior predicted by Theorem 4
and the level of %



ETG;L.1; 1/

� D 1. We can see that their slope matches.
The result also holds for the case of an L-shaped domain and for block-wise

faults, provided the size of the blocks is fixed, even though the conditions of
Theorem 4 are not satisfied.

The above results indicate that two-level methods without protection of some
components can not be used in a fault-prone environment. In order to preserve
convergence independent of the number of degrees of freedom, we will have to
protect one of the fault-prone operations. The cheapest operations are the restriction
and the prolongation. The next result shows that the two-level method converges, if
the prolongation is protected.

Theorem 5 Let

ETG;L .�1; �2/ D
�
S. post/
L

	�2
CL

�
S. pre/
L

	�1

with smoother and coarse-grid correction given by

S. pre/post/
L D I �� . pre/post;i/

L D�1L AL;

CL D I � pA�1L�1� .r/
L�1r� .A/

L AL:
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Fig. 3 Asymptotic convergence rate %
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of the fault-prone two-level method for the

2d Poisson problem on square domain with component-wise faults in prolongation, restriction,
residual and smoother (top) and protected prolongation (bottom)
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Provided Assumptions (A1)–(A5) with

S D
n
� .r/

L�1;� .A/
L

o
[
n
� . pre;i/

L

o�1
iD1 [

n
� . post;i/

L

o�2
iD1

hold, we find for any level L that

%


ETG;L .�1; �2/

� � jjETG;L .�2; �1/jj2 C Cv:

and C is independent of v and L.

We note that the result holds for more general types of faults including block-
wise faults. In Fig. 3 (bottom) on page 249, we plot the rate of convergence of
the two-grid method for the already discussed example, this time with protected
prolongation. We can see that the rate is essentially independent of the size of the
problem, and even is smaller than one for large values of q. The protection can by
achieved by standard techniques such as replication. In order to retain performance,
the protected prolongation could be overlapped with the application of the post-
smoother.

The following theorem shows that the result carries over to the multi-level case:

Theorem 6 Provided Assumptions (A1)–(A5) with

S D
L[

lD1

�n
� .r/

l�1;� .A/
l

o
[
n
� . pre;i/

l

o�1
iD1 [

n
� . post;i/

l

o�2
iD1

	

hold, the number of smoothing steps is sufficient and that v sufficiently small, the
perturbed multi-level method converges with a rate bounded by

% .EL .�1; �2; 
// �
8<
:





�1 � C Cv; 
 � 2;
2

1Cp1�4C
�
�
� C Cv; 
 D 2;

where

� D max
l�L jjETG;l .�2; �1/jj2 ;

and C� and C depend on �1, �2 and the convergence rate of the two-level method,
but are independent of L and v.

We also plot the rate of convergence of fault prone multi-level algorithms with
two coarse-grid corrections for component-wise faults and protected prolongation
in Fig. 4 on page 251, and observe the predicted behavior.
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A Highly Scalable Implementation of Inexact
Nonlinear FETI-DP Without Sparse Direct
Solvers

Axel Klawonn, Martin Lanser, and Oliver Rheinbach

Abstract A variant of a nonlinear FETI-DP domain decomposition method is
considered. It is combined with a parallel algebraic multigrid method (Boomer-
AMG) in a way which completely removes sparse direct solvers from the algorithm.
Scalability to 524,288 MPI ranks is shown for linear elasticity and nonlinear
hyperelasticity using more than half of the JUQUEEN supercomputer (JSC, Jülich;
TOP500 rank: 11th).

1 Introduction

Classically, nonlinear partial differential equations are solved using a Newton-
Krylov approach in which the discretized nonlinear problem is first linearized and
then solved by a (possibly globalized) Newton method. In each Newton step, the
linear system is then solved iteratively using a Krylov subspace method combined
with a scalable preconditioner, e.g., from domain decomposition. In [13, 14],
nonlinear FETI-DP (Finite Element Tearing and Interconnecting – Dual Primal)
domain decomposition approaches were proposed where the order of the geometri-
cal decomposition and the linearization is interchanged.

Nonlinear domain decomposition as a scalable solution method includes the
Additive Schwarz Preconditioned Inexact Newton method [6] (see also [7, 8,
11, 12]) and its recent multiplicative version [20]. Moreover, nonlinear FETI-
1 methods [21] and nonlinear Neumann-Neumann methods as a solver [5] are
nonlinear domain decomposition methods related to ours.

Versions of nonlinear FETI-DP domain decomposition methods scale to the
largest supercomputers currently available, i.e., they have scaled to 524;288 cores
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[16] and later to the complete Mira supercomputer, i.e., 786;432 cores [15] and 63
billion displacement unknowns in nonlinear hyperelasticity. This is the currently
largest range of parallel scalabilty reported for any domain decomposition method.
Similarly, but for linear problems, BDDC methods have scaled to 458;752 cores [1].
Algebraic Multigrid (AMG) methods for elasticity have also recently scaled to the
same range, i.e., 262;144 cores [2].

In this paper, we consider a new variant of nonlinear FETI-DP domain decom-
position methods; see [19]. It is combined with an algebraic multigrid method,
completely removing sparse direct solvers from the algorithm.

2 Inexact Nonlinear FETI-DP

The inexact nonlinear FETI-DP approach, first introduced in [19], is a combination
of inexact FETI-DP, described in [18], and Nonlinear-FETI-DP-1, introduced
in [14]. In this section, we provide a brief description of the method. Our approach
is based on the solution of the nonlinear FETI-DP saddle point system

eK.Qu/C BT� � Qf
BQu

D 0
D 0 (1)

using Newton’s method, which leads to linearized systems of the form

�
DeK.Qu/ BT

B 0

� �
ı Qu
ı�

�
D
�eK.Qu/C BT� � Qf

BQu
�
I (2)

see also [14] for a detailed description of nonlinear FETI-DP methods.
As in classical linear FETI-DP methods, we assume a nonoverlapping domain

decomposition of the computational domain. The resulting interface variables are
split into primal (˘ ) and dual variables (	). Variables in the interior part of the
subdomains are denoted by I, and we define the index set B WD ŒI 	�. The block
matrix DeK.Qu/ is partially assembled in the primal variables˘ , while the remaining
part of DeK.Qu/ typically is block diagonal. Each diagonal block is associated to one
of the FETI-DP subdomains. The operatorB is a classical jump operator, well known
from any FETI-DP literature. Following the notation in [18], we define

A WD
�
DeK.Qu/ BT

B 0

�
; F WD

�eK.Qu/C BT� � Qf
BQu

�
; and x WD

�
ı Qu
ı�

�
:

We apply a Krylov method, e.g., GMRES, to the preconditioned system

B�1L A x DB�1L F (3)
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in order to solve the linearized system in each Newton step. The block triangular
preconditioner BL is defined by

BL WD
" bK�1 0

M�1BbK�1 M�1
#
;

where bK�1 is a sufficiently good preconditioner for DeK.Qu/, and M�1 is one of the
standard FETI-DP preconditioners. Throughout this paper, the application of bK�1
consists of one V-cycle of a parallel AMG method applied to the complete system
DeK.Qu/. We investigate two different choices for the preconditioner M�1. First, we
use the standard Dirichlet preconditioner

M�1 WD M�1FETID
WD

NX
iD1

B.i/	;D S
.i/
		 B.i/T	;D;

which is a weighted sum of Schur complements

S.i/		 WD DK.i/		 �DK.i/	I .DK
.i/
II /
�1 DK.i/T	I

on the dual part of the interface. Here, the matrices DK.i/II , DK.i/		, and DK.i/	I
correspond to blocks of the tangential matrix DeK.Qu/ and are local to the i-th
subdomain.

Second, to completely remove sparse direct solvers from the method, we can

replace an application of
�
DK.i/II

	�1
by some cycles of a local AMG method.

We denote this modified Dirichlet preconditioner by M�1FETID=AMG
. Let us note that

this approach does not guarantee spectral equivalence to the (exact) Dirichlet
preconditioner unless the interior system is solved accurately enough. Nevertheless,
this modified preconditioner often leads to appropriate results; see also [17]. Finally,
the complete algorithm is presented in Fig. 1.

Fig. 1 Pseudocode of the Inexact-Nonlinear-FETI-DP. The application of bK�1 consists of
cycles of a parallel AMG method
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We have implemented the Inexact-Nonlinear-FETI-DP method in PETSc
3.6.2 [4] using C/C++ and MPI. We decided to implement the matrix DeK.Qu/
and the jump operator B as MPI parallel sparse matrices of the type MPIAIJ, which
is provided by PETSc. All rows of DeK.Qu/ corresponding to the interior and interface
nodes of the i-th subdomain are distributed to the same MPI rank, i.e., the local

subdomain block
h
DK.i/BB.Qu/ DeK.i/B˘.Qu/

i
is assigned to one MPI rank. The rows

corresponding to the globally assembled FETI-DP coarse space are distributed
equally to all MPI ranks, and thus we do not obtain the typical block structure

DeK.Qu/ WD
�
DKBB.Qu/ DeKT

˘B.Qu/
DeK˘B.Qu/ DeK˘˘.Qu/

�

in our implementation. We always try to distribute a primal variable to one of
the MPI ranks handling a neighboring subdomain. This strategy should reduce
communication. The rows of BT are distributed equivalently.
As preconditioner for DeK.Qu/, we always use one V-cycle of BoomerAMG [9].
Other spectrally equivalent preconditioners are also possible, e.g., multilevel pre-
conditioners from domain decomposition. Although not being spectrally equivalent,
preconditioners such als ILU (incomplete LU) or SPAI (Sparse Approximate
Inverse) could also be used as long as the local matrices are not too ill-conditioned.
In some of our numerical tests, we also use the global matrix (GM) approach
introduced in [3] and used in [2], which guarantees the exact interpolation of chosen
smooth error vectors, e.g., rigid body modes (rotations and translations). This can
improve the quality of AMG as preconditioner for elasticity problems. If using the
GM interpolation, we have to provide the rotations on the finite element space eW,
i.e., the rotation of the coarse space and the subdomain nodes. We also present an
algorithmic description of Inexact-Nonlinear-FETI-DP in form of a pseudocode in
Fig. 1.

3 Model Problems and Numerical Results

We consider three different elasticity problems. First, we investigate a compressible
linear elasticity problem

�2� div.".u//� �grad.div.u// D f

with � D �E
.1C�/.1�2�/ ; � D E

2.1C�/ : We choose E D 210 and � D 0:3, consider a
rectangular domain ˝ WD Œ0 ; 8� � Œ0 ; 1� and a homogeneous Dirichlet boundary
condition in all nodes .x; y/ 2 ˝ with x D 0. A constant volume force in y-
direction is applied to the complete linear 2D beam; see Table 1 for some weak
scalability results. As a second model problem, we consider the same domain,
boundary condition, material parameters, and volume force, but choose a nonlinear
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Neo-Hooke material. The strain energy density function of the Neo-Hooke material
W [10, 22] is given by

W.u/ D .�=2/
tr.FTF/ � 3� � �ln .J/ C .�=2/ln2 .J/

with the deformation gradient F.x/ WD r'.x/. Here, '.x/ D x C u.x/ denotes
the deformation and u.x/ the displacement of x. We present weak scalability tests
for the nonlinear 2D beam in Table 2. Our third model problem is strongly
heterogeneous. We consider a rectangular domain Œ0 ; 2� � Œ0 ; 1� and apply the

deformation F D
h
1:1 0

0 1

i
in each boundary node. Again, a Neo-Hooke material

with E D 210 and � D 0:3 is used, but we consider one slightly off-centered
circular inclusion of stiff material (E D 210;000 and � D 0:3) in each FETI-
DP subdomain. The weak scalability results for the heterogeneous nonlinear
problem are presented in Table 3. Let us remark that we always use a single
square FETI-DP subdomain per MPI rank and consider all vertices to be primal.
We choose a discretization with piecewise quadratic triangular finite elements in
all our experiments. All computations are performed on JUQUEEN BlueGene/Q
at Forschungszentrum Jülich using 32 MPI ranks per node. JUQUEEN is currently
ranked 11th in the TOP500 list of world’s fastest supercomputers. We always choose
HMIS coarsening and ext+i interpolations from BoomerAMG. The GM approach is
used additionally in the 2D beam computations and hybrid AMG (nodal coarsening
and unknown based interpolation) for the heterogeneous Neo-Hooke problem. The
choice of the AMG components is motivated by our experience gained in [2]. We
use UMFPACK for M�1FETID

.
The total runtime of Inexact-Nonlinear-FETI-DP basically splits into four differ-

ent phases: the assembly of all parts of the saddle point system in (2) (including the
assembly of the rigid body modes for the GM approach), the setup of the Dirichlet
preconditioner M�1, the BoomerAMG setup time to create OK�1, and finally the
iterative solution using preconditioned GMRES. Runtimes for these four phases are
presented in all tables. Since the setup of M�1 always scales nearly perfectly, we
will only discuss the remaining timings. Let us remark that the setup of M�1FETID=AMG

is up to four times faster than the setup of M�1FETID
, since direct factorizations are

avoided. In contrast, since an application of an AMG V-cycle is more expensive
than a forward-backward solve in UMFPACK, one preconditioned GMRES iteration
using M�1FETID

is cheaper.
For the linear elastic beam (Table 1), we obtain weak scalability with more

than 90% parallel efficiency. Efficiencies higher than 100% result from numerical
effects, i.e., a decreasing number of GMRES iterations. These compensate some
inefficiencies in the assembly of the saddle point system and the BoomerAMG
setup. The direct solver-free M�1FETID=AMG

also convinces in runtime, and numerical
as well as parallel scalability for this model problem. Similar observations can be
made for the nonlinear beam (Table 2). In this case, scalability is less optimal caused
by a more expensive AMG setup. However, obtaining a parallel efficiency of more
than 56% scaling from 32 to 524;288 MPI ranks is still remarkable, especially,
since the total problem sizes are smaller. For the heterogeneous material (Table 3),
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the parallel scalability suffers from a certain loss in numerical scalability. Note that
the number of heterogeneities increases with the number of ranks. Let us summarize
that Inexact-Nonlinear-FETI-DP METHODS are robust for different homogeneous
and heterogeneous elasticity problems. Also the variant without sparse direct solvers
performS well. All components of the method show sufficient scalability.
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A Parallel Multigrid Solver for Time-Periodic
Incompressible Navier–Stokes Equations in 3D

Pietro Benedusi, Daniel Hupp, Peter Arbenz, and Rolf Krause

Abstract We present a parallel and efficient multilevel solution method for the
nonlinear systems arising from the discretization of Navier–Stokes (N-S) equations
with finite differences. In particular we study the incompressible, unsteady N-S
equations with periodic boundary condition in time. A sequential time integration
limits the parallelism of the solver to the spatial variables and can therefore
be an obstacle to parallel scalability. Time periodicity allows for a space-time
discretization, which adds time as an additional direction for parallelism and thus
can improve parallel scalability. To achieve fast convergence, we used a space-
time multigrid algorithm with a SCGS smoothing procedure (symmetrical coupled
Gauss–Seidel, a.k.a. box smoothing). This technique, proposed by Vanka (J Comput
Phys 65:138–156, 1986), for the steady viscous incompressible Navier–Stokes
equations is extended to the unsteady case and its properties are studied using local
Fourier analysis. We used numerical experiments to analyze the scalability and the
convergence of the solver, focusing on the case of a pulsatile flow.

1 Introduction

The study of time periodic problems in computational fluid dynamics (CFD) is
interesting for multiple reasons.

Pulsatile flows, for example, are present in a variety of physical problems as the
modeling of biological fluids in living creatures (biofluid mechanics). Examples in
this field are the blood flowing in veins [3, 4] or air in human lungs [5].
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Moreover it is well known that today high performance computing systems are
typically massively parallel, i.e. they consist of a large number of computer nodes
(providing CPUs or GPUs) connected by a high speed network. Thus, algorithms
with high concurrency must be developed to efficiently exploit these resources.
Traditionally, sequential time integration schemes are a bottleneck for the scalability
of the solving process. In fact, when time stepping methods are used for evolutionary
problems the corresponding algorithm is inherently sequential. If parallelization
takes place only in space (e.g. trough domain decomposition), the computation time
can only be reduced to a certain limit. When the number of degrees of freedom
per core is “small” the spatial decomposition is saturated and communication takes
over.

Thus it is convenient to employ also parallelism in time. The time periodicity
modifies the problem structure and the design of time-parallel solution strategies
becomes natural if a full space-time parallel algorithm is used. To get an optimal
convergence we construct a space-time multigrid solver with a SCGS smoother [2].
The nonlinearity of the problem will be treated a priori, using a Picard iterative
process. For the discretization of the Navier–Stokes equations, in 3C 1 dimensions,
we use fourth and second order finite differences on a staggered grid. The final goal
will be to investigate the convergence properties and the strong/weak scaling of the
parallel solver.

2 Governing Equations

In three spatial dimensions, the unsteady incompressible Navier–Stokes (N-S)
equations in the primitive variables (u; p) can be written as follows, with u D u.x; t/
the velocity vector field, p D p.x; t/ the pressure scalar field,˝ � R

3 a domain with
a Lipschitz boundary and Re; ˛ 2 R

C:

˛2@tuC Re.u � r/u D �RerpC4uC f; x 2 ˝; t 2 Œ0; 2�� (1a)

r � u D 0; x 2 ˝; t 2 Œ0; 2�� (1b)

where u D .u; v;w/ are the velocity components, aligned with the Cartesian
coordinate directions .x; y; z/ and f represents an external force factor. Here Re is
the Reynolds number and ˛ is the Womersley number.

We make the particular choice of periodic boundary conditions in time

u.x; 0/ D u.x; 2�/; x 2 ˝; (2)
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and Dirichlet boundary conditions in space fixing ubc 2 C1.@˝/ on the boundary
@˝

u.x; t/ D ubc.x; t/; x 2 @˝: (3)

Thanks to the formulation of Eq. (1a) the N-S equations are dimension-less and we
can consider simply t 2 Œ0; 2�/, that could be scale to any other finite interval in
time.

The N-S problem can be conveniently written in an algebraic notation:

A

�
u
p

�
D
�
˛2@t �4C NŒu� Rer

r� 0

��
u
p

�
D
�

f
0

�
D b; (4)

where NŒu� D u � r is the nonlinear term. Neglecting N we obtain the Stokes
equations, a simpler version of N-S equations. Notice the zero entry for the pressure
in A arising from Eq. (1b).

An analytical solution of Eq. (4) is derived in the simplified case of an oscillating
pulsatile flow in the x direction with a parabolic profile, where the x velocity depends
just on the y coordinate in space, i.e. u D .u.y; t/; 0; 0/. We used this solution to
validate our implementation and for the error analysis.

3 Discretization

In the following we consider the spatial domain ˝ D .0;Lx/ � .0;Ly/ � .0;Lz/
discretized with a uniform Cartesian grid; no error is introduced by approximating
the domain. We use a staggered grid in space, where the components of u D
.u; v;w/ and p are defined in different nodes (see Fig. 1).

Fig. 1 Staggered grid in a
2D domain and on the
boundary. The pressure points
are located in i; j nodes (with
i; j 2 N ), u and v are located
at i˙ 1=2; j and i; j˙ 1=2
nodes. The extension to three
spatial dimension is natural:
w is defined at i; j; k˙ 1=2

y(j)

x(i)

O

(Lx, Ly)

u

v

p

i i + 1

j

j + 1
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The N-S equations will be discretized by means of fourth order finite differences
with upwinding for the advection term NŒu� .

Because we solve the problem in space-time (without a time stepping technique)
we consider the space-time domain˝�.0; 2�/, which we discretize with NxNyNzNT

grid points,1 in the form

.xi; yj; zk; tn/ D .i	x; j	y; k	z; n	t/; (5)

where 	x D Lx
Nx�1 and i D 0; : : : ;Nx � 1 (and similarly for y; z and t). Because we

consider a uniform grid, we have	x D 	y D 	z DW h. We get the discrete values

pnijk � p.xi; yj; zk; tn/; uni˙1=2;jk � u.xi˙1=2; yj; zk; tn/;

vnij˙1=2;k � v.xi; yj˙1=2; zk; tn/; wn
ijk˙1=2 � w.xi; yj; zk˙1=2; tn/:

Each of the four variables is defined on a different subset of nodes; if a finite
difference stencil requires a variable where it is not defined, it is obtained by linear
interpolation.

The momentum equation (1a) is solved in the velocity nodes and the mass
equation (1b) in the pressure nodes.

4 Solution Strategy

As first step in the solution process we linearize the momentum equation through a
Picard iterative process. In the kth Picard iteration we solve the equations for uk and
the convective term is transformed:

.u � r/u �! .uk�1 � r/uk (6)

where we use an initial guess u0. We iterate until the prescribed tolerance is achieved
for the residual.

Successively we apply a multigrid V(�1,�2) cycle to the linear problem, where
�1, �2 are the pre/post smoothing steps used.

Multigrid methods are a well established solution strategy for elliptic PDEs, but
are also applied to parabolic and hyperbolic problems. In particular for elliptic
problems multigrid is proven to be an optimal solver, with an h-independent
convergence rate.

1Nx is the number of points in the x direction and similarly for y; z and time.
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We used a fourth order accurate discretization but it is convenient to use a low(er)
order discrete operator as smoother in the multigrid cycle; smoothing should be fast
but it does not need to be highly accurate. Moreover for higher-order discretizations
good smoothing properties are lost (see [6]). Thus, we employ a defect correction
scheme to obtain high order accuracy from a low order operator. Let’s consider two
discrete operators: the high order one Ah (4th order in our case) and a lower order
one OAh (2nd order). The main idea is to solve Ahxh D bh trough an iterative process
where we just evaluate Ahxh and solve with OAh. The nth iteration, with a modified
RHS, can be written as

OAhxn
h D bh � Ahxn�1

h C OAhxn�1
h : (7)

The defect correction will be performed outside of the multigrid V-cycle.
In the next paragraph we give an outlook on the solution algorithm to solve the

non liner system AhŒxh�xh D bh; we drop the index h for notational convenience.

Algorithm 1 Solve AŒx�x D b

Initial guess x0, high order operator A, low order operator OA, k D 0

Picard iteration process:
while

��b� AŒxk�xk
�� > � do

Linearization of the high order discrete operator: Ak D AŒxk�
Linearization of the low order discrete operator: OAk D OAŒxk�
xk0 D xk

for n D 0; : : : ;Nmax � 1 do
Compute right hand side for the defect correction:

Ob D b� Akxkn C OAkxkn

Find xknC1 solving OAkxknC1 D Ob using a multigrid V(�1,�2) cycle and xkn as initial state
end for
xkC1 D xkNmax

k D kC 1
end while

where Nmax is the number of multigrid cycles performed in one Picard iteration.
We employ a V(4,4) cycle with standard transfer operators and a LAPACK
optimized GMRES to solve the coarse level system. Of course a key component in
the context of a multigrid algorithm is the choice of an effective smoothing method.
Because of the pressure zero block in Eq. (4) standard smoothing methods fail to
converge. Alternative possibilities are the class of distributive smoothing algorithms
(e.g. DGS [7]) or SCGS (“box smoothing”). The latter will be used in this study.

In order to analyze the smoothing properties of SCGS we employed the local
Fourier analysis (LFA) as proposed by Brandt [8]. This technique is rigorous only
on an infinite grid, but it gives realistic estimates for the convergence of a smoothing
scheme on a finite grid, for example see [13]. In fact, with LFA we can compute
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Fig. 2 Left: the amplification factor M.�/ of SCGS for the whole frequency spectrum for Re D
˛ D 1. M.�/ is defined as the spectral radius of the iteration matrix. We compare different box
shapes extending in all 4D or just in 3D. The “Jacobi boxes” are decoupled, i.e. non intersecting
each other. Right: we show how � depends on the Reynolds number; the smoothing factor � is
defined as � D max fjM.�/j W �=2 � � � �g

the smoothing factor (usually denoted by �), a measure of the reduction of high
frequency error components per smoothing step. We refer to [9] and [10] for the
steady Stokes equations, discretized with a standard grid in 2D. We extend this
analysis to the 3D unsteady Stokes equations, with boxes in space and space-time on
a staggered grid. In Fig. 2 we show some results of LFA. For more details regarding
this analysis and the solution strategy in general we refer to [1].

5 Numerical Experiments

Our implementation is based on the library TRILINOS [11] and the framework
P-IMPACT, developed at ETH Zürich, an extension of the library IMPACT [12]
designed to solve CFD problems with finite differences in parallel. This library
allows to decompose the space-time domain on a Cartesian MPI processor grid
and exchange data between neighboring processors trough ghost cell layers. All
the measurements are obtained on the Euler2 cluster. If not stated differently, we
used Re D ˛ D 1 and N � 3:2 � 105 unknowns equally distributed in the four
dimensions. We define the scaled residual as d D kdhk2 =

p
N;with dh D bh�Ahxh.

In Fig. 3 we show the smoothing effect of SCGS, on the N-S equations considering
the effect of alternating the direction in the sweep and introducing a under-relaxation
parameter ! for the update in case of Re D 100. In Fig. 4 we show the convergence
of the multigrid algorithm and of the outer Picard iterative process, i.e. the overall
convergence. In Fig. 5 weak and strong scaling of the parallel solver are shown.

2http://brutuswiki.ethz.ch/brutus/Getting_started_with_Euler

http://brutuswiki.ethz.ch/brutus/Getting_started_with_Euler
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6 Conclusions

In this work we have investigated and built a parallel space-time solver for the
Navier–Stokes equations in 3 C 1 dimensions with periodic boundary conditions.
In particular, the case of a pulsatile flow is analyzed and simulated by means of high
order finite difference on a staggered grid.

The SCGS smoothing process, necessary for the multigrid algorithm, has been
studied for the simplified Stokes case. In the context of the local Fourier analysis, we
compared this method for different boxes. A box in four dimensions turned out to be
the one with the best smoothing factor, both in the LFA theory and in the numerical
experiments. For “high” Reynolds numbers under-relaxation may be necessary for
SCGS to be convergent.

We have used a space-time multigrid algorithm with a defect correction technique
to accelerate the convergence of SCGS, obtaining a convergence factor � '
0:46, stable to machine precision and h-independent. We achieved convergence to
machine precision with just ten Picard steps, in the best case. For Re & 100 the
multigrid algorithm is unstable for the studied problem and a more thorough analysis
should be carried out. Stabilization techniques may be necessary as the introduction
of artificial diffusion in the problem.

Finally we have analyzed the scalability of the software subdividing the domain
between multiple processors in all four dimensions. We obtained a � 50� times
speedup using 64 processors, and high efficiency especially for 32 or lower numbers
of processors.
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Discretization and Parallel Iterative Schemes
for Advection-Diffusion-Reaction Problems

Abdullah Ali Sivas, Murat Manguog̃lu, J.H.M. ten Thije Boonkkamp,
and M.J.H. Anthonissen

Abstract Conservation laws of advection-diffusion-reaction (ADR) type are ubiq-
uitous in continuum physics. In this paper we outline discretization of these
problems and iterative schemes for the resulting linear system. For discretization
we use the finite volume method in combination with the complete flux scheme.
The numerical flux is the superposition of a homogeneous flux, corresponding to
the advection-diffusion operator, and the inhomogeneous flux, taking into account
the effect of the source term (ten Thije Boonkkamp and Anthonissen, J Sci Comput
46(1):47–70, 2011). For a three-dimensional conservation law this results in a 27-
point coupling for the unknown as well as the source term. Direct solution of the
sparse linear systems that arise in 3D ADR problems is not feasible due to fill-in.
Iterative solution of such linear systems remains to be the only efficient alternative
which requires less memory and shorter time to solution compared to direct solvers.
Iterative solvers require a preconditioner to reduce the number of iterations. We
present results using several different preconditioning techniques and study their
effectiveness.

1 Discretization and Iterative Solution

We consider a stationary conservation law of advection-diffusion-reaction type, viz.

r � .u' � "r'/ D s; (1)
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where u D u ex C v ey C w ez is a mass flux or (drift) velocity, " � "min > 0

a diffusion coefficient, and s a source term describing, e.g., chemical reactions or
ionization. The unknown ' is then the mass fraction of one of the constituent species
in a chemically reacting flow or a plasma. The parameters " and s are usually
(complicated) functions of ' whereas the vector field u has to be computed from
(flow) equations corresponding to (1). However, for the sake of discretization, we
will consider these parameters as given functions of the spatial coordinates.

Associated with equation (1) we introduce the flux vector f, defined by f WD u'�
"r'. Consequently, equation (1) can be concisely written as r � f D s. Integrating
this equation over a fixed domain ˝ and applying Gauss’s theorem we obtain the
integral form of the conservation law, i.e.,

I
�

.f;n/ dS D
Z
˝

s dV; (2)

where n is the outward unit normal on the boundary � D @˝ . In the FVM [4]
we cover the domain with a finite number of disjunct control volumes or cells and
impose the integral form (2) for each of these cells.

In three-dimensional Cartesian coordinates, we first choose grid points xi;j;k D
.xi; yj; zk/ where the unknown ' has to be approximated. Next, we choose control
volumes˝i;j;k WD .xi�1=2; xiC1=2/�.yj�1=2; yjC1=2/�.zk�1=2; zkC1=2/. Here xi˙1=2 WD
1
2
.xi C xi˙1/ etc. The boundary of control volume ˝i;j;k is the union of six surfaces
�i˙1=2;j;k, �i;j˙1=2;k and �i;j;k˙1=2. Taking ˝ D ˝i;j;k in conservation law (2) and
approximating all integrals with the midpoint rule, we find



fx;iC1=2;j;k � fx;i�1=2;j;k

�
	y	z

C 
 fy;i;jC1=2;k � fy;i;j�1=2;k
�
	x	z

C 
 fz;i;j;kC1=2 � fz;i;j;k�1=2
�
	x	y

:D si;j;k 	x	y	z; (3)

where we have used that f D fx exC fy eyC fz ez. The FVM has to be completed with
numerical approximations Fx, Fy and Fz for the fluxes fx, fy and fz in (3).

We first derive the x-component of the flux, fx;iC1=2;j;k , by solving a local one-
dimensional problem. Consider the flux f WD u' � " d'dx and the model BVP:

d

dx
. f / D s; xi < x < xiC1; '.xi/ D 'i; '.xiC1/ D 'iC1: (4)

We assume " > 0 and s to be sufficiently smooth functions of x. Solving (4), we find
fiC 1

2
D f hom

iC 1
2

C f inh
iC 1

2

, see [8] for details, where we have introduced the homogeneous

flux f hom and the inhomogeneous flux f inh. These fluxes correspond to the advection-
diffusion operator and the source term, respectively. If both u and " are constant, we
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can write the homogeneous flux as

f hom
iC 1

2

D "

	x

�
B.�P/'i � B.P/'iC1

	
; (5)

in which B.x/ WD x=.ex � 1/ and the Péclet number P WD u
"
	x. For the

inhomogeneous flux we find

f inh
iC 1

2

D
Z 1

0

G.� IP/ s.x.�// d�; (6)

where we have used the normalized coordinate �.x/ WD .x � xi/=	x and the
Green’s function for the flux

G.� IP/ WD

8̂
ˆ̂<
ˆ̂̂:

e��P � 1
e�P � 1 ; for 0 � � � 1=2,

�e.1��/P � 1
eP � 1 ; for 1=2 < � � 1.

(7)

For the numerical fluxes, two averages are used: the normal arithmetic aver-
age "iC 1

2
WD ."i C "iC1/=2 and a weighted average e"iC 1

2
WD W.�PiC 1

2
/"i C

W.PiC 1
2
/"iC1. The weight function used here is W.x/ WD .ex � 1 � x/=.x .ex � 1//.

We use (5) to find the following numerical homogeneous flux

Fhom
iC 1

2

D ˛iC 1
2
'i � ˇiC 1

2
'iC1; (8a)

˛iC 1
2
WD B


 � PiC 1
2

�ePiC 1
2

PiC 1
2

e"iC 1
2

	x
; ˇiC 1

2
WD B



PiC 1

2

�ePiC 1
2

PiC 1
2

e"iC 1
2

	x
: (8b)

The numerical inhomogeneous flux is based on (6). We take s.x/ equal to si on
the interval .0; 1=2/ and equal to siC1 on .1=2; 1/. Next we integrate the Green’s
function to find

Finh
iC 1

2

WD 
iC 1
2
si � ıiC 1

2
siC1; (9a)


iC 1
2
WD C.�PiC 1

2
/ 	x; ıiC 1

2
WD C.PiC 1

2
/ 	x; (9b)

in which C.x/ WD .e
1
2 x � 1 � 1

2
x/=.x .ex � 1//. Note: C.x/ ! 1=8 for x ! 0,

C.x/ ! 0 for x ! 1, and C.x/ ! 1=2 for x ! �1. Hence for small
Péclet numbers, the coefficients 
 and ı will be approximately equal and the
inhomogeneous flux is small. For large (positive or negative) Péclet numbers, the
upwind value of s has a dominant contribution. Adding (8) and (9), we obtain the
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following numerical complete flux:

FiC 1
2
D ˛iC 1

2
'i � ˇiC 1

2
'iC1 C 
iC 1

2
si � ıiC 1

2
siC1: (10)

We will now combine the one-dimensional schemes to derive a numerical scheme
for the 3D equation (1). The key idea is to include the cross-fluxes @fy=@y and @fz=@z
in the evaluation of the flux in x-direction. This reduces the crosswind diffusion
and leads to much sharper (interior) layers for advection-dominated flows. In [8]
we have shown that for 2D problems, the inclusion of cross-flux terms is essential
to maintain second order accuracy, whereas the homogeneous flux scheme (without
cross-fluxes) reduces to first order. Hence, we determine the numerical flux Fx;iC 1

2 ;j;k

from the quasi-one-dimensional boundary value problem:

@

@x

��
u' � "@'

@x

		
D sx; xi < x < xiC1; y D yj; z D zk; (11a)

'.xi;j;k/ D 'i;j;k; '.xiC1;j;k/ D 'iC1;j;k; (11b)

where the modified source term sx is defined by sx WD ˛s�ˇ.@fy=@yC@fz=@z/, with
˛ and ˇ coefficients that are yet to be determined. If we take ˇ D 1, the cross-fluxes
are completely included; taking ˇ D 0 ignores them.

The derivation of the expression for the numerical flux is essentially the same
as for (10), the main difference being the inclusion of the cross-fluxes @fy=@y and
@fz=@z in the source term. In the computation of sx we replace @fy=@y by its central
difference approximation and for fy we take the homogeneous numerical flux. We
treat @fz=@z in the same way. Similar procedures apply to the y- and z-components
of the flux. We shall take ˇ D 1=2 in the numerical simulations. Adding the three
one-dimensional problems in x, y and z-direction, we find that we need to choose
˛ D .1 C 2ˇ/=3 for consistency. Substitution of the numerical fluxes presented
above into (3) leads to a 27-point stencil for the unknown '. The points of the
stencil are presented in Fig. 1. We denote the resulting linear system by Ax D b.
The matrix A has in general 27 nonzero diagonals.

Fig. 1 Compass notation for
points in discretization stencil
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The resulting sparse linear system from the 3D discretization is most suitable
for iterative solvers since direct solvers are known to scale poorly and memory
requirements are usually very high due to fill-in. We use Bi-Conjugate Gradient
Stabilized (BiCGStab) with preconditioning. In this paper, we will study and
compare the performance of two parallel preconditioners that are based on the sparse
approximate inverse (SAI) and incomplete LU (ILU) factorization.

Given a linear system Ax D b, the sparse approximate inverse idea is to find a
sparse matrix M such that the Frobenius norm of the error jjMA�IjjF < � for some
� > 0 under a sparsity constraint on M. If the structure of A�1 is known, it can be
used for the sparsity pattern of M. If it is not known, one practical approach is to
assume that M has the same structure as Ak for some k, but as k gets larger this is
costly, and there is a limit to � as the structure is fixed. Alternatively, for a given �,
trying to find a structure for M that satisfies given � is another possibility.

SAI type of preconditioners are expected to be scalable on parallel computing
platforms since computing the preconditioner matrix can be split into completely
independent linear least squares problems. Another reason is that applying the
preconditioner is just a matrix-vector multiplication which is usually possible to
parallelize.

The main idea in ILU-type preconditioners is to find an approximate LU
factorization of the coefficient matrix A where M D eLeU � A which is sparser than
complete LU factorization and M�1A has a more favorable eigenvalue distribution.
This is either achieved by assuming a structure beforehand or by dropping elements
which are less than some threshold in absolute value. Parallel ILU types of
preconditioners are less amenable to parallelism. This is because of the inherently
sequential nature and limited parallelism of the triangular solves as well as the
incomplete factorization processes. We refer the reader to surveys [1] and [2] for
a detailed discussion on various other preconditioning techniques.

2 Numerical Results

2.1 A Three-Dimensional Flow Problem

We consider the following flow problem. It is a three-dimensional extension of [8,
Section 8, Example 3]. The problem domain is given by �1 � x � 1, 0 � y � 1
and 0 � z � 1. The unknown ' satisfies the following partial differential equation

r � .u' � "r'/ D 0; in .�1; 1/ � .0; 1/� .0; 1/ (12)

with velocity field u.x; y; z/ D .1�x2/y.1�2z/ exCx.1�y2/.1�2z/ eyC4xyz.1�
z/ ez; see Fig. 2. We impose the following boundary conditions (c is a constant that
determines the steepness of the profile; we take c D 10)
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Fig. 2 The problem domain and velocity field for the flow problem. The inlet is lower left and
upper right rectangle the outlet lower right rectangle and upper left rectangle

– At the inlet (given by y D 0, x � 0, 0 � z � 1=2 and y D 0, x � 0, 1=2 � z � 1)
we set '.x; y; z/ D 
1C tanh.c.2xC 1//�z

– At the outlet (given by y D 0, x < 0, 0 � z < 1=2 and y D 0, x > 0, 1=2 < z �
1) we set @'

@y .x; y; z/ D 0
– At the front (x D 1), back (x D �1), right (y D 1), bottom (z D 0), and top

(z D 1), we set '.x; y; z/ D 
1C tanh.c.2xC 1//�.1 � y/z:

2.2 Parallel Scalability

All the runs are performed on a single shared memory node which has two 10-core
Intel Xeon E5-2650v3 2.3 GHz processors (total 20 cores) and 64GB of memory,
running on CentOS 6.6 operating system.

As the iterative solver environment we use Hypre [5] version 2.10.0b. Hypre
provides a parallel environment for various iterative solvers and preconditioners
using MPI. In the following runs we use preconditioned BiCGStab [9] as the Krylov
iterative solver. Two preconditioners we have experimented with are: Euclid [6] and
ParaSails [3]. Euclid is a parallel ILU implementation and ParaSails is a parallel
SAI type of preconditioner. Euclid has support for Parallel-ILU(k) and Block Jacobi
ILU(k) in its current implementation,we have used Parallel-ILU(1). For ParaSails
we set parameters so that the preconditioner has the same sparsity as the coefficient
matrix in the worst case. We also set a threshold value of 0:2 when determining the
sparsity structure of M, based on the sparsity structure of A by ignoring smaller
nonzeros in absolute value based on the threshold. The filter value is set to be 0:05
which drops smaller elements in absolute value from the preconditioner after they
are computed.

We use Pardiso [7] direct solver which is a part of Intel MKL version 11.2.1
to compare against. We used default parameters of Pardiso solver.
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Table 1 Number of
iterations for the iterative
solvers using different
diffusion (") coefficients

" D 1 " D 10�5

Cores ParaSails Euclid ParaSails Euclid

1 226 44 1178 94

2 212 44 1183 125

4 215 49 1186 164

8 236 45 1191 235

16 220 51 1151 415

20 213 52 1177 –
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Fig. 3 Residual history. (a) "D 1. (b) " D 10�5

We have experimented with two linear systems of the same size but with
different diffusion coefficients of 1 and 10�5. Initially the systems are generated
including the boundary conditions but for all linear solvers we remove the Dirichlet
boundary conditions. After removing the boundary conditions, the resulting systems
have 992;319 unknowns and 18;467;751 and 17;452;253 nonzeros, respectively for
diffusion coefficients (") of 1 and 10�5. Smaller " results in a sparser coefficient
matrix. For the iterative solvers, stopping criteria is L2-norm of the relative residual
to be less than or equal to 10�8 or maximum number of iterations (10;000) to be
reached. We measure the elapsed wall clock time and the number of iterations.Each
MPI process is mapped on a single core.

Table 1 shows the number of iterations of ParaSails and Euclid for different
diffusion coefficients. Although ParaSails requires a larger number of iterations,
its iteration count does not depend on the number of cores (and the number
of processes) while the required number of iterations for Euclid increases with
increasing number of cores, especially for smaller ". In Fig. 3a, b, convergence
histories of Euclid and ParaSails are given for " D 1 and 10�5, respectively. We also
note that for " D 10�5 and 20 cores, using BiCGStab with Euclid preconditioner
has failed before it reaches the maximum number of iterations.

In Fig. 4a, b, the required time to solution for " D 1 and " D 10�5 are given,
respectively, using Pardiso, Euclid and ParaSails. As expected the direct solver is
the slowest due to fill-in. When " D 10�5, ParaSails is better than Euclid for large
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Fig. 4 Parallel running time in seconds. (a) " D 1. (b) "D 10�5

number of cores. For " D 1, on the other hand, ParaSails is the faster and scales
much better than Euclid throughout. This is probably due to Euclid’s increasing
number of iterations as we increase the number of cores and due to the inherently
sequential nature of triangular solves.

3 Conclusions

We have presented a new 3D formulation and discretization of advection-diffusion-
reaction equations using the complete flux scheme. Resulting linear systems are
solved directly using Pardiso and iteratively using ILU and SAI type of precondi-
tioners on a parallel platform. Results show that for various diffusion coefficients,
SAI preconditioned BiCGStab is the more scalable and requires less time to solution
compared to the ILU preconditioned BiCGStab and to the direct solver.
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A Simple Proposal for Parallel Computation
Over Time of an Evolutionary Process
with Implicit Time Stepping

Eleanor McDonald and Andy Wathen

Abstract Evolutionary processes arise in many areas of applied mathematics, how-
ever since the solution at any time depends on the solution at previous time steps,
these types of problems are inherently difficult to parallelize. In this paper, we make
a simple proposal of a parallel approach for the solution of evolutionary problems
with implicit time step schemes. We derive and demonstrate our approach for both
the linear diffusion equation and the convection-diffusion equation. Using an all-
at-once approach, we solve for all time steps simultaneously using a parallelizable
over time preconditioner within a standard iterative method.

1 Introduction

Evolutionary processes have been extensively studied for many years and as we
approach the limits of computational speeds on a single processor, the use of
massively parallel computer architectures is seen as the way forward. The inherent
problem with solving evolutionary problems on such systems is the causality
principle; the solution at each time step depends on the solution at previous
steps and this presents significant difficulty to parallel computations over time.
Although explicit time stepping schemes are readily parallelizable, this places
significant restriction on the time step size, � , in order to ensure stability. Therefore
methods which can be applied to unconditionally stable implicit methods allow
parallelization with larger time step sizes.

Significant research has been conducted on time domain parallelization and a
recent comprehensive review can be found in [6]. As described in this review,
methods can generally be classified into either multiple shooting methods (such as
the “parareal” method [10] or PFASST [4]), domain decomposition and waveform
relaxation methods such as in [5], space-time multigrid methods [8, 11], or direct
methods [7]. Our proposal falls into none of these categories as it contains no coars-
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ening of the time operator and is based solely on a block diagonal preconditioner to
the all-at-once system.

The method we propose is a parallelizable block diagonal preconditioner applied
within an iterative method such as GMRES [13] or BiCGSTAB [14]. The solution
is computed using the all-at-once method, whereby the solution at all time steps
is computed simultaneously. Parallelization of an all-at-once formulation is also
presented in [11] where a space-time multigrid approach is used however in our
more elementary approach, the block diagonal preconditioner is approximated
with multigrid but there is no coarsening in time. Despite having no coarse time
propagator, our multigrid approximated preconditioner performs similarly to a block
Jacobi preconditioner applied exactly which has provable convergence properties.
Thus we are able to take advantage of the multigrid approximation to propose a
cheaply applied, parallelizable, and easy to implement preconditioner.

In this short paper, we will motivate our method firstly on the linear diffusion
equation and provide analysis to support the convergence of the method. We will
extend this methodology to the convection-diffusion equation and finally present
results to illustrate the performance for the model problems considered.

2 Proposal Outline

In order to describe our method, we will begin by considering the solution of the
linear diffusion (or heat) equation initial-boundary value problem,

ut D 	uC f in ˝ � .0;T�; ˝ � R
2 orR3;

u D g on @˝;

u.x; 0/ D u0.x/ at t D 0:
(1)

We will use a finite element discretization in space on a uniform square grid
with mesh size h though there is no reason to believe that this is necessary for
our proposal. A �-method will be used to discretize in time with N time steps of
size �k at the k-th step where

PN
kD1 �k D T. We note that for 1

2
� � � 1 we

have an unconditionally stable implicit scheme. While this method is valid for all
�-schemes we will focus on results for the Backward Euler (� D 1) and Crank-
Nicolson (� D 1

2
) schemes.

For general �-schemes the discretization of (1) gives,

M uk�uk�1
�k
C K .�uk C .1 � �/uk�1/ D fk; (2)

for k D 1; : : : ;N where M 2 R
n�n is the standard finite element mass matrix,

K 2 R
n�n is the stiffness matrix (the discrete Laplacian), and n is the number of

spatial degrees of freedom.
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In order to solve this system, the classical approach is to solve the N separate
n�n systems sequentially for k D 1; 2; : : : ;N. For large n, an iterative method such
as Algebraic Multigrid (AMG) may be used to complete each of these solves. This
approach is inherently sequential, hence the method is difficult to parallelize over
time. If we regard 1 AMG V-cycle as the main unit of work for each solve, then if
we require r V-cycles to solve the n�n linear system at each time step to the desired
accuracy, we require rN V-cycles in total to achieve an accurate solution at all time
steps.

2.1 Proposed Approach

Our simple proposal solves all time steps simultaneously using an ‘all-at-once’
approach. Conceptually, we construct the following linear system which defines the
solution at all time steps in one large equation system, A u D f, where

A WD

2
6664

M C �1�K
�M C �2.1 � �/K M C �2�K

: : :
: : :

�M C �N.1 � �/K M C �N�K

3
7775 ; (3)

and u D Œu1;u2; : : : ;uN �
T and f D Œ.M � �1.1 � �/K/u0 C �1f1; �2f2; : : : ; �NfN �T :

We note that the resulting linear system is a huge nN � nN system however,
matrix vector products with A require only vector products with M and K, thus
can be computed simply without actual construction of A . The classical approach
would correspond to solution of this system by block forward substitution. In order
to solve the system we propose to use a standard preconditioned iterative method
such as GMRES or BiCGSTAB; the key consideration is preconditioning.

The preconditioner we propose is an approximation to the block diagonal of A
in (3) and is given by,

P�1MG WD

2
6664
.M C �1�K/MG

.M C �2�K/MG

: : :

.M C �N�K/MG

3
7775 : (4)

where .M C �k�K/MG denotes the application of a single multigrid V-cycle to the
matrix M C �k�K 2 R

n�n. Due to the block diagonal structure, this preconditioner
could be applied using N independent parallel processes. We note that this method
does not require �k to be constant at all time steps and thus could be applied to an
adaptive scheme, however the size of the time step at each step would need to be
known a priori.
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Since each iteration of GMRES or BiCGSTAB is dominated by the work required
to complete one solve of a linear system with PMG, the total work at each iteration
will be approximately equal to 1N V-cycles. However, as the preconditioner is
inherently parallelizable, each time step can be computed on a separate processor.
Thus, if distributed overN processors, the total work at each iteration is equivalent to
only 1 V-cycle. In order to estimate the convergence of the GMRES iteration we will
examine the eigenvalues of the preconditioned system with the exact preconditioner,
Pexact, defined as

Pexact WD blkdiag.M C �1�K;M C �2�K; : : : ;M C �N�K/ (5)

Proposition 1 Let A be any block lower triangular matrix and P is the block
diagonal part of A . Then the preconditioned system, T D P�1A where P
is inverted exactly, has eigenvalues all equal to 1 and furthermore, the minimal
polynomial is given by

p.T / D .T � I/m (6)

for some m < N.

Proof We note that T will be block lower triangular with identity matrices on
the diagonal which implies that all the eigenvalues of T must be equal to 1.
Furthermore, the matrix T �I will be strictly block lower triangular. For any m < N,
we note that .T � I/m will be 0 except for non-zero entries on or below the m-
th subdiagonal. Therefore, we must have .T � I/N D 0 as there are only N � 1
subdiagonals.

If we were to calculate the preconditioner exactly, GMRES would converge to
the exact solution in at most N steps in exact arithmetic. Numerically we can see
that this is still very close to being the case for the multigrid preconditioner defined
in (4). Figure 1 shows the convergence for two small system using a Backward Euler
discretisation. We can see that there is a sharp drop in the residual when the number
of iterations is equal to N for both GMRES and BiCGSTAB iterations. We note that
from a linear algebra perspective, this is very interesting as we see that a ‘nearby’
Jordan structure is determining the convergence of a matrix which no longer has the
same minimal polynomial. Furthermore, we note that Proposition 1 also applies to
any k-step methods and we will provide numerical results for the BDF2 method to
support this.

Additionally we see that the multigrid preconditioner, PMG, is spectrally very
close to Pexact. Figure 2 shows the eigenvalues of the preconditioned system for the
Backward Euler .� D 1/ and Crank-Nicolson .� D 1

2
/ schemes as well as the 2-step

BDF method and we see the eigenvalues are closely clustered around 1. Similarly
clustered eigenvalues are expected for different parameter values.
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Fig. 1 Convergence of the preconditioned iterative methods (h D � D 2�4;N D 80). (a) Heat
equation. (b) Convection diffusion

Fig. 2 Eigenvalues of the preconditioned system for the heat equation (h D � D 2�5;N D 5)

3 Convection-Diffusion Equation

The solutions of the heat equation become exponentially smoother through time so
in order to demonstrate that the effectiveness of our proposed method does not rely
on this smoothness, we additionally consider the convection-diffusion equation.

The initial-boundary value problem considered is,

ut � �	uC w � ru D f in ˝ � .0;T�; ˝ � R
2 orR3;

u D g on @˝;

u.x; 0/ D u0.x/ at t D 0:
(7)

where � is small and positive. As discussed in Chapter 6 of [3], it is often the case
that convection effects are more dominant than diffusion. However, in this regime
for a Galerkin method, local oscillations can arise in the numerical solution and
a stabilisation method is required. We will use the widely employed Streamline
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Upwind Petrov-Galerkin (SUPG) stabilization method which was introduced in [9]
and described for example in [3, Section 6.3.2].

We will use a finite element discretisation in space on a uniform square grid with
mesh size h and constant time step � . Using a general �-scheme the discretisation
and SUPG stabilisation of (7) gives,

.M C �� OK/uk D .M � �.1 � �/ OK/uk�1 C �fk (8)

where OK D �K C N C ıS. Here K represents the stiffness matrix, N represents
the discretisation of the convection term w � ru, and S is the stabilisation term.
The stabilisation parameter ı required as part of the SUPG method is taken to be the
optimal value of 0 when Pe � 1 and h

2kwk2


1 � 1

Pe

�
when Pe > 1where Pe D hkwk2

2�
:

Due to the formation of layers in the convection-diffusion problem, more care
is required in order to use a multigrid approximation. The method we will use
is a modified geometric multigrid method described by Ramage in [12] and is
specifically designed for convection-diffusion problems.

We now have the following system, bA u D fCD, where

bA D
2
6664

M C �� OK
�M C �.1 � �/ OK M C �� OK

: : :
: : :

�M C �.1 � �/ OK M C �� OK

3
7775 ; (9)

where u D Œu1;u2; : : : ;uN �
T and fCD D ŒM��.1��/ OKC�1f1; �2f2; : : : ; �NfN �T and

the fi terms contain the extra stabilisation term. We therefore define the approximate
preconditioner to becP�1MG WD blkdiag..MC�� OK/MG/;where .MC�� OK/MG denotes
the application of a single Ramage multigrid V-cycle to the matrix M C �� OK 2
R

n�n. As Proposition 1 still applies to the convection-diffusion system, we expect
similar convergence results as were seen in the heat equation.

4 Numerical Results

The results presented in this section were implemented within the IFISS [2]
framework. Our implementation of GMRES was from the IFISS package and did
not allow restarting. As GMRES can require prohibitive amounts of storage (and
growing work) if many iterations are required, we also completed the calculations
with the inbuilt Matlab implementation of BiCGSTAB. Both methods were stopped
with an absolute residual tolerance of 10�6. The finite element discretisation uses
Q1 finite elements over the domain.

Heat Equation: For the heat equation, we used the Harwell Subroutine Library
AMG preconditioner implementation, HSL_MI20 [1] employed as a “black box”.
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Table 1 Heat Equation: Number of iterations for given grid size and number of time steps

(a) Smooth test problem: Backwards Euler

h � N DoF GMRES BiCGSTAB

2�3 2�3 40 3240 40 37

2�4 2�4 80 23;120 80 77

2�5 2�5 160 174;240 160 161

2�3 2�3 40 3240 40 37

2�4 2�4 40 11;560 40 39

2�5 2�5 40 43;560 43 43

2�6 2�6 40 169;000 45 45

2�7 2�7 40 665;640 47 45

(b) Non-smooth test problem: Crank-Nicholson and BDF2

Crank-Nicholson BDF2
h � N DoF GMRES BiCGSTAB GMRES BiCGSTAB

2�3 2�5 40 3240 49 48 45 48

2�4 2�6 80 23;120 90 95 87 90

2�5 2�7 160 174;240 175 199 169 190

2�3 2�5 40 3240 49 48 45 48

2�4 2�6 40 11;560 52 50 49 50

2�5 2�7 40 43;560 53 53 51 52

2�6 2�8 40 169;000 56 53 53 55

2�7 2�9 40 665;640 57 54 55 58

We consider two test problems; one with smooth initial data and a second with
random initial conditions.

Our first example is defined by the initial conditions, u0 D x.x � 1/y.y � 1/
with no external forcing (i.e. f D 0). Backward Euler was used for the temporal
discretisation and the iteration results are summarized in Table 1a below. The
second example was defined with random initial data taking values from a uniform
distribution on [0, 10]. Crank-Nicholson and BDF2 were used to discretize in time
and the results are summarized in Table 1b below. These methods have not been
chosen specifically for each problem, but rather just to demonstrate that a variety of
time-stepping methods can be used. For both examples it is evident that the iteration
numbers are approximately equal to the number of time steps and independent of h.

Convection-Diffusion Equation: For the convection-diffusion equation, the
Ramage modified geometric multigrid [12] implemented in IFISS was used. Two
pre- and two post-smoothing steps were used with four-directional line Gauss-Seidel
smoothing.

In each of the problems, � was set equal to 1/200 so the maximum mesh Peclet
number ranged between approximately 46 for h D 2�3 and 3 for h D 2�7. The
convection diffusion test problem is given by Example 6.1.4 in [3] and is known as
the double glazing problem. The wind is described by w D .2y.1�x2/;�2x.1�y2//.
Dirichlet boundary conditions are imposed everywhere on the boundary with u D 1
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Table 2 Convection-diffusion, double glazing problem. Number of iterations for given grid size
and number of steps

h � N DoF GMRES BiCGSTAB

2�3 2�3 40 3240 40 41

2�4 2�4 80 23;120 80 78

2�5 2�5 160 174;240 160 167

2�4 2�4 160 46;240 160 182

2�5 2�5 160 174;240 160 167

2�6 2�6 160 676;000 175 176

2�7 2�7 160 2;662;560 165 174

on the boundary where x D 1 and zero on all other boundaries. The vector u0 was
zero everywhere except the boundaries where is satisfies the boundary conditions.
In Table 2 the iteration numbers remain independent of the mesh size.

5 Conclusions

In this paper we have presented a simple approach for solving the heat equation
and the convection-diffusion problem which is parallelizable over time. The method
constructs an all-at-once system which is solved using a preconditioned iterative
method. The preconditioner is block diagonal and therefore its application can be
computed at each time step in parallel over the time steps. We have shown that with
the exact preconditioner, GMRES must converge in at most N iterations with exact
arithmetic and in practice, the multigrid approximation performs very close to this.
Thus, our approach has shown that ‘nearby’ Jordan structure can be a factor in the
convergence of the linear system. Since at each iteration a single AMG V-cycle at
each time step can be spread over N processors, N iterations can be completed in
approximately the same amount of time as N V-cycles rather than rN V-cycles in a
classical sequential approach.
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The Induced Dimension Reduction Method
Applied to Convection-Diffusion-Reaction
Problems

Reinaldo Astudillo and Martin B. van Gijzen

Abstract Discretization of (linearized) convection-diffusion-reaction problems
yields a large and sparse non symmetric linear system of equations,

Ax D b: (1)

In this work, we compare the computational behavior of the Induced Dimension
Reduction method (IDR(s)) (Sonneveld and van Gijzen, SIAM J Sci Comput
31(2):1035–1062, 2008), with other short-recurrences Krylov methods, specifically
the Bi-Conjugate Gradient Method (Bi-CG) (Fletcher, Conjugate gradient methods
for indefinite systems. In: Proceedings of the Dundee conference on numerical
analysis, pp 73–89, 1976), restarted Generalized Minimal Residual (GMRES(m))
(Saad and Schultz, SIAM J Sci Stat Comput 7:856–869, 1986), and Bi-Conjugate
Gradient Stabilized method (Bi-CGSTAB) (van der Vorst, SIAM J Sci Stat Comput
13(2):631–644, 1992).

1 Introduction

In this paper we consider the following simple convection-diffusion-reaction model
problem

� �4uC vTruC �u D f ; in ˝ D Œ0; 1�d (2)

with d D 2 or d D 3, and Dirichlet boundary conditions u D 0 on @˝ . In Eq. (2),
u represents the concentration of solute, v 2 R

d is the velocity of the medium
or convection vector, � > 0 represents the diffusion coefficient, � the reaction
coefficient, and f represents the source-term function.

R. Astudillo (�) • M.B. van Gijzen
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2629 CD,
Delft, The Netherlands
e-mail: r.a.astudillo@tudelft.nl; m.b.vangijzen@tudelft.nl

© Springer International Publishing Switzerland 2016
B. Karasözen et al. (eds.), Numerical Mathematics and Advanced
Applications ENUMATH 2015, Lecture Notes in Computational Science
and Engineering 112, DOI 10.1007/978-3-319-39929-4_29

295

mailto:r.a.astudillo@tudelft.nl
mailto:m.b.vangijzen@tudelft.nl


296 R. Astudillo and M.B. van Gijzen

Discretization of the Eq. (2) yields a non-symmetric system of linear equations,

Ax D b; (3)

where x is the unknown vector in R
N , b 2 R

N , and A 2 R
N�N is typically large,

and sparse. Krylov subspace methods are a popular choice to solve such systems.
However, the convergence ratio of these methods are strongly influenced by the
numerical properties of the coefficient matrix A, which internally depend on the
physical parameters of Eq. (2). For example, in the convection-dominated case, i.e.
kvk >> �, the coefficient matrix A has almost purely imaginary eigenvalues and
this can slow down the convergence of Krylov methods.

GMRES [3] is an optimal method, it obtains the best approximation in a
subspace of dimension j performing j matrix-vector products. Nevertheless, due
the large and ill-conditioned linear systems obtained from the discretization of the
convection-diffusion-reaction equation, one can expect that many iterations need
to be performed to compute the solution accurately. For this reason and taking
into account that the computational cost of GMRES increases per iteration, it is
preferable to use a preconditioned short-recurrences Krylov method that keeps the
computational work and memory consumption fixed per iteration. Bi-CGSTAB
[10] is the most widely used method of this kind. However, IDR(s) outperforms
Bi-CGSTAB in the experiments presented in [9] and [11]. In this work we continue
this comparison. We compare the numerical behavior of Bi-CG [1], GMRES(m),
Bi-CGSTAB, and IDR(s) to solve the linear systems arising from the discretization
of (2).

2 Krylov Methods for Solving Systems of Linear Equations

A projection method onto m-dimensional subspace OK and orthogonal to the
m-dimensional subspace L , is an iterative method to solve (3) which finds the
approximate solution xm in the affine subspace x0 C OK imposing the Petrov-
Galerkin condition, i.e., rm D b� Axm orthogonal to L . The subspace OK is called
search space, while L is called restriction space.

The Krylov subspace methods are projection methods for which the search space
is the Krylov subspace Km.A; r0/ D spanfr0; Ar0; : : : ; Am�1r0g; where r0 D b �
Ax0 with x0 as initial guess in C

N . The different Krylov methods are obtained from
the different choices of the restriction space. For a comprehensive description of the
Bi-CG, GMRES(m) and Bi-CGSTAB, we refer the reader to [2].
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2.1 The Induction Dimension Reduction Method (IDR(s))

IDR(s) was introduced in 2008 [9]. This method can also be described as a Krylov
projection method (see [6]), however, the original formulation and implementation
of IDR(s) is based on the following theorem.

Theorem 1 (IDR theorem) Let A be any matrix in C
N�N, and let P D

Œp1; p2; : : : ;ps� be an N � s matrix with s linear independent columns. Let f�jg be
a sequence in C. With G0 � C

N, define

GjC1 � .A � �jC1I/.Gj \ P?/ j D 0; 1; 2 : : : ;

where P? represents the orthogonal complement of P. If P? does not contain an
eigenvector of A, then, for all j D 0; 1; 2 : : : , the following hold
1. GjC1 � Gj, and
2. dimension(GjC1/ < dimension(Gj) unless Gj D f0g.
Proof See [9].

Assuming that sC1 approximations are available with their corresponding residuals
belonging to Gj�1, IDR(s) constructs the new approximation xk at the iteration k,
imposing the condition that the vector rk D b � Axk should be in the subspace Gj.
Moreover, using the fact that Gj � Gj�1, IDR(s) creates inductively sC 1 residuals
in the subspace Gj. After this, it is possible to create new residuals in GjC1.

IDR(s) has three attractive numerical properties. First, IDR(s) uses recurrences
of size s C 1, and the parameter s is normally selected between 2 and 8. Second,
the subspaces Gj with j D 1; 2; ; : : : are nested and shrinking, and for this reason,
IDR(s) has guarantee convergence in at most N C N

s matrix-vector multiplication
in exact arithmetic (see Corollary 3.2 in [9]). Third, IDR(1) and Bi-CGSTAB
are mathematically equivalent (see [5]); and IDR(s) is commonly faster than
Bi-CGSTAB for s > 1. The details of the implementation of IDR(s) can be found in
[11].

3 Numerical Experiments

All the experiment presented in this section are the discretization of Eq. (2) with
homogeneous Dirichlet boundary conditions over the unit cube, The right-hand-
side function f is defined by the solution u.x; y; z/ D x.1 � x/y.1 � y/z.1 � z/. We
use as stopping criteria that,

kb � Axkk2
kbk2 < 10�8:
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Fig. 1 Example 1: (a) Number of matrix-vector products required to converge as a function of the
parameter � for a diffusion-dominated problem. (b) Comparison of the residual norms, the physical
parameters are � D 1:0, v D .1:0; 1:0; 1:0/T=

p
3, and � D 0:0

The discretization of Eq. (2) using central finite differences may produce unphys-
ical oscillations in the numerical solution of convection or reaction dominated
problems. This problem can be solved discretizing the convection term using
upwind schemes. However, we use central finite differences rather than upwind
dicretization in this set of problems, in order to illustrate the effect of unfavorable
numerical conditions over the Krylov subspace solvers.

Experiment 1 In this example, we consider the parameters � D 1:0 and v D
.1:0; 1:0; 1:0/T=

p
3. We want to illustrate the effect of non-negative reaction

parameter over the Krylov solver, then, we select � 2 f0; 50; : : : ; 300g. Figure 1a
shows the number of matrix-vector multiplication required for each Krylov method
as a function of the reaction parameter �. In these problems, the increment of the
reaction parameter produces a reduction in the number of matrix-vector products
required for each Krylov method. All the methods perform very efficiently for these
examples. Figure 1b shows the evolution of the residual norm for � D 0:0. The
execution times are: IDR(4) 0.62s, Bi-CGSTAB 0.64s, Bi-CG 0.92s, and GMRES
2.83s.

Experiment 2 In order to illustrate the effect of the magnitude of the convection
velocity, we consider � D 1:0, � D �50:0, and v D ˇ.1:0; 1:0; 1:0/T=p3 with ˇ 2
f100:0; 200:0; : : : ; 800:0g. As the parameter ˇ grows we obtain a more convection-
dominated problem. Figure 2a shows how many matrix-vector products are required
for each Krylov method as function of the convection speed. The problem is more
convection-dominated as kvk2 grows. It is interesting to remark the linear of the
number of matrix-vector product for Bi-CGSTAB. Figure 1b shows the evolution of
the residual norm for ˇ D 800:0. Execution time IDR(4) 1.24s, Bi-CGSTAB 5.64s,
Bi-CG 1.01s, and GMRES 3.26s.
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Fig. 2 Example 2: (a) Number of matrix-vector products required to converge as a function of
the convection speed. (b) Comparison of the residual norms, the physical parameters are � D 1:0,
v D 800:0 � .1:0; 1:0; 1:0/T=p3, and � D �50:0

Fig. 3 Example 3: (a) Number of matrix-vector products required to converge as a function of
the parameter �. (b) Comparison of the residual norms. The physical parameters � D 1, v D
.1:0; 1:0; 1:0/T=

p
3, and � D �300:0

Experiment 3 Here we use the same set of problems presented in experiment 1, but
selecting negative reaction parameters, we consider � 2 f�300; 250; : : : ; �50g.
In Figure 3a, one can see how the negative of the reaction parameter generates a
considerable increment of the matrix-vector needed for solving the corresponding
linear system. Bi-CGSTAB perform poorly for large negative reaction parameter.
Figure 1b shows the evolution of the residual norm for � D 1 and � D 300:0. The
execution time are: IDR(4) 4.02s, Bi-CGSTAB 15.38s, Bi-CG 3.52 s, and GMRES
28.57s.
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3.1 IDR(s) and Bi-CG

Despite being a method that is not drastically affected by the increment of the
reaction parameter or the convection speed, Bi-CG is not the faster method in terms
matrix-vector products required. Bi-CG requires two matrix-vector multiplications
to produce one new approximation. IDR(4) in most of the experiments requires less
matrix-vector multiplication to get the desired residual tolerance. Only in the highly
convection-dominated examples presented in the experiment 2, Bi-CG presents a
similar behavior as IDR(4). A discussion of the phenomena is presented in Sect. 3.3.

3.2 IDR(s), GMRES, and Restarted GMRES

In the numerical experiments presented in the previous section, Full GMRES is
the methods that uses less matrix-vector products to obtain the desired residual
reduction. This result is expected due the optimal residual condition of GMRES.
Nevertheless, the computational requirements of full GMRES grow in every
iteration. Restarting GMRES or GMRES(m) is an option to overcome this issue.
The idea of GMRES(m) is to limit to a maximum of m matrix-vector products, and
then restart the process using the last approximation as initial vector. The optimal
residual property is lost in this restarting scheme.

In terms of memory consumption, GMRES(m) is equivalent to IDR(s) when m D
3.sC 1/. In order to compare the behavior of GMRES(m) and IDR(4), we consider
the discretization of Eq. (2) with this parameters: � D 1, v D .1:0; 1:0; 1:0/T=

p
3

and � D 40:0, and we take as restarting parameter m D 15; 16; : : : ; 170.
Figure 4 shows the number of matrix-vector multiplication required for GMRES(m)
for different values of m. GMRES(160) and IDR(4) solve this system using the
same number of matrix-vector products (262), however, GMRES(160) consumes
approximately ten times more memory than IDR(4). Moreover, CPU time for
GMRES(160) is 4.60s while IDR(4) runs in only 0.79s.

Fig. 4 (GMRES(m) and
IDR(s) comparison) Number
of matrix-vector products
required for GMRES(m) as a
function of the parameter m
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3.3 IDR(s) and Bi-CGSTAB

One can see in the experiments that Bi-CGSTAB performs poorly for convection-
dominated problems. This can be explained throughout the study of the residual
formulas for Bi-CGSTAB. The residual vector in Bi-CGSTAB can be written in the
form,

r.B/k D ˝k.A/�k.A/r0;

where �k.t/ is residual associated with Bi-CG and ˝k.t/ is the Minimal Residual
(MR) polynomial defined as,

˝k.t/ D .1 � !kt/˝k�1.t/:

The parameter !k are selected such that kr.B/k k2 is minimized. However, for
indefinite matrices or real matrices that have non-real eigenvalues with an imaginary
part that is large relative to the real part, the parameter !k is close to zero (see [7]),
and the MR-polynomial suffers from slow convergence or numerical instability.
To illustrate this we show the behavior of the polynomial ˝k.A/ applied to two
different matrices from the second set of experiments. We consider ˇ D 100:0

and ˇ D 800:0 labeled in Fig. 5 as moderate convection-dominated and highly
convection-dominated respectively.

IDR(s) and Bi-CGSTAB are closely related, in fact, Bi-CGSTAB and IDR(1) are
mathematically equivalent for the same parameter choice (see [5]). The convergence
of IDR is also affected by the convection speed for a similar reason. The IDR(s)

Fig. 5 (a) Behavior of the norm of the MR-polynomial ˝k.A/. (b) Values of the parameter !k
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residual vector rk in the subspace Gj can be written as,

r.I/k D ˝j.A/ k�j.A/r0;

where  k�j.t/ is a block Lanczos polynomial. For IDR(s) the degree of the
polynomial ˝k.t/ increases by one every s C 1 matrix-vector products, while in
Bi-CGSTAB this degree grows by one every two matrix vector products. For this
reason, IDR(s) controls the negative effects of the MR-polynomial when A has
complex spectrum or is an indefinite matrix.

The bad convergence for strongly convection-dominated problems of
Bi-CGSTAB has been observed by several authors and has given rise to BiCGstab(`)
[4]. This method uses polynomial factors of degree `, instead of MR-polynomial. A
similar strategy has been implemented in IDR(s) which led to the method IDRstab
[8]. For the comparison of the convergence of BiCGstab(`) and IDRstab with
IDR(s) we refer the reader to [8].

4 Conclusions

Throughout the numerical experiment, we have shown that IDR(s) is a competitive
option to solve system of linear equation arising in the discretization of the
convection-diffusion-reaction equation.

GMRES, Bi-CG, and IDR(s) exhibit a stable behavior in the most numerically
difficult examples conducted in this work. Despite performing more matrix-vector
products to obtain convergence, IDR(s) consumes less CPU time than GMRES.
We show that for diffusion-dominated problems with a positive reaction term the
convergence of the Bi-CGSTAB and IDR(s) are very similar, and for this kind of
problems it is often preferable to simply choose s D 1. However, for the more
difficult to solve convection dominated problems, or problems with a negative
reaction term, IDR(s), with s > 1 greatly outperform Bi-CGSTAB.
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Block Variants of the COCG and COCR
Methods for Solving Complex Symmetric Linear
Systems with Multiple Right-Hand Sides

Xian-Ming Gu, Bruno Carpentieri, Ting-Zhu Huang, and Jing Meng

Abstract In the present study, we establish two new block variants of the Conjugate
Orthogonal Conjugate Gradient (COCG) and the Conjugate A-Orthogonal Conju-
gate Residual (COCR) Krylov subspace methods for solving complex symmetric
linear systems with multiple right hand sides. The proposed Block iterative solvers
can fully exploit the complex symmetry property of coefficient matrix of the linear
system. We report on extensive numerical experiments to show the favourable
convergence properties of our newly developed Block algorithms for solving
realistic electromagnetic simulations.

1 Introduction

In this paper we are interested in the efficient solution of linear systems with
multiple right-hand sides (RHSs) of the form

AX D B; A 2 C
n�n; X;B 2 C

n�p; p� n; (1)
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where A is a non-Hermitian but symmetric matrix, i.e., A ¤ AH and A D AT . Linear
systems of this form arise frequently in electromagnetic scattering applications, for
example in monostatic radar cross-section calculation, where each right-hand side
typically corresponds to an incident wave illuminating the target at a given angle of
incidence [1, 2].

Roughly speaking, computational techniques for solving linear systems on
modern computers can be divided into the class of direct and of iterative methods.
Block iterative Krylov subspace methods are particularly designed for solving
efficiently linear systems with multiple RHSs (cf. [3, 4]). Block algorithms require
one or more matrix product operations of the form AV , with V 2 C

n�p an
arbitrary rectangular matrix, per iteration step. Thus they can solve the typical
memory bottlenecks of direct methods. However, most of them, such as the Block
Bi-Conjugate Gradient (bl_bicg) [5], Block Bi-Conjugate Residual (bl_bicr) [3],
Block BiCGSTAB (bl_bicgstab) [6], Block BiCRSTAB (bl_bicrstab) [3], Block
QMR (bl_qmr) [7], Block IDR(s) (bl_idr(s)) [8] and Block GMRES (bl_gmres) [9]
methods, do not naturally exploit any symmetry of A.

Methods that can exploit the symmetry of A are typically of (quasi) minimal
residual type (i.e. bl_sqmr) [7]. Tadano and Sakurai recently proposed the Block
COCG (bl_cocg) [10] method, which can be regarded as a natural extension of
the COCG [11] algorithm for solving linear systems (1). Both these two methods
need one operation AV per iteration step. In this paper we revisit the Block COCG
method, presenting a more systematic derivation than the one presented [10], and
we introduce a new Block solver (bl_cocr) that can be seen as an extension of the
COCR algorithm proposed in [12]. The numerical stability of the bl_cocg and the
bl_cocr methods are enhanced by the residual orthonormalization technique [13].

The paper is organized as follows. In Sect. 2 we present the general framework
for the development of the bl_cocg and the bl_cocr solvers. In Sect. 3 we study their
numerical stability properties and then we show how to improve their convergence
by employing the residual orthonormalization technique. In Sect. 3, we report on
extensive numerical experiments to illustrate the effectiveness of the two new
iterative methods in computational electromagnetics. Finally, some conclusions
arising from this work are presented in Sect. 4.

2 The Block COCG and Block COCR Methods

Let XmC1 2 C
n�p be the .m C 1/th approximate solution of linear systems (1)

satisfying the following condition

XmC1 D X0 C ZmC1; ZmC1 2 Km̆C1.AIR0/; (2)
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where R0 D B � AX0 is an initial residual and Km̆C1.AIR0/ is the block Krylov
subspace [4] defined as

Km̆C1.AIR0/ D
n mX

jD0
AjR0
j j 
j 2 C

p�p . j D 0; 1; : : : ;m/
o
: (3)

Compared with conventional Krylov subspace methods, where x. j/mC1 � x. j/0 2
KmC1.A; r. j/0 /, note that block Krylov methods can search the approximate solutions
into larger spaces, and thus they may require less iterations to converge to a given
accuracy. In the next section we introduce the framework for the development of the
Block COCG and the Block COCR methods.

2.1 Derivation of the Block COCG and Block COCR Methods

According to Eqs. (2) and (3), the .mC1/th residualRmC1 D B�AXmC1 of the Block
COCG method [10] and the Block COCR method is computed by the following
recurrence relations,

R0 D P0 D B � AX0 2 K ˘
1 .AIR0/;

RmC1 D Rm � APm˛m 2 Km̆C2.AIR0/;
PmC1 D RmC1 C Pmˇm 2 Km̆C2.AIR0/: (4)

Here, PmC1 2 C
n�p; ˛m; ˇm 2 C

p�p. The .m C 1/th approximate solution XmC1 is
updated through the recurrence relation

XmC1 D Xm C Pm˛m: (5)

Similarly to the framework introduced in [14], different formulae for the p � p
matrices ˛m; ˇm .m D 0; 1; : : :/ in the recurrences (4) and (5) lead to different
iterative algorithms. Denoting by L the block constraints subspace, these matrices
˛m; ˇm are determined by imposing the orthogonality conditions

Rm ? L and APm ? L : (6)

The Block COCG and the Block COCR methods correspond to the choices
L D Km̆ .

NAI NR0/ and L D NAKm̆ .
NAI NR0/, respectively. In Table 1, the conjugate

orthogonality conditions imposed to determine ˛m and ˇm are summarized for the
sake of clarity.

We show the complete Block COCR algorithm in Algorithm 1. We use the
notation k � kF for the Frobenius norm of a matrix, and � is a sufficiently small user-
defined value. We see that the Block COCR method requires two matrix products
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Table 1 Orthogonality
conditions imposed to
determine p� p matrices
˛m; ˇm

Matrix Block COCG Block COCR

˛m; ˇm Rm ? K ˘

m . NAI NR0/ Rm ? NAK ˘

m . NAI NR0/
APm ? K ˘

m . NAI NR0/ APm ? NAK ˘

m . NAI NR0/

Algorithm 1 The Block COCR method
1: X0 2 C

n�p is an initial guess, R0 D B� AX0,
2: Set P0 D R0, U0 D V0 D AR0 ,
3: for mD 0; 1; : : :, until kRmkF=kR0kF � � do
4: Solve .UT

mUm/˛m D RT
mVm for ˛m,

5: XmC1 D Xm C Pm˛m,
6: RmC1 D Rm � Um˛m and VmC1 D ARmC1,
7: Solve .RT

mVm/ˇm D RT
mC1VmC1 for ˇm,

8: PmC1 D RmC1 C Pmˇm,
9: UmC1 D VmC1 C Umˇm,

10: end for

APmC1, ARmC1 at each iteration step. While the product ARmC1 is computed by
explicit matrix multiplication, the product APmC1 is computed by the recurrence
relation at line 9, to reduce the computational complexity. Note that the Block
COCG and the Block COCR methods can be derived from the Block BiCG and
the Block BiCR methods, respectively, by choosing the initial auxiliary residual
OR0 D NR0 and removing some redundant computations; we refer to the recent
work [14] for similar discussions about the derivation of conventional non-block
Krylov subspace methods for complex symmetric linear systems with single RHS.

2.2 Improving the Numerical Stability of the Block COCG
and Block COCR Methods by Residual Orthonormalization

One known problem with Block Krylov subspace methods is that the residual
norms may not converge when the number p of right-hand sides is large, mainly
due to numerical instabilities, see e.g. [13]. These instabilities often arise because
of the loss of linear independence among the column vectors of the n � p matrices
that appear in the methods, such as Rm and Pm. Motivated by this concern, in this
section we propose to use the residual orthonormalization technique to enhance the
numerical stability of the Block COCG and Block COCR algorithms. This efficient
technique was introduced in [13] in the context of the Block CG method [5].

Let the Block residual Rm be factored as Rm D Qm�m by conventional QR
factorization,1 with QH

mQm D Ip. Here Ip denotes the identity matrix of order p

1For our practical implementation, we use MATLAB qr-function “qr(W,0)” for a given matrix
W 2 C

n�p.
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Algorithm 2 Algorithm of the Block COCG method with residual orthonormaliza-
tion (bl_cocg_rq)
1: X0 2 C

n�p is an initial guess, and compute Q0�0 D B� AX0,
2: Set S0 D Q0,
3: for mD 0; 1; : : :, until k�mkF=kBkF � � do
4: Solve .STmASm/˛

0

m D QT
mQm for ˛0

m,
5: XmC1 D Xm C Sm˛0

m�m,
6: QmC1�mC1 D Qm � ASm˛0

m and �mC1 D �mC1�m,
7: Solve .QT

mQm/ˇ
0

m D �TmC1Q
T
mC1QmC1 for ˇ0

m,
8: SmC1 D QmC1 C Smˇ0

m,
9: end for

Algorithm 3 Algorithm of the Block COCR method with residual orthonormaliza-
tion (bl_cocr_rq)
1: X0 2 C

n�p is an initial guess, and compute Q0�0 D B� AX0,
2: Set S0 D Q0 and U0 D V0 D AQ0,
3: for mD 0; 1; : : :, until k�mkF=kBkF � � do
4: Solve .UT

mUm/˛
0

m D QT
mUm for ˛0

m,
5: XmC1 D Xm C Pm˛

0

m
6: QmC1�mC1 D Qm � Um˛

0

m and �mC1 D �mC1�m,
7: Compute VmC1 D AQmC1,
8: Solve .QT

mVm/ˇm D �TmC1Q
T
mC1VmC1 for ˇ0

m,
9: SmC1 D QmC1 C Smˇ0

m,
10: UmC1 D VmC1 CUmˇ

0

m,
11: end for

and �m 2 C
p�p. From (4), the following equation can be obtained

QmC1�mC1 D Qm � ASm˛
0
k: (7)

Here, �mC1 � �mC1�m�1, ˛0k � �m˛m�m�1, and Sm D Pm�m�1. In the new
Algorithms 2 and 3, the matrix ˇ0m is defined as ˛0m � �mˇm��1mC1. The residual norm
is monitored by k�mkF instead of kRmkF , since the Frobenius norm of Rm satisfies
kRmkF D k�mkF . Note that the QR decomposition is calculated at each iteration.
However, the numerical results shown in the next section indicate that the extra cost
is amortized by the improved robustness of the two Block solvers.

3 Numerical Experiments

In this section, we carry out some numerical experiments to show the potential
effectiveness of the proposed iterative solution strategies in computational elec-
tromagnetics. We compare the bl_cocg, bl_cocg_rq, bl_cocr, bl_cocr_rq methods
against other popular block Krylov subspace methods such as bl_qmr, bl_bicgstab,
bl_bicrstab, bl_idr(s) (selecting matrix P D rand.n; sp/, see [8]) and restarted
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Table 2 The numerical results of different iterative solvers for the first example. The solution time
refers to the wall clock time expressed in seconds

young2c ( p D 10) young3c ( pD 8) young1c ( p D 8)

Method Iters TRR Time Iters TRR Time Iters TRR Time

bl_cocg 238 �10:03 0:17 � � � 329 �10:16 0.16

bl_cocg_rq 142 �10:14 0:13 151 �10:00 0.09 177 �10:29 0.12

bl_cocr 201 �10:07 0:15 145 �9:95 0.04 221 �10:07 0.12

bl_cocr_rq 138 �10:18 0:13 146 �10:03 0.05 180 �10:18 0.13

bl_sqmr 154 �9:87 0:29 131 �10:39 0.09 188 �9:88 0.25

bl_bicgstab 395� �10:09 0:41 � � � 433� �10:04 0.35

bl_bicrstab 356� �9:96 0:46 � � � 417� �9:71 0.44

bl_idr(4) 269� �8:57 0:28 � � � 334� �10:10 0.27

bl_gmres(m) 3�� �10:08 24:5 � � � � � �

bl_gmres(m). We use the value m D 80 for the restart in bl_gmres(m). The
experiments have been carried out in double precision floating point arithmetic,
without preconditioning, using MATLAB 2014a (64 bit) on PC-Intel(R) Core(TM)
i5-3470 CPU 3.20 GHz, 8 GB of RAM.

The different Block algorithms are compared in terms of number of iterations,
denoted as Iters in the tables, and log10 of the final true relative residual norm
defined as log10.kB � AXfinalkF=kBkF/, denoted as TRR. The iterative solution
is started choosing X0 D O 2 C

n�p as initial guess. The stopping criterion
in our runs is the reduction of the norm of the initial Block residual by eight
orders of magnitude, i.e., kRmkF=kBkF � Tol D 10�10. The right-hand side B is
computed by the MATLAB function rand. In the tables, the symbol “�” indicates
no convergence within n iterations, or n=m cycles for the bl_gmres(m) method.

The first test problems are three matrices extracted from the Matrix Market
collection,2 arising from modeling acoustic scattering problems. They are denoted
as young1c, young2c, and young3c. The results of our experiments are
presented in Table 2. The symbol � used for the bl_bicgstab, bl_idr(4), and
bl_bicrstab methods indicate that these three methods require no less than two
matrix products AV per iteration step. The symbol �� refers to the number of outer
iterations in the Block GMRES(m) method, when it can achieve convergence; refer
to [15] for details. This notation is used throughout this section.

Table 2 shows the results with nine different Block Krylov solvers. Although
the bl_cocg and bl_cocr methods required more Iters, they are more competitive
than the bl_sqmr method in terms of wall clock time and TRR (except the case of
young3c). Bl_cocr method is more robust than bl_cocg in terms of Iters, wall
clock time and TRR. The bl_cocg_rq and bl_cocr_rq variants are very efficient
in terms of TRR and wall clock time. The bl_bicgstab, bl_bicrstab, bl_idr(4), and
bl_gmres(m) methods cannot solve the test problem (young3c), while bl_cocg

2http://math.nist.gov/MatrixMarket/matrices.html

http://math.nist.gov/MatrixMarket/matrices.html
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Table 3 The numerical results of different iterative solvers for Example 1. The solution time
refers to the wall clock time expressed in seconds

sphere2430 parallelepipede cube1800

Method Iters TRR Time Iters TRR Time Iters TRR Time

bl_cocg 189 �10:07 4:16 176 �10:02 2:40 174 �10:21 1:94

bl_cocg_rq 169 �10:00 3:77 156 �10:13 2:13 156 �10:08 1:74

bl_cocr 186 �10:03 4:12 174 �10:02 2:35 169 �10:00 1:84

bl_cocr_rq 166 �10:05 3:77 152 �10:15 2:11 151 �10:09 1:73

bl_sqmr 172 �9:84 4:15 161 �9:91 2:42 159 �9:97 2:11

bl_bicgstab 379� �10:04 16:5 370� �10:04 9:94 396� �10:29 8:42

bl_bicrstab 392� �9:57 17:3 355� �9:85 9:98 303� �8:38 6:70

bl_idr(4) 409� �9:64 22:1 474� �10:11 16:5 334� �9:43 10:2

bl_gmres(m) 2�� �10:07 38:2 2�� �10:04 33:3 2�� �10:09 22:1

and bl_cocr converge rapidly. Due to the long iterative recurrence, the bl_gmres(m)
method is typically expensive.

In the second experiment we consider three dense matrices arising from mono-
static radar cross-section calculation; they are denoted as parallelepipede,
sphere2430, cube1800. These problems are available from our GitHub repos-
itory,3 and we choose p D 8. Although rather small, the selected dense problems
are representative of realistic radar-cross-section calculation [2]. Larger problems
would require a Fortran or C implementation of the solvers and will be considered in
a separate study. Numerical results for each test problem are summarized in Table 3.

Table 3 displays the results with again nine different Block Krylov solvers.
We can see that the bl_sqmr method requires less Iters to converge compared
to the bl_cocg and bl_cocr methods. However, it is more expensive in terms of
wall clock time except on the sphere2430 problem. Besides, the true residual
norms produced by the bl_sqmr method are larger than those of both bl_cocg
and bl_cocr. Furthermore, bl_cocg_rq and bl_cocr_rq are the most effective and
promising solvers in terms of Iters and wall clock time. Specifically, the bl_cocr_rq
method is slightly more efficient than the bl_cocg_rq method in terms of TRR.

4 Conclusions

In this paper, a framework for constructing new Block iterative Krylov subspace
methods is presented. Two new matrix solvers that can exploit the symmetry of
A for solving complex symmetric non-Hermitian linear systems (1) are introduced.
Stabilization techniques based on residual orthonormalization strategy are discussed
for both methods. The numerical experiments show that the solvers can be viable

3https://github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Example2

https://github.com/Hsien-Ming-Ku/Test_matrices/tree/master/Example2
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alternative to standard Krylov subspace methods for solving complex symmetric
linear systems with multiple RHSs efficiently. Obviously, for solving realistic elec-
tromagnetic problems they both need to be combinated with suitable preconditioners
that reflect the symmetry of A; we refer the reader to, e.g., [16–18] for some related
studies.
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Reduced Order Modeling



Model Reduction for Multiscale Lithium-Ion
Battery Simulation

Mario Ohlberger, Stephan Rave, and Felix Schindler

Abstract In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially resolved
porous electrodes. We present new results on the application of the reduced basis
method to the resulting instationary 3D battery model that involves strong non-
linearities due to Buttler-Volmer kinetics. Empirical operator interpolation is used
to efficiently deal with this issue. Furthermore, we present the localized reduced
basis multiscale method for parabolic problems applied to a thermal model of
batteries with resolved porous electrodes. Numerical experiments are given that
demonstrate the reduction capabilities of the presented approaches for these real
world applications.

1 Introduction

Continuum modeling of batteries results in a reaction-diffusion-transport system
of coupled nonlinear partial differential equations in complex multiscale and
multi-phase pore structures. In recent contributions [20, 21, 28] three dimensional
numerical models have been proposed that resolve the porous electrodes and thus
serve as a basis for multiscale modeling as well as for more complex modeling
of degradation processes such as Lithium plating. Concerning multiscale modeling
in the context of battery simulation, we refer e.g. to [7, 10, 30]. These models
result in huge time dependent discrete systems which require enormous computing
resources, already for single simulation runs. Parameter studies, design optimization
or optimal control, however, require many forward simulation runs with varying
material or state parameters and are thus virtually impossible. Hence, model
reduction approaches for the resulting parameterized systems are indispensable for
such simulation tasks. In this contribution we apply the reduced basis method, that
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has seen significant advance in recent years. For an overview, we refer to the recent
monographs [15, 29] and the tutorial [12].

Concerning model reduction for lithium-ion battery models, we refer to the early
work [5] where Galerkin projection into a subspace generated by proper orthogonal
decomposition (POD)is used on the basis of the mathematical model proposed in
[8]. In [19], the POD approach is used in the context of parameter identification for
battery models. Preliminary results concerning model reduction with reduced basis
methods can be found in [16, 31] and [27].

In this contribution we focus on two advances in reduced order modeling for
batteries. First, in Sect. 2, we present new results concerning nonlinear model
reduction for the microscale battery model presented in [20]. The model reduction
approach is based on Galerkin projection onto POD spaces, extended to nonlinear
problems using empirical operator interpolation [2, 9, 13].

Second, in Sect. 3 we demonstrate the applicability of the localized reduced
basis multiscale method (LRBMS) for a thermal model of batteries with resolved
porous electrodes. The LRBMS has first been introduced in [1, 18] and further
developed in [25, 26]. The later contributions in particular propose a rigorous a
posteriori error estimate for the reduced solution with respect to the exact solution
for elliptic problems that is localizable and can thus be used to steer an adaptive
online enrichment procedure. For an application of the method for more complex
problems in the context of two phase flow in porous media we refer to [17]

2 Reduced Basis Methods Applied to Pore-Scale Battery
Models

In this section we present first numerical results for the full model order reduction
of large 3D pore-scale Li-ion battery models. These results extend our preliminary
findings in [27], where we tested the quality of the reduced basis approximation for
a small test geometry, towards realistically sized geometries used in real-world sim-
ulations, showing the feasibility of our model reduction approach. Before discussing
our new results, we will briefly review the battery model under consideration and
the basics of the reduced basis methodology.

2.1 A Pore-Scale Lithium-Ion Battery Model

Following [27], we consider a pore-scale battery model based on [20]. The com-
putational domain is divided into five parts: electrolyte, positive/negative electrode,
positive/negative current collector (Fig. 1). On each of these subdomains, partial
differential equations are given for the Li-ion concentration c and the electrical
potential �.
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Fig. 1 Schematic overview of the considered battery geometry (note that electrodes have porous
structure, pore space is filled with electrolyte)

For the electrolyte we have

@c

@t
� r � .Derc/ D 0; (1)

�r �
�
�
1 � tC
F

RT
1

c
rc � �r�

	
D 0; (2)

where De D 1:622 � 10�6 cm2

s , � D 0:02 s
cm , tC D 0:39989 denote the collective

interdiffusion coefficient in the electrolyte, the ion conductivity, and the transference
number. R D 8:314 J

mol K , F D 96487 As
mol are the universal gas constant and the

Faraday constant. We fix the global temperature T to 298K.
In the electrodes, c and � satisfy

@c

@t
� r � .Dsrc/ D 0; (3)

�r � .�r�/ D 0; (4)

where Ds D 10�10 cm2

s is the ion diffusion coefficient in the electrodes, and
� D 10 s

cm (� D 0:38 s
cm ) in the negative (positive) electrode denotes the electronic

conductivity.
Finally, no Li-ions can enter the current collectors, so c D 0 on the whole current

collector subdomains. Moreover, � again satisfies

� r � .�r�/ D 0; (5)

with � D 10 s
cm (� D 0:38 s

cm ) for the negative (positive) current collector.
Note that for this in comparison to [20] slightly simplified model (assuming

constant tC), the Equations (1), (3) are linear and decoupled from the potential
equations. However, the coupling between the two variables is established by
the interface conditions at the electrode-electrolyte interfaces, where the so-called
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Butler-Volmer kinetics are assumed: the electric current (ion flux) j (N) from the
electrodes into the electrolyte is given by

j D 2kpcecs.cmax � cs/ sinh

 
�s � �e � U0.

cs
cmax
/

2RT
� F
!
; N D j

F
: (6)

Here, ce=s (�e=s) denotes the Li-ion concentration (electrical potential) at the
electrolyte/electrode side of the interface. cmax D 24681 � 10�6 mol

cm3 (cmax D 23671 �
10�6 mol

cm3 ) denotes the maximum Li-ion concentration in the negative (positive)

electrode, and the rate constant k is given by k D 0:002Acm2:5

mol1:5
at the negative and by

k D 0:2Acm2:5

mol1:5
at the positive electrode interface. Finally, the open circuit potential

is given by U0.s/ D .�0:132C 1:41 � e�3:52s/V for the negative, and by

U0.s/ D
h
0:0677504 � tanh.�21:8502 � sC 12:8268/
� 0:105734 � 
.1:00167� s/�0:379571 � 1:576�

� 0:045 � e�71:69�s8 C 0:01 � e�200�.s�0:19/ C 4:06279
i
� V

(7)

for the positive electrode.
Given the porous electrode structures, these interface conditions apply to a large

surface area, giving this model highly nonlinear dynamics.
Finally, the system is closed by the following boundary conditions: homogeneous

Neumann conditions for c at all further inner and external domain boundaries,
continuity conditions for � at the current collector-electrode interfaces, homogenous
Neumann conditions for � at the current collector-electrolyte interfaces, � �
U0.c.0/=cmax/ at the negative current collector boundary, and �n � �r� � � at
the positive current collector boundary.

We consider the fixed charge rate � as a parameter we want to vary in our
numerical experiments.

2.2 Reduced Basis Method and Empirical Interpolation

After cell-centered finite volume discretization of the model on a voxel grid, replac-
ing the numerical fluxes by the Butler-Volmer relations at the electrode-electrolyte
interfaces, and backward Euler time discretization, we arrive at nonlinear, discrete
equations systems of the form

"
1
	t .c

.tC1/
� � c.t/� /
0

#
C A�

 "
c.tC1/�

�
.tC1/
�

#!
D 0; .c.t/� ; �

.t/
� / 2 Vh ˚ Vh; (8)
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where A� denotes the parametric finite volume space differential operator acting on
the finite volume space Vh (see [28] for a detailed derivation). Solving these systems
using Newton’s method requires many hours for realistic geometries, even when
using advanced algebraic multigrid solvers for computing the Newton updates.

Projection-based parametric model reduction methods are based on the idea of
finding problem adapted approximation spaces QV � Vh ˚ Vh in which a reduced
order solution is obtained by projection of the original equation system:

P QV

("
1
	t .Qc.tC1/� � Qc.t/� /

0

#
C A�

 "
Qc.tC1/�

Q�.tC1/�

#!)
D 0; .Qc.t/� ; Q�.t/� / 2 QV: (9)

Here, P QV denotes the orthogonal projection onto QV . Since the manifold of system

states f.c.t/� ; �.t/� / j � 2 Œ�min; �max�; t 2 f0; : : : ;Tgg has a low-dimensional para-
metrization (by .�; t/ 2 R

2/, and assuming that this parametrization is sufficiently
smooth, there is hope to find low-dimensional approximation spaces QV such that
the model reduction error between the reduced solutions (9) and the corresponding
high-dimensional solutions (8) is very small.

A vast amount of methods for constructing reduced spaces QV has been considered
in literature. For time-dependent problems, the POD-GREEDY method [11, 14] has
shown to produce approximation spaces with quasi-optimal l1-in-�, l2-in-time
reduction error. In our experiments below, we apply a more basic approach by
computing a basis for QV via PODs of a pre-selected set of solution trajectories of (8).
More precisely, we compute separate reduced concentration ( QVc) and potential ( QV�)
spaces and let QV WD QVc˚ QV� . Due to the basic properties of POD, QVc, QV� are l2-in-�,
l2-in-time best-approximation spaces for the considered training set of solutions.

Even though the equation systems (9) are posed on the low-dimensional space
QV , solving (9) requires the evaluation of the projected operator P QV ı A� (and its
Jacobian), which in turn makes the computationally expensive evaluation of A� on
the full finite volume space Vh ˚ Vh necessary. The method of choice to overcome
this limitation for nonlinear operators A� is empirical operator interpolation: A� is
replaced by an interpolant IMı QAM;�ıRM0 , where QAM;� W RM0 ! R

M is the restriction
of A� to M appropriately selected degrees of freedom (DOFs), RM0 W Vh ˚ Vh !
R

M0 is the restriction of the finite volume vectors to the M0 DOFs required for the
evaluation of QAM;� and IM W RM ! Vh ˚ Vh is the linear combination with an
appropriate interpolation basis (collateral basis). Due to the locality of finite volume
operators, M0 can be chosen such that M0 � C � M, where C only depends on the
maximum number of neighboring cells in the given mesh. The interpolation DOFs
and the associated collateral basis are obtained from solution snapshot data using
the EI-GREEDY algorithm [9, 13].

A direct application of this approach to A� would not be successful, however:
since the collateral basis is contained in the linear span of operator evaluations on
solution trajectories, the �-parts of the collateral basis vectors would, according
to (8), completely vanish. Therefore, we first decompose A� as A� D A.const/ C
� � A.bnd/ C A.lin/ C A.1=c/ C A.bv/, where A.1=c/, A.bv/ are the nonlinear operators
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corresponding to �r � � 1�tCF RT 1
crc and the Butler-Volmer interfaces, A.const/

(A.bnd/) is the constant (parametric) part of A� corresponding to the boundary
conditions, and A.lin/ is the remaining linear part of A�. We then apply empirical

operator interpolation separately to A.1=c/ and A.bv/. With TŒQc.t/� �.Qc; Q�/ WD .1=	t �
.Qc � Qc.t/� /; 0/, we arrive at the fully reduced systems

n
TŒQc.t/� �C P QV ı A.const/ C � � P QV ı A.bnd/ C P QV ı A.lin/

C fP QV ı I.1=c/M.1=c/g ı QA.1=c/M.1=c/;�
ı R.1=c/

M0.1=c/

C fP QV ı I.bv/M.bv/g ı QA.bv/M.bv/;�
ı R.bv/

M0.bv/

o " Qc.tC1/�

Q�.tC1/�

#!
D 0:

(10)

After pre-computation of the linear maps P QV ıA.bnd/, P QV ıA.lin/, P QV ı I.1=c/M.1=c/ , R
.1=c/
M0.1=c/ ,

P QV ı I.bv/M.bv/ , R
.bv/
M0.bv/ and of the constant map P QV ıA.const/ w.r.t. to a basis of QV , (10) can

be solved quickly and independent of the dimension of Vh.

2.3 Numerical Experiments

We consider two different test cases: a small test geometry (Fig. 2) which still
exhibits the most important properties of a real battery geometry, and a large, fully
resolved geometry (Fig. 3) useable for real-world simulations. In both cases, the
initial LiC concentration c0 was set to c0 � 2639 � 10�6 mol

cm3 (c0 � 20574 � 10�6 mol
cm3 )

for the positive (negative) electrode and to c0 � 1200 � 10�6 mol
cm3 in the electrolyte.

The model was simulated on a T D 2000s (T D 1600s) time interval for the small
(large) geometry, with a time step size of	t D 20s. The charge rate � was for each
simulation chosen as a constant from the interval

�
0:00012 A

cm2 ; 0:0012
A

cm2


for the

small and from the interval
�
0:000318 A

cm2 ; 0:00318
A

cm2


for the large geometry.

To generate the reduced space QV , we computed solution snapshots on training
sets Strain of equidistant parameters. For the small geometry we chose #Strain D 20,
whereas for the large geometry we only selected the lower and upper boundary of the
considered parameter domain, i.e. #Strain D 2. For the generation of the empirical
interpolation data using the EI-GREEDY algorithm, we additionally included the
evaluations of A.1=c/� and A.bv/� on all intermediate Newton stages of the selected
solution trajectories.

As a measure for the model reduction error we consider the relative l1-in-�,
l1-in-time error given by

max
�2Stest

max
t2f0;1;:::T=	tg

ku.t/� � Qu.t/� k
maxt2f0;1;:::T=	tg ku.t/� k

; (11)
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Fig. 2 Top left: small porous battery geometry used in numerical experiments. Size: 104 � 40 �
40�m, 4:600 DOFs, coloring indicates LiC concentration at end of simulation, electrolyte not
depicted. Top right: average solution time in seconds vs. dimension of reduced space QV and
number of interpolation points (M WD M.1=c/ C M.bv/). Relative model reduction errors (11) for
concentration (middle) and potential (bottom) variable vs. dimension of reduced space and number
of interpolation points. A training set of 20 equidistant parameters was used for the generation of
QV and the interpolation data, #Stest D 20

Fig. 3 Porous battery geometry used in the numerical experiments. Size: 246 � 60 � 60�m,
1:749:600 DOFs, coloring indicates LiC concentration at end of simulation, electrolyte not
depicted
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where u (Qu) is the concentration or potential part of the (reduced) solution and Stest

denotes a random set of test parameters.
All simulations of the high-dimensional model have been performed with the

battery simulation software BEST [21], which has been integrated with our model
order reduction library pyMOR [22, 27]. The experiments were conducted as single-
threaded processes on a dual socket compute server equipped with two Intel Xeon
E5-2698 v3 CPUs with 16 cores running at 2.30 GHz each and 256 GB of memory
available.

For the small test geometry, we observe a rapid decay of the model reduction
error for both the concentration and the potential variable (Fig. 2). As usual for
empirical operator interpolation, we see that the number of interpolation points has
to be increased for larger reduced space dimensions in order to ensure stability of
the reduced model. Doing so, we obtain relative reduction errors as small as 10�4
with simulation times of less than 15 s.

Since we only selected 2 solution trajectories for the generation of the reduced
model for the large geometry, we cannot expect such small model reduction errors
over the whole parameter domain. In fact, the error stagnates already for relatively
small reduced space dimensions (Table 1). Nevertheless, we easily achieve errors of
less than 1 % for a simulation time of 80 s. With an average solution time for the
high-dimensional model of over 6 h, we achieve at this error a speedup factor of
285.

Note that the solution time of the reduced model is still significantly larger
than for the small geometry. This can be attributed to the fact that the localized
evaluation of A.1=c/� , A.bv/� has been only partially implemented in BEST and still
requires operations on high-dimensional data structures. After the implementation
of localized operator evaluation in BEST has been finalized, we expect even shorter
simulation times.

Table 1 Relative model reduction errors (11) and reduced simulation times for the large battery
geometry (Fig. 3). 188 interpolation points, average time for solution of the high-dimensional
model: 22;979s, #Stest D 10

dim QV 11 21 30 40

Rel. error c 9:26 � 10�3 3:96 � 10�3 3:05 � 10�3 2:93 � 10�3

Rel. error � 2:07 � 10�3 1:50 � 10�3 1:46 � 10�3 1:26 � 10�3

Time (s) 82 81 79 81

Speedup 279 285 290 283
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3 Localized Reduced Basis Multiscale Approximation
of Heat Conduction

The microscale battery model in Sect. 2 is considered under the assumption of
constant global temperature T. In general, it is desirable to couple this model with a
spatially resolved model for the temperature distributions within the battery. For
the model reduction of such heat conduction in porous electrodes we present a
first application of the localized reduced basis multiscale Method (LRBMS) for
parabolic PDEs.

In this first step we consider the simulation and model reduction of heat
conduction separately from what is presented in Sect. 2 as a basis for a coupled
simulation and model reduction in future work.

For an introduction of the LRBMS for elliptic parameterized multiscale problems
and recent results concerning localized a posteriori error estimation and online
enrichment, we refer to [26].

3.1 A Battery: Heat Conduction Model with Resolved
Electrode Geometry

We consider here the same spatially resolved 3D pore-scale battery geometry (cf.
Fig. 3) as in Sect. 2, where the computational domain is composed of five materials
which are of interest for thermal modeling, that is: electrolyte, positive/negative
electrode and positive/negative current collectors, each with possibly different
thermal conductivities.

As a simplified model for heat conductivity within a battery with spatially
resolved electrodes, we consider a parabolic PDE for the temperature T of the form

@T

@t
� r � 
DrT� D Q; (12)

together with suitable initial and boundary conditions. Here D denotes the space-
dependent conductivity tensor, which is material specific and thus takes different
values in the current collectors, the porous electrodes, the separator, and the
electrolyte. Hence, D inherits the highly heterogeneous structure of the porous
electrodes and thus has an intrinsic multiscale character. In general, Q collects all
heat generating sources, such as heat generation due to electrochemical reaction,
reversible heat and ohmic heat, each of which may in turn depend on the Li-ion
concentration and the electric potential and thus vary in space and time. These
sources arise in particular due to the electrochemical reaction at the interface
between the electrodes and the electrolyte and it is thus desirable to consider
the full 3D pore-scale battery model in order to get an insight into possible
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variations of the temperature within the battery. We refer, e.g. to[5, 6] for a more
detailed derivation of an energy balance equation for Lithium-Ion batteries and
corresponding simulation schemes.

Depending on the study in question, any of the sources, the thermal conductivity
or the initial or boundary values may depend on a low-dimensional parameter
vector �.

3.2 Localization of Reduced Basis Methods: LRBMS

As a first step towards a realistic model we allow for parametric thermal con-
ductivities and presume stationary sources and boundary values. Thus, a (spatial)
discretization of (12) by a suitable discretization scheme (such as finite volumes or
continuous or discontinuous Galerkin finite elements) and a backward Euler time-
discretization yield a set of linear equations of the form,

1
	tMh



T.tC1/ � T.t/

�C Bh;� T
.tC1/ D Qh; T.tC1/ 2 Vh; (13)

to be solved in each time step, where Mh and Bh;� denote the discrete L2-inner prod-
uct and parametric space differential operators induced by the spatial discretization,
respectively, which act on the corresponding high-dimensional discrete space Vh. In
addition, Qh denotes the discrete representation of the source and boundary values.

To obtain a reduced order model for the discrete heat conduction model (13), we
proceed in an analog way, as described in Sect. 2 above, by a Galerkin projection
onto a problem adapted reduced approximation space QV � Vh. Once QV is given, we
obtain the set of reduced equations for each time step:

1
	t
QM
 QT.tC1/ � QT.t/�C QB� QT.tC1/ D QQ; QT.tC1/ 2 QV; (14)

where QM, QB� and QQ denote the reduced operators and functionals, respectively,
acting on the low-dimensional reduced space QV . Since all operators and functionals
arising in (14) are affinely decomposable with respect to the low-dimensional
parameter vector � (given for instance the thermal conductivity as in Sect. 3.3)
and linear with respect to QV , we can precompute their respective evaluations in a
computationally expensive offline step, e.g., by QM D P QV?Mh P QV , where Mh and
P QV , respectively, denote the matrix representations of Mh and of the orthogonal

projection P QV W Vh ! QV with respect to the basis of Vh. Online, for each new input
parameter �, we can then quickly solve the reduced low-dimensional problem (14)
to obtain a low-dimensional representation of the temperature QT, which can be post-
processed to obtain the original temperature T, if required, or a derived quantity of
interest.
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As mentioned above, the problem adapted reduced space QV can be adaptively
generated by an iterative POD-GREEDY procedure [14]: in each step of the greedy
algorithm, given an error estimate on the model reduction error, a full high-
dimensional solution trajectory for the hitherto worst-approximated parameter is
computed and the most dominant POD modes of the projection error of this
trajectory are added to the reduced basis spanning QV .

This procedure has been shown to produce quasi-optimal low-dimensional
reduced order models which successfully capture the dynamics of the original
high-dimensional model [11]. However, in the context of multiscale phenomena or
highly resolved geometries, such as the porous structures within a Li-ion battery, the
computational cost required to generate the reduced model can become unbearably
large, even given modern computing hardware.

As a remedy, the localized reduced basis multiscale method has been introduced
for stationary elliptic multiscale problems [1, 18] to lower the computational burden
of traditional RB methods by generating several local reduced bases associated with
a partitioning of the computational domain. The local quantities associated with
these individual subdomains can be projected independently in parallel. In [25, 26],
the LRBMS was extended to additionally account for the discretization error and to
allow for an adaptive enrichment of the local reduced approximation spaces, which
may even eliminate the need for global solution snapshots at all.

In this contribution, we demonstrate a first application of the LRBMS to
parabolic multiscale problems, such as spatially resolved heat conduction in a
Lithium-Ion battery. We therefore discretize (12) locally by a standard finite element
or discontinuous Galerkin scheme independently in each subdomain of a given
partitioning of the computational domain and couple the arising local operators,
products and functionals along these subdomains by symmetric weighted interior
penalty discontinuous Galerkin fluxes (cf. [26] and the references therein). We
use the resulting discretization to compute global solution snapshots during the
greedy algorithm, as detailed above. However, instead of a single reduced basis with
global support, we iteratively generate local reduced bases on each subdomain by
localizing the solution trajectories with respect to each subdomain and by carrying
out local PODs for further localized compression in a post-processing step.

The resulting reduced space is then given as the direct sum of the local reduced
approximation spaces spanned by these local reduced bases. Accordingly, we obtain
the reduced problem (14) by local Galerkin projections of the local operators and
functionals and coupling operators associated with each subdomain and its neighbor,
yielding sparse reduced quantities.
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3.3 Numerical Experiments

To demonstrate the applicability of the LRBMS we conduct an experiment on
the same geometry used in the larger experiment in Sect. 2.3 (compare Fig. 3).
For the thermal conductivities we choose constant values within each material
(the positive/negative electrode and the positive/negative current collectors), as
reported in [6, 4th column of Table 4]. Within the electrolyte we allow to vary the
constant thermal conductivity within the range� 2 Œ0:1I 10�. We pose homogeneous
Dirichlet boundary values at the current collectors and homogeneous Neumann
boundary values elsewhere and start the simulations with an initial temperature of
0K, using ten time steps to reach the final time 10�3. For the heat source we set
Q D 103 within the electrodes and Q D 0 within the current collectors and the
electrolyte. While this is not necessarily a physically meaningful setup, it inherits the
computational challenges of a realistic model, namely a highly resolved geometry,
discontinuous thermal conductivities depending on the materials and heat sources
which align with the geometry of the different materials.

We triangulate the computational domain with 5;313;600 simplexes and compare
the LRBMS using 8�2�2 subdomains to a standard RB method (which corresponds
to choosing one subdomain). Within each subdomain, we use the same SWIPDG
discretization as for the coupling, thus yielding comparable discretizations with
21;254;400 degrees of freedom in both approaches. As an estimate on the model
reduction error we use the true L1-in-time, H1-in-space error.

The discretization is implemented within the DUNE numerics environment [3, 4],
centered around dune-gdt [23]: the dune-stuff [24] module provides classes
for vectors, matrices and linear solvers (for instance the bicgstab.amg.ilu0
solver used in these experiments), dune-gdt provides the discretization building
blocks (such as discrete function spaces, operators, products and functionals), and
dune-hdd1 provides parametric discretizations compatible with pyMOR [22].
Finally, dune-pymor2 is used, as it provides the Python-bindings and wrappers
to integrate the DUNE-code with our model reduction framework pyMOR. The
experiments were conducted on the same compute server as described in Sect. 2.3.

As we observe from Fig. 4, both the LRBMS and the standard RB method show
comparable exponential error decay. In general, the quality of the reduced spaces
generated by the LRBMS is slightly better, while requiring less detailed solution
snapshots to reach the same target error.

As can be seen from Table 2, the POD-GREEDY basis generation using 32
subdomains is slightly faster than the basis generation using a single subdomain.
However, since the experiments were conducted as single-threaded processes and
since the LRBMS allows for parallel local PODs and parallel local reduced basis

1https://github.com/pymor/dune-hdd
2https://github.com/pymor/dune-pymor

https://github.com/pymor/dune-hdd
https://github.com/pymor/dune-pymor
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Fig. 4 Error evolution during the POD-GREEDY basis generation to reach a target absolute error
of 10�10 for the numerical experiment from Sect. 3.3. Depicted is the L1-in-�, L1-in-t, and
H1-in-space error over the set of five equidistant training samples in Œ0:1I 10�
Table 2 Comparison of runtimes of the experiments from Sect. 3.3. Setup time includes grid
generation, subdomain partitioning and assembly of operators, products and functionals. POD-
GREEDY time includes error estimation, generation of the reduced basis and the reduced basis
projection. The average time to solve the detailed problem is 2 h 28min 5 s

Setup POD-GREEDY Reduced basis size Solution time

RB 26min 47 s 14 h 41min 52 s 21 35 s

LRBMS 36min 7 s 14 h 34min 39 s 32� 20 35 s

projections, the basis generation time of the LRBMS can be further accelerated
significantly.

4 Conclusion

In this contribution we have demonstrated the efficient applicability of recent
model reduction approaches, such as the POD-GREEDY reduced basis method,
the empirical operator interpolation, and the localized reduced basis multiscale
method (LRBMS) for efficient simulation of real world problems, such as 3D
spatially resolved heterogeneous Lithium-Ion battery models. The demonstrated
model reduction approaches are realized within our model order reduction library
pyMOR [22, 27] with bindings, both to the battery simulation software BEST [21],
and the general purpose Distributed and Unified Numerics Environment DUNE
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[3, 4], employing the dune-gdt, dune-stuff, and dune-hdd discretization
and solver backends. Speedup factors of about 285 were obtained for the full
strongly non-linear battery model in Sect. 2 using the reduced basis method with
empirical operator interpolation [9], andaround 253 for the linear parabolic heat
conduction model in Sect. 3 using a parabolic extension of the localized reduced
basis multiscale method [26].
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Multiscale Model Reduction Methods for Flow
in Heterogeneous Porous Media

Assyr Abdulle and Ondrej Budáč

Abstract In this paper we provide a general framework for model reduction
methods applied to fluid flow in porous media. Using reduced basis and numerical
homogenization techniques we show that the complexity of the numerical approxi-
mation of Stokes flow in heterogeneous media can be drastically reduced. The use
of such a computational framework is illustrated at several model problems such as
two and three scale porous media.

1 Introduction

Fluid flow in porous media is an important and extensively studied process in
various applications. Depending on the application, different model and description
of a porous medium are used. One of the oldest models is the Darcy equation, which
is an elliptic partial differential equation (PDE), that describes an effective fluid flow
and pressure in a porous medium [12]. The porous structure, whose geometry is not
present in the Darcy model, is accounted for in a permeability tensor. A more precise
description is obtained by considering the porous structure explicitly. Knowledge
of the geometry of the porous material allows to use a standard model of a fluid
flow around obstacles. One can use the Navier-Stokes equation but also the Stokes
equation, since the Reynolds number in porous media is often very small.

Let us briefly compare the aforementioned Darcy and fine scale Stokes models.
To apply the Darcy model, the permeability tensor of the material is needed. It may
be known for standard materials, it can sometimes be obtained experimentally, or,
as we present below, it can be computed from the fine scale material structure. The
fine scale Stokes approach does not need any effective material property but the
computational effort of a direct numerical implementation scales with ratio between
the macroscopic domain of interest and the size (typically micrometer) of the pore
structure. Hence, this approach is unfeasible for fine porous structures since the
number of degrees of freedom is prohibitive.
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Numerical methods that combine both models and bridge the Darcy and the
Stokes scale have been developed, see [2, 8, 10] and the references therein. The
Darcy model is used on the macro scale and the effective permeability is upscaled
from localized fine scale Stokes computations. This upscaling is based on the
homogenization theory [7, 16, 17], which established that a suitable upscaling of the
Stokes model leads to the Darcy model. As an example of a numerical realization
of this mathematical upscaling procedure we briefly describe the Darcy-Stokes
finite element heterogeneous multiscale method (DS-FE-HMM) that was introduced
in [2]. The finite element method (FEM) with numerical quadrature is applied at
the macro scale to discretize the Darcy equation and the permeability tensor is
recovered at suitable quadrature points. Around every quadrature point we sample
the microstructure of the material and solve a Stokes micro problem in a micro
domain. The velocity solutions of the micro problems are then avereged to obtain
an approximation of the effective permeability that is in turn used to solve the
macroscopic Darcy problem. This approach avoids discretization of the whole fine
scale porous structure of the material and only zooms on the microstructure where
needed.

Most of the multiscale numerical methods for fluid flow in porous media
are indeed two-scale, since they consider only the macroscopic (Darcy) scale
and the microscopic (Stokes) scale. In practice, however, there are interesting
physical processes at more than two scales, for example manufacturing of textile
microstructures [13]. Such materials do not fit well into the two-scale setting and
modeling that goes beyond two scales is needed. We mention for example [1, 14]
where multiscale methods for n�scale model (all of which of Darcy type) have been
developed. For simplicity, we consider here three-scale models but with different
physical model at each scale. The macroscopic description is again the Darcy model
with a permeability recovered from a mesoscopic scale, where the fluid flow is
described by the Stokes-Brinkman equation. The structure of the porous parts of the
mesoscopic domains is described at an even finer scale, the microscopic scale, where
the Stokes model is used. We note that the Stokes-Brinkman equation provides a
simple coupling of the Stokes equation in the mesoscopic fluid part and the Darcy
equation in the mesoscopic porous part. The permeability in the mesoscopic porous
part is upscaled from the Stokes micro problems.

Both two-scale and three-scale numerical methods are computationally intensive
since we compute a large number of local meso or micro problems (“the cell
problems”) that are used to upscale the permeability tensor. Errors that are com-
mitted by numerical approximation on all scales need to be balanced to obtain an
efficient method. While the time cost of such coupled micro-meso-macro multiscale
methods does not depend on the pore sizes, it still grows quickly while refining
the macroscopic domain. One approach to reduce the computational time cost is to
adaptively control the refinement on each scale, which was successfully applied in
the two-scale settings [2]. Further reductions are possible by exploiting redundancy
in cell problems. Model reduction techniques such as the reduced basis (RB)
method [3] can be applied to select only the most significant cell problems which
can lead to a speed up of orders of magnitude [4].
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In this paper we review two-scale and three-scale porous media and multiscale
model reduction methods for fluid flow in such media. The cell problems (micro and
meso) can be paramterized and formulated in a common framework that is suitable
for the RB method. The main element of the RB method is an affine decomposition
of the parametric problem, which needs to be provided for the cell problems. The
empirical interpolation method (EIM) [9] is an important tool to obtain such an
affine decomposition of the meso scale [5].

This paper is structured as follows. In Sect. 2 we introduce the two- and three-
scale porous media and the corresponding flow models. Numerical homogenization
methods for such models are described in Sect. 3 and the combination with model
order reduction techniques is presented in Sect. 4. Numerical experiments that
illustrate the behavior of the multiscale model reduction methods are provided in
Sect. 5.

2 Multiscale Porous Media and Flow Models

Let d 2 f2; 3g and ˝ � R
d be a connected bounded domain in which we consider

a porous medium represented by a fluid subset ˝" � ˝ , where " > 0 denotes the
microscopic feature scale. Fluid flow in˝" can be modeled by the Stokes equation:
find a velocity field u" and a pressure p" such that

�	u" Crp" D f in ˝";

div u" D 0 in ˝";

u" D 0 on @˝";

(1)

where f is a given force field. For "� diam.˝/ the geometry of˝" is too complex,
which makes its meshing and direct numerical solution to (1) prohibitive. Instead,
we examine the limit behavior of the solution .u"; p"/ for " ! 0, which is studied
by the homogenization theory. An effective limit solution can be derived in various
situations, in particular for periodic porous media [6, 16, 17] and locally periodic
porous media [2, 11], as follows. First, we extend the solution .u"; p"/ from ˝" to
˝ and denote it .U";P"/. Second, it can be shown that there exist a homogenized
pressure p0 and a homogenized velocity field u0 such that P" ! p0 strongly in
L2loc.˝/=R and U"="2 ! u0 weakly in L2.˝/. Finally, the homogenized pressure
p0 is shown to be a solution to the Darcy problem

r � a0.f � rp0/ D 0 in ˝;

a0.f � rp0/ � n D 0 on @˝;
(2)

where the effective permeability a0 is related to the porous structure of ˝" as is
presented below. Moreover, we have u0 D a0.f � rp0/.
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Fig. 1 The construction of ˝" (top) and ˝"1;"2 (bottom)

In the next two sections we describe the two- and three-scale porous media that
are illustrated in Fig. 1.

2.1 Two-Scale Porous Media

We recall the definition of periodic and non-periodic two-scale porous media ˝" �
˝ . Denote by Y the d-dimensional unit cube .�1=2; 1=2/d, let YS � Y, and set
YF D YnYS. Here and subsequently the subscripts F and S stand for the fluid and
solid part, respectively. We define a two-scale periodic porous medium in ˝ by
˝" D ˝n[k2Zd ".kCYS/. Homogenization theory requires additional assumptions
on YS and YF, but they are not too restrictive. We assume that YS is closed in Y , both
YS and YF have positive measure. Moreover, the sets YF and R

dn [k2Zd .kC YS/ are
connected, have locally Lipschitz boundaries, and are locally located on one side of
their boundaries.

We define non-periodic porous media by allowing for a deformation of the
reference pore geometry. Consider a continuous map ' W R

d � Y ! Y such
that for every x 2 R

d the function '.x; �/ W Y ! Y is a homeomorphism with
'.x; �/; '.x; �/�1 2 W1;1.Y/. For any x 2 ˝ we define the local porous geometry as
Yx

S D '.x;YS/ and Yx
F D YnYx

S. We define a non-periodic two-scale porous medium
by

˝" D ˝n [k2Zd ".kC Y"kS /:
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In the two-scale setting the homogenization theory relates the local porous
geometry .Yx

F;Y
x
S/ to the effective permeability as follows. For any point x 2 ˝

and i 2 f1; : : : ; dg we solve the Stokes micro problem: find the velocity field ui;x

and pressure pi;x such that

�	ui;x Crpi;x D ei in Yx
F; ui;x D 0 on @Yx

S;

div ui;x D 0 in Yx
F; ui;x and pi;x are Y-periodic;

(3)

where ei is the i-th canonical basis vector in R
d. We then define

a0ij.x/ D
Z
Yx

F

ei � uj;x dy 8i; j 2 f1; : : : ; dg: (4)

An explicit expression for a0.x/ is generally unknown and must therefore be
computed numerically using (3) and (4).

2.2 Three-Scale Porous Media

We consider porous media with a characteristic geometry at two different scales "1
and "2, where "1 	 "2 > 0. If we apply the two-scale framework with " D "1, parts
of the micro domains Yx

F will contain a characteristic geometry at scale "2="1 � 1.
In other words, a part (or whole) of Yx

F can be considered as a porous medium with
pores at scale "2="1. In this situation, a direct numerical approximation of the micro
problems (3) can become very costly, if not impossible.

We now embark in defining a three-scale porous medium˝"1;"2 � ˝ . Let us start
with the description of the meso scale. Let YP � Y and YF D YnYP, where P stands
for porous part. We call .YF;YP/ the reference mesoscopic geometry. To provide a
variation at the meso scale we consider a continuous map '1 W Rd �Y ! Y with the
same properties as the map ' defined for two-scale porous media. For any x 2 ˝
we define the local mesoscopic geometry as Yx

P D '1.x;YP/ and Yx
F D YnYx

P.
The porous structure of Yx

P is described by the micro scale. Consider a continuous
map '2 W Rd�Rd�Y ! Y such that for every x; y 2 R

d the map '2.x; y; �/ W Y ! Y
is a homeomorphism such that '2.x; y; �/; '2.x; y; �/�1 2 W1;1.Y/. Since we often
fix parameters x and y, we simplify the notation by denoting a pair of x and y simply
as s D .x; y/. That is, we can write '2.x; y; z/ � '2.s; z/. Let ZS � Y and ZF D YnZS

be the miroscopic reference porous geometry. For any s 2 R
d � R

d we define the
local microscopic geometry as Zs

S D '2.s;YS/ and Zs
F D YnZs

S.
For any x 2 ˝ we have now two different ways to view the local porous structure

at x. First, we have the local mesoscopic geometry .Yx
F;Y

x
P/. Second, we can use the

micro structure to define a fine scale description

QYx
S D Yx

Pn [k2Zd ."2="1/.kC Zx;"2k="1
S /; QYx

F D Yn QYx
S:
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Notice that Yx
F[Yx

P D QYx
F[ QYx

S and QYx
S � Yx

P hence Yx
F � QYx

F. We define a three-scale
porous medium in ˝ by

˝"1;"2 D ˝n [k2Zd "1.kC QY"1kS /:

A fluid flow in˝"1;"2 can be modeled by the Stokes equation as in (1). If we apply
a two-scale numerical method to the three-scale medium, we will need to solve the
Stokes micro problems (3) in the domains QYx

F, that is: find the velocity field Qui;x and
pressure Qpi;x such that

�	 Qui;x CrQpi;x D ei in QYx
F; Qui;x D 0 on @ QYx

S;

div Qui;x D 0 in QYx
F; Qui;x and Qpi;x are Y-periodic:

(5)

As we mentioned, a direct numerical solution to (5) might be infeasible due to
the complexity of QYx

F. We overcome this issue by an approximation to (5) using
again a homogenization-based approach. As a first attempt, one can try applying the
Stokes model in the fluid part Yx

F and the Darcy model in the porous part Yx
P. The

permeability at any y 2 Yx
P can be upscaled from the micro geometry Zx;y

F . However,
the Stokes and Darcy models would need to be coupled at the interface of Yx

F and
Yx

P. Such couplings, for example the Beavers–Joseph interface conditions, are non-
trivial due to different orders of the models. We prefer a different approach that
avoids interface conditions completely by using the Stokes–Brinkman equation at
the mesocopic level. We thus consider the following mesoscopic problem: for any
x 2 ˝ and i 2 f1; : : : ; dg find the velocity ui;x and pressure pi;x such that

�	ui;x Crpi;x C K0ui;x D ei in Y; ui;x; pi;x are Y-periodic;

div ui;x D 0 in Y;
(6)

where

K0.x; y/ D
(
."1="2/

2b0.x; y/�1 if y 2 Yx
P

0 otherwise.

and the microscopic permeability b0.x; y/ is defined below in (9). We set

a0ij.x/ D
Z
Y

ei � uj;x dy; 8i; j 2 f1; : : : ; dg: (7)

The micro permeability tensor b0 W ˝ � Y ! R
d�d depends on the micro porous

structure. For any s D .x; y/ 2 ˝ � Y we can compute b0.s/ D b0.x; y/ by solving
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the Stokes micro problems

�	ui;s Crpi;s D ei in Zs
F; ui;s D 0 on @Zs

S;

div ui;s D 0 in Zs
F; ui;s and pi;s are Y-periodic

(8)

for thevelocity ui;s and pressure pi;s; where i 2 f1; : : : ; dg and define

b0ij.s/ D b0ij.x; y/ D
Z
Yx

F

ei � uj;s dy 8i; j 2 f1; : : : ; dg: (9)

We have seen a two-scale and a three-scale model problem. In the two-scale
problem we use the macroscopic Darcy model (2) and the microscopic Stokes
model (3) with the effective permeability (4). In the three-scale problem we use
the macroscopic Darcy model (2), the mesoscopic Stokes-Brinkman model (6), and
the microscopic Stokes model (8) with the effective permeabilities (7) and (9).

3 Numerical Multiscale Methods

We briefly describe here the numerical multiscale methods developed in [2] to
solve the model problems from Sect. 2. We start with the macro scale discretization,
which is the same for both methods. In Sect. 3.1 we outline the discretization of the
micro and meso problems, which are collectively called cell problems. A common
framework to work with all cell problems is presented in Sect. 3.2.

Let fTHg be a family of conformal, shape-regular triangulations of ˝

parametrized by the mesh size H D maxK2TH diam.K/. We consider the macro
finite element space Sl.TH/ of degree l 2 N given by

Sl.TH/ D fq 2 H1.˝/I qjK 2P l.K/; 8K 2 THg;

where P l.K/ is the space of polynomials of total degree l in element K. For
every K 2 TH we considera quadrature formula .xKj ; !Kj/jD1;:::;Jmac with integration
points xKj 2 K and positive weights !Kj . To achieve the optimal order of accuracy

we assume that
R
K q.x/ dx D PJmac

jD1 !Kjq.xKj/ for any q 2 P l0.K/, where l0 D
max.2l � 2; l/. A direct application of the FE method to (2) reads as follows: find
pH 2 Sl.TH/=R such that

BH.p
H; qH/ D LH.q

H/ 8qH 2 Sl.TH/=R;
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where the discrete macro bilinear form and right-hand side are given by

BH.p
H ; qH/ D

X
K2TH

JmacX
jD1

!Kja
h1 .xKj/rpH.xKj/ � rqH.xKj/;

LH.q
H/ D

X
K2TH

JmacX
jD1

!Kja
h1 .xKj/f.xKj/ � rqH.xKj/:

(10)

The tensor ah1 that appears in (10) is a numerical approximation of a0 from (7) if
we are in the three-scale settings. We use the tensor ah (a numerical approximation
of (4)) if we are in a two-scale setting.

3.1 Cell Problems Transformation and Discretization

We recall that by cell problems we mean either

– the mesoscopic problem in the three-scale method (6), (7),
– the microscopic problem in the three-scale method (8), (9),
– or the microscopic problem in the two-scale method (3), (4).

The cell problems share many similarities. First, the unknowns are always velocity
and pressure. Stable FE discretization for such problems are well-known and we
will pick the Taylor–Hood finite element pairs. Second, the pressure is unique only
up to an additive constant. Third, the velocity fields are always integrated to obtain
an effective parameter for the coarser scale, see (7), (4), (9). To discretize any cell
problem we proceed in several steps.

1. A weak formulation is obtained with the help of a Lagrange multiplier to
normalize the pressure in order to obtain a unique solution in finite element
spaces of periodic functions.

2. A change of variables is performed to map the physical sampling domain to the
reference domain (such as YF or ZF).

3. A Taylor–Hood FE pair is used to discretize the problem.
4. A quadrature formula is used if permeability data need to be upscaled from a

finer scale (this applies to the meso scale problem, where an approximation to b0

will be evaluated only at quadrature points in YP).
5. A discrete approximation of the permeability to be upscaled is defined.

We briefly discuss the method developed in [5] for the meso scale problem (6) in
the three-scale method and refer reader to [4] for a detailed description of the micro
problems. The weak formulation of (6) with a Lagrange multiplier to normalize the
pressure reads as follows: for any x 2 ˝ and i 2 f1; : : : ; dg find a velocity field
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ui;x 2 H1
per.Y/

d, a pressure pi;x 2 L2.Y/, and a Lagrange multiplier �i;x 2 R such
that

Z
Y

� dX
jD1
rui;x

j � rvj � pi;xdiv v
	

dy

C
Z
Y
K0.x; y/ui;x � v dy D

Z
Y

ei � v dy 8v 2 H1
per.Y/;

Z
Y
.�qdiv ui;x C �i;xq/ dy D 0 8q 2 L2.Y/;

Z
Y
�pi;x dy D 0 8� 2 R;

(11)

where the space H1
per.Y/ consists of Y-periodic functions from H1.Y/. We map the

problem (11) into the reference meso structure .YF;YP/ by applying the change of
variables yold D '1.x; ynew/. Next, we sum the three equations into one to obtain a
compact form that acts in Xmes D H1

per.Y/�L2.Y/�R. The resulting problem, which
is symmetric and non-coercive, and the output of interest a0 (see (7)) are given by:
find Ui;x 2 Xmes such that

Ames.Ui;x;VI x/ D Gi
mes.VI x/ 8V 2 Xmes; (12)

a0ij.x/ D Gi
mes.U

j;xI x/ 8i; j 2 f1; : : : ; dg: (13)

where the bilinear form Ames.�; �I x/ W Xmes � Xmes ! R and the right-hand side
Gi

mes.�I x/ W Xmes ! R contain integral terms with coefficients that depend on the
Jacobian ry'1.x; y/.

We now discretize the problem (12). Let Th1 be a conformal, shape-regular
triangulation of Y, where h1 D maxK2Th1

diam.K/. We assume that for every
K 2 Th1 we have either K � YF or K � YP. Let k 2 N and define the Taylor-
Hood P

kC1=Pk FE spaces given by

Vh1
mes D fv 2 SkC1.Th1 /

dI v is Y-periodicg;
Ph1

mes D fq 2 Sk.Th1 /I q is Y-periodicg:

Let Xh1
mes D Vh1

mes � Ph1
mes � R � Xmes. For every K 2 Th1 we consider a quadrature

formula .yKj ; !Kj/jD1;:::;Jmes with integration points yKj 2 K and positive weights

!Kj . An optimal order of accuracy is achieved if
R
K q.y/ dy D PJmes

jD1 !Kjq.yKj/ for
any q 2 P2.kC1/.K/. A discretization of (12) then reads: For any x 2 ˝ and i 2
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f1; : : : ; dg find Ui;x
h1
2 Xh1

mes such that

Ah1
mes.U

i;x
h1
;VI x/ D Gi

mes.VI x/ 8V 2 Xh1
mes; (14)

ah1ij .x/ D Gi
mes.U

j;x
h1
I x/ 8i; j 2 f1; : : : ; dg;

where

Ah1
mes.U;VI x/ D Ah1

mes..u; p; �/; .v; q; �/I x/

D
X

K2Th1\YP

JmesX
jD1

!Kj

"1
2

"22
.bh2 .x; '1.x; yKj///

�1u.yKj/ � v.yKj/ dy

C
Z
Y

dX
i;jD1

�
�ij.x; y/

@u
@yi
� @v
@yj
� �ij.x; y/

�@vi

@yj
qC @ui

@yj
p
		

dy

C
Z
Y
�.x; y/.�qC �q/ dy;

Gi
mes.VI x/ D Gi

mes..v; q; �/I x/ D
Z
Y
�.x; y/ei � v dy;

(15)

where we denote the Jacobian J D J.x; y/ D ry'1.x; y/ and define

�.x; y/ D det.J/.J>J/�1; �.x; y/ D det.J/J�>;

�.x; y/ D det.J/:
(16)

In (15) we denoted by bh2 the numerical approximation of the micro permeability b0

defined in (9). While the formulation (15) can seem complicated, it suffices to keep
in mind the compact formulation (14).

We can apply the same approach to all the cell problems. The micro problems
need to be mapped to their respective micro domains (YF in the two-scale method
and ZF in the three-scale method). For the micro problems a quadrature formula is
not required as there is not a finer scale than the micro scale. To summarize our
numerical procedure we sketch both numerical multiscale methods in a diagram in
Fig. 2.

3.2 General form of a Cell Problem

The various cell problems in our numerical models can be written in the following
abstract form. Let D be parametric space of dimension at most 2d and X be a finite-
dimensional Hilbert space. We are given a symmetric parametric bilinear form A W
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Fig. 2 A diagram of the two-scale method (left branch) and the three-scale method (right branch).
Vertical direction: the Darcy macro scale (top), the Stokes-Brinkman meso scale (middle) and the
Stokes micro scale (bottom)

X � X � D ! R and parametric linear forms Gi W X � D ! R for i 2 f1; : : : ; dg
with the inf-sup stability property

inf
U2X sup

V2X
A.U;VI�/
kUkXkVkX � ˇ.�/ > 0 8� 2 D :

We are then interested in the evaluation of the output of interest c W D ! R
d�d that

is defined via the following variational problems: for any � 2 D and i 2 f1; : : : ; dg
find Ui;� 2 X such that

A.Ui;�;VI�/ D Gi.VI�/; 8V 2 X (17)

cij.�/ D Gi.Uj;�/ 8i; j 2 f1; : : : ; dg: (18)

We see from Fig. 2 that all cell problems can be written in the form (17), (18).

4 Model-Order Reduction

Both the two and the three-scale methods presented in the previous section rely on
the solution of a large number of cell problems of type (17) with different parameters
and the construction of an upscaled permeability (18) to be used at a coarser scale.
The effective permeability depends on a parameter in D D ˝ or D D ˝ � Y
of dimension at most 2d, where d is the physical spatial dimension d D 2; 3.
The repeated evaluation of the permeability for different values in D is a costly
procedure as each evaluation relies on a PDE solve. Model order reduction can
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be used in this situation to build a low dimensional approximation of the solution
manifold fUi;�I � 2 Dg. In our approach, we use the reduced basis (RB) method
to construct such a low dimensional approximation space. The Petrov–Galerkin RB
method [3] has been successfully applied to the two-scale problem [4] and to the
three-scale problem in [5]. In Sect. 4.1 we present an abstract version ofthe RB
methodology and apply it to the micro scale in Sect. 4.2 and to the meso scale in
Sect. 4.3.

4.1 Petrov–Galerkin RB Method

For any i 2 f1; : : : ; dg we construct a linear subspace Xi � X that is spanned by a
small number of solutions to (17). We then project (17) to the solution space Xi and
a parameter-dependent test space Y�i D T.XiI�/, where T W X � D ! X, called
the supremizer operator, is defined below. The RB approximation of (17), (18) then
reads: find Ui;�

RB 2 Xi such that

A.Ui;�
RB;VI�/ D Gi.VI�/ 8V 2 Y�i : (19)

We define a RB approximation of c.�/ with quadratic accuracy (see [15]) by

cRB
ij .�/ D Gi.Uj;�

RBI�/C Gj.Ui;�
RBI�/ � A.Uj;�

RB;U
i;�
RBI�/: (20)

For any � 2 D and U 2 X we define T.UI�/ 2 X as the unique element of X
such that .T.UI�/;V/X D A.U;VI�/ for every V 2 X. The supremizer operator
T.UI�/ is well-defined and linear in U. Selecting Y�i as the test space makes the
method provably stable [3].

How do we construct a good solution space Xi? And how can we quickly
evaluate (20) for any � 2 D? Answers to these questions rely on splitting the RB
problem (19) and evaluating (20) at two different stages: an offline and an online
stage.

– The offline stage is run only once and it is used to construct the RB space Xi and
precompute necessary values for the online stage.

– The online stage can be run after the offline stage repeatedly and it provides a
cheap and accurate approximation cRB.�/ for any � 2 D .

The RB space Xi is defined as the span of solutions Ui;� to (17) for a carefully
selected small set of parameters Si � D , where Ni 2 N. Let us denote
.Ui;1;Ui;2; : : : ;Ui;Ni/ the result of applying the Gram–Schmidt orthogonalization
procedure on these solutions. We thus have

Xi D spanfUi;1;Ui;2; : : : ;Ui;Nig:
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The set Si is constructed in the offline stage for every i 2 f1; : : : ; dg using a greedy
algorithm. Given any Si (even empty) and a corresponding space Xi, we can show
that kUi;� � Ui;�

RBkX � 	E
i .�/ for every parameter � 2 D , where the accurate a

posteriori error estimator 	E
i .�/ can be evaluated cheaply for any � 2 D (see [4]

for details).

Algorithm: Greedy RB Construction. Select a training set � � D and a tolerance
"tol > 0. For each i 2 f1; : : : ; dg we start with Si D ; and repeat:

1. Find O� 2 � for which the value 	E
i . O�/ is the largest.

2. If 	E
i . O�/ < "tol, we stop. Else, we add O� to Si, update the space Xi, and continue

with step 1.

The offline-online splitting requires an additional assumption: existence of an
affine decomposition of A and Gi. Indeed, we assume that there exist QA;QG �
dim.X/ and

– symmetric bilinear forms Aq.�; �/ W X � X ! R for q 2 f1; : : : ;QAg,
– linear forms Giq.�/ W X ! R for q 2 f1; : : : ;QGg and i 2 f1; : : : ; dg,
– vector fields �A W D ! R

QA and �G W D ! R
QG ,

such that for any U;V 2 X, parameter � 2 D , and i 2 f1; : : : ; dg we have

A.U;VI�/ D
XQA

qD1 �
A
q .�/A

q.U;V/;

Gi.VI�/ D
XQG

qD1 �
G
q .�/G

iq.V/:
(21)

One can then apply an affine decomposition (21) in the system (19) writing the
RB solution as a linear combination Ui;�

RB 2 Xi in the form Ui;�
RB D

PNi
nD1 ˛

i;�
n Ui;n,

where ˛i;� D .˛
i;�
1 ; : : : ; ˛

i;�
Ni
/T 2 R

Ni is a vector of unknowns. This transformation
yields a dense linear system of low dimension. This linear system can be assembled
in the online stage in a time cost independent of dim.X/ and the computation of
solution ˛i;� is usually very fast. Thus, we can obtain ˛i;� without reconstructing the
complete RB solution Ui;�

RB and use this information in (20) to compute the output
of interest cRB.�/, again with a time cost independent of dim.X/.

4.2 RB Method at the Micro Scale

Micro problems in the two-scale and three-scale numerical methods are almost
equivalent with the main difference being the parametric space. We have D D ˝

in the two-scale model and D D ˝ � Y in the three-scale model. For simplicity
of notation we consider just one of them, the three-scale model. Hence, we have a
microscopic mesh size h2, a microscopic reference mesh Th2 , a Hilbert space Xh2

mic
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and for any parameter s D .x; y/ 2 ˝ � Y we have

Ah2
mic.U;VI s/ D Ah2

mic..u; p; �/; .v; q; �/I s/

D
Z
ZF

dX
i;jD1

�
�ij.s; z/

@u
@yi
� @v
@yj
� �ij.s; z/

�@vi

@yj
qC @ui

@yj
p
		

dz

C
Z
ZF

�.s; z/.�qC �q/ dz;

Gi
mic.VI s/ D Gi

mic..v; q; �/I s/ D
Z
ZF

�.s; z/ei � v dz;

(22)

where we denote the Jacobian J D J.s; z/ D rz'2.s; z/ and define the coefficients
�.s; z/, �.s; z/, and �.s; z/ exactly as in (16). To successfully apply the RB method,
we need to construct an affine decomposition (21) of the forms Ah2

mic and Gi
mic. The

main obstacle in doing so are the coefficients �ij, �ij, and � . If we could express them
in the following affine form

a1.s/b1.z/C � � � C an.s/bn.z/ (23)

we could factor the s-dependent terms outside the integrals and an affine decompo-
sition will be obtained. Decompositions of type (23) are not possible for arbitrary
maps '2. However, if we assume that '2 is piecewise (in z) affine, then the Jacobian
J will be piecewise constant, which yields a simple decomposition of type (23).
Assuming that '2 is piecewise affine is a common practice in RB methodology for
varying geometries. In case that this assumption is not valid, we can still rely on the
empirical interpolation method (see Sect. 4.3) to obtain (23) at least approximately.

4.3 RB Method at the Meso Scale

The micro scale forms (22) and the meso scale forms (15) are very similar. They
have the same terms containing �, � , and � that we dealt with in the previous section.
Hence, it suffices to assume that '1 is piecewise affine (in y) and all but one term
in (15) inherit an affine decomposition of the type (23). The only problematic term
in the meso problem (15) is the term containing bh1 .x; '1.x; y//�1. Following the
finding of [5] we apply the empirical interpolation method (EIM) [9] to obtain a
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decomposition

bh1.x; '1.x; y//
�1 � a1.x/b1.y/C � � � C an.x/bn.y/; (24)

where the number of terms n controls the precision of the approximation. The EIM
consists again of two stages: an offline stage and an online stage. The offline stage is
a greedy algorithm that runs only once. The online stage allows a fast computation
of the coefficients a1.x/; a2.x/; : : : ; an.x/ for any given x 2 ˝ by evaluating the left
hand side of (24) for n selected values of y. To achieve the best performance in the
three-scale method, one should combine the RB at meso and micro scale, which
means that in (15) and in (24) we the tensor use bRB instead of bh2 .

5 Numerical Experiments

We illustrate the presented techniques with a two-scale numerical experiment. The
code is implemented in Matlab and uses Matlab’s mldivide to solve dense and
sparse linear systems. We use P2=P1 Taylor–Hood FE on the micro scale and P

1 FE
on the macro scale.

Let the macroscopic domain ˝ and the initial macroscopic mesh TH be as
depicted in Fig. 3 (left). We assume that the straight edges on the top and bottom
of ˝ are connected (periodic boundary conditions) and that the force field is
constant with f � .0;�1/. The reference microscopic domain is depicted in Fig. 4.
The domain YF contains four holes that represent solid obstacles. The domain
deformation function ' can rotate the four obstacles around and uniformly scale
their size and position. To illustrate the range of micro geometries, two examples of
the deformed micro domains Yx

F are provided in Fig. 4 . Moreover, we show how YF

can be divided into nine parts such that ' is affine in each of them.

Fig. 3 Macroscopic mesh TH (left), solution pH to the reduced basis two-scale numerical method
with 30 basis functions (middle), and an accurate approximation of p0 (right)
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Fig. 4 From left to right: micro reference geometry YF, the microscopic mesh Th and division of
YF to nine subdomains, and two examples of a local porous geometry Yx

F

Fig. 5 Numerical approximations to the solutions p" to the fine scale problem (1) for " D
1=4; 1=8; 1=16

In Fig. 5 we show the global variation of the porous structure for some (relatively
large) values of " and solutions to the fine scale problem (1). In the two-scale
model we used reduced basis at the micro scale. Setting the tolerance of the greedy
algorithm to "tol D 0:01 we obtained the reduced basis of size N1 D N2 D 40. The
solution pH is depicted in Fig. 3 along with a very accurate numerical reconstruction
of p0. The numerical solution pH is in agreement with the fine scale solutions as can
be seen in Fig. 5.
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Output Error Estimates in Reduced Basis
Methods for Time-Harmonic Maxwell’s
Equations

Martin W. Hess and Peter Benner

Abstract The Reduced Basis Method (RBM) (Rozza et al., Archiv Comput Meth-
ods Eng 15:229–275, 2008) generates low-order models for efficient evaluation
of parametrized PDEs in many-query and real-time contexts. It can be seen as
a parametric model reduction method (Benner et al., SIAM Rev 57(4):483–531,
2015), where greedy selection is combined with a projection space composed of
solution snapshots. The approximation quality is certified by using rigorous error
estimators.

We apply the RBM to systems of Maxwell’s equations arising from electrical
circuits. Using microstrip models, the input-output behaviour of the interconnect
structures is approximated for a certain frequency range. Typically, an output is
given by a linear functional, but in the case of impedance parameters (also called
Z-parameters), the output is quadratic. An expanded formulation is used to rewrite
the system to compliant form, i.e., a form, where the input and output are identical.
This enables fast convergence in the approximation error and thus very low reduced
model sizes. A numerical example from the microwave regime shows the advantage
of this approach.

1 Time-Harmonic Maxwell’s Equations

We consider the time-harmonic Maxwell’s equations in weak form over the discrete,
high-dimensional function space X, discretized with Nédélec finite elements of first
order [3, 4]

��1.r � E;r � v/C i!�.E; v/ � !2�.E; v/ D i!J; 8v 2 X; (1)
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subject to zero boundary conditions

E � n D 0 on @˝; (2)

which is solved for the discretized electric field E in the computational domain ˝ .
A test function is denoted by v and .�; �/ is the complex L2.˝/ scalar product. The
source current density is denoted by J, the imaginary number i, the frequency! and
the material coefficients are the permeability �, conductivity � and permittivity �.

Since the reduced basis method (RBM) makes use of the affine parameter
dependence in !, system matrices A�;A� and A� are assembled entry-wise using
the finite element basis functions f'i; i D 1 : : :N g, as

A�.i;j/ � ��1.r � 'i;r � 'j/; (3)

A�.i;j/ � �.'i; 'j/; (4)

A�.i;j/ � �.'i; 'j/: (5)

The complex system matrix is then composed as A� C i!A� � !2A�. Splitting
the state vector into real and complex parts as xreal C iximag and denoting the source
term by bJ, leads to

.A� C i!A� � !2A�/.xreal C iximag/ D i!bJ: (6)

This allows a reformulation to a real symmetric system [5], as

�
1
!
A� � !A� �A�
�A� � 1

!
A� C !A�

� �
xreal
ximag

�
D
�
0

�bJ
�

(7)

This system also permits an affine expansion in the frequency, namely

A.!/ D
3X

qD1
�q

a.!/A
q D 1

!
A1 C A2 C !A3; (8)

whereby the matrices in the affine form A1;A2 and A3 are also real symmetric.
This allows to use an implementation of the model reduction procedure in real
arithmetic. However, a doubling of the system size comes from the transition to
a real system (7), which is denoted by A.!/x.!/ D b subsequently.

The quantity s.!/ D j`.E/j for a linear functional `.�/ acting on the complex
electric field E serves as output,

s.!/ D
p
.`.<E//2 C .`.=E//2: (9)
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Using the real form where `1 denotes the action of ` on the real part and `2
denotes the action of ` on the imaginary part, it follows

s.!/ D
p
`1.x.!//2 C `2.x.!//2; (10)

or in vector notation

s.!/ D
q
.`T1x/

2 C .`T2 x/2: (11)

Define the quadratic form Q.�; �/ by `T1 `1 C `T2 `2, it holds

s2.!/ D Q.x; x/; (12)

i.e., the squared output has a representation as a quadratic form.

2 Reduced Basis Method

The central idea of the reduced basis method (RBM) is that the parametric
manifold M D fE.�/j� 2 Dg can be well approximated by a linear space of
snapshot solutions VN of dimension N. A greedy-max sampling is employed to
select the snapshot locations. A so-called offline-online decomposition enables the
computational feasibility, in that a time-consuming offline phase generates VN ,
while a fast online phase computes the output quantities using the reduced order
model.

The real symmetric system (7) defines a set of parameter-dependent linear
systems

A.!/x.!/ D b; (13)

with affine parameter dependence

A.!/ D
QaX
qD1

�q
a.!/A

q D 1

!
A1 C A2 C !A3: (14)

The affine parameter dependence is required for the offline-online decomposi-
tion. As this example considers only an expansion in the frequency, the affine form
is readily established, see [6] on the treatment of geometric parameters for instance.

The greedy sampling uses an error estimator 	N.!/, which estimates the error
between the full order solution E.!/ and reduced order solution EN.!/. It is
assumed that the parameter domain is sampled in� and an approximation tolerance
� is set.
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1: Choose !1 2 � arbitrarily
2: Solve (1) for E.!1/
3: Set S1 D f!1g
4: Set V1 D Œx.!1/�
5: Set N D 1

6: while max!2� 	N.!/ � � do
7: Set !NC1 D arg max!2� 	N.!/

8: Solve (1) for E.!NC1/

9: Set SNC1 D SN [ !NC1

10: Set VNC1 D ŒVN x.!NC1/�

11: Orthonormalize the columns of VNC1

12: Set N D N C 1
13: end while

The projection onto the snapshot space VN is carried out on the parameter
independent parts, as

Aq
N D VT

NA
qVN ; (15)

bN D VT
Nb: (16)

This is a parameter-preserving model reduction, since the affine form is also
present in the reduced system

0
@ QaX

qD1
�q

a.!/A
q
N

1
A xN.!/ D bN : (17)

Different choices for the error estimator	N.!/ are possible. The error estimator
in the field is given by

	N.!/ D kr
pr.�I!/kX0

ˇLB.!/
; (18)

where krpr.�I!/kX0 denotes the dual norm of the residual of the primal problem (see
[1] for the efficient computation) and ˇLB.!/ is a lower bound to the inf-sup stability
constant (see [7, 8] for approximations to this computationally expensive bound).

For linear outputs, a dual system is considered, which allows to define the output
error estimator

	o
N.!/ D

krpr.�I!/kX0krdu.�I!/kX0

ˇLB.!/
; (19)

with the dual norm of the residual of the dual problem krdu.�I!/kX0 . The output error
estimator computes estimates on the output error js.!/�sN.!/j, and generally leads
to faster convergence in the output [1]. It is however not directly applicable to the
quadratic output.
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A special case is the compliant case, where input and output functional are
identical, i.e., ` D f , [1]. In this case, an output estimator is given by

	s
N.!/ D

krpr.�I!/k2X0

ˇLB.!/
: (20)

Using an expanded formulation as shown in [9] allows to transform the system
with quadratic output into a compliant system. Consider

A .!/ D
�
2A.!/� Q �Q
�Q 2A.!/�Q

�
and B D

�
b
�b
�
: (21)

Then, for the parametric problem A .!/Qx.!/ D B, it holds s2.!/ D BQx. The
disadvantage lies in a doubled system size, but due to the compliancy, a fast error
decay is expected, which promises reduced models of lower order than when using
a field estimator.

Many models from electromagnetics contain resonances, i.e., there are eigenfre-
quencies in the parameter domain where A.!/ is singular. This case corresponds
to a zero stability constant ˇ.!/ D 0. In the model reduction context, the
reduced system should preserve the eigenfrequencies or at least not introduce further
eigenfrequencies. With the one-sided projection (15), the case that the stability
constant of the reduced system ˇN.!/ D 0 while ˇ.!/ > 0 is often observed.

The relation that ˇN.!/ � ˇ.!/ can be established by using a suitable two-
sided projection. While the trial space is still set to the snapshot space VN D
fx.!1/; : : : ; x.!N/g, a parameter-dependent test space W!

N is used. The test space
is defined by applying the supremizing operators T! to each element of VN , where
T! D M�1A.!/, with M the inner product matrix of the space X, see also [8] for
more details.

Summarizing, we consider the standard system

A.!/x.!/ D b; s2.!/ D 
`T1x.!/�2 C 
`T2 x.!/�2 (22)

and the expanded system

A .!/Qx.!/ DB; s2.!/ DBT Qx.!/: (23)

3 Numerical Results

A coplanar waveguide serves as numerical example. The model is shown in Fig. 1.
The real symmetric form contains 2;024 degrees of freedom. This is a very coarse
discretization for a 3D model and mainly serves to compare the different model
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Fig. 1 Geometry of coplanar waveguide
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Fig. 2 Transfer function over frequency range Œ0:6; 10�GHz

reduction approaches. It can be expected that some physical features are not
captured by this coarse discretization. The discrete ports shown in Fig. 1 serve
as the input and output ports. In the upper part of the model (z > 16mm), the
relative permittivity is �r D 1:07 and the conductivity is � D 0:01S/m. In the
lower part (z � 16mm), the relative permittivity is �r D 4:4 and the conductivity is
� D 0:02S/m. The relative permeability is one in the entire domain. The dimensions
of the shielded box are 140mm by 100mm by 50mm. The considered parameter
is the frequency in Œ0:6; 10:0�GHz. The magnitude of the transfer function is
shown in Fig. 2. It is the input-output mapping ! 7! s.!/ and is denoted with
s.!/ D kH.i!/k in dB in the figure.
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Fig. 3 Mean relative error over sampled grid. Field estimator (dotted), output estimator using
expanded form (solid), heuristic optimum (dashed)
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Fig. 4 Maximum relative error over sampled grid. Field estimator (dotted), output estimator using
expanded form (solid), heuristic optimum (dashed)

The outcome of the reduced basis model reduction is shown in Figs. 3 and 4.
The mean and maximum relative error in the output is plotted against the reduced
basis size for three different cases. The greedy using the field estimator shows the
slowest convergence but has the advantage to work with a system of standard size
and is thus still advantageous when offline timing is important. The greedy using
the output estimator and working with the expanded system shows fast convergence
and is thus advantageous when the goal is a very small reduced order model. For
comparison a ‘heuristic optimum’ or ‘ideal greedy’ is plotted, which uses the system
of standard size with the actual errors in the output within the greedy. The fact that
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the expanded system gives comparable accuracy to the ‘ideal greedy’ strengthens the
point, that the expanded system is beneficial when sufficient offline time is available.
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Reduced Basis Exact Error Estimates
with Wavelets

Mazen Ali and Karsten Urban

Abstract A (multi-)wavelet expansion is used to derive a rigorous bound for the
(dual) norm Reduced Basis residual. We show theoretically and numerically that
the error estimator is online efficient, reliable and rigorous. It allows to control the
exact error (not only with respect to a “truth” discretization).

1 Introduction

The Reduced Basis Method (RBM) is a widely used mathematical framework for
model reduction of parameterized partial differential equations (PPDEs). We refer
to [5, 7] for recent books. One possible criticism of the RBM is that the reduction
is based upon an a priorily fixed, so called “truth” discretization, which is assumed
to be sufficiently fine in order to resolve the desired solution sufficiently well for all
possible parameters. This means that an RB approximation can only be as good as
the underlying truth. If this truth is not so “true”, the RBM cannot be expected to
yield a good approximation of the exact solution.

Thus, one would like to have an error estimator for the RB approximation with
respect to the (unknown and not computable) exact solution of the PPDE. In this
paper, we build upon a recent preprint [1], where we propose to use adaptive
computations for the construction of the reduced model. In the present paper, we use
such an adaptive method build upon (multi-)wavelets to construct an error estimator
for the exact error. We show that this estimator is computable online efficient and
gives sharp estimates (the latter statement is shown by numerical experiments).

In Sect. 2, we review the error estimates based upon the dual norm of the residual
within the RBM, Sect. 3 is devoted to the wavelet-based error estimator and our
numerical results are shown in Sect. 4.
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2 Reduced Basis Method (RBM) Error Estimation

In order to shorten notation, we consider parametric (for a parameter � in a
parameter set D � R

P) elliptic boundary value problems on X WD H1
0.˝/, i.e.,

we look for u.�/ 2X such that1

a.u.�/; vI�/ D hf .�/; vi 8v 2X ; (1)

where f .�/ 2 X 0 D H�1.˝/ is given and h�; �i denotes the duality pairing of
X 0 and X with pivot space L2.˝/. The bilinear form a.�; �I�/ is assumed to be
symmetric, coercive and bounded with constants ˛.�/ and 
.�/, respectively.

2.1 Residual-Based Error Estimators

Typically, RB error estimates are residual-based, where the residual r.wI�/ 2X 0,
� 2 D , is defined for given w 2 X by

hr.wI�/; vi WD hf .�/; vi � a.w; vI�/; v 2X : (2)

The equivalence of error and residual is straightforward and well-known

˛.�/ ku.�/ � wkX � kr.wI�/kX 0 � 
.�/ ku.�/� wkX ; w 2X : (3)

If an approximation space XN � X of small dimension N 2 N is constructed
and a (Galerkin) approximation uN.�/ 2 XN for a given parameter value � 2 D has
been computed, we set

RN.�/ WD kr.uN.�/I�/kX 0 D sup
v2X
hr.uN.�/I�/; vi
kuN.�/kX ; (4)

i.e., the dual norm of the residual. Usually, this dual norm is not computable, in
particular since the supremum in (4) is taken over the infinite-dimensional space
X . Based upon RN.�/, the error estimator for the exact error u.�/� uN.�/ reads

ku.�/� uN.�/kX � 1

˛.�/
RN.�/ DW 	N.�/: (5)

Hence, one also needs the coercivity constant ˛.�/, e.g. by the Successive Con-
straint Method (SCM), [6], which, however, is not the topic of this paper.

1We would like to stress that most what is said here can also be extended to Petrov-Galerkin inf-
sup-stable problems with different trial and test spaces.
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2.2 (Theoretical) Computing via Affine Decomposition
and Riesz Representation

So far, any known computational procedure for the computation of RN.�/ is based
upon the assumption that the bilinear form a.�; �I�/ and the right-hand side allow
for a separation of parameters and variables (often – a bit misleading – called an
affine decomposition in the parameter), i.e.,

a.w; vI�/ D
QaX
qD1

#a
q .�/ aq.w; v/; f .�/ D

QfX
qD1

# f
q.�/ fq; (6)

where #a
q , # f

q W D ! R and aq W X �X ! R as well as fq 2 X 0 are parameter-
independent.2 Then, it is straightforward to show that also the residual is affine in
the parameter, i.e., with parameter-independent rq WX !X 0, we have

r.wI�/ D
QrX
qD1

# r
q.�/ rq.w/; w 2X : (7)

Keeping in mind that X 0 is a Hilbert space with inner product .�; �/X 0 , one can try
to compute RN.�/ by using the expansion of the RB-solution in terms of the basis
functions f�1; : : : ; �Ng (to be specified later) of XN , i.e.,

uN.�/ D
NX
iD1

ci.�/ �i; ci.�/ 2 R; (8)

as follows3

RN.�/
2 D kr.uN.�/I�/k2X 0

D 
r.uN.�/I�/; r.uN.�/I�/�X 0

D
QrX

q;q0D1

NX
i;i0D1

# r
q.�/ #

r
q0.�/ ci.�/ ci0.�/



rq.�i/; rq0.�i0/

�
X 0
: (9)

Obviously, the inner products

R.q;i/;.q0;i0/ WD


rq.�i/; rq0.�i0/

�
X 0

(10)

2If (6) does not hold, the Empirical Interpolation Method (EIM) determines an approximation with
an upper interpolation bound [2], which, however, may not be accessible and which also reduces
the sharpness of the error bound.
3Note, that (9) amounts to take the square root, which is not a problem in terms of efficiency, but it
is an issue with respect to accuracy – the well-known so-called “square root effect”.
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are parameter-independent. If these values can be precomputed (in an offline
phase), (9) amounts .QrN/2 terms so that RN.�/ can be computed with complexity
O.N2/ – independent of N , which is called online efficient.

A possible way to compute the terms in (10) is by determining the Riesz
representations Orq;i 2X of rq.�i/ 2X 0, that are given by


Orq;i; v�X D hrq.�i/; vi 8v 2 X ; (11)

where .�; �/X denotes the inner product in X . Once these Riesz representations
are determined, one can compute (10) by R.q;i/;.q0;i0/ D


Orq;i; Orq0 ;i0
�
X

. Doing so,
one avoids the dual inner product. Moreover, all computations for R.q;i/;.q0;i0/ can
be done offline. One only has to store .QrN/2 numbers which are combined with
the parameter-dependent terms in (9). However, this approach is only theoretically
feasible since the computation of the Riesz representations in (11) would amount
solving an infinite-dimensional problem.

2.3 The “Truth”

In a standard RBM, the way-out is through a common detailed discretization
X N � X , where N 2 N is the dimension of the “truth” space, which is
assumed to be rich enough to resolve the unknown u.�/ sufficiently accurate for
all parameters � 2 D , i.e., the error ku.�/ � uN .�/kX is sufficiently small,
where uN .�/ 2X N is the corresponding truth approximation. This detailed space
X N is used in the offline phase to determine the reduced model by computing the
snapshots �i WD uN .�i/ for �i 2 D , 1 � i � N, and setting XN WD spanf�i W 1 �
i � Ng. The choice of the snapshot samples �i is also based upon an error estimator
of the form (4), but restricted to the detailed space X N ¨ X , i.e.,

RN
N .�/ WD kr.uN.�/I�/k.X N /0 D sup

vN 2X N

hr.uN.�/I�/; vN i
kuN.�/kX : (12)

This is nothing else than computing the Riesz representations in (11) on the truth
space X N , i.e., determine an approximation OrNq;i 2X N of Orq;i as


OrNq;i ; vN �
X
D hrq.�i/; vN i 8vN 2X N : (13)

Having these, one computes the corresponding approximation RN
.q;i/;.q0 ;i0/ of

R.q;i/;.q0;i0/ in (10) and insert this into (9) yielding the approximation RN
N .�/ of

RN.�/. This has an obvious consequence, namely that this does not yield a bound
for the exact error as in (5) but only for the truth error, i.e.,

kuN .�/ � uN.�/kX � 1

˛.�/
RN
N .�/ DW 	N

N .�/:
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2.4 Estimating the Exact Error

From the above derivation, it should be clear that using a common uniform truth
will not yield a control of the exact error. In [8], it was suggested to solve (11)
adaptively in order reach any desired accuracy. It turned out, however, that due to
the sum in (9), an adaptive error control in (11) is not sufficient for an (online-
)efficiently computable error estimate. There are alternative approaches using e.g.
an adaptive basis generation, [10, 11]. To the best of our knowledge, however, these
approaches are limited to specific problem classes. In this paper, we present an
alternative approach using (multi-)wavelets.

3 Wavelet-Based Error Estimation

We start by reviewing the essentials of wavelet bases that are relevant for the
problem at hand. For details we refer to [9] and references therein.

3.1 Wavelet Bases

For simplicity, we restrict ourselves to the univariate case and define the scaled and
shifted version of a continuous function g 2 C.R/ of compact support as (j is a
scaling or level, k is a shift or the location in space) gj;k.x/ WD 2j=2g.2jx � k/ for
x 2 R and j; k 2 Z. A system � WD f j;k W j; k 2 Zg is called wavelet system with
d vanishing moments and regularity s 2 RC if (1) � is a Riesz basis for L2.R/;
(2)

R
R

xp  j;k.x/ dx D 0 for all j; k 2 Z and 0 � p � d � 1; (3)  2 Hs.R/; (4)

jsupp j;kj � 2j. The function  is called mother wavelet. It is a remarkable fact,
[3, 9], that � is not only a Riesz basis for L2.R/ but allows for a characterization of
Sobolev spaces, i.e.,

����
X
j;k2Z

dj;k ;  j;k

����
2

H� .R/

�
X
j;k2Z

22� jjdj;kj2; � 2 .0;minfs; dg/:4

Moreover, the Riesz representation theorem ensures the existence of a dual wavelet
basis Q� WD f Q j;k W j; k 2 Zg, which is also a wavelet system (for certain parameters
Qd, Qs) and . j;k; Q j0 ;k0/L2.R/ D ıj;j0 ık;k0 , j; j0; k; k0 2 Z. The collection .�; Q�/ of
both wavelet systems is called a biorthogonal wavelet system. Examples include
biorthogonal B-spline wavelets and orthonormal multi-wavelets, which we use here.

4Here A 	 B abbreviates cA � B � CB with constants 0 < c � C <1.
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The dual wavelet system also allows a characterization of Sobolev spaces H� .R/,
�minfQs; Qdg < � � 0. Note, that these are Sobolev spaces of negative order, i.e.,
dual spaces (i.e., those spaces the residual resides in).

There are generalizations for wavelet systems for L2.˝/, for bounded domains
˝ � R

d. To fix notation, we collect shift and scaling index � D .j; k/, denote the
level by j�j WD j and the index range by J . Then, the relevant dual system takes
the form Q� WD f Q W � 2J g and the norm equivalence reads for �s < � � 0 with
d WD .d�/�2J and D WD diag.2j�j/

kdT Q�k2H� .˝/ D
����
X
�2J

d� Q �
����
2

H� .˝/

�
X
�2J

22j�j� jd�j2 DW kD�dk2`2.J /: (14)

3.2 Wavelet-Based Residual Expansion

The new item presented in this paper is to use (14) for (9). The point of departure
is (7). We expand rq.w/ 2 X 0 by Q� , i.e., rq.w/ D P

�2J hrq.w/;  �i Q �, w 2 X ,
and for �i, 1 � i � N, we set d.q;i/;� WD hrq.�i/;  �i. Then, by (7) and (8)

r.uN.�/I�/ D
QrX
qD1

# r
q.�/ rq.uN.�// D

QrX
qD1

NX
iD1

X
�2J

# r
q.�/ ci.�/ d.q;i/;� Q �

DW
X
�2J

�X
m2M

�m.�/ dm;�

�
Q � DW

X
�2J

r�.�/ Q �;

where M WD f1; : : : ;Qrg � f1; : : : ;Ng, m WD .q; i/ and �m.�/ WD # r
q.�/ ci.�/. In

order to estimate RN.�/ WD kr.uN.�/I�/kX 0 , we have

RN.�/
2 �

X
�2J

2�2j�j jr�.�/j2 D
X
�2J

2�2j�j
ˇ̌
ˇ̌ X
m2M

�m.�/ dm;�

ˇ̌
ˇ̌2

D
X
�2J

2�2j�j
X

m;m02M
�m.�/ �m0.�/ dm;� dm0;�

D
X

m;m02M
�m.�/ �m0.�/

X
�2J

2�2j�jdm;� dm0;�

DW
X

m;m02M
�m.�/ �m0.�/sm;m0 DW R�N .�/2; (15)

where we abbreviate sm;m0 WD P
�2J 2�2j�jdm;� dm0;�. These terms are parameter-

independent and can be precomputed offline at any desired accuracy, which can be
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seen as follows. Since rq.�/ 2X 0, we have .2�j�jdm;�/�2J 2 `2.J /, which means
that there is a decay with respect to the level. In fact, the following dual version of a
Whitney-type estimate is well-known

jdm;�j D jhrq.�i/;  �ij � C 2�� j�j krq.�i/kH� .supp �/; �d < � � 0; (16)

with d as described in Sect. 3.1. This means that we have an a priori estimate for
the size of each dm;� in terms of the (known) local Sobolev regularity, which in turn
implies that the sum over infinitely many terms in sm;m0 can be truncated a priori to
a finite one with an a priori bound. This shows that we can indeed precompute sm;m0

at any desired tolerance. Finally, the corresponding error estimator reads	�
N .�/ WD

.c� ˛.�//�1R�N .�/, where c� is the lower equivalence constant in (14).

4 Numerical Experiments

In this section, we compare the numerical performance of the wavelet-based
error estimator 	�

N .�/ in (15) with the standard RB-truth-based 	N
N .�/ in (12)

(implemented in RB-Matlab, [4]) and the exact error. For a fair comparison in terms
of CPU time and accuracy, we need access to an exact solution. For this purpose, we
consider the simple Laplace problem on ˝ D .0; 1/2 with a parameter-dependent
source f .�/ 2 H�1, i.e., for x D .x1; x2/ 2 ˝ , � D .�1; �2/ 2 D WD Œ0:2; 0:8�2,
a WD 1=35, we set

f .xI�/ WD �e�
.x1��1/2C.x2��2/2

a2

�
4

a4
.x1 � �1/2 C 2

a2
.x2 � �2/2 � 4

a4

�
;

and let u.�/ be the corresponding exact solution, which can be computed ana-
lytically. Even though u.�/ 2 C1.˝/, it has a steep gradient (at �-dependent
locations) such that many basis functions are necessary to resolve local details
sufficiently well for all � 2 D .5 We compare 3 scenarios, namely (1) a truth
discretization consisting of 37,249 cubic finite elements (realizing a snapshot
tolerance of " D 10�2); (2) the same with 2,362,369 elements (with " D 10�4) and
(3) an adaptive cubic multi-wavelet snapshot generation as in [1] (where we set the
tolerance to 10�5, which leads to 80,637 wavelets at most). In all cases, the RB space
XN of dimension N D 6 is computed by a weak greedy on D train WD f0:2; 0:5; 0:8g2
with snapshot orthonormalization.

5One might argue that f .�I�/ is extremely smooth and that the �-dependence only enters through
the right-hand side. Of course, the wavelet-based error estimator equally works in other situations
as well. However, we want to do a comparison with the standard RB setting of a common truth.
In order to do so, we need (1) a formula for the exact solution, (2) a parameter-dependence which
causes local effects. For more complex situations, an even larger improvement is to be expected.
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Table 1 Average error for snapshot (SN ) and non-snapshot (D n SN ) parameters over D test. Case
1: X N is cubic FEM grid with 37,249 dof; Case 2: X N is cubic FEM grid with 2,362,369 dof;
Case 3: Adaptive snapshots based upon cubic multi-wavelets with at most 80,637 dof

¿ error Case Exact ku.�/� uN.�/kX Truth kuN .�/� uN.�/kX 	�
N .�/ 	N

N .�/

SN 1 9:6 � 10�3 2:7 � 10�15 – 0

2 9:2 � 10�5 1:6 � 10�13 – 0

3 2:2 � 10�6 – 3:6 � 10�6 –

D n SN 1 1:8 � 100 1:8 � 100 – 3:5 � 100
2 1:8 � 100 1:8 � 100 – 3:5 � 100
3 1:7 � 100 – 3:1 � 100 –

The results are summarized in Table 1. We report average errors over the test
set D test WD f0:2; 0:3; : : : ; 0:8g2 � D . Of course, in case of a truth discretization,
the truth error kuN .�/ � uN.�/kX and hence the standard RB error estimator
	N

N .�/ is zero (or machine accuracy) for snapshot parameters � 2 SN . The exact
error ku.�/ � uN.�/kX does not vanish but is in the order of the approximation
tolerance of the truth space X N . For the non-snapshot parameters we observe an
effectivity of about 1:94 – as compared to the truth error. The exact error is in
the same range and shows that even a highly resolved FE mesh is not capable to
guarantee a sufficient accuracy for all parameters.

In case (3), using adaptive snapshot computation, the tolerance is chosen a-priori,
which is achieved both by the exact error and the error estimator. This is a bound
for the exact error rather than for the truth error (and with much fewer d.o.f.). We
obtain an effectivity of about 1:8, i.e., in the same order as in the truth case, but now
for the exact error. The online complexity for the wavelet-based estimator	�

N .�/ is
O.N2 C N2Q2a C NQf C Q2f / (with Qa, Qf as in (6) and Qa D 1, Qf D 49 in this
case, N D 6), which is online efficient. The CPU time for the wavelet-based error
estimator is even too small to measure it with standard tools.6 We conclude that the
wavelet-based error estimator is both theoretically and practically efficient, reliable
and effective. Moreover, it allows a control of the exact error.
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Model Order Reduction for Pattern Formation
in FitzHugh-Nagumo Equations

Bülent Karasözen, Murat Uzunca, and Tuğba Küçükseyhan

Abstract We developed a reduced order model (ROM) using the proper orthogonal
decomposition (POD) to compute efficiently the labyrinth and spot like patterns of
the FitzHugh-Nagumo (FNH) equation. The FHN equation is discretized in space
by the discontinuous Galerkin (dG) method and in time by the backward Euler
method. Applying POD-DEIM (discrete empirical interpolation method) to the full
order model (FOM) for different values of the parameter in the bistable nonlinearity,
we show that using few POD and DEIM modes, the patterns can be computed
accurately. Due to the local nature of the dG discretization, the POD-DEIM requires
less number of connected nodes than continuous finite element for the nonlinear
terms, which leads to a significant reduction of the computational cost for dG POD-
DEIM.

1 Introduction

There has been significant development in the efficient implementation and analysis
of the model order reduction (MOR) techniques for parametrized partial differential
equations (PDEs) [4]. Even though the POD is a very successful MOR technique
for linear problems, for nonlinear problems the computational complexity of the
evaluation of the nonlinear reduced model still depends on the dimension of the
FOM. Several methods are developed to reduce the computational cost so that the
nonlinear function evaluations are independent of the dimension of the FOM and the
computational complexity is proportional to the dimension of ROM. The discrete
empirical interpolation method (DEIM) [3] which is the modified version of the
empirical interpolation method (EIM) [2] are the most frequently used ones. The
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DEIM was originally developed for nonlinear functions which depend component-
wise on single variables, arising from the finite difference discretization of nonlinear
PDEs [3]. When the nonlinear functions are discretized by finite elements, the
discretized nonlinear functions depend on the mesh and on the polynomial degree of
the finite elements. Therefore the efficiency of the POD-DEIM can be degraded. In
[1] the DEIM was applied at different stages of the finite element assembly process.
Using the unassembled finite elements, where each DEIM point is related to a single
element, the number of nonlinear function calls during the online computation is
reduced, but the size of the nonlinear snapshots is enlarged, which increases the
offline computational cost [1]. In this paper we consider the dG discretization for
time dependent parametrized semi-linear parabolic PDEs. Due to the local nature of
the dG approximation, each component of the discretized nonlinear vectors depends
only on few elements in the local mesh, whereas the continuous FEMs discretized
nonlinear vectors depend on multiple components of the finite element solutions.
Therefore the number of POD-DEIM function evaluations for dG approximation is
comparable with the finite difference discretization.

In this paper we consider the diffusive parametrized FHN equations [6] with fast
diffusing inhibitor v, i.e. we have Dv > Du,

@u

@t
D Du	u � ˛.v � u/� f .uI�/; @v

@t
D Dv	u� ˇ.v � u/; (1)

on a space-time cylinder ˝ 2 R
2 � .0;T� with homogeneous (zero-flux) Neumann

boundary conditions. The variables u.x; tI�/ and v.x; tI�/ stand for the activator
and inhibitor, respectively. The term f .uI�/ D .u � �/.u2 � 1/ represents the
bistable nonlinearity for the parameter �. We investigate the formation of labyrinth
and spot like patterns for different values of the parameter � as in [6], where ˛, ˇ
and diffusion coefficients Du, Dv are fixed.

The paper is organized as follows. In Sect. 2 the discretization of FHN equa-
tion (1) in space by symmetric interior penalty discontinuous Galerkin method
(SIPG) is given. In Sect. 3 the ROM based on the POD is formulated. In Sect. 4
we describe the SIPG discretized version of the DEIM for the bistable nonlinearity.
Numerical results for pattern formations for different values of the parameters
demonstrate the good performance of dG ROMs. The paper ends with some
conclusions and outlook for the future work.

2 Full Order Model

The FHN equation (1) is discretized in space using SIPG method [7]. Let "h be the
disjoint partition of the domain ˝ � R

2 with elements (triangles) fEigNel
iD1 2 "h,

where Nel is the number of elements in the partition. The discrete solution and test
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function spaces on "h are given by

Dq D Dq."h/ WD f# 2 L2.˝/ W #E 2 Pq.E/; 8E 2 "hg;

where Pq.E/ is the space of polynomials of degree at most q on E 2 "h, and
the functions # 2 Dq are discontinuous along the inter-element boundaries.
Multiplying (1) by arbitrary test functions #1; #2 2 Dq and integrating by using
Green’s theorem over each mesh element, we obtain the semi-discrete variational
equations

�
@uh
@t
; #1

�
C ah.DuI uh; #1/C ˛.vh � uh; #1/C . f .uhI�/; #1/ D 0;

�
@vh

@t
; #2

�
C ah.DvI uh; #2/C ˇ.vh � uh; #2/ D 0;

(2)

where ah.DuI u; #1/ and ah.DvI u; #2/ stand for the dG bilinear forms given by [7]

ah.DIw; #/ D
X
E2"h

Z
E
Drw � r# �

X
e2� 0h

Z
e
fDrwgŒ#�ds

�
X
e2� 0h

Z
e
fDr#gŒw�dsC

X
e2� 0h

�D

he

Z
e
Œw�Œ#�ds;

where � is called the penalty parameter depending only on the polynomial order q,
see [7] for details.

Let N WD Nloc �Nel denotes the dG degrees of freedom (DoFs), where Nloc is the
local dimension on each element depending on the polynomial degree q. Then, for
any t 2 .0;T�, the dG solutions of (2) are of the form

uh.t; x/ D
NX
iD1

ui.t/�i.x/ D �u ; vh.t; x/ D
NX
iD1

vi.t/�i.x/ D �v; (3)

where u.t/ WD .u1.t/; : : : ; uN.t//T and v.t/ WD .v1.t/; : : : ; vN.t//T are the vectors
of time dependent unknown coefficients of uh and vh, respectively, and �.x/ WD
Œ�1.x/ : : : �N.x/� is the matrix of the basis functions. Plugging (3) into the
equations (2) and choosing #1 D #2 D �i, i D 1; � � � ;N, we obtain the FOM
of (1) as the following system of ordinary differential equations (ODEs)

Mut C SuuC ˛M.v � u/C F.uI�/ D 0;
Mvt C SvvC ˇM.v � u/ D 0; (4)
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where Su; Sv 2 R
N�N are the stiffness matrices, M 2 R

N�N is the mass matrix and
F.uI�/ 2 R

N is the nonlinear vector depending on the parameter �. The FOM (4)
is solved by the backward Euler method.

3 Reduced Order Model

For an arbitrary parameter N�, the k-th order approximate ROM solutions Quh;k WD
Quh;k.t; xI N�/ and Qvh;k WD Qvh;k.t; xI N�/ have the form

Quh;k D
kX

iD1
Qui.t/ u;i.x/ ; Qvh;k D

kX
iD1
Qvi.t/ v;i.x/; (5)

where Qu.t/ WD .Qu1.t/; : : : ; Quk.t//T and Qv.t/ WD . Qv1.t/; : : : ; Qvk.t//T are the coefficient
vectors of the ROM solutions. For a set f�1; : : : ; �nsg of parameter samples, the
POD reduced basis functions f u;ig and f v;ig are computed as solutions of the
minimization problem

min
 w;1 ;:::; w;k

1

ns

nsX
mD1

1

J

JX
jD1

�����wm;j �
kX

iD1
.wm;j;  w;i/L2."h/ w;i

�����
2

L2."h/

subject to . w;i;  w;j/L2."h/ D � T
w;�;iM�w;�;j D ıij ; 1 � i; j � k;

(6)

where wm;j � w.tj; xI�m/ denotes the approximate solution at the time tj for a fixed
parameter �m, for w 2 fu; vg, m D 1; : : : ; ns, and ıij is the Kronecker delta. We
note that wm;j in (6) stands for the solution but not for the coefficient vector of the
unknown solution as in the continuous finite elements. For the dG discretizations we
use modal basis functions where the coefficients do not coincide with the solution
values. Therefore, instead of the Euclidean norm, we use in (6) the weighted inner
product and the corresponding norm with the symmetric positive definite mass
matrix M, leading to M-orthogonal reduced basis functions [5].

In practice, instead of the minimization problem (6), an equivalent eigenvalue
problem is solved [5].

bU bU Tb� u;�;i D �2u;ib� u;�;i ; bV bV Tb�v;�;i D �2v;ib�v;�;i ; i D 1; 2; : : : ; k; (7)

where bU D RU , bV D RV , b� �;�;i D R��;�;i, RT is the Cholesky factor of the
mass matrix M, and U D Œu1;1; : : : ;uns;J � and V D Œv1;1; : : : ; vns;J � in R

N�.ns�J/
are the snapshot matrices. The vectors �u;�;i and �v;�;i denote the coefficient vectors
of the reduced basis functions  u;i and  v;i, respectively. The solutions b� �;�;i of (7)
are obtained as the first k left singular vectors in the generalized singular value
decomposition (SVD) of bU and bV , respectively [5]. Combining the FOM (3) and
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ROM (5) solutions and using the fact that the reduced basis functions  u;i and  v;i
belong to the dG space Dq, we obtain the relations: u D �u Qu and v D �v Qv, between
the coefficient vectors u, v of the FOM solutions and the coefficient vectors Qu, Qv
of the ROM solutions. Substituting these relations into (4) and projecting onto the
reduced spaces spanned by f u;1; : : : ;  u;kg and f v;1; : : : ;  v;kg, respectively, we
obtain the k-dimensional ROM

Qut C QSu QuC ˛ QMu Qv � ˛ QuC � T
u F.�u QuI N�/ D 0;

Qvt C QSv QvC ˇ Qv � ˇ QMv Qu D 0
(8)

with the reduced matrices

QSu D � T
u Su�u ; QSv D � T

v Sv�v ; QMu D � T
u M�v ; QMv D � T

v M�u:

The system (8) is solved by the backward Euler method, as well.

4 Discrete Empirical Interpolation Method (DEIM)

Although the dimension of the reduced system (8) is small, k� N, the computation
of the nonlinear term N. Qu/ WD � T

u F.�u QuI N�/ still depends on the dimension N of
the full system. We apply DEIM [3] to reduce the computational cost, where the
nonlinear function is approximated as F.�u QuI N�/ � Ws.t/, from a subspace W D
ŒW1; : : : ;Wn� 2 R

N�n, where each member Wi is called the DEIM basis functions,
i D 1; 2; : : : ; n (n � N). The DEIM basis functions Wi are computed through the
SVD of the nonlinear snapshot matrix F WD ŒF1;1; : : : ;Fns;J � 2 R

N�.ns�J/, where
Fm;i WD F.�u Qu.ti/I�m/ are the nonlinear vectors at the time instance ti, obtained in
the online computation for the parameters �m, m D 1; : : : ; ns. Because the system
Ws.t/ is overdetermined, the projection matrix P is introduced which is computed by
the greedy DEIM algorithm [3]. Then, we use the approximation N. Qu/ � QN. Qu/ D
Q QF N� where the matrix Q D � T

u W.P
TW/�1 2 R

k�n is precomputable and QF N� D
PTF.�u QuI N�/ 2 R

n is the n-dimensional non-linear vector which can be computed
in an efficient way. In addition, the DEIM approximation satisfies the a priori error
bound

kF N� �W.PTW/�1 QF N�k2 � k.PTW/�1k2k.I �WWT/F N�k2;

where the term k.PTW/�1k2 is of moderate size of order 100 or less [1].
In dG discretization, the integrals are computed on a single triangular element,

whereas for continuous finite element discretizations with linear polynomials all the
interior degrees of freedoms are shared by 6 triangular elements, see Fig. 1. The
unassembled finite element approach is used in [1], so that each DEIM point is
related to one element, which reduces the online computational cost, but increases
the number of snapshots and therefore the cost of the offline computation. Due to



374 B. Karasözen et al.

Fig. 1 Connectivity of
degrees of freedoms for linear
basis functions

FEM DG

its local nature, the dG discretization is automatically in the unassembled form and
it does not require computation of additional snapshots.

As we use for the time integration the implicit backward Euler method, on each
time step the nonlinear equations have to be solved by Newton’s method. Therefore
the computational cost of the Jacobian by DEIM of the reduced model has to be
taken into account. Because the support of dG basis functions has only one single
element, the Jacobian matrices of the FOMs appear in block diagonal form unlike
the continuous FEMs where the Jacobian matrices contain overlapping blocks. The
Jacobian matrices arising from POD and POD-DEIM are of the form

@

@ QuN. Qu/ D �
T
u J
N�
F�u ;

@

@ Qu
QN. Qu/ D Q.PTJ N�F /�u;

where .PTJ N�F / 2 R
n�N is the matrix including only n � N rows of the Jacobian

J N�F , and in each row of the Jacobian there are only Nloc nonzero terms because of
the local structure of the dG. Hence, only n � Nloc entries are needed to compute
PTJ N�F , whereas without DEIM, Nel�N2loc entries are required for computation of the

Jacobian J N�F of the FOM.

5 Numerical Results

We consider FHN equation (1) for .x; t/ 2 Œ�10; 10�2 � Œ0; 1000� with random
initial conditions uniformly distributed between �1 and 1. The other parameters
Du D 0:04, Dv D 1, ˛ D 0:3, ˇ D 1 are fixed as in [6]. We use linear
dG polynomials (Nloc D 3), and as the discrete mesh, we form the partition of
Œ�10; 10�2, by 5 times uniform refinement, with 2048 triangular elements leading
to 6144 DoFs. Snapshots are taken in the time interval Œ0; 1000� with the time step
	t D 0:5. For POD/POD-DEIM basis construction, we use the parameter samples
� 2 f�0:04;�0:02; 0; 0:02; 0:04g, ns D 5. The reduced systems are solved for the
set f�0:03;�0:01; 0:01; 0:03g of parameter values of �, which are not contained in
the set of sample parameters. The average number of Newton iterations was 1 for
the computation of the FOMs and ROMs on each time step.
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Fig. 2 (Left) Decay of the singular values of solution snapshots U , V and of the nonlinear
snapshots F ; (Right) CPU times for the computation of FOMs, POD and POD-DEIM ROMs
for the parameter value � D 0:03

Table 1 The computation times (in sec), speed-up factors SPOD and SDEIM , and the DEIM
projection error bounds k.PTW/�1k2
� FOM POD POD-DEIM SPOD SDEIM k.PTW/�1k2
�0:03 527:3 34:5 7:5 15:31 70:21 28

�0:01 501:9 33:4 13:2 15:05 38:08 33

0:01 522:3 32:9 11:9 15:88 43:67 41

0:03 505:9 38:6 9:0 13:10 56:43 33

The decay of the singular values for the solution snapshots U , V and nonlinear
snapshots is given in Fig. 2, left, and the CPU times of the FOMs and ROMs for the
parameter value � D 0:03 are shown in Fig. 2, right. In Table 1 we give the CPU
times for FOMs, POD and POD-DEIM ROMs together with the speed-up factors
SPOD and SDEIM, which demonstrate the efficiency of the DEIM. We note that in the
POD-DEIM algorithm, the nonlinearity is discretized at six points of the mesh by
linear continuous FEM, whereas at three points of the mesh by linear dG method
(see Fig. 1). Therefore, during the online computation, dG requires less more work
than the continuous FEM. In Fig. 3, the patterns of FOMs, POD and POD-DEIM
reduced solutions are shown at the final time T D 1000. The ROM patterns in Fig. 3
computed with POD are very close to those of the FOMs as in [6]. But the patterns
computed with POD-DEIM are less accurate than those with the POD computed
ones for some parameter values in Fig. 3. The DEIM does not improve the accuracy
of the POD reduced model, but enormously reduces the computational complexity
[1]. The error bounds k.PTW/�1k2 of moderate size for the DEIM approximations
are also given in Table 1.
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Fig. 3 Patterns for u at the final time T D 1000 with FOM (left), POD (middle) and POD-DEIM
(right) for the parameter values � 2 f�0:03;�0:01; 0:01; 0:03g from top to bottom

6 Conclusions and Outlook

We have demonstrated that the dG approximation can produce due to its local
structure cost effective and accurate reduced order solutions by approximating the
parameter dependent nonlinear terms with the DEIM. In a future work we will
consider the parametrized FHN equation with the diffusivity coefficients Du and
Dv to compute the reduced order solutions by preserving the multiscale dynamics
of the activator u and the inhibitor v in time. Because the size of the SVD problem
can be prohibitive for the global POD, we will also apply the greedy POD.
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Local Parametrization of Subspaces on Matrix
Manifolds via Derivative Information

Ralf Zimmermann

Abstract A method is proposed for constructing local parametrizations of orthog-
onal bases and of subspaces by computing trajectories in the Stiefel and the
Grassmann manifold, respectively. The trajectories are obtained by exploiting sen-
sitivity information on the singular value decomposition with respect to parametric
changes and a Taylor-like local linearization suitably adapted to the underlying
manifold structure. An important practical application of the proposed approach
is parametric model reduction (pMOR). The connection with pMOR is discussed in
detail and the results are illustrated by numerical experiment.

1 Motivation: Parametric Model Reduction

The basic objective in model reduction is to emulate a large-scale dynamical system
with very few degrees of freedom. While classical model reduction techniques aim
at producing an accurate low-order approximation to the time trajectory of the
original dynamical system, in parametric model reduction (pMOR) it is tried to
account for additional system parameters, e.g. varying operating conditions. We
explain the process of projection-based MOR with the aid of a generic example.
Consider a spatio-temporal dynamical system in semi-discrete form

@

@t
y.t; �/ D f .y.t; �//; y.t0; �/ D y0;�; (1)

where y.t; �/ 2 R
n is the spatially discretized state vector of dimension n, �

denotes additional system parameters or operating conditions and f W Rn ! R
n

may be nonlinear. Projection-based MOR starts with constructing a suitable low-
dimensional subspace that acts as a space of candidate solutions.
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Subspace construction One way to construct the required projection subspace
is proper orthogonal decomposition (POD). In its simplest form, POD can be
summarized as follows. For a fixed � D �0, let y1 WD y.t1; �0/; : : : ; ym WD
y.tm; �0/ 2 R

n be a set of state vectors and let Y WD 

y1; : : : ; ym

� 2 R
n�m.

The state vectors yi are called snapshots and the matrix Y is called the associated
snapshot matrix. POD is concerned with finding a subspace U of dimension p � m
represented by a column-orthogonal matrix U 2 R

n�p such that the error between
the input snapshots and their orthogonal projection onto U is minimized:

min
U2Rn�p;UTUDI

X
k

kyk � UUTykk22
�
, min

U2Rn�p;UTUDI
kY �UUTYk2F

�
:

The main result of POD is that for any p � m, the best p-dimensional approximation
of colspanfy1; : : : ; ymg in the above sense is U D colspanfu1; : : : ; upg, where
fu1; : : : ; upg are the eigenvectors of the matrix UUT corresponding to the p largest
eigenvalues. The subspace U is called POD subspace. The same subspace is
obtained via a singular value decomposition (SVD) of the snapshot matrix Y D
U˙VT , truncated to the first p � m columns of U. For more details, see, e.g.
[3, §3.3]. Since the input snapshots are supplied at a fixed operating condition �0,
the POD subspace is considered to be a space of solution candidates U .�0/ D
colspan.U.�0// valid at �0.

Projection POD leads to a parameter decoupling via

Qy.t; �0/ D U.�0/yr.t/: (2)

In this way, the time trajectory of the reduced model is uniquely defined by the
coefficient vector yr.t/ 2 R

p that represents the reduced state vector with respect to
the subspace colspan.U.�0//. Let W.�0/ be such that the matrix pair U.�0/;W.�0/
is biorthogonal, i.e. W.�0/TU.�0/ D I. Inserting (2) in (1) and multiplying with
W.�0/T from the left leads to

d

dt
yr.t/ D WT.�0/f .U.�0/yr.t//: (3)

This approach goes by the name of Petrov-Galerkin projection, if W.�0/ ¤ U.�0/
and Galerkin-Projection if W.�0/ D U.�0/.

There are various ways to proceed from Eq. (3) depending on the nature of the
function f , which may be categorized as linear, affine linear or nonlinear, see [3] for
a recent survey.

Problem statement The main focus of the work at hand is not on the efficient
solution of the reduced system (3). Rather, I will address the issue of parameterizing
the POD subspaces and their underlying orthonormal bases (ONBs). To this end, we
consider the set of column-orthogonal matrices fU 2 R

n�pjUTU D Ig DW St.n; p/,
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called the Stiefel manifold, and the set of p-dimensional subspaces fU �
R

njdim.U / D pg DW Gr.n; p/, called the Grassmann manifold. Then, the objective
is to construct trajectories

� 7! U.�/ 2 St.n; p/ and � 7! U .�/ D colspan.U.�// 2 Gr.n; p/; (4)

respectively. The manifold structure of the Stiefel and the Grassmann manifold
will be exploited in order to obtain a Taylor-like first order approximation close
to an expansion point �0. In view of MOR applications, it is important that the
trajectories (4) are obtained without computing additional snapshots.

2 A Taylor-Like Expansion for Stiefel and Grassmann
Curves

First, let us fix some notation. The orthogonal group, i.e., the set of all (p-by-
p) square orthogonal matrices is denoted by Op�p. The tangent space in a point
U 2 Gr.n; p/ is TU Gr.n; p/ Š range.I � ˘U / � R

n�p, where ˘U is the
orthogonal projection onto U . The tangent space at U 2 St.n; p/ is TUSt.n; p/ Š
f	 2 R

n�pj	TU D �UT	g. In [5], it was shown that any tangent vector
	 2 TUSt.n; p/ has the form 	 D UA C .I � UUT/C, where A 2 R

p�p is skew-
symmetric and C 2 R

n�p is arbitrary. The tangent spaces of the Stiefel manifold
and the Grassmannian carry a Riemannian inner product, which is defined by
gStU.	; Q	/ D tr.	T.I� 1

2
UUT/ Q	/ for	; Q	 2 TUSt.n; p/ and gGrU .	; Q	/ D tr.	T Q	/

for 	; Q	 2 TU Gr.n; p/, see [5, §2.4.2, §2.5.1]. The Grassmann manifold can be
realized as a quotient manifold of the Stiefel manifold:

Gr.n; p/ D St.n; p/=Op�p D fŒU�j U 2 St.n; p/g: (5)

Hence, by definition, two matrices U; QU 2 St.n; p/ define the same point ŒU� 2
Gr.n; p/ if there exists an R 2 Op�p such that U D QUR. As in [5], we will make
use throughout of the quotient representation (5) of the Grassmann manifold with
matrices in St.n; p/ acting as representatives in numerical computations. For details,
the reader is referred to [1, 5].

Geodesics and the Riemannian exponential mapping Consider an arbitrary
Riemannian manifold M . Geodesics on M are locally shortest paths that are
parametrized by the arc length. Because they satisfy an initial value problem, they
are uniquely defined by specifying a starting point p0 2 M and a starting velocity
	 2 Tp0M . Geodesics give rise to the Riemannian exponential mapping that takes a
tangent vector	 2 Tp0M to the endpoint C .1/ of a geodesic path C W Œ0; 1�!M

starting at C .0/ D p0 2 M with velocity 	 D PC .0/ 2 Tp0M . It is denoted
by Expp0 W Tp0M ! M ;Expp0.	/ WD C .1/: The Riemannian exponential is
locally a radial-isometric diffeomorphism. Numerically efficient formulae for the
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Algorithm 1 [5, §2.4.2] Stiefel exponential as a curve t 7! ExpStU0.t	/

Require: base point U0 2 St.n; p/, 	 2 TU0St.n; p/
1: QR WD H D .I �U0UT

0 /	 2 R
n�p {qr-decomp. of normal component of 	}

2: A WD UT
0 	 2 R

p�p {horizontal component, skew}

3:

�
A �RT

R 0

�
D T�TH 2 R

2p�2p {EVD}

Ensure: ExpStU0 .t	/ D .U0;Q/


T exp.t�/TH .Ip; 0/T

� 2 St.n; p/
Costs: 4np2 C O.p3/ for each t when computing 1.–3. a priori (offline).

Algorithm 2 [5, §2.5.1] Grassmann exponential as a curve t 7! ExpGrU0
.t	/

Require: base point U0 D ŒU0� 2 Gr.n; p/, where U0 2 St.n; p/, 	 2 TU0Gr.n; p/

1: 	
SVDD Q˙VT , with Q 2 St.n; p/, ˙ 2 R

p�p diagonal, V 2 Op�p.
2: U.t/ D .U0V/ cos.t˙/C Q sin.t˙/ {cos; sin applied only to diagonal}

Ensure: ExpGrU0
.t	/ D ŒU.t/� 2 Gr.n:p/

Costs: 2npC O.p/ for each t when computing 1. and U0V a priori (offline).

Riemannian exponential mappings on St.n; p/ and Gr.n; p/ have been derived in [5,
§2.5.1] and are given in Algorithms 1 and 2.

Coming back to the problem statement, we will make use of the Stiefel and
Grassmann exponential in order to parametrize trajectories of ONBs and subspaces,
respectively. The basic idea is as follows. Suppose that at an operating point �0
we have a projection subspace U .�0/ associated with a reduced model that is
represented by a matrix U.�0/ 2 St.n; p/. If we can specify an appropriate starting
velocity	 2 TU.�0/St.n; p/, then

Œ0; ı��! St.n; p/; � 7! ExpStU0.�	/ (6)

is a curve on St.n; p/, i.e. a trajectory of ONBs. It turns out that with the choice
of 	 D dU

d� .�0/, the curve ExpStU0.�	/ matches the exact ONB U.�0 C �/ up to

terms of order O.�2/, see Lemmata 1 and 2 below. This procedure is visualized in
Fig. 1. Hence, we require a formula for the derivative of U.�/, which stems from a
snapshot POD/SVD.

Remark The geodesic (6) can be considered as a building block of an analytic
path of the SVD factorization. The investigations about analytic SVDs have a long
tradition, see, e.g. [4] and references therein. In fact, the method introduced in [4]
(for the full SVD) eventually leads to an approximation of the geodesic path by
means of a numerical minimization of the arc length rather than the closed form
solution of the associated initial value problem, which was not available at the time
of the writing of [4].

Differentiating the SVD Suppose that � 7! Y.�/ 2 R
n�p is a differentiable

matrix curve. If the singular values of Y.�0/ are mutually distinct, then the singular
values and both the left and the right singular vectors depend differentiable on
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Fig. 1 Visualization of the geodesic/exponential associated with a tangent vector

� 2 Œ�0 � ı�;�0 C ı�� for ı� small enough. For brevity, let PY D dY
d�.�0/ denote

the derivative with respect to � evaluated in �0 and so forth. Let � 7! Y.�/ D
U.�/˙.�/V.�/T 2 R

n�p and let C.�/ D .YTY/.�/. Let uj and vj, j D 1; : : : ; p
denote the columns of U.�0/ and V.�0/, respectively. It holds

P�j D .uj/T PYvj; (7)

PV D V�; where �ij D
(

.vi/T PCvj
.�jC�i/.�j��i/ ; i ¤ j

0; i D j
for i; j D 1; : : : ; p; (8)

PU D PYV˙�1 C Y PV˙�1 C YV Ṗ �1 D 
 PYV C U.˙� � Ṗ /�˙�1: (9)

A proof can be found in [6]. Note that UT.�0/ PU.�0/ is skew-symmetric so that
indeed PU.�0/ 2 TU.�0/St.n; p/. The above equations hold in approximative form
for the truncated SVD. If we consider the corresponding parameter-dependent
subspaces ŒU.�0/� in the sense of (5), then the derivative reads

PU.�0/? WD .I �U.�0/U.�0/
T/ PU.�0/ 2 TŒU.�0/�Gr.n; p/: (10)

Relationship with the Euclidean Taylor expansion If the snapshot solutions depend
real analytically1 on the operating point �, then so does the snapshot matrix Y and
its singular value decomposition Y D U˙VT , because of the relationship with
the symmetric eigenvalue problem YTY D V˙2VT and the results of [2, 7]. As
a consequence, we have a Taylor expansion

U.�0 C �/ D U.�0/C � PU.�0/C �2

2
RU.�0/CO.�3/ 2 St.n; p/: (11)

1Or smoothly in a certain non-pathological sense, see [2, §7].
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Note that we leave the Stiefel manifold, if we truncate the Taylor series. The Stiefel
geodesic from Algorithm 1, however, matches the Taylor series up to terms of
second order while preserving orthonormality, as the next lemma shows.

Lemma 1 The Stiefel geodesic starting in U.�0/ 2 St.n; p/ with velocity
� PU.�0/ 2 TU.�0/St.n; p/ matches the Tayler expansion (11) up to terms of second
order,

ExpStU.� PU.�0// D U.�0/C � PU.�0/C O.�2/ 2 St.n; p/:

From the Grassmann view point, we have to slightly modify this result.

Lemma 2 The Grassmann geodesic starting in ŒU.�0/� 2 Gr.n; p/ with velocity
� PU.�0/? 2 TŒU.�0/�Gr.n; p/matches the Tayler expansion (11) up to the orthogonal
part of PU.�0/, see (10), and terms of second order,

ExpGrU .� PU.�0/?/ D ŒU.�0/C � PU.�0/? C O.�2/� 2 Gr.n; p/:

Comparison with other Taylor-like approaches for local pMOR. The same objec-
tive outlined in Sect. 1 is addressed in [6]. In this work, the authors pursue,
among others, the approach of a first-order Taylor approximation U.�0 C �/ �
U.�0/C � PU.�0/. However, U.�0/C � PU.�0/ is not in St.n; p/. Yet, the departure
of U.�0/ C � PU.�0/ from orthogonality is of the order O.�2/. To see this, recall
that UT.�0/ PU.�0/ is skew-symmetric. Hence,

.U.�0/C � PU.�0//T.U.�0/C � PU.�0// D I C �2 PU.�0/T PU.�0/:

This is a retrospective justification of the approach of [6]. In contrast, the approach
proposed here does not rely on a truncated Taylor expansion but computes the Stiefel
or Grassmann geodesics explicitly, where the starting velocity is chosen according
to the Lemmata 1 and 2, respectively

3 Numerical Illustration

We illustrate the proposed approach by means of an academic example. To this end,
we consider the following linear one-dimensional convection-diffusion problem
taken from [8]:

@tuC @xu D �@2xu: (12)

Here, u is the flow velocity, x is the spatial coordinate and � D 1=Re is the reciprocal
Reynolds number associated with the viscosity of the fluid. This is a parametric
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partial differential equation with known closed-form solution [8] given by

u.t; x; �/ D e�˛.�/x cos.ˇ.�/x� t/; (13)

where ˛.�/ D 1
4�

�p
2C 2p1C 16�2 � 2

	
, ˇ.�/ D 1

4�

�p
�2C 2p1C 16�2

	
.

For experimental purposes, we treat (12) according to the generic procedure
outlined in Sect. 1: First, we fix � D �0. Then we discretize in space with
spatial resolution n 2 N. Hence, the function x 7! u.t; x; �0/ is represented
as a vector y.t; �0/ 2 R

n. The next step is a snapshot POD. To this end, we
select time instants t1; : : : ; tm and compute the snapshot matrix Y D Y.�0/ WD
.y.t1; �0/; : : : ; y.tm; �0// 2 R

n�m and the matrix of snapshot derivatives PY D�
@y.t1;�0/
@�

; : : : ;
@y.tm;�0/
@�

	
2 R

n�p. Then, we compute U˙VT SVDD Y and truncate to

obtain U 2 St.n; p/; p � m. We compute PU.�0/ D d
d�U.�0/ 2 TU.�0/St.n; p/

according to (7)–(9).
With U0 WD U.�0/; PU0 WD PU.�0/ at hand, we compute the corresponding Stiefel

and Grassmann geodesics according to Algorithms 1 and 2, respectively:

U.�0 C �/ � ExpStU0.�
PU0/; ŒU.�0 C �/� � ExpGrU0.�

PU?0 /:

In this way, we obtain valid Stiefel representatives for ONBs and Grassmann
subspace representatives for any small perturbation � 2 Œ0; ı��.

A preliminary performance test is conducted with the following settings: The
reciprocal Reynolds number is set to �0 D 0:2, the spatial resolution is chosen
as n D 1;000, initial snapshots are taken at the time instants of t1 D 0:7; t2 D
0:9; t3 D 1:1; t4 D 1:3.2 A snapshot SVD leads to a two-dimensional POD subspace
represented by U.�0/ 2 St.1;000; 2/. As an upper bound for the perturbations, we
choose ı� WD 0:1�0 D 0:02.

In order to evaluate the approximation accuracy, we compute the reference POD
subspace U.�0C�/ for � 2 Œ0; ı�� by repeating the snapshot POD at each operating
point � based on four snapshots at the same time instants t1; t2; t3; t4. We consider
the following five approximative approaches:

1. U.�0 C �/ � U.�0/ 2 St.n; p/ (do not adapt, reuse the subspace at �0)
2. U.�0 C �/ � ExpStU.� PU.�0// (parametrize via Stiefel geodesic)
3. U.�0 C �/ � ExpGrU .� PU?.�0// (parametrize via Grassmann geodesic)
4. U.�0 C �/ � svd.Y.�0/C � PY.�// (Euclidean Taylor, recomp. of SVD)
5. U.�0 C �/ � qr.U.�0/C � PU.�0// (Pseudo Taylor, reorthogonalized.)

The flop count for the approaches 2.–5. is O.np2/, O.np/, O.nm2/, O.np2/.
However, the evaluation of the Stiefel and Grassmann geodesics does not require
to compute matrix decompositions. In Fig. 2, the gap between the approximate

2It is known from theory that the linear convection diffusion problem (12) features exactly two
linearly independent POD modes [8]. Taking four snapshots is an intentional oversampling in order
to trigger truncation.
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Fig. 2 Plot of the subspace distance dist.U.�0C �/; QU.�0C �// vs. � 2 Œ0; ı��, where QU.�0C �/
is one of the approximations 1.–5. The geodesic approaches lead to accurate subspaces but come
at lower computational costs when compared to those competitors that also lead to orthogonal
subspace representatives
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Fig. 3 Reference solution of (12) at t D 1:0, �0 C ı� D 0:22 (solid line) compared to its
projection onto the base point subspace ŒU.�0/� (left) and onto the adapted subspaces Œ QU.�0 C �/�
corresponding to the Stiefel geodesic (middle) and to the Grassmann geodesic (right)

subspaces produced by the approaches 1.–5. and the reference POD subspace is
compared in terms of the arc length distance. The arc length distance between
two subspaces associated with matrix representatives U; QU equals the 2-norm of
the vector of principle angles between U and QU, see [5, §4.3]. As predicted from
the theory, the error associated with the first-order approximations 2.–5. grows
quadratically in � 2 Œ0; ı��, while it grows linearly if we do not adapt the base
point subspace. Figure 3 depicts the reference solution u.t D 1:0; x; � D 0:22/ in
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comparison with its projection onto the subspaces Œ QU.�0 C �/� associated with the
approaches 1.,2.,3.
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Reduced-Order Multiobjective Optimal
Control of Semilinear Parabolic Problems

Laura Iapichino, Stefan Trenz, and Stefan Volkwein

Abstract In this paper a reduced-order strategy is applied to solve a multiobjective
optimal control problem governed by semilinear parabolic partial differential
equations. These problems often arise in practical applications, where the quality
of the system behaviour has to be measured by more than one criterium. The
weighted sum method is exploited for defining scalar-valued nonlinear optimal
control problems built by introducing additional optimization parameters. The
optimal controls corresponding to specific choices of the optimization parameters
are efficiently computed by the reduced-basis method. The accuracy is guaranteed
by an a-posteriori error estimate.

1 Introduction

In real applications, optimization problems are often described by introducing
several objective functions conflicting with each other. This leads to multiobjective
or multicriterial optimization problems; see, e.g., [1]. Finding the optimal control
that represents a good compromise is the main issue in these problems. For that
reason the concept of Pareto optimal or efficient points is developed. In contrast to
scalar-valued optimization problems, the computation of a set of Pareto optimal
points is required. Consequently, many scalar-valued constrained optimization
problems have to be solved.

When dealing with control functions instead of parameters, a multiobjective
optimal control problem (MOCP) needs to be solved. In this paper we apply the
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weighted sum method [1, 13] in order to transform the MOCP into a sequence
of scalar optimal control problems and to solve them using well known optimal
control techniques [12]. Preliminary results combining reduced-order modeling and
multiobjective PDE-constrained optimization are recently derived [4, 9]. The main
focus of the present work lies in the extension of [4] to nonlinear, control constrained
optimal control problems governed by evolution problems.

The paper is organized as follows. In Sect. 2 the multiobjective optimal control
problem is formulated and transformed into a scalar-valued problem that is consid-
ered in Sect. 3. The numerical strategy and results are discussed in Sect. 4.

2 Problem Formulation and Pareto Optimality

Let ˝ � R
d, d 2 f1; 2; 3g, be an open and bounded domain with Lipschitz

continuous boundary � D @˝ . For given T > 0 we set Q D .0;T/ � ˝ and
˙ D .0;T/ � � . Then we consider the following class of multiobjective optimal
control problems governed by semilinear parabolic equations:

minJ . y; u/ D
0
@J1. y; u/
J2. y; u/
J3. y; u/

1
A D

0
BBBBBBBB@

1

2

Z
˝

ˇ̌
y.T; �/� y˝

ˇ̌2
dx

1

2

Z T

0

Z
˝

ˇ̌
y � yQ

ˇ̌2
dxdt

1

2

mX
iD1

ˇ̌
ui � udi

ˇ̌2

1
CCCCCCCCA

(1a)

subject to the semilinear parabolic differential problem

yt.t; x/�	y.t; x/C y3.t; x/ D
mX
iD1

uibi.x/C f .t; x/ for .t; x/ 2 Q;

@y

@n
.t; s/ D 0 for .t; s/ 2 ˙; y.0; x/ D yı.x/ for x 2 ˝

(1b)

and to the bilateral control constraints

u 2 Uad D
˚Qu D .Qu1; : : : ; Qum/> 2 R

m
ˇ̌
uai � Qui � ubi for 1 � i � m

�
: (1c)

In (1a) we assume that y˝ 2 L1.˝/, yQ 2 L1.Q/, ud D .ud1; : : : ; u
d
m/
> 2 R

m. By
‘>’ we denote the transpose of a vector or matrix. Furthermore, we suppose that
b1; : : : ; bm 2 L1.˝/, yı 2 L1.˝/. In (1c) let uia; u

i
b 2 R satisfying uia � uib for

1 � i � m.
Recall that the state equation (1b) has a unique (weak) solution y D y.u/ that is

bounded for every u 2 Uad; see, e.g., [12]. Hence, we can introduce the reduced
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objective by OJ .u/ DJ . y.u/; u/ for u 2 Uad. Instead of (1) we consider now

min OJ .u/ D

0
B@
OJ 1.u/
OJ 2.u/
OJ 3.u/

1
CA subject to u 2 Uad: (2)

Problem (2) involves the minimization of a vector-valued objective. This is done
by using the concepts of order relation and Pareto optimality [1]. In R

3 we make use
of the following order relation: For all z1; z2 2 R

3 we have

z1 � z2 , z2 � z1 2 R
3C D

˚
z 2 R

3
ˇ̌
zi � 0 for i D 1; 2; 3�:

Definition 1 (Pareto optimal) Let Z D OJ .Uad/ � R
3 be the image set of Uad

under the cost functional OJ . We call a point Nz 2 Z globally (strictly) efficient with
respect to the order relation �, if there exists no z 2 Z n fNzg with z � Nz. If Nz is
efficient and Nu 2 Uad satisfies Nz D OJ .Nu/, we call Nu (strictly) Pareto optimal. Let
Nu 2 Uad hold. If there exists a neighborhood N .Nu/ � Uad of Nu so that Nz D OJ .Nu/
is (strictly) efficient for the (local) image set OJ .N .Nu// � Z , the point Nu is called
locally (strictly) Pareto optimal. Moreover, Nz is said to be locally efficient.

Now, the multiobjective optimal control problem (2) is understood as follows: Find
Pareto optimal points in Uad for the vector-valued reduced objective OJ .

First-order necessary optimality conditions for Pareto optimality are presented
in the next theorem which is proved in [1, Theorem 3.21 and Corollary 3.23]. The
proof is based on the result of Kuhn-Tucker [6].

Theorem 2 Suppose that Nu 2 Uad is Pareto optimal. Then, there exists a parameter
vector � D . N�1; N�2; N�3/ 2 R

3 satisfying the Karush-Kuhn-Tucker conditions

N�i 2 Œ0; 1�;
3X

iD1
N�i D 1 and

3X
iD1
N�i
OJ 0
i.Nu/>.u � Nu/ � 0 for all u 2 Uad: (3)

Motivated by Theorem 2, let us choose 0 < �lb < 1 and set

Dad D
�

� D .�1; �2; �3/ 2 R
kC
ˇ̌̌ 3X

iD1
�i D 1; �3 � �lb

�
� Œ0; 1�3:

The condition �3 � �lb is necessary for the well-posedness of the scalar-valued
optimal problem ( OP�) introduced below. For any � 2 Dad we define the parameter-
dependent, scalar-valued objective as OJ.uI�/ D �> OJ .u/ for u 2 Uad. Then, (3)
are the first-order necessary optimality conditions for a local solution Nu D Nu.�/ to
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the parameter-dependent optimization problem

min OJ.uI�/ subject to u 2 Uad ( OP�)

for the parameter � D N�. In the weighted sum method Pareto optimal points are
computed by solving ( OP�) for various � 2 Dad; see [13] and [1, Chapter 3].

Remark 3 To solve ( OP�) we apply a globalized Newton-CG method [7]. Þ

3 The Scalar-Valued Optimal Control Problem

Suppose that Nu D u.�/ 2 Uad is an optimal solution to ( OP�) for given � 2 Dad. Let
Ny D y.NuI�/ denote the associated optimal state satisfying (1b) for u D Nu. Following
[12], first-order necessary optimality conditions for ( OP�) ensure the existence of a
unique adjoint Np D p.NuI�/ solving

� pt.t; x/ �	p.t; x/C 3y2.t; x/p.t; x/ D �1


yQ.t; x/� Ny.t; x/

�
in Q;

@p

@n
.t; s/ D 0 on˙; p.T; x/ D �2



y˝.x/ � Ny.T; x/

�
in ˝

(4)

with y D Ny. Moreover, for any � 2 Dad the gradient of the reduced cost functional
OJ.� I�/ at a given u 2 Uad is given by

OJ0.uI�/ D
�
�3


ui � udi

� �
Z T

0

Z
˝

p.t; x/bi.x/ dxdt

�
1�i�m

;

where p solves (4) and y is the solution to (1b).
Since ( OP�) is a non-convex problem, we make use of the hessian OJ00.uI�/ 2

R
m�m in order to ensure sufficient optimality conditions. Let Nu D Nu.�/ be locally

optimal for ( OP�) satisfying the second-order sufficient optimality condition

OJ00.NuI�/.u; u/ � � juj22 for all u 2 R
m

with a �-independent lower bound � > 0 for the smallest eigenvalue of the hessian.
Then, for any Q� 2 .0; �/ there exists a radius Q� D �. Q�/ > 0 such that

OJ00.QuI�/.u; u/ � Q� juj22 for all Qu with jQu� Nuj2 � Q�: (5)

If Qu 2 Uad satisfies (5) we can estimate the error between Nu and Qu as [5]

jNu � Quj2 �
1

Q� j&j2; (6)
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where & D &.Qu/ 2 R
m is given by

&i WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

h
�3


ui � udi

� � R T
0

R
˝
Qp.t; x/bi.x/ dxdt

i
�; if Qui D uai ;

��3


ui � udi

�C R T
0

R
˝
Qp.t; x/bi.x/ dxdt; if uai < Qui < ubi ;

�
h
�3


ui � udi

� � R T
0

R
˝
Qp.t; x/bi.x/ dxdt

i
C; if Qui D ubi ;

(7)

Qp solves (4) with y D Qy and Qy solves (1b) with u D Qu. In (7) we denote by
Œs�� D �min.0; s/ and Œs�C D max.0; s/ the negative and positive part function,
respectively. Hence, given a (suboptimal) Qu 2 Uad, the error Nu � Qu can be estimated
by the right-hand side in (5) provided the lower bound Q� for the symmetric matrix
OJ00.QuI�/ is known. We proceed as follows: From OJ.QuI�/ D �> OJ .Qu/ we find

OJ00.QuI�/ D �1 OJ 00
1.Qu/C �2 OJ 00

2 .Qu/C �3 OJ 00
3 .Qu/ for � 2 Dad:

It follows from Theorem of Courant-Fischer [10, Corollary 4.7] that a lower bound
�LB

min for the smallest eigenvalue �min of OJ00.QuI�/ is given by

�min

 OJ00.QuI�/� �

3X
iD1

�i�min

 OJ 00

i .Qu/
� DW �min

LB.QuI�/; (8)

where �min.A/ denotes the smallest eigenvalue of a symmetric matrix A.

4 Numerical Solution Strategy

To solve (1) we apply the weighted sum method. Thus, the set of Pareto optimal
points is approximated by solutions Nu.�/ to ( OP�) for various parameters � 2 Dad.
Consequently, many constrained nonlinear optimization problems have to be solved
numerically, which is computationally expensive. For this reason, model-order
reduction (MOR) is applied to reduce significantly the required computational
resources. Our MOR approach is based on a Galerkin-type approximation to ( OP�)
using MOR basis functions, where for certain weighting parameters � 2 Dad the
MOR basis functions contain information from optimal states Ny.�/ and adjoints
Np.�/ associated with optimal controls Nu.�/. The MOR basis functions are deter-
mined in an offline phase. In the online phase the weighted sum method is applied,
where numerical solutions to ( OP�) are computed rapidly by a MOR Galerkin
discretization [11].

Offline phase I: eigenvalue computation on control grid Let us choose a discrete
(regular) control grid �grid D fukgKkD1 in the set Uad of admissible controls. In
an offline phase we compute and store the �-independent smallest eigenvalues
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�min. OJ 00
i .u

k// at any grid node uk 2 �grid for i D 1 and 2. Since OJ 00
3 .u

k/ is
the identity, we have �min. OJ 00

3.u
k// D 1. Now, (8) yields a numerically efficient

computation of the approximative lower bound �LB
app.QuI�/ in the online phase at

any (suboptimal) control Qu 2 Uad by convex combination of the stored smallest
eigenvalues �min. OJ 00

i .u
k// for k D 1; : : : ;K:

�min

 OJ 00

i .Qu/
� � �iapp.Qu/ WD

KX
kD1

!k �min. OJ 00
i .u

k//: (9)

In (6) we utilize �iapp.Qu/ instead of Q�.

Remark 4 The computation of the �min. OJ 00
i .u

k// can be realized in parallel
computing with respect to k 2 f1; : : : ;Kg. Þ
Offline phase II: MOR basis computation Estimate (6) can be suitably used as
ingredient to apply a MOR strategy for the solution of nonlinear multiobjective
problems. In order to use a MOR technique for its solution, we propose to use
the POD-greedy algorithm based on [3] and [2, 8]. As an input the POD-greedy
algorithm requires a discrete parameter training set Strain � Dad, as well as he
smallest eigenvalues �min. OJ 00

i .u
k// for i D 1; 2; 3 on the control grid �grid and

the corresponding precomputed grid node data Dgrid, both needed for the smallest
eigenvalue approximation in the a-posteriori error estimation.

Online phase: multiobjective optimal control As regards the original multiob-
jective problem, we are interested in the solution of the parametric optimal control
problem for a large number of parameter values, since we want to identify a set
of optimal control solutions that does not a-priorily penalize any cost functional.
In other words, we are interested in identifying the Pareto optimal front of the
multiobjective problem, that consists in a large set of cost functionals evaluation
corresponding to the solution of a large number of optimal control problems
(obtained in correspondence of several parameter values, at the randomly chosen).
In order to identify the Pareto front we need to evaluate several times the parametric
optimal control problem. For this purpose, the proposed model order reduction
strategy can be efficiently reduce the required computational times.

5 Numerical Example

We consider (1) with spatial domain ˝ D .0; 1/ � .0; 1/ � R
2, final time T D

1, desired states y˝ D 0, yQ.t; x/ D 100t cos.2�x1/ cos.2�x2/, initial condition
yı.x/ D 0 and inhomogeneity f .t; x/ D 10tx1. Furthermore, for m D 4 each shape
function bi.x/; i D 1; : : : ; 4, has the support in a quarter of the domain ˝ and ud D
.0:5;�4;�0:5; 4/> 2 R

4. The high fidelity spatial approximations of the problem
solution, used for the basis computations and the error comparisons is computed by
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a finite element (FE) model with a Newton method that uses P1 elements, it has 729
degrees of freedom in 1352 elements. For the temporal discretization the implicit
Euler method is applied with equidistant step size 	t D 0:01 steps. Figure 1 shows
optimal states Ny D y.NuI�/ for solutions Nu.�/ to ( OP�) corresponding to two values
of the parameter �. In the left plot of Fig. 2 we plot error comparisons obtained by
solving ( OP�).

In particular, we compare the errors between the optimal controls computed
by the model order reduction (MOR) method and the one by the FE method. We
show its minimum, maximum and average values (over a range of 1000 parameter
values) by varying the number of basis functions used in the MOR scheme. In the
right plot of Fig. 2 we present the Pareto front obtained by solving ( OP�) with the
MOR technique for different parameter values �. In order to show the correctness
of the Pareto front, we also include the values of the cost functionals OJ 1.u/,
OJ 2.u/ and OJ 3.u/ obtained for 1000 control values randomly chosen as follows:

u1 2 Œ�3; 3�; u2 2 Œ�8;�1�; u3 2 Œ�5;�2�; u4 2 Œ�1; 6� (not optimal controls). In

Fig. 1 Optimal states Ny D y.NuI�/ for solutions Nu.�/ to ( OP�) for parameter values � D
.0:05; 0:9; 0:05/ (left) and � D .0:9; 0:05; 0:05/ (right)

Fig. 2 Error bound and error between the MOR and FE solutions by varying the number of bases:
minimum, maximum and average values over a set of 100 random parameter values (left); Pareto
front and cost functionals values corresponding to admissible control points (right)
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Fig. 3 Optimal controls Nu.�/ corresponding to 1000 randomly chosen parameter values (left) and
to the parameter values selected for the bases computations during the POD-greedy algorithm
(right)

Fig. 3 we show the optimal controls Nu.�/ corresponding to 1000 randomly chosen
parameter values and to the parameter values selected for the bases computations
during the POD-greedy algorithm. Regarding the computational performances the
online evaluation time required for solving problem ( OP�) for each parameter value
by using 10 basis functions is about 0:7 s; while the evaluation of the FE solution
requires about 7.3 s. We conclude that the gained speedup allows a much faster
optimal solution evaluation and an efficient identification of the Pareto front, for
which several repeated solutions have to be computed.
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Coupling Fluid-Structure Interaction
with Phase-Field Fracture: Modeling
and a Numerical Example

Thomas Wick

Abstract In this work, a framework for coupling arbitrary Lagrangian-Eulerian
fluid-structure interaction with phase-field fracture is suggested. The key idea
is based on applying the weak form of phase-field fracture, including a crack
irreversibility constraint, to the nonlinear coupled system of Navier-Stokes and
elasticity. The resulting setting is formulated via variational-monolithic coupling
and has four unknowns: velocities, displacements, pressure, and a phase-field vari-
able. The inequality constraint is imposed through penalization using an augmented
Lagrangian algorithm. The nonlinear problem is solved with Newton’s method.
The framework is tested in terms of a numerical example in which computational
stability is demonstrated by evaluating goal functionals on different spatial meshes.

1 Introduction

Both fluid-structure interaction (FSI) and fracture propagation are current but
challenging topics with numerous applications in applied mathematics and engi-
neering. In this work, we want to bring both frameworks together. The idea is
to employ the nowadays standard arbitrary Lagrangian-Eulerian (ALE) technique
[8, 13] for coupling the isothermal, incompressible Navier-Stokes equations with the
geometrically nonlinear Saint Venant-Kirchhoff model. The resulting formulation
using variational-monolithic coupling is outlined in [12, 19]. Here, three unknowns
are sought: velocities, pressure and displacements. On the other hand, brittle
fracture propagation using variational techniques has attracted attention since the
pioneering work in [4, 9]. Specifically, we consider a pressurized fracture as it
has been formulated in [16]. Here, the crack irreversibility constraint has been
imposed through penalization. In phase-field fracture, two unknowns are sought:
displacements and a phase-field function that determines the crack location. A first
(minor) novelty of this paper is an augmented Lagrangian penalization for a fully-
coupled phase-field fracture framework. This is in contrast to [18] in which the
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displacement phase-field system has been solved in a partitioned fashion. Such a
technique has been employed due to the fact that the underlying energy functional is
non-convex in both variables simultaneously [3, 5], which causes serious challenges
in the numerical solution. Recently, a robust (but heuristic) methodology of a quasi
fully-coupled approach has been proposed in [10] where the phase-field variable has
been time-lagged in the displacement equation.

Since the solid part of FSI is based on elastodynamics, we accentuate the work
of [2, 6, 14] who extended variational quasi-static brittle fracture to dynamic brittle
fracture taking into account the solid acceleration term. Collecting all these different
pieces allows us to apply the phase-field fracture technique to the solid part of the
FSI problem. More specifically, the phase-field part is re-written (similarly to the
flow problem in FSI) in ALE coordinates. The resulting formulation is consequently
prescribed in a fixed, but arbitrary, reference domain and all coupling conditions
are satisfied in a variational exact fashion on the continuous level. The numerical
discretization is then straightforward as the Rothe method (first time, then space)
can be applied on the resulting semilinear form. The nonlinear coupled problem is
solved with Newton’s method. The outline of this paper is as follows: In Sect. 2, the
equations are gathered; followed by brief hints in Sect. 3 on the discretization and
numerical solution. The framework is tested in Sect. 4 with a prototype example in
which computational stability for certain goal functional values is shown.

2 Notation, Spaces, Equations

We denote by ˝ WD ˝.t/ � R
d, d D 2, the domain of the FSI phase-field fracture

problem; see Fig. 1. This domain consists of three time-dependent subdomains
˝f .t/;˝s.t/ and C .t/. We assume C .t/ �� ˝s.t/. The FSI-interface between˝f .t/
and ˝s.t/ is denoted by �i.t/ D @˝f .t/ \ @˝s.t/. The initial (or later reference)
domains are denoted by b̋; b̋ f and b̋s, respectively, with the interface b� i D

Fig. 1 Configuration and
notation
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@b̋ f \ @b̋ s. Furthermore, we denote the outer boundary by @b̋ D b� D b� D [ b� out

where b� D and b� out denote Dirichlet and outflow Neumann boundaries, respectively.
Specifically, b� out is motivated by [11]. We denote the L2 scalar product with .�; �/ as
frequently used in the literature. Finally, let T the end time value. For the function
spaces, we set:

OLf WD L2.b̋ f /; OLs WD L2.b̋ s/; OL0f WD L2.b̋ f /=R; OL0s WD L2.b̋s/=R;

OV0f WD H1
0.
b̋ f /; OV0f ; Ov WD f Ovf 2 H1

0.
b̋ f / W Ovf D Ovs on b� ig;

OV0s WD H1
0.
b̋ s/; OV0f ;Ou WD fOuf 2 H1

0.
b̋ f / W Ouf D Ous on b� ig;

OV0f ;Ou;b� i
WD f O f 2 H1

0.
b̋ f / W O f D O s on b� i � @Xg;

W WD f' 2 H1.˝s [ C / W @t' � 0 a.e. on ˝s [ C g:

2.1 Variational-Monolithic ALE Fluid-Structure Interaction

First, we define the ALE transformation:

Definition 1 The ALE mapping is defined in terms of the vector-valued fluid mesh
displacement Ouf (obtained by solving a mesh motion problem) such that

OA .Ox; t/ W b̋ f � I ! ˝f ; with OA .Ox; t/ D OxC Ouf .Ox; t/; (1)

which is specified through the deformation gradient and its determinant

bF WD br OA D OI C brOuf ; OJ WD det.bF/: (2)

Here, OI denotes the identity matrix. The mesh velocity is defined by Ow WD @t OA and
is numerically realized as Ow D k�1.Ouf � Oun�1f /, where Ouf is the current displacement

solution and Oun�1f the previous time step solution, and k WD tn � tn�1 being the time

step size. The key quantity to measure the fluid mesh regularity is OJ.

The weak form of a variational-monolithic FSI model reads, e.g., [19]:
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Proposition 2 Find vector-valued velocities, vector-valued displacements and a

scalar-valued fluid pressure, i.e., f Ovf ; Ovs; Ouf ; Ous; Opf g 2 f OvDf C OV
0

f ; Ovg� OLs�fOuDf C OV
0

f ;Oug�
fOuDs C OV

0

s g � OL
0

f , such that Ovf .0/ D Ov0f , Ovs.0/ D Ov0s , Ouf .0/ D Ou0f , and Ous.0/ D Ou0s are
satisfied, and for almost all time steps holds:

8<
:
. OJ O�f @t Ovf ; O 

v
/b̋f
C . O�f OJ.bF�1. Ovf � Ow/ � br/ Ovf ; O v

/b̋f
C . OJ O� fbF�T ; Or O v

/b̋f

Ch O�f�f OJ.bF�T Or OvTf Onf /bF�T ; O vib� out
D 0 8 O v 2 OV0f ;b� i

;

n
. O�s@t Ovs; O 

v
/b̋s
C .bF ḃ; Or O v

/b̋s
D 0 8 O v 2 OV0s ;n

. O�mesh; Or O u
/b̋f

D 0 8 O u 2 OV0f ;Ou;b� i
;

n
O�s.@t Ous � Ovs; O 

u
/b̋s

D 0 8 O u 2 OLs;n
.cdiv . OJbF�1 Ovf /; O p

/b̋f
D 0 8 O p 2 OL0f :

The stress tensors for fluid, solid and mesh motion read:

O� f D �Opf OI C 2 O�f �f . Or OvfbF�1 CbF�T Or OvTf /;
ḃ D 2�sbEC �strbE OI; with the strainbE D 1

2
.bFTbF � OI/;

O�mesh D OJ�1˛u Or Ouf ;

with the densities O�f and O�s, fluid’s viscosity �f . The solid parameters are given by

the Lamé parameters �s, �s and the normal vector is Onf . Finally, OJ�1˛u > 0 is used
to control the fluid mesh motion.

2.2 Variational Phase-Field for Dynamic
Pressurized-Fractures

In phase-field-based fracture propagation, the unknown solution variables are
displacements u W ˝s [ C ! R

2 and a smoothed indicator phase-field function
' W ˝s [ C ! Œ0; 1�. Here ' D 0 denotes the crack region and ' D 1 characterizes
the unbroken material. The intermediate values constitute a smooth transition zone
dependent on a regularization parameter ". The physics of the underlying problem
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ask to enforce a crack irreversibility condition (the crack can never heal) that is an
inequality condition in time: @t' � 0: Consequently, modeling of fracture evolution
problems leads to a variational inequality system, that is, due to this constraint,
quasi-stationary or time-dependent. Our system of equations applies to cracks in
elasticity and pressurized fractures. In the latter one, a Neumann condition acts
on the crack surface [16]. Using Gauss’ divergence theorem the pressure can be
formulated as a domain term: pF W ˝s [ C ! R. We now extend this quasi-static
pressurized fracture model, while additionally including the solid acceleration term:

Proposition 3 Let pF 2 H1.˝s [ C / and Q' (see [10]) be given. Find .u; '/ 2
fuD C H1

0.˝s [ C /g �W for almost all times t 2 .0;T� such that
n
.�s@

2
t u;  

u/C
�

.1 � �/ Q'2 C �� ˙.u/;r u

	
C . Q'2pF;r �  u/ D 0 8 u 2 V;

8<
:
.1 � �/.' ˙.u/ W e.u/;  '�'/C2.' pF r � u;  ' � '/
CGc

�
� 1
"
.1 � '; ' � '/C".r';r. ' � '//

	
� 0 8 ' 2 W \ L1.˝s [ C /:

In Proposition 3, � is a positive regularization parameter for the elastic energy, with
� D o."/, and Gc is the critical energy release rate. Furthermore,˙ is the linearized
version of ḃ with E D 1

2
.ruCruT/.

2.3 The Final System

We collect all pieces and perform two additional steps in Proposition 3:

– transforming from˝s[C to b̋s[bC and re-defining the space W in terms of OW,
respectively;

– introducing the augmented Lagrangian penalization strategy to treat the varia-
tional inequality.

We then obtain

Proposition 4 Let OpF 2 H1.b̋ s[bC / be given. Find vector-valued velocities, vector-
valued displacements, a scalar-valued fluid pressure, and a scalar-valued phase-

field function, that is to say that f Ovf ; Ovs; Ouf ; Ous; Opf ; O'sg 2 f OvDf C OV
0

f ; Ovg � OLs � fOuDf C
OV0f ;Oug � fOuDs C OV

0

s g � OL
0

f � H1.b̋ s [ bC /, such that Ovf .0/ D Ov0f , Ovs.0/ D Ov0s , Ouf .0/ D
Ou0f ; Ous.0/ D Ou0s and O's.0/ D O'0s are satisfied, and for almost all times t 2 .0;T�
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holds:

Fluid momentum

8̂
<̂
ˆ̂:
. OJ O�f @t Ovf ; O 

v
/b̋f
C . O�f OJ.bF�1. Ovf � Ow/ � Or/ Ovf ; O v

/b̋f

C. OJ O� fbF�T ; Or O v
/b̋f

Ch�f �f OJ.bF�T Or OvTf Onf /bF�T ; O vib� out
D 0 8 O v 2 OV0f ;b� i

;

Solid momentum, 1st eq.

8<
:
. O�s@t Ovs; O 

v
/b̋s
C
�

.1 � �/ Q'2 C ��bF ḃ; Or O v

	
b̋s

C. Q'2 OpF; Or � O 
v
/ D 0 8 O v 2 OV0s ;

Fluid mesh motion
n
. O�mesh; Or O u

/b̋f
D 0 8 O u 2 OV0f ;Ou;b� i

;

Solid momentum, 2nd eq.
n
O�s.@t Ous � Ovs; O 

u
/b̋s

D 0 8 O u 2 OLs;

Fluid mass conservation
n
.cdiv . OJbF�1 Ovf /; O p

/b̋f
D 0 8 O p 2 OL0f :

Phase-field

8̂
<̂
ˆ̂:
.1 � �/. OJ O's

ḃ W bE; O '
/b̋s
C 2. OJ O's OpF Or � Ous; O 

'
/b̋s

CGc

�
� 1
"
. OJ.1 � O's/; O 

'
/C ". OJ. Or O's

bF�1/bF�T ; Or O '
/
	
b̋s

C
 OJŒ� C 
@t O's�
C; O '�b̋s

D 0 8 O ' 2 H1.b̋s [ bC /:
Remark 5 The continuous penalization constraint Œ� C 
@t O's�

C with � 2 L2 and

 > 0 and Œx�C D max.0; x/ is numerically realized based on the incremental
formulation as explained in [18].

Remark 6 The system in Proposition 4 has been implemented as presented. How-
ever the numerical example below deals with moderate deformations; namely
k Or Ouk � 1 and thusbF � OI and OJ � 1 such that the phase-field fracture model can be
classified as proposed in [9, 15] and where linear elastic fracture mechanics applies.
Testing large FSI-solid deformations, including fractures, is subject of ongoing
studies.

Remark 7 (Modeling hypothesis) We emphasize that the given OpF in the pressurized
phase-field fracture framework is neither coupled to the Navier-Stokes pressure
Opf nor do we allow that the fracture reaches the FSI interface b� i. Mathematical
modeling of these processes has not yet been established.

3 Aspects of Discretization and the Solution Algorithm

The coupled FSI phase-field problem in Proposition 4 is first formulated in terms of
single semilinear form and then solved with the Rothe method: first time, then space.
Specifically, time discretization is based on a One-step-� scheme (here � D 0:5Cı,
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where ı D 0:01 is related to the time step size k D tnC1 � tn; resulting in A-
stable (second order) stabilized Crank-Nicolson time-stepping) as presented for the
pure FSI problem, Proposition 2, in [19]. Computational stability of these schemes
has been investigated in [17]. In space, the problem is discretized with conforming
finite elements on a quadrilateral mesh. For the fluid, an inf-sup stable velocity-
pressure pair is chosen, Qc

2=P
dc
1 ; for the displacements Qc

2 and for the phase-field
variable Qc

1. The fully-coupled nonlinear problem is solved with Newton’s method
as explained for pure FSI in detail in [19]. In particular, the Jacobian is constructed
from the analytical evaluation of the directional derivatives. As linear solver we use
UMFPACK [7], which is motivated by the fact that the numerical example is 2D
and that preconditioners for the fully-coupled system are extremely difficult to be
developed and out of scope in this contribution.

4 A Prototype Numerical Example

The example is computed with the finite element package deal.II [1] by implement-
ing the method from [18] in the open source FSI code related to [19].

Configuration Details on the geometry can be found in Fig. 1. Here, the initial frac-
ture is initialized by the initial condition O'0 D 0 in .0:875; 0:9375/� .0:25; 0:625/.
Three mesh levels are obtained from uniform refinement resulting in 2048; 8192 and
32;768mesh cells. For the upper, lower, and left boundaries, the ‘no-slip’ conditions
for velocity and no zero displacement for the solid are given. At the fluid outlet O� out,
the ‘do-nothing’ outflow condition [11] is imposed. A parabolic inflow velocity
profile is given on O� in by

vf .0; y/ D NU.y � 1/.y � 0:5/; NU D 1:0ms�1:

For t < 2:0 s, vf .0; y/ is scaled with
1�cos. �2 t/

2
in order to have a smooth inflow

profile.

Parameters For the fluid we use %f D 1 kg m�3, �f D 10�2 m2 s�1 resulting in
stationary flow. The elastic solid is characterized by %s D 10 kg m�3, �s D 0:2,
�s D 1 kg m�1 s�2. The fracture pressure is pF D 10�2 Pa. The model parameter
" D 0:044 D hcoarse is fixed in all computations as well as � D 10�10. Furthermore,

 D 50 and Gc D 1N=m. The (absolute) Newton tolerance is chosen as 10�10.
Three augmented Lagrangian steps are performed per time step. The time step size
is k D 1 s and the total time T D 10 s.

Quantities of Interest We evaluate Oux.1; 0:75/, the normal stress in x-
direction (i.e., drag) along the FSI-interface, and a line integral, i.e., COD =R
f0�x�2IyD0:4375g Ou Or O' dOs. Here, COD is related to the crack opening displacement in

pure fracture problems. In addition, we check min. OJ/ > 0.
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Fig. 2 At left: velocity field including the fracture pattern (in blue) in the brown solid zone. On the
right, the penalty function � is shown. The penalty is specifically active at the fracture boundary
and the four corners (red). In the blue and white zones, we have � D 0

Table 1 Goal functional evaluations on three different meshes at T D 10 s

Cells DoFs hŒm� OuxŒ�10�2m� DragŒ�10�3N� CODŒ�10�4 m� min. OJ/
2048 41;829 0:044 1:851 2:995 03:339 0:787

8192 165;573 0:022 1:979 2:858 11:447 0:717

32; 768 658;821 0:011 2:077 2:771 15:293 0:621

Discussion of Our Findings Our results are provided in Fig. 2 and Table 1.
Therein, we observe computational convergence of the first three goal functionals.
Furthermore, min. OJ/	 0 showing that the ALE mapping is well-defined.

5 Conclusions

In this work, fluid-structure interaction has been coupled with a phase-field model
for pressurized-fractures. The proposed framework is formulated in a variational-
monolithic setting that ensures high accuracy of the coupling conditions. The
emphasis in this work was on the model statement and a prototype numerical
example. Therefore, the phase-field methodology has been rather used to represent
a stationary pressurized fracture but not yet a propagating crack. Current work is
based on adapting the different flow, solid, and fracture parameters to carry out
fully nonstationary fluid-structure interaction with given and propagating fractures.
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Weighted FEM for Two-Dimensional Elasticity
Problem with Corner Singularity

Viktor A. Rukavishnikov

Abstract In this paper we consider homogeneous Dirichlet problem for the Lamé
system with singularity caused by the reentrant corner to the boundary of the two-
dimensional domain. For this problem we define the solution as a R�-generalized

one; we state its existence and uniqueness in the weighted set VW1
2;�.˝; ı/. On the

basis of the R�-generalized solution we construct weighted finite element method.
We prove that the approximate solution converges to the exact one with the rate
O.h/ in the norm of W1

2;�.˝/, and results of numerical experiments are presented.

1 Introduction

The generalized solution of the boundary value problem for the Lamé system in a
two-dimensional domain with a boundary containing a reentrant corner 
 belongs
to the space W1C˛�"

2 .˝/, where 0:25 � ˛ � 0:63 for 3�
2
� 
 � 2� and " is

any positive number (see, e.g., [5]). Therefore, the approximate solution produced
by classical finite element or finite difference schemes converges to a generalized
solution no faster than at an O.h˛/ rate.

By using special methods for extracting the singular part of the solution near
corner points or applying grids refined toward the singularity point, it is possible to
construct first-order accurate finite-element schemes (see, e.g., [1, 4, 5, 19, 21]).

Below, to construct a finite element method (FEM) without loss of accuracy for
an elasticity problem in a domain with reentrant angles, the solution is determined
as an R�-generalized one (see, e.g., [7–11, 15]). For boundary value problems with
strongly singular solutions such that Dirichlet integral of the solution is divergent, it
was shown in [2, 12–14, 16–18] that the FEM solution converges with first order of
accuracy in space to the R�-generalized solution in the norms of weighted Sobolev
and Lebesgue spaces. Below, for the R�-generalized solution of the Lamé system,
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we proved an O.h/ convergence rate estimate independent of the reentrant angle
on the boundary of the domain. The theoretical estimate is illustrated by numerical
results obtained for a series of model problems.

2 Notation: Auxiliary Statements

Let R2 denote the two-dimensional Euclidean space with elements x D .x1; x2/,
kxk2 D x21 C x22. Let ˝ � R2 be a bounded non-convex polygonal domain with
the boundary � containing one reentrant corner such that its vertex is located in the
origin O.0; 0/, N̋ D ˝ [ � .

We denote by ˝ 0 D fx 2 ˝ W .x21 C x22/
1=2 � ı < 1g a part of the ı-

neighborhood of the point .0; 0/ laying in the ˝ . We introduce a weight function
�.x/ that coincides in N̋ 0 with the distance to the origin, i.e. �.x/ D .x21 C x22/

1=2 for
x 2 N̋ 0, and equals to ı for x 2 N̋ n N̋ 0.

We introduce the weighted space Wl
2;ˇ.˝/ with the squared norm

kuk2
Wl
2;ˇ.˝/

D
X
jij�l
k�ˇjDiujk2L2.˝/; (1)

where Di D @jij=@xi11 @x
i2
2 , jij D i1 C i2, ˇ is a nonnegative real number, l is a

nonnegative integer. For l D 0 we have W0
2;ˇ.˝/ D L2;ˇ.˝/.

By Wl
2;˛Cl�1.˝; ı/ for nonnegative real ˛, l D 1; 2, we denote the set of functions

satisfying following conditions:

(a) jDmu.x/j � C1 .ı=�.x//
˛Cm for x 2 N̋ 0, where m D 0; : : : ; l, C1 > 0 is a

constant independent of m,
(b) kukL2;˛.˝n˝0/ � C2 > 0, C2 D const; with the squared norm (1).

Let L2;˛.˝; ı/ be the set of functions satisfying conditions (a) and (b) with the
squared norm (1) for l D 0.

The set VWl
2;˛Cl�1.˝; ı/ � Wl

2;˛Cl�1.˝; ı/ (l D 1; 2) is defined as the closure
in norm (1) of the set C0.˝; ı/ of infinitely differentiable and finite in ˝ functions
satisfying conditions (a) and (b).

For the corresponding sets of vector-functions we use notation Wl
2;ˇ.˝/,

L2;ˇ.˝/, Wl
2;˛Cl�1.˝; ı/, L2;˛.˝; ı/, VWl

2;˛Cl�1.˝; ı/, and Wl
2.˝/ for non-

weighted Sobolev vector-function spaces, l D 1; 2.

Lemma 1 ([7])

[A] Let u 2 W1
2;˛.˝; ı/, then �

˛u 2 W1
2;0.˝; ı/ and

j�˛ujW1
2;0.˝/

� C3kukW1
2;˛.˝/

; where C3 D const >0 doesn’t depend on u;
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[B] Let �˛u 2 W1
2;0.˝; ı/, then u 2 W1

2;˛.˝; ı/ and

kukW1
2;˛.˝/

� C4k�˛ukW1
2;0.˝/

; where C4 D const >0 doesn’t depend on u;

Lemma 2 ([10]) If u belongs to W2
2;˛C1.˝; ı/, then there exists constant C5

independent of u such that

j�˛C1uj2
W2
2;0.˝/

� C5kuk2W2
2;˛C1

.˝/
: (2)

3 Problem Statement: R�-Generalized Solution

Let ˝ be a homogeneous isotropic domain. In ˝ we consider the boundary value
problem for the displacement field u D .u1; u2/ for the Lamé system with constant
coefficients � and �:

� .2 div.�".u//Cr.� div u// D f; x 2 ˝; (3)

u D 0; x 2 �; (4)

where ".u/ is the strain tensor with components "ij D 1
2

�
@ui
@xj
C @uj

@xi

	
.

Assume that the right-hand side of (3) satisfies the condition

f 2 L2;ˇ.˝; ı/; ˇ � 0: (5)

Definition 3 Vector-function u� D .u�;1; u�;2/ from the set VW1
2;�.˝; ı/ is called an

R�-generalized solution to the problem (3), (4), if for every v from VW1
2;�.˝; ı/ the

integral identity

a�.u�; v/ D l�.v/ (6)

holds for any fixed value of � � ˇ.
Here

a�.u�; v/D
Z
˝



2�".u�/ W".�2�v/C � div u� div.�2�v/

�
dx; l�.v/D

Z
˝

�2�f � vdx;

are bilinear and linear forms respectively.
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Theorem 4 ([15]) Let condition (5) be satisfied. Then for any � > ˇ there always
exists parameter ı such that R�-generalized solution u� to the problem (3), (4) exists

and is unique in the set VW1
2;�.˝; ı/. In this case

ku�kW1
2;� .˝/

� C6kfkL2;ˇ.˝/;

where C6 is a positive constant independent of f.

Theorem 5 ([15]) If for some ı there is a set of values � such that R�-generalized

solution to the problem (3), (4), and (5) exists in the set VW1
2;�.˝; ı/ then this solution

is unique for all such �.

It is known that generalized solution to the problem (3), (4) can be represented
as follows (see [20]):

u D
�
u1
u2

�
D

IX
iD1

Air
˛isCi .�/C ureg; sCi .�/ D

�
sC1 .�/
sC2 .�/

�
i

: (7)

Here sCi .�/ are the eigenfunctions of displacement, ˛i are the corresponding
eigenvalues, Ai are the stress intensity factors, ureg 2 W2

2.˝/. For the considered
problem minimal eigenvalue ˛1 ranges in Œ0:5; 0:62/ for the domain with reentrant
corner of magnitude from 3�=2 to 2� (see [6]). It is obvious, that seminorm
jujW2

2;�.˝/
is finite for all � > 1 � ˛1 and u 2W2

2;�.˝; ı/.

Let us consider integral equality (6). By Lemma 1 functions �2�v belong to the
set W1

2;0.˝; ı/. We substitute generalized solution of the problem (3), (4) into (6).
Derived equation is true for the definition of a weak solution. Hence, generalized
solution is an R�-generalized solution too.

By Theorem 4 R�-generalized solution exists and is unique for � > ˇ, by
Theorem 5 it is the same for all such �. Therefore R�-generalized solution coincides
with the generalized one and u� 2W2

2;�.˝; ı/ for � > maxf1 � ˛1; ˇg.

4 Weighted Finite Element Method

On basis of the R�-generalized solution for the posed problem we construct a
scheme of the weighted finite element method (see [14]). With this purpose, we
perform a quasi-uniform triangulation of the domain ˝ such that conventional
requirements are satisfied (see e.g. [17]). An approximate R�-generalized solution
to the problem (3), (4), and (5) has the form uh

� D .uh�;1; uh�;2/,

uh�;1 D
n�1X
iD0

d2i 
i.x/; uh�;2 D

n�1X
iD0

d2iC1 i.x/; dj D ����

.PŒj=2�/cj; j D 0; 2n� 1:
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Here  i.x/ D ��
�

.x/' i.x/ is a basis function associated with inner node Pi (i D
0; n� 1); ' i.x/ is linear on each finite element and ' i.Pj/ D ıij, i; j D 0; n � 1, ıij is
a Kronecker delta, �� is a real number, h is the maximum size of sides of triangular
elements K of the domain decomposition. The set Vh is defined as the linear span of
the system of basis functions f ign�1iD0 , Vh D ŒVh�2.

Definition 6 Vector-function uh
� 2 Vh is called an approximate R�-generalized

solution to the problem (3), (4), and (5) produced by the weighted finite element
method if for every vh 2 Vh the integral identity

a.uh
�; v

h/ D l.vh/

holds for any fixed value of � � ˇ.

We construct an interpolant uI
� D .uI�;1; uI�;2/

uI�;k D
n�1X
iD0

��.Pi/u�;k.Pi/ 
i.x/; k D 1; 2; � > 0; �� D ��:

Lemma 7 Let u� be an R�-generalized solution to the problem (3), (4), and (5) and
uh
� be an approximate R�-generalized solution by the weighted FEM. Then there

exist positive constants C7, C8 independent of the set Vh such that

ku� � uh
�kW1

2;� .˝/
� C7 inf

vh2Vh
ku� � vhkW1

2;� .˝/
� C8ku� � uI

�kW1
2;� .˝/

:

The proof of this lemma follows from the Céa’s lemma.

Theorem 8 Suppose that the R�-generalized solution to the problem (3), (4), and
(5) belongs to W2

2;�.˝; ı/. Then there exists a constant C9 independent of u� and h
such that the following estimation holds

ku� � uh
�kW1

2;� .˝/
� C9hku�kW2

2;� .˝/
(8)

for the constructed triangulation of the domain˝ .

Proof Let us estimate ku�;k�uI�;kkW1
2;� .˝/

for k D 1; 2. For brevity, we introduce the

notation u�;k D u, uI�;k D uI .
Functions u, uI belong to W1

2;�.˝; ı/. Then by Lemma 1 ��u, ��uI belong to
W1
2;0.˝; ı/ and

ku � uIkW1
2;� .˝/

� C4k��u� ��uIkW1
2;0.˝/

: (9)
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Consider the following norm for an arbitrary element K of the triangulation

k��u � ��uIkW1
2;0.K/

(10)

We notice that for single element ��uI D
3P

iD1
��.PK

i /u.P
K
i /'i.x/, where PK

i are the

vertices of the triangle K, i D 1; 2; 3 are those local numbers, 'i.PK
j / D ıij, j D

1; 2; 3. By theorem 2 from the [3] the following estimation holds

k��u � ��uIkW1
2;0.K/

� C10hj��ujW2
2;0.K/

; (11)

where constant C10 does not depend on h and u.
Summing (11) over all elements, using Lemma 2 and estimation (9), we obtain

ku � uIkW1
2;� .˝/

� C4k��u � ��uIkW1
2;0.˝/

�
� C4C10hj��ujW2

2;0.˝/
� C3C4C10hkukW2

2;� .˝/
: (12)

Taking into account that

ku� � uI
�k2W1

2;� .˝/
D ku�;1 � uI�;1k2W1

2;� .˝/
C ku�;2 � uI�;2k2W1

2;� .˝/
;

and using estimation (12) we obtain

ku� � uI
�kW1

2;� .˝/
� C11hku�kW2

2;� .˝/
;

where constant C11 is defined as maximum values of C3C4C10 for each component.
By the latter inequality and Lemma 7 we get (8) with constant C9 D C8C11.

5 Results of Numerical Experiments

In this section we present results of numerical solution of the non-homogeneous
Dirichlet problem for the Lamé system in the domain ˝ D .�1; 1/ � .�1; 1/ n
Œ0; 1� � Œ�1; 0� � R2.

As a solution to the model problem we choose vector-function u with com-
ponents containing both singular and regular components, regular part belongs to
W2

2.˝/:

u1 D cos.x1/ cos2.x2/.x21 C x22/
0:3051 C .x21 C x22/;

u2 D cos2.x1/ cos.x2/.x
2
1 C x22/

0:3051 C .x21 C x22/:
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Table 1 Dependence of relative errors of the generalized () and R� -generalized (� ) (ı D
0:0029, � D 1:2, �� D 0:16) solution of the problem on the mesh step

2N 128 256 512 1024 2048 4096

h 1.105e�2 5.524e�3 2.762e�3 1.381e�3 6.905e�4 3.453e�4

 2.849e�2 1:54 1.850e�2 1:53 1.205e�2 1:53 7.870e�3 1:53 5.146e�3 1:53 3.367e�3

� 2.868e�2 1:57 1.827e�2 1:65 1.107e�2 2:16 5.117e�3 2:21 2.319e�3 1:98 1.171e�3

Table 2 Number, percentage equivalence, and distribution of nodes where absolute error je1j
(generalized solution) is not less than given limit values

2N

je1j Limit je1j
Distribution| values % Number

4096 ��� 5e�6
��� 1e�6
��� 5e�7
��� 1e�7
��� 5e�8
��� 0

48.078
29.387
6.724
9.624
2.564
3.624

6045622
3695278
845466

1210158
322439
455758

Calculations were performed by the program “Proba-IV” for different values
of N (N is a half of number of partitioning segments along the greater side) with
regular triangular meshes (h D p2=N). Generalized solution was determined by
the integral equality (6) for � D 0.

In Table 1 we present values of relative errors of the generalized solution in the

norm of the space W1
2

�
 D kekW1

2kuk
W12

�
, and the R�-generalized one in the norm of

the weighted space W1
2;�

�
� D

ke�kW1
2;�

kuk
W12;�

�
with different values of h. Here e D

.e1; e2/ D .u1�uh1; u2�uh2/ and e� D .e�;1; e�;2/ D .u1�uh�;1; u2�uh�;2/. In addition
Table 1 contains ratios between error norms, obtained on meshes with step reducing
twice. Tables 2 and 3 contain for giving limit values: number of nodes where je1j,
je�;1j belong to the giving range; this number in percentage to the total number of
nodes; pictures of the absolute error distribution in the domain˝ .

Thus, we have found the following:

1. an approximate R�-generalized solution of the problem converges to the exact
one with the rate O.h/ in the norm of the space W1

2;�.˝/ in contrast with the
generalized one which converges with the rate O.h0:61/ for the classical FEM;

2. for the approximate R�-generalized solution obtained by the weighted finite
element method, an absolute error value is by one or two orders of magnitude
less than for the approximate generalized one obtained by the FEM.
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Table 3 Number, percentage equivalence, and distribution of nodes where absolute error je�;1j
(R�-generalized solution, ı D 0:0029, � D 1:2, �� D 0:16) is not less than given limit values

2N

je1j Limit je1j
Distribution| values % Number

4096 ��� 5e�6
��� 1e�6
��� 5e�7
��� 1e�7
��� 5e�8
��� 0

0.033
0.771
2.481

21.789
12.588
62.339

4108
96899

311996
2739862
1582876
7838980
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A Local Error Estimate for the Poisson Equation
with a Line Source Term

Tobias Köppl, Ettore Vidotto, and Barbara Wohlmuth

Abstract In this paper, we show a local a priori error estimate for the Poisson
equation in three space dimensions (3D), where the source term is a Dirac measure
concentrated on a line. This type of problem can be found in many application
areas. In medical engineering, e.g., blood flow in capillaries and tissue can be
modeled by coupling Poiseuille’s and Darcy’s law using a line source term. Due
to the singularity induced by the line source term, finite element solutions converge
suboptimal in classical norms. However, quite often the error at the singularity is
either dominated by model errors (e.g. in dimension reduced settings) or is not the
quantity of interest (e.g. in optimal control problems). Therefore we are interested
in local error estimates, i.e., we consider in space a L2-norm on a fixed subdomain
excluding a neighborhood of the line, where the Dirac measure is concentrated. It is
shown that linear finite elements converge optimal up to a log-factor in such a norm.
The theoretical considerations are confirmed by some numerical tests.

1 Introduction

Our model problem is defined on an open, convex and polyhedral domain˝ � R
3.

Within ˝ we consider a C 2-curve � , having the following properties:

� � ˝; j� j � C <1 and dist.�; @˝/ � c > 0; (1)
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where C; c > 0 are fixed constants and dist denotes the Euclidean distance. Using
these definitions, the model problem reads as:

( �	u D ı� in ˝;

u D 0 on @˝;
(2)

where ı� is the Dirac measure concentrated on the curve � . Considering a more
general Poisson problem with a source term that is given by a real and regular Borel
measure, one can show existence and uniqueness of a weak solution [3, Thm. 1].
Moreover it can be proved that it belongs to the space W1;p

0 .˝/ for p 2 Œ1; 3=2/ and
that linear finite element solutions have a reduced convergence order of 1=2 with
respect to the standard L2-norm.

For the case of a Dirac measure concentrated on a C 2-curve fulfilling the
conditions (1), the authors of [9] proved that the weak solution of (2) is in W1;p

0 .˝/

for p 2 Œ1; 2/ (see [9, Thm. 2.1, Case (ii)]) and that linear finite elements converge
with first order in the standard L2-norm.

In [5], the authors have performed some numerical tests to investigate the
convergence behavior of an elliptic 3D-1D coupled problem arising in the context
of blood flow simulations [4, 7]. Thereby, a 1D problem is defined on a straight line
in 3D and is embedded into the 3D problem by a Dirac source term concentrated
on this line. The L2-error of the 3D problem has not been computed on ˝ , but on a
subdomain ˝ n QZR, where QZR is a cylinder of radius R around this line. It has been
observed that the local L2-convergence behavior of linear finite elements is optimal
up to a log-factor.

Motivated by these numerical results, we prove a quasi-optimal convergence
behavior with respect to a local L2-norm. For this purpose, we define a domain
ZR covering a certain neighborhood of the curve � :

ZR WD fx 2 ˝ W dist.x; � / < Rg;

where 0 < R < dist.�; @˝/ is a fixed constant. The rest of this paper is organized
as follows: In Sect. 2, we formulate the main result, which is a quasi-optimal bound
of the L2-error on ˝ n ZR and give an outline of the proof. A key ingredient for
this proof is an auxiliary result, which is proved in Sect. 3. Finally in Sect. 4, we
illustrate our theoretical result by some numerical tests.

2 Main Result

The weak formulation of problem (2) reads as follows: Find u 2 W1;p
0 .˝/ for p 2

Œ1; 2/ such that

.ru;r'/ D
Z
�

' d� 8' 2 W1;q
0 .˝/; (3)
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where .�; �/ denotes the duality pairing of Lp.˝/ and Lq.˝/, and q > 2 satisfies
1=p C 1=q D 1. The right-hand side of the weak problem (3) is well-defined,
since for q > 3 the embedding W1;q.˝/ ,! C .˝/ is continuous (see, e.g., [1,
Thm. 4.12]).

In order to solve (3), we introduce a family of quasi-uniform simplicial triangu-
lations Th D f�g of ˝ , where h� is the diameter of the element � . Furthermore,
let h WD max�2Th h� be the meshsize. Our finite element space is then defined by
standard conforming linear finite elements:

Vh WD f'h 2 H1
0.˝/ W 'hj� 2 P1.�/; 8� 2 Thg; (4)

where P1.�/ denotes the space of linear polynomials on the element � . Due to Vh �
W1;q
0 .˝/ � W1;p

0 .˝/, the following discrete version of (3) is well-defined: Find
uh 2 Vh such that

.ruh;r'h/ D
Z
�

'h d� 8'h 2 Vh: (5)

In order to derive an upper bound for the finite element error, we use a standard
duality argument and define the corresponding dual problem as follows:

( �	w D e�˝nZR in ˝;

w D 0 on @˝;
(6)

where �˝nZR is the characteristic function of ˝ n ZR and e WD u � uh. Since ˝ is
convex and e�˝nZR 2 L2.˝/, it holds that w 2 H2.˝/\H1

0.˝/ (see [8, Chap. 8]).
From now on, we fix p D 7=5. The choice is somehow arbitrary, but guarantees

that H2.˝/ � W1;q.˝/ for q D 7=2. Moreover, we have w 2 W1; 72 .˝/. A weak
formulation of (6) is given by:

.rw;r'/ D .e�˝nZR ; '/; 8' 2 W1; 75 .˝/ (7)

and it is well defined. The corresponding finite element approximation wh 2 Vh

satisfies the following equality:

.rwh;r'h/ D .e�˝nZR ; 'h/; 8'h 2 Vh: (8)

For the proof of our main result, a pointwise error estimate for the finite element
error w � wh is required. Such an estimate is presented in the following lemma.

Lemma 1 Let w 2 H1
0.˝/\H2.˝/ be the solution of problem (6) and let wh 2 Vh

be its finite element approximation given by (8). Then for a x0 2 � , the following
pointwise error estimate holds

j.w � wh/.x0/j . h2j ln hjkwkH2.˝/: (9)
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We use the notation . for � C, with a generic constant C independent of h. The
proof of this lemma is presented in the next section. Comparing this result with the
standard L1-estimate [6, Thm. 22.7], we have on the right-hand side of (9) the norm
kwkH2.˝/ and not the stronger norm kwkW2;1.˝/. This is a consequence of the H2-
regularity of w and the fact that w is harmonic in ZR. By means of this lemma, one
can prove the following theorem, which is the main result of our paper.

Theorem 2 Let u 2 W1;p.˝/ for p 2 Œ1; 2/ be the weak solution of (2) and let
uh 2 Vh be its finite element approximation. Then it holds the following quasi-
optimal estimate for the local error:

ku � uhkL2.˝nZR/ . h2j ln hj: (10)

Proof Using the Galerkin orthogonality, properties (1) of � , Lemma 1 and H2-
regularity of w, we obtain:

kek2L2.˝nZR/ D .e�˝nZR ; u � uh/ D .rw;r.u � uh//

D .r.w � wh/;r.u � uh// D .ru;r.w� wh//

D
Z
�

.w� wh/d� �
Z
�

jw � whjd� � j� jmax
x2� j.w � wh/.x/j

. h2j ln hj kwkH2.˝/ . h2j ln hjkekL2.˝nZR/:

3 Proof of Lemma 1

Let x0 2 � be fixed. We denote a ball of radius r around x0 by Br and assume
h < r=4. Moreover, we demand BrC2h � B2r � ZR. In order to study the
finite element error of the dual problem within Br, a smooth cut-off function  is
introduced. Besides  2 C1.˝/, this function is supposed to satisfy:

8̂
<̂
ˆ̂:

.x/ D 1; if x 2 Br;

.x/ D 0; if x 2 ˝ n B2r;
0 �.x/ � 1; if x 2 B2r n Br:

By the help of this cut-off function, an auxiliary Dirac problem is introduced, where
the Dirac measure is concentrated at x0 2 � :

( �	z D ˛.ıx0 C f0/ in ˝;

z D 0 on @˝;
(11)
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with ˛ WD sgn


.w � wh/.x0/

�
. The function f0 is defined as follows:

f0.x/ WD
( � 2r � rGx0 �Gx0	 if x 2 B2r n Br

0 if x … B2r n Br

and Gx0 .x/ WD 1
4�

1
jx�x0j denotes Green’s function in 3D with respect to x0 for x ¤ x0.

This choice of f0 leads to the following solution of the Dirac problem (11):

z D ˛ �  � Gx0 :

A straightforward computation shows that z … H1.˝/, but z 2 W1;p
0 .˝/ for p 2

Œ1; 3=2/. The weak formulation of (11) reads now: Find z 2 W
1; 75
0 .˝/ such that:

.rz;r'/ D ˛
 Z

˝

f0'd˝ C '.x0/

!
; 8' 2 W

1; 72
0 .˝/: (12)

The discrete version of (12) is given by:

.rzh;r'h/ D ˛
 Z

˝

f0'h d˝ C 'h.x0/

!
; 8'h 2 Vh: (13)

Setting ' D w � wh, we obtain by (12):

.rz;r.w � wh// D .f0; ˛.w � wh//C j.w� wh/.x0/j:

This yields:

j.w � wh/.x0/j D .rz;r.w � wh//� .f0; ˛.w � wh//: (14)

Using the Hölder inequality, f0 2 L2.˝/, w 2 H2.˝/ and standard finite element
estimates, one obtains obviously:

Z
˝

˛.w � wh/f0 d˝ � kf0kL2.˝/ � kw � whkL2.˝/ . h2:

Inserting this bound in (14) and using the Galerkin orthogonality, it follows:

j.w � wh/.x0/j . h2 C .r.z � zh/;r.w � wh//:

It remains to estimate the second term on the right-hand side. For this purpose, we
consider an interpolation operator Sh W Wn;p.˝/ ! Vh of Scott-Zhang type [11],
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due to its stability properties. By Galerkin orthogonality, we have:

j.w � wh/.x0/j . h2 C .r.z � zh/;r.w � Shw//:

Splitting the domain˝ into Br and˝nBr and applying the Hölder inequality yields:

j.w� wh/.x0/j . h2 C kr.z � zh/kL2.˝nBr/kr.w � Shw/kL2.˝nBr/

C kr.z � zh/kL1.Br/kr.w � Shw/kL1.Br/:
(15)

Next, we have to bound the four error terms occuring on the right-hand side of (15).
The estimates for these error terms are provided in the following.

For the second term kr.w � Shw/kL2.˝nBr/, a standard estimate (see, e.g. [11,
Thm 4.1]) and the H2-regularity of w, yields:

kr.w � Shw/kL2.˝nBr/ . hkwkH2.˝/; (16)

Next we estimate the interpolation error kr.w � Shw/kL1.Br/ using some results
about the interior regularity of w.

Lemma 3 Let w be the solution of (7) and let us assume that BrC2h � B2r � ZR
and 4h < r holds. Then we have on Br:

kr.w � Shw/kL1.Br/ . hkwkH2.˝/: (17)

Proof Using the approximation properties of Sh and the Sobolev embedding
W4;2.BrC2h/ ,! W2;1.BrC2h/ [1, Thm. 4.12], one obtains:

kr.w � Shw/kL1.Br/ . hkwkW2;1.BrC2h/
. h kwkW4;2.BrC2h/

:

Interior regularity [8, Thm. 8.10], H2-regularity of w and the fact that w is harmonic
in ZR (and in particular in B2r), yield:

kwkW4;2.BrC2h/
. kwkW1;2.B2r/ . kwkH2.˝/;

which completes the proof.

Finally, we have to derive suitable bounds for the error terms involving the finite
element error z�zh. Since z is the weak solution of a homogeneous Poisson problem
whose source term consists of a L2-function and a pointwise Dirac measure, we can
use the results derived in [10].

Lemma 4 Let z 2 H2.˝ n Br/ \ W1;p
0 .˝/ for p 2 Œ1; 3=2/ be defined by (12) and

let zh 2 Vh be its finite element approximation defined by (13). Then the following
two bounds are valid:

kr.z � zh/kL2.˝nBr/ . hC kz � zhkL2.˝nBr�2h/: (18)
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and

kr.z � zh/kL1.Br/ . hj ln hj: (19)

Proof The proof of this lemma is a direct consequence of [10, Lemma 3.6] and [10,
Lemma 3.10].

Combining equation (16) and Lemmas 3 and 4, we find

j.w � wh/.x0/j . h2j ln hjkwkH2.˝/ C hkz� zhkL2.˝nBr�2h/kwkH2.˝/:

Using [10, Thm. 2.1] for the term kz � zhkL2.˝nBr�2h/ and the H2-regularity of w, it
finally follows

j.w � wh/.x0/j . h2j ln hjkwkH2.˝/: (20)

4 Numerical Experiments

In this section, we illustrate the theoretical estimate (10) by numerical examples.
For this purpose, we choose the unit cube as our computational domain, i.e., ˝ D
.0; 1/3. By the help of the curves:

�1 W Œ0; 1�! ˝; �1.s/ D .0:5; 0:5; s/;
�2 W Œ0; 1�! ˝; �2.s/ D 0:5 .1C 0:06 cos .2�s/ ; 1C 0:06 sin.2�s/; sC 0:5/ ;

we define two different Poisson problems, setting in (2) � to �1 or �2 .
In the first case, we modify the homogeneous boundary condition in (2), such

that the exact solution of the considered Poisson problem is given by:

u.x/ D � 1

2�
log jx � �1.x3/j:

In the second case, we keep the homogeneous boundary condition. However,
for this problem no analytical solution is available. Therefore, we precompute a
numerical reference solution on a fine mesh and determine the finite element errors
by comparing numerical solutions on coarser meshes to the reference solution. The
numerical results (see Fig. 1) are obtained by means of a linear finite element solver
implemented in DUNE [2].

According to Theorem 2, we report the local L2-error on ˝ n ZR for different
radii R 2 f0; 0:0625; 0:125; 0:25g. The approximation errors and convergence rates
for the different refinement levels ` are listed in Tables 1 and 2. It can be seen that
for R D 0 the finite element scheme converges only with first order, as predicted by
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Fig. 1 The figure shows the position of �2 within the unit cube (left) and a contour plot for uh D
0:1 together with three different slices at x3 D 0:2; 0:5; 0:8 (right)

Table 1 L2-error on ˝ n ZR for � D �1

` Dof R D 0 Rate R D 0:0625 Rate RD 0:125 Rate R D 0:25 Rate

2 125 1.0461e�2 / 1.0461e�2 / 1.0461e�2 / 4.3424e�3 /

3 729 5.4648e�3 0:94 5.4648e�3 0:94 2.5806e�3 2.02 1.4692e�3 1.56

4 4913 2.7741e�3 0:98 1.3369e�3 2:03 8.0692e�4 1.68 2.3815e�4 2.63
5 35;937 1.3968e�3 0:99 4.1809e�4 1:68 1.4183e�4 2.51 5.7466e�5 2.05
6 274;625 7.0077e�4 1:00 7.4890e�5 2:48 3.4535e�5 2.04 1.4533e�5 1.98
7 2;146;689 3.5097e�4 1:00 1.8260e�5 2:04 8.7158e�6 1.99 3.6356e�6 2.00

Table 2 Discrete L2-error on ˝ n ZR for � D �2

` Dof R D 0 Rate R D 0:0625 Rate R D 0:125 Rate R D 0:25 Rate

2 125 9.9816e�3 / 5.7708e�3 / 4.1503e�3 / 2.8019e�3 /

3 729 6.5546e�3 0:61 2.6437e�3 1:13 1.5200e�3 1:45 6.3984e�4 2:13
4 4913 4.6708e�3 0:49 1.1080e�3 1:25 3.9200e�4 1:96 1.5896e�4 2:01
5 35;937 1.8626e�3 1:33 2.8450e�4 1:96 1.0354e�4 1:92 3.9731e�5 2:00
6 274;625 7.7970e�4 1:26 5.6445e�5 2:33 2.1513e�5 2:27 8.2663e�6 2:26

[9, Lemma 3.3]. In the remaining cases second order convergence can be observed,
if h < R holds. This is in agreement with estimate (10) in Theorem 2.
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Multirate Undrained Splitting for Coupled
Flow and Geomechanics in Porous Media

Kundan Kumar, Tameem Almani, Gurpreet Singh, and Mary F. Wheeler

Abstract We consider a multirate iterative scheme for the quasi-static Biot
equations modelling the coupled flow and geomechanics in a porous medium.
The iterative scheme is based on undrained splitting where the flow and mechanics
equations are decoupled with the mechanics solve followed by the pressure solve.
The multirate scheme proposed here uses different time steps for the two equations,
that is, uses q flow steps for each coarse mechanics step and may be interpreted
as using a regularization parameter for the mechanics equation. We prove the
convergence of the scheme and the proof reveals the appropriate regularization
parameter and also the effect of the number of flow steps within coarse mechanics
step on the convergence rate.

1 Introduction

Coupling of geomechanics and flow in poroelastic media has many important
applications such as subsidence events, carbon sequestration, ground water remedi-
ation, hydrocarbon production, enhanced geothermal systems, solid waste disposal,
and biomedical modeling. Starting from the pioneering work of Terzaghi and
Biot [1], there has been active investigation into the coupled geomechanics and flow
problems [11]. The Biot model consists of a geomechanics equation coupled to a
flow model with the displacement, pressure and flow velocity as unknowns. There
is a huge literature on Biot equations and they have been analyzed by a number of
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authors who established existence, uniqueness, and regularity, see Showalter [13],
Phillips and Wheeler [8] and references therein.

In contrast to a fully implicit scheme for solving the coupled model of Biot
equations, iterative methods are often employed in practice [2–4]. The iterative
schemes allow the decoupling of the flow and mechanics equations and thus offer
several attractive features (such as use of existing flow and mechanics codes,
use of appropriate pre-conditioners and solvers for the two models, and ease
of implementation). The design of iterative schemes however is an important
consideration for an efficient, convergent, and robust algorithm. In addition, often
we can take a coarser time step for the mechanics equation than for the flow.

Here, we consider one of the iterative schemes often used in practice: undrained
splitting and propose a multirate iterative scheme. This scheme considers a finer
time step for the flow model and a coarser time step for mechanics (q flow steps
for each mechanics step) and then performs an iteration between the mechanics and
finer flow steps.The scheme is iterative in the sense that for each coarse mechanics
time step, we solve for q flow finer time steps followed by a mechanics step and
we further repeat the process. Details about convergence criteria can be found in
[7]. The converged solutions solve the coupled time-discrete system consisting of
q flow solves and one mechanics solve. The flow finer solve uses the mechanics
at the coarse step and hence, the coupled system is fully implicit. Since the cost
of mechanics is often much more than the flow, a less mechanics solves leads
to computational savings. Our work is motivated by the recent work of Mikelić
and Wheeler [6, 7] where they have considered different iterative schemes for flow
and mechanics couplings and established contractive results in suitable norms, (see
also [5] for studying the von Neumann stability of iterative algorithms, [12] for
multirate schemes for Darcy-Stokes, and [9, 10] for relationship of these iterative
methods to the linearization procedures).

2 Model Equations, Discretization and Splitting Algorithm

We assume a linear, elastic, homogeneous, and isotropic poro-elastic medium
˝ � R

d, dD 2 or 3, in which the reservoir is saturated with a slightly compressible
viscous fluid. The fluid is assumed to be slightly compressible and its density is a
linear function of pressure, with a constant viscosity �f > 0. The reference density
of the fluid �f > 0, the Lamé coefficients � > 0 and G > 0, the dimensionless Biot
coefficient ˛, and the pore volume '� are all positive. The absolute permeability
tensor, K, is assumed to be symmetric, bounded, uniformly positive definite in space
and constant in time. A quasi-static Biot model [1] will be employed in this work.
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The model reads: Find u and p satisfying the equations below for all time t 2�0;TŒ:

Flow Equation:

@
@t

�

1
M C cf'0

�
pC ˛r � u

	
� r �

�
1
�f
K

r p � �f ;rgr 

�	 D Qq in ˝

Mechanics Equations: � div � por.u; p/ D f in ˝;

� por.u; p/ D � .u/ � ˛ p I in ˝;

� .u/ D �.r � u/IC 2G".u/ in ˝

Boundary Cond.: u D 0 ; K.r p � �f ;rgr / � n D 0 on @˝

Initial Cond. (t=0):
�


1
M C cf'0

�
pC ˛r � u

	
.0/ D 
 1M C cf'0

�
p0 C ˛r � u0:

where: g is the gravitational constant,  is the distance in the direction of gravity
(assumed to be constant in time), �f ;r > 0 is a constant reference density (relative to
the reference pressure pr), '0 is the initial porosity, M is the Biot constant, Qq D q

�f ;r

where q is a mass source or sink term taking into account injection into or out of the
reservoir. We remark that the above system is linear and coupled through the Biot
coefficient terms (involving ˛).

2.1 Mixed Variational Formulation

We use a mixed finite element formulation for flow and a conformal Galerkin
formulation for mechanics for the spatial discretization and a backward-Euler for
the time discretization. Let Th denote a regular family of conforming triangular
elements of the domain of interest,˝. Using the lowest order Raviart-Thomas (RT)
spaces , we have the following discrete spaces (Vh for discrete displacements, Qh

for discrete pressures, and Zh for discrete velocities (fluxes)):

Vh D fvh 2 H1.˝/
d I 8T 2 Th; vhjT 2 P1

d; vhj@˝ D 0g;
Qh D fph 2 L2.˝/ I 8T 2 Th; phjT 2 P0g;
Zh D fqh 2 H.divI˝/d I 8T 2 Th; qhjT 2 P1

d; qh � n D 0 on @˝g:

We also assume that the finer time step is given by: 	t D tk � tk�1. If we denote
the total number of timesteps by N, then the total simulation time is given by T =	t
N, and ti D i	t, 0 6 i 6 N denote the discrete time points. The proof presented here
can be easily extended to other mixed method approaches (e.g., [14]) or Conformal
Galerkin discretizations. Notation: k denotes the coarser time step iteration index
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(for indexing mechanics coarse time steps), m is the finer (local) time step iteration
index (for indexing flow fine time steps),	t stands for the unit (finer) time step, and
q is the “fixed” number of local flow time steps per coarse mechanics time step.

3 Multirate Formulation: Undrained Split Iterative Method

The scheme starts by solving the mechanics problem followed by a sequence of flow
problems, and iterates between the two until convergence is achieved. The iteration
assumes a constant fluid mass during the deformation of the structure (and can be
interpreted as a regularization of mechanics equation). We start by presenting the
scheme.

3.1 Undrained Split Multirate Algorithm

1. For k = 0, q, 2q, 3q .. (Mechanics time step iteration level)
2. – For n = 1,2, : : : (coupling iteration index)

– First Step: Mechanics equations
Given pn;kCq

h 2 Qh solve for unC1;kCq
h 2 Vh satisfying:

�2Gr � .".unC1;kCq
h // � .�C L/r � .
r � unC1;kCq

h /I
� D

�˛r � 
pn;kCq
h I

� � Lr � .
r � un;kCq
h /I

�C f (1)

– Second Step: Flow equations

(a) Given unC1;kCq
h , for m = 1,2,..,q (flow time step iteration level)

� solve for pnC1;mCk
h 2 Qh and znC1;mCk

h 2 Zh satisfying:

ˇ
�pnC1;mCk

h � pnC1;m�1Ck
h

	t

	
C 1

�f
r � znC1;mCk

h D

�˛r �
�unC1;kCq

h � ukh
q	t

	
C Qqh (2)

znC1;mCk
h D �K
r pnC1;mCk

h � �f ;rgr 
�

(3)

In the above, we have used ˇ D 

1
M C cf'0

�
for the notational convenience. L

is a regularization parameter and the corresponding term vanishes in the case of
convergence.
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4 Analysis of the Multirate Undrained Scheme

The convergence proof is based on studying the difference of two successive
iterates and deriving the contraction of appropriate quantities in suitable norms.
Accordingly, we define:

ı�n;k D �nC1;k � �n;k; where � D p;u; or z:

It is interesting that the contracting quantity is a composite one consisting of both
pressure pnC1;kCm and volumetric strain termsr �unC1;kCq. For a particular coupling
iteration, n � 1, and between two coarse mechanics time steps tk and tkCq, we define
the quantity to be contracted on as:

mnC1;kCm D L


q
r � unC1;kCq C ˛



.pnC1;kCm � pnC1;kCm�1/; for 1 � m � q;

where 
 is an adjustable coefficient that will be selected carefully such that the
scheme achieves contraction onm. The presence of 
 does not alter the contractivity,
however, it simplifies the algebra and provides a systematic technique for obtaining
similar results for other problems.

4.1 Weak Formulation of Difference of Two Successive Iterates

Considering the difference between one local flow iteration and its corresponding
local flow iteration in the previous coupling iteration, and the difference between
two consecutive mechanics coupling iterations, the weak formulation of equations
corresponding to (1), (2), and (3) can be written as follows.

Mechanics Step: Given ıpn;kCq
h from the previous coupling iteration, find

ıunC1;kCq
h 2 Vh such that,

8vh 2 Vh ; 2G


".ıunC1;kCq

h /; ".vh/
�C .�C L/


r � ıunC1;kCq
h ;r � vh

� D
˛


ıpn;kCq

h ;r � vh
�C L


r � ıun;kCq
h ;r � vh

�
; (4)

Flow Step: Given ıunC1;kCq
h , for 1 � m � q, find ıpnC1;mCk

h 2 Qh, ıznC1;mCk
h 2 Zh

such that:

8�h 2 Qh ; ˇ
� ıpnC1;mCk

h � ıpnC1;m�1Ck
h

	t
; �h

	
C 1

�f


r � ıznC1;mCk
h ; �h

� D
� ˛

q	t

�
r � 
ıunC1;kCq

h � ıunC1;kh

�
; �h

	
(5)

8qh 2 Zh ;


K�1ıznC1;mCk

h ; qh
� D .ıpnC1;mCk

h ;r � qh/ (6)
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We note that ıunC1;kh in (5) is essentially zero, as the value of ukh is already
computed from the previous multirate iterative coupling iteration. Therefore, it can
be omitted.

Step 1: Mechanics Equation

First, we analyze the mechanics equation. Testing (4) with vh D ıunC1;kCq
h , we get:

2G
��".ıunC1;kCq

h /
��2 C .�C L/

��r � ıunC1;kCq
h

��2
D 
˛ıpn;kCq

h C Lr � ıun;kCq
h ;r � ıunC1;kCq

h

�

D
� qX

mD1

�
˛


ıpn;mCk

h � ıpn;m�1Ck
h

�C L

q
r � ıun;kCq

h

	
;r � ıunC1;kCq

h

	

� "

2

��r � ıunC1;kCq
��2 C 1

2"

2

qX
mD1

��ımn;kCm
��2

by noting that
qX

mD1

�
ıpn;mCk

h � ıpn;m�1Ck
h

	
D ıpn;kCq

h and using Young’s inequality.

For " D �C L, we obtain after some simplifications,

4G

�C L

��".ıunC1;kCq
h /

��2 C ��r � ıunC1;kCq
h

��2 � 
2

.�C L/2

qX
mD1

��ımn;kCm
��2 : (7)

Step 2: Flow Equation

Testing (5), with �h D ıpnC1;mCk
h � ıpnC1;m�1Ck

h , and multiplying by 	t, we get:
(recall ˇ D 1

M C cf'0)

ˇ
���ıpnC1;mCk

h � ıpnC1;m�1Ck
h

���2

C 	t

�f


r � ıznC1;mCk
h ; ıpnC1;mCk

h � ıpnC1;m�1Ck
h / D

� ˛
q

�
r � ıunC1;kCq

h ; ıpnC1;mCk
h � ıpnC1;m�1Ck

h

	
(8)

Now, consider (6) for two consecutive local flow finer time steps, t D tmCk, and
t D tm�1Ck, and test with qh D ıznC1;mCk

h and taking the difference between them,
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we get

�
K�1

�
ıznC1;mCk

h � ıznC1;m�1Ck
h

	
;ıznC1;mCk

h

	

D
�
ıpnC1;mCk

h � ıpnC1;m�1Ck
h ;r � ıznC1;mCk

h

	
: (9)

Substituting (9) into (8), we have

ˇ
���ıpnC1;mCk

h � ıpnC1;m�1Ck
h

���2 C 	t

�f

�
K�1

�
ıznC1;mCk

h � ıznC1;m�1Ck
h

	
; ıznC1;mCk

h

	
D

�˛
q

�
r � ıunC1;kCq

h ; ıpnC1;mCk
h � ıpnC1;m�1Ck

h

	
:

By Young’s inequality, with further simplifications,

ˇ
���ıpnC1;mCk

h � ıpnC1;m�1Ck
h

���2 C ˛

q

�
r � ıunC1;kCq

h ; ıpnC1;mCk
h � ıpnC1;m�1Ck

h

	

	t

2�f

����K�1=2ıznC1;mCk
h

���2 �
���K�1=2ıznC1;m�1Ck

h

���2

C
���K�1=2.ıznC1;mCk

h � ıznC1;m�1Ck
h

	���2	 D 0:
Summing for q local flow time steps and after some simplifications (telescopic
cancellations together with the fact that ıznC1;kh D 0), we get

ˇ

qX
mD1

����ıpnC1;mCk
h � ıpnC1;m�1Ck

h

���2 C ˛

q

�
r � ıunC1;kCq

h ; ıpnC1;mCk
h � ıpnC1;m�1Ck

h

	�

	t

2�f

���K�1=2ıznC1;kCq
h

���2 C 	t

2�f

qX
mD1

���K�1=2�ıznC1;mCk
h � ıznC1;m�1Ck

h

	���2 D 0:
(10)

Step 3: Combining Mechanics and Flow

Multiplying (10) by another free parameter c2 and adding (10), we obtain

4G

�C L

��".ıunC1;kCq
h /

��2 C
qX

mD1

�
c2ˇ

���ıpnC1;mCk
h � ıpnC1;m�1Ck

h

���2

C c2˛

q

�
r � ıunC1;kCq

h ; ıpnC1;mCk
h � ıpnC1;m�1Ck

h

	
C ��r � ıunC1;kCq

h

��2o
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C c2	t

2�f

���K�1=2ıznC1;kCq
h

���2 C c2	t

2�f

qX
mD1

���K�1=2�ıznC1;mCk
h � ıznC1;m�1Ck

h

	���2

� 
2

.�C L/2

qX
mD1

��ımn;kCm
��2 : (11)

Step 4: Identifying the Parameters

Note that we have three free parameters: c2; 
; and L. Below we provide the pro-
cedure for determining these parameters yielding a contraction. These parameters
should be chosen such that the terms on the left hand side of (11) remain positive,
and the scheme achieves contraction on m. Clearly,

��ımnC1;kCm
��2 D L2

q2
2
��r � ıunC1;kCq

��2 C ˛2


2

��.pnC1;kCm � pnC1;kCm�1/
��2

C 2˛L


2q



.pnC1;kCm � pnC1;kCm�1/;r � ıunC1;kCq

�
:

Matching coefficients by comparing with the terms in the curly brackets in (11)
provides us L2

q2
2
D 1, ˛

2


2
� c2ˇ, and 2˛L


2q
D c2˛

q . This gives, L D q
; L � ˛2

2ˇ
and

since the contraction factor is monotone with respect to L, its minimum is achieved
when we choose,

L D ˛2

2ˇ
implying 
 D ˛2

2qˇ
and c2 D 4q2ˇ

˛2
:

Using above in (11) we note that the contraction factor is L2

q2.�CL/2
and is smaller

when q is larger. Also, when q D 1, the above contraction rate reduces to that of the
single rate case [6] (when the time steps for the mechanics and flow are the same).

5 Main Result: Contraction

Our main result summarises the above contraction result.
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Theorem 1 With L D ˛2

2ˇ
and c2 D 4q2ˇ

˛2
, the undrained multirate iterative scheme

defined by (1), (2), and (3) is a contraction given by

c2	t

2�f

���K�1=2ıznC1;kCq
h

���2 C c2	t

2�f

qX
mD1

���K�1=2�ıznC1;mCk
h � ıznC1;m�1Ck

h

	���2

C
qX

mD1

��ımnC1;kCm
��2 C 4G

�C L

��".ıunC1;kCq
h /

��2 � L2

q2.�C L/2

qX
mD1

��ımn;kCm
��2 :

Remark 2 The above contraction result implies that the composite quantity
mnC1;kCm, symmetric strain ".unC1;kh /, and flux znC1;mCk

h converge at a geometric
rate. Relatively straightforward arguments that include induction in finer time steps,
standard mixed method for controlling pressure by flux, Korn’s inequality to control
the H1 norm by the L2 norm of the symmetric strain tensor, imply the convergence
of pnC1;kCm

h ;unC1;kh in L2 and H1 norms respectively. The limit equations consist of
a coupled system of q finer flow steps at tkCm;m D 0; : : : ; q and a mechanics step
at tkCq. The details are spared.
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7. A. Mikelić, B. Wang, M.F. Wheeler, Numerical convergence study of iterative coupling for
coupled flow and geomechanics. Comput. Geosci. 18, 325–341 (2014)

8. P.J. Phillips, M.F. Wheeler, A coupling of mixed and continuous Galerkin finite element
methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144
(2007)



440 K. Kumar et al.

9. I.S. Pop, F. Radu, P. Knabner, Mixed finite elements for the Richards’ equation: linearization
procedure. J. Comput. Appl. Math. 168(1–2), 365–373 (2004)

10. F.A. Radu, J.M. Nordbotten, I.S. Pop, K. Kumar, A robust linearization scheme for finite
volume based discretizations for simulation of two-phase flow in porous media. J. Comput.
Appl. Math. 289, 134–141 (2015)

11. A. Settari, F.M. Mourits, Coupling of geomechanics and reservoir simulation models. in
Computer Methods and Advances in Geomechanics, ed. by H.J. Siriwardane, M.M. Zema
(Balkema, Rotterdam, 1994), pp. 2151–2158

12. L. Shan, H. Zheng, W.J. Layton, A decoupling method with different subdomain time steps
for the nonstationary Stokes-Darcy model. Numer. Methods Part. Differ. Equ. 29(2), 549–583
(2013)

13. R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)
14. M.F. Wheeler, I. Yotov, A multipoint flux mixed finite element method. SIAM J. Numer. Anal.

44, 2082–2106 (2006)



Part VII
Computational Fluid Dynamics



CFD Simulation of Interaction between a Fluid
and a Vibrating Profile

Petr Furmánek and Karel Kozel

Abstract This work deals with numerical simulation of incompressible flow over
a profile vibrating with two degrees of freedom. The profile can oscillate around
prescribed elastic axis and vibrate in vertical direction and its motion is induced
by the flow. The finite volume method was chosen for the solution, namely the so
called Modified Causon’s Scheme, which is derived from TVD form of the classical
predictor-corrector MacCormack scheme and enhanced with the use of the Arbitrary
Lagrangian-Eulerian method in order to simulate unsteady flows. Various initial
settings are considered (different inlet velocities, initial deviation angles and shifts
in vertical direction). Stiffness is modelled both as linear and non-linear. Obtained
results are compared with NASTRAN analysis (Čečrdle and Maleček, Verification
FEM model of an aircraft construction with two and three degrees of freedom.
Technical report R-3418/02, Aeronautical Research and Test Establishment, Prague,
Letňany, 2002. In Czech). The resulting critical velocities for unstable oscillations
are in the same interval for all simulated cases.

1 Introduction

Aero-elastic effects like buffeting or flutter, which can occur in flows around
profiles and wings, have a significant influence on both flow-field and vibrating
solid body. However, possibility to simulate them numerically with the use of
commercial CFD codes is still very limited and such problems are often solved
by a problem-tailored in-house developed software solvers. The authors decided to
develop such a CFD in-house code, that could simulate incompressible inviscid low
Mach number flow over a profile with flow-induced vibrations by considering 2
degrees of freedom. Unlike in [7], where the problem is solved by the finite element
method using unstructured mesh, the authors have chosen the finite volume method
and structured computational mesh. The Modified Causon’s scheme [6], which is
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based on TVD version of the classical predictor-corrector MacCormack scheme
proposed by Causon [1], was chosen for the solution. The scheme is not TVD, but
retains almost the same level of accuracy and saves almost 30 % of computational
time and memory. In order to model unsteady effects, the scheme is rewritten in
the arbitrary Lagrangian–Eulerian (ALE [3]) form. For testing purposes, the flow
around the standard NACA 0012 profile was considered. The elastically supported
profile could rotate around the elastic axis and oscillate in the vertical direction.
Its motion is induced by the flowing air and described by system of two 2nd order
ordinary differential equations. More inlet velocities, initial deviation angles and
shifts in the vertical direction are considered. Stiffness is modelled both as linear
and non-linear, but for the chosen flow regimes the difference is negligible. Obtained
results are compared with NASTRAN analysis [2] and the critical velocities for
unstable oscillations are in the same interval for all simulated cases.

2 Mathematical Description of the Problem

This section presents mathematical description of the used models as they were
implemented in the solver.

2.1 Governing System of Equations

The investigated problem is considered as two-dimensional, incompressible, invis-
cid and unsteady and is solved on time interval Œ0;T� in time-dependent computa-
tional domain ˝t. It is therefore described by the system of incompressible Euler
equations, which can be written in the following vector form

.DW/t C Fx CGy D 0; (1)

where

D D
0
@0 0 00 1 0

0 0 1

1
A ; W D

0
@pu
v

1
A ;F D

0
@ u
u2 C p
uv

1
A ;G D

0
@ v

uv
v2 C p

1
A : (2)

W is vector of conservative variables, F and G are convective fluxes, .u; v/ are
components of the velocity vector in the directions of the Cartesian coordinates and
p is kinematic pressure (p D p

�
). In order to get better convergence, the system (1) is

further rewritten with the use of the artificial compressibility method. Its principle
consists of modifying the governing equations by introducing time derivative of
pressure into the continuity equation. Hence the first component of the matrix D is
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changed as D11 D 1
ˇ2

(modified matrix is then renamed as Dˇ), where ˇ 2 R
C is

an artificial compressibility coefficient. In case of unsteady flows ˇ should ideally
approach infinity (ˇ �! 1). For numerical simulations value of ˇ D 10 was
chosen as a reasonable compromise between precision and convergence speed.
The resulting system of governing equations with consideration of the artificial
compressibility method is then [4]

Wt C .D�1ˇ F/x C .D�1ˇ G/y D 0: (3)

2.2 Description of the Profile Motion

Profile is considered with two degrees of freedom i.e. it can oscillate around elastic
axis and vibrate in direction of the vertical axis. Such motion is generally described
by the following system of two 2nd order ordinary differential equations

mRhC S' R' C khhhC dhh Ph D �L.t/;
S' RhC I' R' C k''' C d'' P' D M.t/: (4)

Here time dependent torsional moment M and lift force L are defined as
M.t/ D d

H
� .t/ p r � n?dland L.t/ D d

H
� .t/ p n2 dl respectively, where � is profile

boundary, d is profile depth, r D .x � xEA; y � yEA/ is position vector of a point on
profile surface with respect to the elastic axis .xEA; yEA/, n D .n1; n2/ is unit inner
normal to the profile surface, m is profile mass, S' is profile static moment around
the elastic axis EA, I' is profile inertia moment around the elastic axis EA, khh and
k'' are bending and torsional stiffness of supporting springs, respectively, and dhh
and d'' are coefficients of proportional damping (Fig. 1).

Fig. 1 Profile with 2 degrees
of freedom
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3 Numerical Solution

Numerical methods for solution of coupled system formed by (3) and (4) are
discussed in this section.

3.1 Modified Causon’s Scheme for FVM

Modified Causon’s scheme (MCS) is based on the classical explicit MacCormack
predictor-corrector scheme in TVD form, which is able to deliver very good results.
However, it also entails disadvantageous demands for computational memory and
power. A simplification (based on modification already introduced by Causon
[1]) was therefore proposed by the authors [5]. It saves approximately 30 % of
computational time but keeps the same level of precision as the original TVD
scheme. Due to the use of the ALE method for unsteady flow modelling additional
terms appear in both predictor and corrector steps and for their evaluation three
mesh configurations have to be used during one time step.

3.2 Profile Motion Solution

In order to solve (4) numerically, it is favourable to rewrite it as a system of four 1st
order ordinary differential equations. Then, the system is solved by the standard 4th
order Runge–Kutta method for ODE’s.

3.3 Mesh Modification for the ALE Computation

The actual position of mesh vertices during the unsteady computation with the use
of the ALE method is given by the following prescription

x.t/ D Q
�
�.t; jjx.0/� xref jj/


.x.0/� xref /C xref C h; (5)

where

Q.�/ D
�

cos� � sin �
sin� cos�

�
; h D .0; h.t// (6)
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and

�.t; r/ D
8<
:
'.t/ for r < r1;
'.t/fD.r/ for r1 � r < r2;
0 for r2 < r:

(7)

where

fD.r/ D
"
2

�
r � r1
r2 � r1

�3
� 3

�
r � r1
r2 � r1

�2
C 1

#
: (8)

It means that the circle centered at xref and having radius r1 is rotating and
shifting in vertical direction (according to the values of pitching angle ' and shift h
obtained as solution of (4)) as a solid body. The outer area of the second circle with
the radius r2 > r1 is motionless and in the annulus between these two circles the
mesh motion is damped by damping function fD.� /

3.4 Boundary Conditions

Boundary conditions were set in a standard way for inviscid incompressible flow and
realized with the use of ghost cells located outside of the computational field.

– At the inlet velocity vector was prescribed, so uin D .u1; v1/T and pressure p
was extrapolated from the flow field.

– At the outlet velocity vector uout was extrapolated from the flow field and outlet
pressure pout was prescribed.

– On the slip wall, the reflection principle was used for velocity vector, i.e.

.uswij ; v
sw
ij /

T D .uij; vij/T � 2
h
.uij; vij/

T � nsw
i
nsw C

C 2
h
.uw; vw/

T � nsw
i
nsw; (9)

where nsw is normal vector to the given slip wall and indices ij and w signify
velocity in cell i; j in vicinity of the slip wall and wall velocity during the unsteady
motion. For pressure boundary condition the Curvature Corrected Symmetry
Technique (CCST) was chosen. Its basic idea is to use the local momentum
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equation for pressure evaluation:

psw
ij D pij �4nswk.uw; vw/

Tk2
R

; (10)

where 4nsw is distance between the centres of gravity of the ghost cell Csw
ij and

computational cell Cij and R is the radius of the local curvature.

4 Numerical Results

Numerical simulations were carried out for NACA 0012 profile with chord c D
0:3 [m], depth d D 0:05 [m] and mass m D 0:086622 [kg]. Inlet velocity was
considered in range U1 D 5, 10, 15, 20, 25, 30, 35, 40, 45 [m.s�1] while
standard atmospheric characteristics were prescribed for pressure and density p D
101325 [Pa], � D 1:225 [kg.m�3]. Two sets of initial deviation angles and shifts in
vertical axis were considered

1. '1 D 3ı; h1 D �0:01 [m],
2. '2 D 6ı; h2 D �0:05 [m].

Aeroelastic properties of the coupled systems were: moment of inertia I' D
0:000487291 [kg.m2], static moment S' D �0:000779673 [kg.m], torsional stiff-
ness k'' D 3:695582 [N.m.rad�1], torsional damping d'' D 10�3� k'' [N.m.rad�1],
bending stiffness khh D 105:109 [N.m�1] and bending damping dhh D 10�3 � d''
[N.m�1].

Obtained behaviour of the pitching angle ' (vertical axis of left figures)
and vertical shift h (vertical axis of right figures) are plotted on Figs. 2 and 3.
Behaviour of the system shows same tendency for both sets of initial conditions.
For smaller inlet velocities, the unsteady motion is damped and damping influence
of aerodynamic forces increases with increasing inlet velocity so both pitching angle
and vertical shift displacements converge to zero.

This is an expected result as the NACA 0012 profile is symmetrical and the inlet
velocities are in the sub-critical range. Limiting velocity for stable behaviour is
35 m.s�1. Above this limit (i.e. for velocities about 40 m.s�1) divergence appears
and both ' and h increase to relatively large values (' > 11ı and h > 0:2m).
In reference [2] a flutter analysis is performed in NASTRAN with the aid of the
strip model for the same flow regimes as are investigated in this work. The critical
velocity for divergence is 37.7 m.s�1. Results shown in Figs. 2 and 3 are in good
agreement with the NASTRAN simulation.
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Fig. 2 Initial values: '1 D 3ı; h1 D �0:01 [m], behaviour of pitch angle ' and y-shift h for inlet
velocities U

1
2 Œ10; 40; 45�m.s�1, first 0.6 s (0.3 s resp.) of flow
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Fig. 3 Initial values: '2 D 6ı; h2 D �0:05 [m], behaviour of pitch angle ' and y-shift h for inlet
velocities U

1
2 Œ10; 40; 45�m.s�1, first 0.6 s (0.3 s resp.) of flow
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5 Conclusion

The paper presents a fast and reliable method for numerical simulation of fluid-
structure interaction problems with two degrees of freedom when considering
inviscid incompressible flow. The used numerical scheme is based on TVD approach
and can be easily extended for compressible problems as well. In the future work,
the authors aim for an implementation of implicit version of the scheme and its
extension for viscous problems.
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Chebyshev Spectral Collocation Method
for Natural Convection Flow of a Micropolar
Nanofluid in the Presence of a Magnetic Field

Önder Türk

Abstract The two-dimensional, laminar, unsteady natural convection flow of a
micropolar nanofluid (Al2O3-water) in a square enclosure under the influence of
a magnetic field, is solved numerically using the Chebyshev spectral collocation
method (CSCM). The nanofluid is considered as Newtonian and incompressible,
and the nanoparticles and water are assumed to be in thermal equilibrium. The
governing equations in nondimensional form are given in terms of stream function,
vorticity, micrototaion and temperature. The coupled and nonlinear equations are
solved iteratively in the time direction, and an implicit backward difference scheme
is employed for the time integration. The boundary conditions of vorticity are
computed within this iterative process using a CSCM discretization of the stream
function equation. The main advantages of CSCM, such as the high accuracy and
the ease of implementation, are made used of to obtain solutions for very high values
of Ra and Ha, up to 107 and 1000, respectively.

1 Introduction

The micropolar fluid model introduced by Eringen [4] has been a standard phenom-
ena in continuum mechanics, and has led to a reexamination of many classical fluid
flow problems. This model introduces a kinematic variable referred as microrotaion
to describe the microstructure of the fluid together with the inertial characteristics
of the rotating particles. The subject is a very active field of research, and there are
many studies which examine the microstructral effects of nanofluids numerically
(see e.g. [6–8, 13]).

A considerable effort has been directed to analyze the flow behavior and heat
transfer processes in enclosures filled with electrically conducting fluids in the
presence of an external magnetic field. One of the prime interests is to study
the effects of the interacting buoyancy force and Lorentz force on the flow and
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heat transfer. In particular, in a recent work [1], the micropolar flow theory
is incorporated to the natural convection of an electrically conducted nanofluid
in a square cavity subjected to a magnetic field. The work is an extension of
the micropolar model for nanofluids integrating experimental models into the
micropolar theory proposed by the same authors in [2]. In both works, the models
are employed to investigate the natural convection of nanofluids numerically by
using a meshfree point collocation method with a velocity correction scheme, and
very good agreements with experimental findings are reported.

In this paper, the Chebyshev spectral collocation method (CSCM) is applied to
obtain numerical solutions to natural convection flow of a micropolar nanofluid.
The flow takes place in a square enclosure, and is subjected to an externally applied
magnetic field. The unknown vorticity boundary values on the walls of the enclosure
are approximated by means of a technique based on CSCM. Apart from its novelty,
the presented approach turns out to meet several important requirements, such as
capturing thin boundary layers for very high characteristic flow parameters. To
the best of the author’s knowledge, this study is the first application of a spectral
collocation method for solving MHD natural convection flow of a micropolar
nanofluid, and the first results achieving very high set of values of Rayleigh and
Hartmann numbers are reported.

2 Governing Equations

The micropolar theory is incorporated to investigate the two-dimensional, transient,
laminar and incompressible natural convection flow an electrically conductive
nanofluid, aluminum oxide (Al2O3)-water. The flow takes place in a square cavity
which is subjected to a horizontally applied uniform magnetic field. Based on the
assumptions given in [1, 11], the governing equations in terms of stream function
 , vorticity w, microrotation N, and temperature T are given nondimensionally as

r2 D �w;
@w

@t
D .�nf

�f
C K/

�f

�nf
r2w � K

�f

�nf
r2N � @w

@x

@ 

@y
C @w

@y

@ 

@x

CRa

Pr

�f

�nf

.�ˇ/nf

.�ˇ/f

@T

@x
C Ha2

�nf

�f

�f

�nf

@2 

@x2
;

@N

@t
D .�nf

�f
C K

2
/
�f

�nf
r2N � 2K �f

�nf
N

(1)

�@N
@x

@ 

@y
C @N

@y

@ 

@x
C K

�f

�nf
w;

@T

@t
D knf

kf

.�Cp/f

.�Cp/nf

1

Pr
r2T � @T

@x

@ 

@y
C @T

@y

@ 

@x
:
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Fig. 1 The problem
geometry and the boundary
conditions
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These equations are supplemented by homogeneous initial conditions and by the
boundary conditions illustrated in Fig. 1. The velocity components u and v are
related to the stream function and vorticity as @ =@y D u, @ =@x D �v, and
w D @v=@x � @u=@y. The subscripts ‘nf ’ and ‘f ’ in (2), refer to the nanofluid
and base fluid, respectively. K is the material parameter, and Ra, Pr and Ha are
the dimensionless Rayleigh, Prandtl and Hartmann numbers, respectively, which
are defined as in [1, 11]. The thermo-physical properties of the nanofluid for the
present model are determined as in [1, 2]. The electrical conductivity of alumina
nanofluid at different volumetric concentrations of alumina nanoparticles is adopted
with appropriate units from [12] as �nf D 0:2983� C 0:0058, and the electrical
conductivity of the base fluid is taken accordingly as �f D 0:0058.

3 Numerical Implementation

The spatial discretization of the equations in (2) is based on requiring the numerical
approximation of each unknown to be exactly satisfied on the extreme points of
the Chebyshev polynomials. Therefore, the technique is referred as Chebyshev
spectral collocation method (CSCM). Each function spans the whole domain
under consideration, and thus, the derivatives of the function depend on the entire
discretization. A function ˚.x/ defined on a certain interval is interpolated by the
polynomial˚L.x/ of degree at most L of the form ˚L.x/ DPL

jD0 Cj.x/˚.xj/ where
Cj.x/ is a Cardinal function. The polynomials are differentiated analytically, and a
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differentiation matrix is constructed for derivative approximation. The higher order
derivatives are obtained by multiplying these differentiation matrices, resulting in a
high order accurate procedure which is computationally cheap (details can be found
in [3, 5, 9, 10]).

The implementation of the unconditionally stable backward difference scheme
@u=@t

ˇ̌mC1 D .umC1 � um/=	t, m and 	t being the time level and the time step,
respectively, due to the presence of the temporal derivatives in (2), results in the
following CSCM and time discretized matrix-vector equations:

A mC1
L D �wm

L ;

�
IL C	t

�
BmC1 � .�nf

�f
C K/

�f

�nf
A

��
wmC1
L D

wm
L �	tK

�f

�nf
A Nm

L C	t
Ra

Pr

�f

�nf

.�ˇ/nf

.�ˇ/f
Fm
T C	tHa2

�nf

�f

�f

�nf
FmC1
 ;

�
IL C	t

�
BmC1 � .�nf

�f
C K

2
/
�f

�nf
AC 2K �f

�nf

��
NmC1
L D

Nm
L C	tK

�f

�nf
wmC1
L ;

�
IL C	t

�
BmC1 � knf

kf

.�Cp/f

.�Cp/nf

1

Pr
A

��
TmC1
L D Tm

L :

(2)

Here, .LC 1/2 � .LC 1/2 matrices A and Bm are defined as

A D IL ˝ D.2/L C E.2/L ˝ IL;

Bm D
�
E.1/L ˝ IL

	
 m
L

�
IL ˝ D.1/L

	
�
�
IL ˝ D.1/L

	
 m
L

�
E.1/L ˝ IL

	
;

where D.i/L and E.i/L , i D 1; 2, are the i-th order Chebyshev differentiation matrices in
x and y directions, respectively (see [3, 9] for the details). The .LC 1/2 � 1 vectors
FT and F are given as

Fm
T D

�
IL ˝ D.1/L

	
Tm
L ; FmC1

 D
�
IL ˝D.2/L

	
 mC1
L ;



CSCM for Natural Convection Flow of a Micropolar Nanofluid 457

where IL is the .LC1/2�.LC1/2 identity matrix. In the above equations,˝ denotes
the Kronecker product. The discretized system (2) is solved iteratively. First, the
stream function equation is solved by using the initial values of the vorticity. Next,
the velocity components are updated by the relation

umC1L D
�
IL ˝ D.1/L

	
 mC1
L ; vmC1L D �

�
E.1/L ˝ IL

	
 mC1
L ;

and, the vorticity boundary values are calculated as

�
wmC1
L

ˇ̌
l
D
h�

IL ˝ D.1/L

	
vmC1L

iˇ̌ˇ
l
�
h�

E.1/L ˝ IL
	
umC1L

iˇ̌ˇ
l
;

where l denotes the l-th boundary node. The next step is to obtain the vorticity values
on the whole computational domain using the initial values of microrotation and
temperature. Finally, the microrotation and temperature equations are solved using
the updated stream function and vorticity values. This iterative procedure continues
until a preassigned convergence tolerance between two successive iterations is
reached for all the unknowns on the whole problem region.

4 Results and Discussions

System (2) is solved by the iterative procedure described in the previous section,
setting the convergence tolerance (to steady-state) to be 10�5 for all the unknowns.
The time step is taken as 	t D 0:001, and the results are obtained for the values of
Prandtl number, material parameter, and relative nanoparticle volumetric fraction,
6:2, 2, and 0:03, respectively. The solutions are obtained by using L D 50 for the
highest pair of the parameters, namely, Ra D 107 and Ha D 1000, and presented
in terms of the contours of the unknowns. The approximations obtained by the
application of CSCM are in very good agreement with those obtained using a finite
element method scheme in [11]. In particular, Fig. 2 exhibits the good agreement
between the CSCM solutions and FEM results for fixed values of Ra D 105,
Ha D 100. The same behaviors are observed for all the unknowns, although the
contours are drawn on different grids based on the discretization of each method,
which is a possible explanation of the slight discrepancies between magnitudes of
the contours.

Figures 3, 4, and 5 present the solution contours at a set of Hartmann numbers
(0, 100 and 200), for Ra D 104, 105, and 106, respectively. Significant variations
are observed in the profiles of all the unknowns after the onset of the magnetic field.
The suppressing effect of the magnetic force is especially seen on the streamlines
and microrotation contours as they tend to have central vortices vertically. These
vortices increase in length as Hartmann number increases from 100 to 200. As
Ha increases, lower values of stream function and vorticity values in magnitude
are observed, indicating a weaker rotation in the central region of the cavity. The
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Fig. 2 Comparison of the results obtained by the present scheme with those obtained using FEM
where Ra D 105, Ha D 100
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Fig. 3 The effect of Hartmann number when Ra D 104
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Fig. 4 The effect of Hartmann number when Ra D 106
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Fig. 5 The effect of Hartmann number when Ra D 107
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Fig. 6 The effect of Hartmann number when Ra D 107

buoyancy force lifts the warm fluid particles along the hot wall, and as a result,
the isotherms get closer to each other near the hot wall putting forward a higher
surface heat flux. For a high value of Rayleigh number, the Lorentz force is evidently
suppressed by the buoyant forces, and the effect of the Hartmann number on the flow
decreases. The increase in Ha results in boundary layers formation in vorticity, and
the central region tends to almost stagnant. For a fixed value of Ra D 107, the effects
of increasing Ha on the flow and heat transfer can be seen by comparing Fig. 5
(for HaD 0, 100, 200), and Fig. 6 (for HaD 300, 500, 1000). There are formations
of condensed boundary layers in the contours of stream function, vorticity and
microrotation close to horizontal walls which are parallel to the applied magnetic
field. Because of the strong convection, the isotherms are shifted vertically through
the adiabatic walls.

5 Conclusion

The simplicity and efficiency of CSCM has been made use of for solving the natural
convection flow in enclosures filled with a nanofluid under the effect of a magnetic
field. The flow behavior and temperature distribution in the cavity are in excellent
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agreement with the FEM results. The method presented is shown to be capable of
capturing the thin boundary layers, convection or conduction dominance behaviors
of the flow and temperature for high Ra and Ha values. The results indicate that
the circulation pattern with a buoyancy driven flow is strongly affected with the
variation in Ra and Ha values. Flattening tendency of the flow due to the strong
effect of magnetic field is well observed, in consistence with the previously reported
results.
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Drag Reduction via Phase Randomization
in Turbulent Pipe Flow

Ozan Tugluk and Hakan I. Tarman

Abstract In this study, possibility of reducing drag in turbulent pipe flow via phase
randomization is investigated. Phase randomization is a passive drag reduction
mechanism, the main idea behind which is, reduction in drag can be obtained via
distrupting the wave-like structures present in the flow. To facilitate the investigation
flow in a circular cylindrical pipe is simulated numerically. DNS (direct numerical
simulation) approach is used with a solenoidal spectral formulation, hence the
continuity equation is automatically satisfied (Tugluk and Tarman, Acta Mech
223(5):921–935, 2012). Simulations are performed for flow driven by a constant
mass flux, at a bulk Reynolds number (Re) of 4900. Legendre polynomials are used
in constructing the solenoidal basis functions employed in the numerical method.

1 Introduction

There are several drag reduction strategies for wall bounded flows, for example,
spanwise wall oscillations [2, 4, 6, 12, 15, 16], particle addition [3], and phase
randomization [5, 17]. Drag reduction methods can be classified as active or passive,
based on whether force is done on the fluid. Phase randomization is a passive drag
reduction mechanism. The main idea behind phase randomization is, reduction in
drag can be obtained via disrupting the wave-like structures in the flow. This is
thought to impede the energy transfer between the wave-like structures and the roll-
like structures in the flow field [5]. Application of periodic phase randomization
to some of the wave modes is a method proposed to impede this energy transfer,
which was first undertaken for the case of channel flow by Sirovich and Handler
[5] in a numerical manner and later backed by an experimental study [17]. Both the
mentioned works report a drag reduction of up to around 50 %, depending on the
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mode selection and the disruption frequency. It was also shown that randomizing
the phases of high wave number modes or rolls results in a drag increase. This work
is built upon our previous work, [18] where the numerical method was developed
and tested, and [19] where effects of spanwise wall oscillations on skin friction were
investigated. Using the same numerical framework, this study concentrates on the
drag reducing effects of phase randomization.

2 Numerical Method

The unsteady incompressible Navier-Stokes equations are non-dimensionalized
first. The non-dimensionalization uses the bulk velocity uB, and the pipe radius R,
resulting in Reynolds number Re D 2uBR

�
, where � is the kinematic viscosity. The

N-S equations and the boundary conditions are then,

@tuC .u � r/u DG.t/ ez � rpC 1

Re
	u (1)

r � u D 0
u.1; �; z; t/ D 0; u.r; �; z; 0/ D u0:

Where G.t/ is the time dependent pressure gradient along the pipe required to obtain
constant mass flux. Equation set (1) is solved using solenoidal basis functions for
the space discretization [10, 13], and an IMEX (semi-implicit) [1] scheme for time
discretization [18, 19]. A similar approach utilizing the solenoidal basis functions
for the study of turbulence transition and transient growth of perturbations for pipe
flow are detailed in [8, 9] where Chebyshev polynomials are used. In the presented
study, Legendre polynomials are used in constructing the solenoidal basis functions,
resulting in simpler formulation, as the associated weight is unity. Discretization in
space is handled by equidistant grids in the axial and azimuthal (periodic) directions.
Along the radial direction a Gauss-Legendre grid is used. Time is discretized in an
equispaced fashion using a time step of 5 � 10�3 non-dimensional time units. The
computations along the periodic directions are de-aliased using the 3=2 rule. The
resolution is 53�126�227, along radial, azimutal, axial directions respectively. The
pipe length Q is taken to be 10 R. The statistics are computed using 300 flowfields
equispaced in time with a spacing of 2.5 non-dimensional (bulk) time units, after
discarding the initial transients.

2.1 Basis Functions and Projection

There are two sets of conditions to be satisfied by the physical � and the dual
˚ basis function families. The first one is the solenoidal condition, i.e. the basis
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functions should be divergence free,

r � � D 0; r � ˚ D 0: (2)

It is worthwhile to note that the above formulation for the dual bases is only valid
if the dual bases are constructed using Legendre polynomials, which are orthogonal
with respect to weight unity. If for example Chebyshev polynomials are used, as
in [9], the condition becomes r � .! ˚/ D 0, where ! D 1=.

p
1 � r2/, which

further complicates the construction of the solenoidal bases. In addition to the above
condition, the physical basis functions are required to satisfy the no-slip boundary
conditions. On the other hand, the dual bases are only required the satisfy the
condition of the vanishing flux through the walls in order to enable the elimination
of the pressure termrp from the equation set (1), which is detailed in [11]. Together
these additional conditions become,

�.1; �; z/ D 0 (3)

˚.1; �; z/ � er D 0:

In pipe flow, the azimuthal direction is naturally periodic, the flow in the axial
direction is taken to be periodic, as is common practice in literature to mimic an
infinite pipe. This leads to the use of Fourier representation along the corresponding
�; z coordinates and the basis functions take the following form,

�lnm.r; �; z/ D ei.n�C2� lz=Q/ Vlnm.r/

˚lnm.r; �; z/ D ei.n�C2� lz=Q/ NVlnm.r/:

The superscripts on the basis functions signify the sufficiency of the two degrees of
freedom in representing the three components of a solenoidal velocity field as the
continuity equation provides the connection between the components. In the Fourier
representation, the three components .Vr;V� ;Vz/ of V and NV are required to satisfy
the reduced form of the continuity equation,

DCVr C in

r
V� C ilVz D 0; (4)

where DC D D C 1
r and D D d=dr. The basis functions are then constructed

to satisfy Eqs. (3) and (4). The regularity requirement in the vicinity of the pipe
center [7, 14] and the use of Gauss-Legendre quadrature .!k; rk/ in the numerical
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evaluation of the inner product integrals,

. NV;V/ D
1Z
0

NV.r/� �V.r/ rdr D 1

2

1Z
�1
NV.r/� � V.r/ rdr

D 1

2

KX
kD0
NV.rk/� � V.rk/ rk !k; (5)

impose additional requirements on the basis functions such as the evenness of the
integrands. Further information and the forms of the basis functions can be found in
[19].

Having constructed the basis functions, the projection procedure is now
employed to reduce Eq. (1) to a dynamical system via the solenoidal expansion
for velocity (6), and the inner product (5).

u.r; �; z; t/ D
LX

lD�L

NX
nD�N

MX
mD0

alnm.t/ e
i.n�C2� lz=Q/ Vlnm.r/ (6)

Substituting (6) into (1), and projecting the resulting residual onto the dual bases via
the inner product (5), result in the dynamical system for the expansion coefficients
alnm in the form,

Alnm0m Palnm D Blnm0m alnm � blnm0 (7)

where,

Blnm0m D .�lnm0 ;
1

Re
	˚lnm � G/

blnm0 D .�lnm0 ; .u � r/u/:

The pressure term rp is eliminated under the projection, only the forcing term G
survives. The system (7) is numerically integrated in time using the 3rd order semi-
implicit time-solver, based on backward difference and Adams-Bashford methods,

.11A � 6	t B/ a.kC1/ D A.18a.k/ � 9a.k�1/ C 2a.k�2// (8)

� 	t.18b.k/ � 18b.k�1/ C 6b.k�2//;

for the expansion coefficients a, and they are subsequently used to construct the
velocity field (6) and the projection b for the computation of the next step. This
scheme, (8), is not self starting, so for the initial steps we use a Runge-Kutta time
integrator of corresponding order.
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3 Phase Randomization

Conceptually phase randomization is very simple, considering the expansion for
velocity (6), where alnm are the complex time dependent expansion coefficients. At
given intervals a random shift of �nm is introduced, such that,

alnm ! ei�nmalnm: (9)

The operation in (9) can also be seen as a velocity dependent forcing (10), obviously
this operation preserves continuity, furthermore it does not change the flow energy.
Thus phase randomization does no work on the flow [5].

@tuC .u � r/u D � rpC 1

Reref
	uC

X
T

FT.u/ı.t � T/: (10)

When phase randomization is applied on a flowfield, mean flow characteristics, such
as the average velocity and vorticity profile remain the same. The only visible effect
is the rotation or translation of vortices with respect to each other. When applied
during the simulation at given intervals however, the effects become visible. In this
work, the random phase shifts are applied to a lower band of modes, similar to [5],

1 < l < 8 jnj < 5 corresponding to
q
k2l C k2n � kmax=6;

where k denotes the wave number and kmax D 75 � 2�=Lz, 75 being the number
of positive Fourier modes selected along the axial direction in this study. The phase
randomization is applied at predetermined intervals.

4 Results and Conclusion

For the constant mass flux case, a bulk Reynolds number of 4900 was chosen,
to facilitate comparison with the oscillatory wall case. The effect of frequency of
phase randomization is shown in Table 1, the optimal drag reduction is observed
when phase randomization is applied every 4.4 time units (875	t), increasing the

Table 1 Effects of phase
randomization frequency

Phase random. freq. Percent drag reduction

500	t Re-laminarization

850	t Re-laminarization

875	t 20

1000	t 7

1250	t 4
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Table 2 Turbulence statistics
for controlled and
uncontrolled flow in the case
of constant mass flux

No
control

Spanwise
oscillation

Phase
randomization

Ucl=UB 1.31 1.34 1.32

UB=u� 14.08 16.37 15.80

Ucl=u� 18.45 21.80 20.86

cf 0.01008 0.0075 0.008012

cf =cf0 1.000 0.746 0.795

G=Gnc 1 0.722 0.78

Recl 6419 6542 6468

Re� 174 142 155

00.20.40.60.81

0

0.2

0.4

0.6

r

〈u
′ w

′ 〉

No control

Phase randomization

Fig. 1 Mean Reynolds stress for controlled and uncontrolled cases

00.20.40.60.81

0

0.5

1

r

〈u
′ 〉,

〈v
′ 〉

〈u′〉 No control

〈v′〉 No control

〈u′〉 Phase random.

〈v′〉 Phase random.

Fig. 2 Root mean square v for controlled and uncontrolled cases

frequency beyond the optimal value results in flow laminarization, where as less
frequent application results in lower drag reduction.

The effects on global flow quantities are given in Table 2, together with the
effect of spanwise oscillations from an earlier study [19]. It is clear from Table 2
that, phase randomization results in significant reduction (�20%) in the required
pressure gradient to obtain constant mass-flux (G), and the drag (skin friction, cf ).
Also observed is an increase of about 8% in the mean centerline velocity Ucl.

The main effect of phase randomization was found to be transferring turbulent
activity away from the wall (Figs. 1 and 2), this was also observed for wall
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oscillations in [2]. In addition to the observed shift away from the wall, a significant
decrease in the magnitude of root mean square velocity components in azimuthal
and radial directions was also observed (15 � 20%). The reduction in amplitudes,
as well as shifting of activity towards the pipe center and away from the wall is
evident from Figs. 1 and 2. The maximum reduction in drag was found to be around
20%, which is lower than achievable by wall oscillations. However, one important
point in the comparison is, phase randomization is a passive mechanism and the drag
reduction reported here is directly representative of the net power saved, in contrast
to wall oscillations, where external energy expenditure is necessary.
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CFD Optimization of a Vegetation Barrier

Viktor Šíp and Luděk Beneš

Abstract In this study we deal with a problem of particulate matter dispersion
modelling in a presence of a vegetation. We present a method to evaluate the
efficiency of the barrier and to optimize its parameters. We use a CFD solver based
on the RANS equations to model the air flow in a simplified 2D domain containing
a vegetation block adjacent to a road, which serves as a source of the pollutant.
Modelled physics captures the processes of a gravitational settling of the particles,
dry deposition of the particles on the vegetation, turbulence generation by the road
traffic and effect of the vegetation on the air flow. To optimize the effectivity of the
barrier we employ a gradient based optimization process. The results show that the
optimized variant relies mainly on the effect of increased turbulent diffusion by a
sparse vegetation and less on the dry deposition of the pollutant on the vegetation.

1 Introduction

Particulate matter (PM) in the atmosphere has a significant negative influence on
the human health. It is a concern especially in the urban areas, where the road traffic
constitutes a major source of the pollutants. Vegetation barriers were proposed as a
means to the reduction of a harmful PM in the atmosphere. Due to the complexity
of the problem, assessment of the effectivity of the barriers and its design is difficult
without the computer simulations.

Many publications on the topic of mathematical modelling of the pollutant
deposition on the vegetation are available. Among the most notable are the
following: review [11] on the topic of dry deposition on the vegetation, reviews
[5, 9] on the vegetation in urban areas or modelling studies [13, 16, 18].

In this paper we present a method for the evaluation of the effectivity of the
barriers and for the numerical optimization of the barrier properties. The model
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presented here is based on the work [15], where the influence of the atmospheric
conditions on the barrier efficiency was investigated.

2 Numerical Model

2.1 Physical Model

Let us summarize the basic characteristics of the problem. We are interested in the
air flow in the bottom layer of the atmosphere, approximately 200 m thick. Such flow
can be modelled as incompressible, but with variable density due to the acting of the
gravity force. Three effects of the vegetation should be considered: effect on the air
flow, i.e. slowdown or deflection of the flow, influence on the turbulence levels inside
and near the vegetation, and the filtering of the particles present in the flow.

2.1.1 Fluid Flow

In our formulation of Reynolds-averaged Navier-Stokes (RANS) equations the
pressure p and potential temperature � are split into background component in
hydrostatic balance and fluctuations, p D p0 C p0 and � D �0 C � 0. Boussinesq
approximation stating that changes in density are negligible everywhere except in
the gravity term is utilized. Resulting set of equations is as follows:

r � u D 0; (1)

@u
@t
C .u � r/uCr.p0=�ground/ D �Er2uC gC Su; (2)

@�

@t
Cr � .�u/ D �E

Pr
.r � .r�// : (3)

Here vector u stands for velocity, �ground is the value of the air density � at the
ground level, �E D �L C �T is the effective kinematic viscosity, which is a sum of
the laminar and turbulent viscosity, g D .0; g � 0

�0
; 0/ is the gravity term, Su represent

the momentum sink due to the vegetation and Pr D 0:75 is the Prandtl number.

2.1.2 Turbulence

Standard k�� model is employed to model the turbulence. Equations for turbulence
kinetic energy k and dissipation � are as follows:

@�k

@t
Cr � .�ku/ D r �

��
�L C �T

�k

�
rk
�
C Pk � �� C �Sk; (4)

@��

@t
Cr � .��u/ D r �

��
�L C �T

��

�
r�
�
C C�1

�

k
Pk � C�2�

�2

k
C �S�: (5)
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The model is completed by a relation between k, � and the turbulent dynamic
viscosity �T , �T D C��

k2

�
: In the equations above �L is the laminar dynamic

viscosity, Pk is the production of the turbulence kinetic energy, and Sk and S� are
sources of k and � respectively. Both consist of a part due to the road traffic and a
part due to the vegetation, Sk D SrkCSvk ; S� D Sr�CSv� : Sources due to the road traffic
are modelled by the model from [2], while sinks and sources due to the vegetation
are described below.

Following constants of the model are used: �k D 1:0, �� D 1:167, C�1 D 1:44,
C�2 D 1:92 and C� D 0:09.

2.1.3 Particle Transport

Non dimensional mass fraction w of the pollutant in the air is calculated using the
equation for the pollutant density,

@�w

@t
Cr � .�wu/ � .�wus/y D r �

��E
Sc
r�w

	
C �fc C Sw: (6)

Here fc is the source term and Sw is the vegetation deposition term. Based on
the review and the discussion in [19], the Schmidt number Sc D 0:72 was used.
The settling velocity us of a spherical particle with the diameter d and density �p
is given by the Stokes’ equation, us D .d2�pgCc/=.18�/, with the correction factor
Cc D 1 C �

d .2:34C 1:05 exp.�0:39d=�//, where � D 0.066 µm is the mean free
path of the particle in the air [4].

2.1.4 Vegetation

We model the vegetation as horizontally homogenous, described by vertical Leaf
area density (LAD) profile – foliage surface area per unit volume – and a leaf
type (broadleaf or needle) and size of the leaf. Three effects of the vegetation
are modelled: first, it is a momentum sink inside the vegetation block, Su D
�CdLADjuju, present in the Eq. (2). Here Cd D 0:3 is the drag coefficient [7].

Secondly, it is the influence on the turbulence levels. Following [7], we model
this term as

Svk D CdLAD.ˇpjuj3 � ˇdjujk/; Sv� D C�4
�

k
Svk ;

in Eqs. (4) and (5). Constants used are ˇp D 1:0, ˇd D 5:1 and C�4 D 0:9.
And lastly, it is a particle sink term in Eq. (6), Sw D �LADud�w. The term

is proportional to the deposition velocity ud. Deposition velocity reflects four main
processes by which particles depose on the leaves: Brownian diffusion, interception,
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impaction and gravitational settling. Its value generally depends on wind speed,
particle size and vegetation properties. In this study we adopted the model from
[12] derived for broadleaf trees.

2.2 Numerical Methods

2.2.1 CFD Solver

Apart from the divergence constraint (1), all presented PDEs are in a form of a
evolution equation, suitable for the discretization as described below. The diver-
gence constraint is transformed into such form by employing method of artificial
compressibility with parameter ˇ so that we obtain

1

ˇ

@p0

@t
Cr � u D 0: (7)

The choice of the parameterˇ is discussed e.g. in [10], here we have used ˇ D 1000.
The resulting set of equations is discretized using the finite volume method on

unstructured grid. For the convective terms the AUSMC up scheme [8], designed
for all speed flows, is used. Second order accuracy is achieved via the linear
reconstruction, where gradients are calculated using least squares approach. To
prevent artificial overshooting, Venkatakrishan limiter [20] is utilized.

Gradients on the cell faces needed for the calculation of the diffusive terms are
evaluated using the Gauss-Green theorem on a dual cell associated with the face.

The discretized system forms a set of ordinary differential equations, which are
solved using an implicit BDF2 method. In every time step (outer iteration), first
the system of the Navier-Stokes equations (2, 3, 7) is solved, followed by the
system of the k � � equations (4, 5) and then by the system of the passive scalar
equations (6). Values of turbulent viscosity, coupling together turbulence equations
with the Navier-Stokes equations, are taken from the previous time step.

Each of these nonlinear systems is solved by the Newton method. Inner linear
systems are solved using matrix-free GMRES solver. The linear systems are
preconditioned by ILU(3) preconditioner. Necessary evaluations of the Jacobians
are done via finite differences. Significant cost of these operations is reduced by two
complementing approaches: via matrix coloring, which exploit the sparseness of the
Jacobian, and by calculating the preconditioner matrices (as well as the Jacobians)
only every 20th time step.

Since we are solving only for a steady-state solution, we continuously adapt the
time step in order to accelerate the convergence. The adapting criterion is based on
the number of the iterations of the linear solvers in one outer iteration. Time stepping
proceeds until a steady-state solution is reached.

The solver is written in C++. PETSc library [1] is used for the nonlinear system
solution.
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2.2.2 Optimization

PDE-constrained optimization problem could be written in the following form:

Find min
p2P J.W; p/ subject to F.W; p/ D 0 (8)

and constrained by

pmini � pi � pmaxi i D 1 : : : n; (9)

gj.p/ � 0 j D 1 : : :m: (10)

Here J.W; p/ is a cost function and F.W; p/ is the system of steady-state PDEs, W
is the state vector and p is the vector of parameters. Allowed values of parameters
are limited by pmini and pmaxi , while functions gj represents nonlinear constraints.

To solve the optimization problem, method of moving asymptotes (MMA) [17]
implemented in NLopt optimization package [6] was employed.

Since the MMA is a gradient-based method, the CFD solver has to facilitate the
evaluation of not only the cost function at a given point in the parameter space,
but also its derivatives with respect to the parameters. This was done via a direct
sensitivity approach [3].

3 Application to the Model Problem

3.1 Case Settings

Figure 1 shows the sketch of the computational domain. Four sources of pollutant,
representing the road, are placed between 23 m and 42 m from the inlet at height
0.8 m. Vegetation block of height 15 m is placed downstream from the road.

We model the particles of diameter 10 µm and density 1000 kg/m3. Each source
of the pollutant has the intensity 1 µg/s. No resuspension of the particles fallen on
the ground is allowed. Density of the traffic is set to 4 passenger cars and 1 heavy
duty vehicle per minute in each of the four lanes.

Fig. 1 Sketch of the domain (not to scale)



476 V. Šíp and L. Beneš

As in [15], logarithmic wind profile is prescribed at the inlet with uref D 5m/s at
height yref D 10m. Roughness parameter z0 is set to 0.1 m. The atmosphere is under
weakly stable stratification (@T=@y = 0 K/m). For further details on the boundary
conditions for the fluid flow and the pollutant equations see [15]. For the turbulence
equations, boundary conditions and wall functions according to [14] are used.

The optimization cost function J is the value of the pollutant concentration at
x D 250m from the inlet at height 2 m. Vector of parameters p D .x1; x2;LAI/
consists of starting and end point of the vegetation block and its Leaf Area Index,
which is a ratio of a total leaf area relative to the ground area. Following constraints
are placed on the parameters:

– Position of the vegetation: xmin � x1 � x2 � xmax with xmin D 50m and xmax D
150:0m.

– Maximal leaf area index: 0:0 � LAI � LAImax with LAImax D 9:0.
– Maximal total amount of trees planted: .x2� x1/LAI � VEGmax with VEGmax D
270:0. That could represent eg. forest of length 30 m and LAI 9 or length 100 m
and LAI 2.7.

3.2 Results

Since our method searches only for a local minimum, three different initial points
were used to rule out a possibility that only a local minimum in the vicinity of
a initial position was found. The optimization procedure ended in the same point
for all of the initial points. The initial configurations and corresponding solutions
are listed in Table 1. The optimized variant represents a sparse vegetation block
spanning the whole allowed interval. The obtained LAID 0.81 lies well below the
value given by the constraint on the maximal amount of trees planted, which allowed
for a LAID 2.7 for a block spanning the whole interval.

As evident from the Table 1, the cost function (i.e. the concentration behind the
barrier) was reduced by 15 %–20 % in all three cases. This reduction is further
visible on the left panel of Fig. 2, where the vertical profiles of the particle
concentration at x D 250 m is shown. Three initial variants and the final variant
are complemented by a variant with no vegetation present.

Table 1 Three initial variants and corresponding solutions. The initial and final points are listed
in the form of the parameter vector pD .x1; x2;LAI/

Variant Initial point Solution J (Initial) J (Final) #Evaluations

A .90:0; 110:0; 4:5/ .50:0; 150:0; 0:810/ 0:0407 0:0338 39

B .80:0; 110:0; 6:75/ .50:0; 150:0; 0:810/ 0:0419 0:0338 45

C .60:0; 90:0; 8:1/ .50:0; 150:0; 0:810/ 0:0402 0:0338 67
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Fig. 2 Vertical profile of particle concentration at x D 250 m (left) and horizontal profile of
turbulence kinetic energy at height 10 m (right)

Table 2 Percentage of the injected pollutant deposed on the vegetation and on the ground

Variant A (%) Variant B (%) Variant C (%) Final variant (%)

Deposition on the
vegetation

2:88 4:30 5:51 2:43

Deposition on the
ground

2:88 2:95 2:75 2:32

Table 2 shows that less than 10 % of the injected pollutant was deposed either
on the ground or on the vegetation in all cases, and less than 5 % in the optimized
variant. The rest was redistributed to the higher layers of the atmosphere, where the
higher velocity of the flow allowed for faster dilution. Therefore, the most important
effect of the sparse vegetation here is the disturbance of the flow, leading to the
increased levels of turbulence and increased turbulent diffusion, which results in
faster redistribution to the higher layers. This is demonstrated on the right panel of
Fig. 2, where the horizontal profiles of the turbulence kinetic energy are shown for
all variants.

4 Discussion

A method for evaluation the effects of vegetation barriers on pollution dispersion
was developed and its usability was demonstrated on a simple test case. There are
several shortcomings of the method. First, it is suitable only for a limited number
of parameters. In the current implementation when 100 parameters are optimized
the amount of time for the CFD solution in every step of the optimization loop is
roughly equal to the time needed for the gradient evaluation. For higher number of
parameters it would be therefore more suitable to use the adjoint method for the
gradient calculation.
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Secondly, there is a significant uncertainty in vegetation properties, as these are
difficult to estimate. Quantification of this uncertainty should therefore be in order.

Thirdly, our method optimizes only for a single target, while in reality we may
be interested in several targets at once. To take that into account, multi-objective
optimization should be employed.

Lastly, optimization procedure sought only for the local minimum. Here we have
used multiple initial points to assess whether we have found the global minimum,
however, such approach is not sufficiently rigorous and could be difficult to apply
when higher number of parameters is used.
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Modified Newton Solver for Yield Stress Fluids

Saptarshi Mandal, Abderrahim Ouazzi, and Stefan Turek

Abstract The aim of this contribution is to present a new Newton-type solver
for yield stress fluids, for instance for viscoplastic Bingham fluids. In contrast
to standard globally defined (‘outer’) damping strategies, we apply weighting
strategies for the different parts inside of the resulting Jacobian matrices (after
discretizing with FEM), taking into account the special properties of the partial
operators which arise due to the differentiation of the corresponding nonlinear
viscosity function. Moreover, we shortly discuss the corresponding extension to
fluids with a pressure-dependent yield stress which are quite common for modelling
granular material. From a numerical point of view, the presented method can be seen
as a generalized Newton approach for non-smooth problems.

1 Introduction

Continuum theory for slow viscoplastic fluids based on corresponding flow rules
typically relates the shear stress and the strain rate in a plastic frictional system via
Bingham-like constitutive laws

8̂<
:̂

� D 2�D.u/C �s D.u/
jjD.u/jj if jjD.u/jj ¤ 0

jj�jj � �s if jjD.u/jj D 0
(1)

where D.u/ D 1
2
.ru C .ru/T/ denotes the strain rate tensor, and �s denotes the

yield stress. The shear stress has two contributions: a viscous part, and a strain rate
independent part. Furthermore, for the deformation of dense granular material, the
stress and strain rate tensors are always coaxial. So, for unequal stresses, Schaeffer
[4] postulated that the stresses contract in the directions of greater stress and expand
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in directions of smaller stress. As a consequence, the deviatoric part of the related
Schaeffer model for flow of dry powder in the quasi-static regime [4] is

� D sin.�/ p
D.u/
jjD.u/jj (2)

where � denotes the angle of internal friction: Hence, this model can be interpreted
as pressure-dependent yield stress fluid. Moreover, the interesting transition from
solid-like to fluid-like behavior of granular material was investigated experimentally
and numerically in [3]. Here, the unified constitutive model for the static and
intermediate regimes is given by the following constitutive law (with an appropriate
n > 0 and b 2 R

C, see [3]):

� D p

�
sin.�/C b cos.�/jjD.u/jjn

�
D.u/
jjD.u/jj (3)

Similarly, Pouliquen et al. [2] proposed an extended constitutive model for dense
granular material, where the stress tensor is given as a function of the inertia number
I D D.u/d=pp�p (again with appropriate values of �p and d, see [2])

� D p�.I/
D.u/
jjD.u/jj (4)

where �.�/ is an empirical friction law:

�.I/ D �1 C �2 � �1
I0=IC 1 (5)

All models show the relationship between granular and Bingham fluids. In order to
incorporate friction into viscoplasticity in mixing wet granular materials, El Khouja
et al. [1] introduced the dependency of the pressure in yield stress flow model, i.e.
the yield stress �s.�/ is a function of the pressure, namely let �min; �max 2 R

C, so that
�s.�/ can be defined as:

�s.p/ D minfmaxfp; �ming; �maxg (6)

In what follows, we consider steady problems of (slow) Bingham flow with pressure
dependent yield stress that satisfies

8̂
<̂
ˆ̂:

�r � � Crp D 0 in ˝

r � u D 0 in ˝

u D gD on �D

(7)
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and proceed within the framework of generalized Stokes problems. So, we introduce

the second invariant of the strain rate tensor 
II D 1
2
.2D W 2D/, resp., jjDjj D 1p

2


1
2

II ,

and define a generalized viscosity .�; �/which depends on the pressure and the shear
rate:

.
II ; p/ D � C
p
2

2

�s.p/



1
2

II

(8)

To define the viscosity everywhere, we introduce the classical regularization:

.
II ; p/ D � C
p
2

2

�s.p/

.
II C �2/ 12
(9)

As a consequence, Bingham flow with pressure dependent yield stress is the limit
case, � D 0, of the regularized problem. However, it is well known that the accuracy
of the solution is strongly dependent on this parameter �. Summarizing the previous
considerations, the considered system of equations in the primitive variables u and
p is given as follows:

8̂̂
<
ˆ̂:

�r � .2.
II; p/D.u//Crp D 0 in ˝

r � u D 0 in ˝

u D gD on �D

(10)

2 Non-standard Saddle Point Problem Formulation

After discretization, for instance with standard Q2P1 finite elements, let Qu D .u; p/
and RQu denote the discrete residuals for the system (10). We use the Newton method
which means that the nonlinear iteration is updated with the correction ı Qu, QunC1 D
Qun C ı Qu. Then, the Newton linearization provides the following approximation for
the residuals:

R. QunC1/ DR. Qun C ı Qu/

'R. Qun/C
�
@R. Qun/
@ Qu

�
ı Qu

(11)
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Hence, one iteration of the Newton method can be written as follows:

2
664
unC1

pnC1

3
775 D

2
664
un

pn

3
775 � !n

2
6664
@Ru.un; pn/

@u
@Ru.un; pn/

@p

@Rp.un; pn/
@u

@Rp.un; pn/
@p

3
7775

�12
664
Ru.un; pn/

Rp.un; pn/

3
775
(12)

The damping parameter !n 2 .0; 1� is typically chosen such that:

"
Ru.unC1; pnC1/

Rp.unC1; pnC1/

#T "
unC1

pnC1

#
�
"
Ru.un; pn/

Rp.un; pn/

#T "
un

pn

#
(13)

As we will demonstrate for the considered yield stress fluids, this damping
parameter is not enough to ensure robust convergence. In what follows, we derive
explicitly the Jacobian in order to segregate it into “bad” and “good” terms to get a
robust nonlinear solver. The block matrices of the Jacobian are given as follows:

�
@Ru.un; pn/

@u

�
v D� r �

�
2.
n

II
; pn/D.v/

C 801.
nII ; p
n/ ŒD.un/ W D.v/�D.un/

� (14)

where 01.
II ; p/ D @.
II ;p/
@
II

, the last term in the equation (14), is due to the shear
dependent viscosity models. Furthermore, there holds

�
@Ru.un; pn/

@p

�
q D

�
I� 202.
nII ; pn/D.un/

�
rq (15)

where 02.
II ; p/ D @.
II ;p/
@p , the second term in the equation (15), is relevant for

pressure-dependent viscosity models. Moreover, the incompressibility condition
leads to

�
@Rp.un; pn/

@u

�
v D �r�v (16)

and additionally we obtain:

�
@Rp.un; pn/

@p

�
q D 0 (17)
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Let V and Q be the spaces for velocity and pressure respectively, and let V0 and Q0
be their cooresponding dual spaces. The weak formulation reads:

Z
˝

�
@Ru.un; pn/

@u

�
u � vdx D

Z
˝

2.
n
II
; pn/ ŒD.u/ W D.v/� dx

C
Z
˝

801.
nII ; p
n/ ŒD.un/˝ D.u/� W ŒD.un/˝ D.v/� dx

(18)

Next, let us introduce the following linear forms defined on V �! V0

hA1u; vi WD
Z
˝

2.
n
II
; pn/ ŒD.u/ W D.v/� dx

hA2u; vi WD
Z
˝

801.
nII ; p
n/ ŒD.un/˝ D.u/� W ŒD.un/˝ D.v/� dx

hAu; vi WD hA1u; vi C hA2u; vi

(19)

and the associated bilinear forms defined on V � V �! R

a.u; v/ D hAu; vi; a1.u; v/ D hA1u; vi; a2.u; v/ D hA2u; vi (20)

and the linear forms defined on V �! Q0:

hBu; pi WD �
Z
˝

r�u p dx (21)

the new additional linear forms QB and C are given as follows

h QBu; pi D
Z
˝

r �
�
202.
nII ; p

n/D.un/u
�
p dx (22)

hCu; pi D �
Z
˝

r �
��

I� 202.
nII ; pn/D.un/
�
u
�
p dx (23)

with the associated bilinear forms b.�; �/, Qb.�; �/, and c.�; �/ defined on V � Q �! R

read:

b.v; q/ D hBv; qi ; Qb.v; q/ D h QBv; qi; c.v; q/ D b.v; q/C Qb.v; q/ (24)

So, the corresponding Newton iteration (12) after discretization becomes:

"
unC1

pnC1

#
D
"
un

pn

#
� !n

"
A CT

B 0

#�1 "
Ru.un; pn/

Rp.un; pn/

#
(25)
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In the case of pressure-dependent yields stress, the Jacobian has a nonsymmetric
saddle point structure (if not, then CT D BT):

J D
"
A CT

B 0

#
(26)

The Jacobian J can be decomposed, based on the block operators A, into

A D A1 C A2 (27)

respectively, C into

C D BC QB: (28)

In what follows, we mainly concentrate, first of all, onto the model (1) for yield
stress only and take C D B (at the end, we provide a preliminary result for
pressure-dependent viscosity, too). Therefore, our studies focus on the discussed
decomposition of the operator A due to (27).

3 Robust Nonlinear Solver

To develop a robust nonlinear solver we introduce a new control parameter ın in
order to balance the operatorsA1 (corresponding to the typical fixed point approach)
and A2, both being part of the complete Jacobian A:

A D A1 C ınA2 (29)

In the present note, we concentrate on the choice of the optimal parameter ın
balancing the fixed point and the full Newton iteration. We take the classical
flow around cylinder benchmark [5], and perform corresponding simulations for
Bingham flow.

First, we take a very small yield stress parameter, �s D 10�4, and apply the
fixed point (ın D 0) and classical Newton (ın D 1) methods. Table 1 shows the
resulting numbers of nonlinear iterations. Both methods, Newton and fixed point,
are easily converging towards the solution, more or less independent of the mesh
level. Moreover, the Newton method overcomes the fixed point method, as expected,
due to the moderate nonlinearity. To highlight the insufficiency of the globally
damped Newton (13) to simulate Bingham flow problems, we further increase the
yield stress. Now, the Newton method can only converge with a strong damping
parameter !n as the yield stress increases, for instance !n D 0:1 for �s D 10�2, and
no convergence at all can be obtained for higher yield stress, �s � 10�1. Instead,
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Table 1 Globally damped Newton: The numbers of nonlinear iterations for Bingham flow with
fixed point method and globally damped Newton for increasing yield stress

�s D 10�4 �s D 10�3 �s D 10�2 �s D 10�1 �s D 1

Fixed Newton Fixed Newton Fixed Newton Fixed Fixed

Level point !n D 1:0 point !n D 0:2 point !n D 0:1 point point

2 21 3 67 99 212 210 490 1032

3 24 5 84 95 308 200 728 2135

4 20 5 98 90 408 190 1375 3444

Table 2 Statically balanced Newton: The numbers of nonlinear iterations for Bingham flow with
two different yield stress values �s D 10�2 and �s D 10�1, with a statically balanced Jacobian,
i.e. ın is kept constant

�s Level ın D 0:1 ın D 0:25 ın D 0:5 ın D 0:6

10�2 2 236 198 135 110

3 352 295 199 160

4 455 380 256 206

10�1 2 551 461 311 251

3 848 708 475 382

4 1455 1214 813 653

the fixed point method can converge for all cases, however being very slow and not
being robust w.r.t. mesh level and/or yield stress.

Clearly, with increasing yield stress, it is hard if not impossible to solve the
corresponding flow problems with the globally damped Newton. Therefore, in the
next step, we take a static ın, i.e. ın D ı0 for n � 1, which has been introduced
in (29). The balancing parameter ın is taken as a constant increasing from 0 to 1.
Table 2 presents the numbers of nonlinear iterations for Bingham flow with different
values for the yield stress. From the results in Table 2, it is clear that increasing
the contribution from the operator A2 improves the convergence behavior, but this
contribution needs to remain under control. To do so, we go for a dynamic change
of ın w.r.t. the residual changes. From the numerical experiment it can be noticed
that the dynamic changes of the residual give a precious information about the
singularity of the Jacobian. Indeed, the larger relative changes in the residual with
the operatorA1 reflect the ‘singularity’ of the operatorA2. In this case, the parameter
ın should have a small relative change and remain small. Moreover, when the
relative changes in the residual are close to zero, this indicates that the operator
A2 has the nicest properties and ın can be increased accordingly and maintained
close to 1. We introduce the increment

Qn WD
ˇ̌̌̌
R.
n

II
; pn/

ˇ̌̌̌
ˇ̌̌̌
R.
n�1

II
; pn�1/

ˇ̌̌̌ ; (30)
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Table 3 Behavior of the weighted Newton w.r.t. starting parameter: The numbers of nonlinear
iterations for the dynamically balanced Newton for Bingham flow for a wide range of yield stress
values, varying from 10�3 to 5, for different initial values ı0

�s

ı0 0:001 0:01 0:1 0:5 1:0 2:0 5:0

0.0 10 15 20 19 19 20 20

0.3 10 16 20 19 19 20 20

0.7 18 18 22 22 20 18 18

1.0 46 14 19 21 21 22 22

Table 4 Convergence w.r.t. continuation strategies: The numbers of nonlinear iterations for the
dynamically balanced Newton for Bingham flow for increasing yield stress values, from 10�3 to 5,
and decreasing �, from 10�2 to 10�5

�s

� 0:001 0:01 0:1 0:5 1:0 2:0 5:0

Continuation Newton w.r.t. �

10�2 10 15 20 19 19 20 20

10�3 11 11 12 17 16 15 15

10�4 15 13 18 16 15 26 15

10�5 16 10 22 22 17 15 17

Continuation Newton w.r.t. �s
10�2 10 14 19 12 8 7 7

10�3 14 20 26 15 8 8 8

10�4 21 26 34 23 10 17 8

10�5 22 45 41 29 11 10 10

and define the following continuous function for changes of ın w.r.t. the residual
Rn:

ınC1
ın
D 0:2C 4

0:7C exp.1:5Qn/
(31)

It should be pointed out that the choice (31) of ın is derived so far based on
simple and preliminary numerical experiments only. We check the robustness of
the dynamic changes of ın in (31) for various values of yield stress. Table 3 shows
the numbers of nonlinear iterations for Bingham flow for a wide range of yield stress
values and different starting weighting factors for the Jacobian, that means ı0.

Since the convergence typically gets harder with smaller values for the regular-
ization parameter �, we check the robustness of the dynamic changes of ın in (31)
for decreasing � and a wide range of yield stress values. Table 4 shows the numbers
of nonlinear iterations for Bingham flow using continuation strategies w.r.t. � as well
as w.r.t. �s.
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Table 5 Pressure dependent yield stress: The numbers of nonlinear iterations for Bingham flow
with pressure dependent yield stress in (6) with fixed point method ın D 0:0 and dynamically
balanced Newton, varying the lower bound yield stress �min and fixed upper bound yield stress
�max D 0:1

�min

Method 0:0 0:0001 0:001 0:01 0:1

Fixed point 356 356 356 356 356

Newton 79 68 68 56 27

Moreover, it should be pointed out that the parameters � and �s can be seen as
bounds for some physical quantities in models for granular material [2, 3].

Finally, we want to perform some preliminary tests regarding the flexibility and
robustness of the dynamically balanced Newton method for pressure-dependent
yield stress. In a first step, the yield stress is taken as a function of the pressure
as described in (6). We fix the upper bound of the yield stress and change the
lower bound of the yield stress to allow significant changes in the pressure which
should mainly influence the convergence behavior. However, due to the ‘min-max’
flow rule, we cannot differentiate w.r.t. the pressure so that we apply the described
Newton modification for the velocity part only, while the pressure dependence is
treated in a fixed point style only. Nevertheless, the comparison of the standard fixed
point method and the newly dynamically balanced Newton, which is presented in
Table 5, shows already a clearly improved behavior. In the next step, we will apply a
flow model including pressure and shear rate which will allow differentiation w.r.t.
both arguments (as demonstrated in the shown models for granular flow) so that an
extension of the new Newton method to pressure-dependent yield stress fluids can
be realized and numerically analyzed, too.

4 Summary

We shortly presented a new Newton-type method for flow problems with yield stress
which are typical for viscoplastic Bingham models as well as granular flow models
with pressure-dependent yield stress. The model is approximated with a regular
approach to derive the Jacobian. Then, the partial contributions to the Jacobian are
segregated in order to differ between ‘good’ and ‘bad’ parts (due to their expected
numerical behavior). Firstly, we showed the insufficiency of the classical globally
damped Newton. Secondly, we derived a statically balanced Newton approach, by
taking different parts of the Jacobian in a static manner for different yield stress
values. Thirdly, we went further with dynamic changes allowing the selection of the
‘optimal’ contributions inside of the Jacobian, here mainly based on the residual
changes. The numerical results demonstrate the ability to simulate the Bingham
viscoplastic model in the primitive variables for a small regularized parameter � and
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pressure-dependent yield stress. Moreover, we pointed out how this approach can
be extended to more complex (and more realistic) flow models which are typical for
granular flow models.
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Numerical Simulation of 3D Flow of Viscous
and Viscoelastic Fluids in T-Junction Channel

Radka Keslerová and David Trdlička

Abstract This paper is interested in the numerical simulation of steady flows of
laminar incompressible viscous and viscoelastic fluids through the channel with
T-junction. The flow is described by the system of generalized incompressible
Navier-Stokes equations. For the different choice of fluids model the different model
of the stress tensor is used, Newtonian and Oldroyd-B models. Numerical tests are
performed on three dimensional geometry, a branched channel with one entrance
and two outlet parts. Numerical solution of the described models is based on cell-
centered finite volume method using explicit Runge-Kutta time integration.

1 Introduction

Branching of pipes occurs in many technical or biological applications. In [13] the
effects of viscoelasticity on the pitchfork bifurcation using a numerical finite volume
method was investigated. Results from both the upper-convected Maxwell and
Oldroyd-B models show that the instability occurs at lower Reynolds numbers for
viscoelastic fluids in comparison to the Newtonian base case. In [12] computational
fluid dynamics simulations of steady viscoelastic flows through a planar two
dimensional T-junction is considered and the influence of constitutive model and
fluid elasticity upon the main recirculating flow characteristics formed at the
junction and the shear stress fields is studied. In biomedical applications, it is
the complex branching system of blood vessels in human body. The blood can
be characterized by shear-thinning viscoelastic property and the blood flow can
be described by generalized Oldroyd-B model. In [1] the new model to describe
the rheological characteristics of blood (namely shear-thinning and deformation
dependent viscoelasticity) in both steady and unsteady flows was developed. In
[5] a comparative numerical study of non-Newtonian fluid models capturing shear-
thinning and viscoelastic effects of blood flow in idealized and realistic stenosed
vessels was presented.
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In prewious work we studied the numerical simulation of generalized Newtonian
and Oldroyd-B fluids flow in 2D branching channel, [7, 8]. In this article this
problem will be extended to the study of generalized Newtonian and Oldroyd-B
fluids flow in 3D branching channel with T-junction.

2 Mathematical Model

The governing system of equations is the system of generalized Navier-Stokes
equations, see [2]. This system consists of the continuity equation

div u D 0 (1)

and the momentum equations

�
@u
@t
C �.u:r/u D �rPC div T; (2)

where P is the pressure, � is the constant density, u is the velocity vector and by the
symbol T the stress tensor is denoted.

In order to solve (2) a constitutive relation is needed for the stress tensor.
For Newtonian fluids the stress tensor T is modelled by (see e.g. [3, 5])

T D 2�D; (3)

where � is the dynamic fluid viscosity and tensor D is the symmetric part of the
velocity gradient, D D 1

2
.ruCruT/.

In the case of viscoelastic fluids, the simplest viscoelastic model (Maxwell
model) reads

TC �1 ıT
ıt
D 2�D; (4)

where �1 is the relaxation time [5]. The symbol ı
ıt represents the upper convected

derivative defined by the relation, for more details see [4, 5]

ıTe

ıt
D @Te

@t
C .u:r/Te � .WTe � TeW/ � .DTe C TeD/; (5)

where D is symmetric and W is antisymmetric part of the velocity gradient, W D
1
2
.ru� ruT/.
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By combination of these two mathematical models (3) and (4) (Newtonian
and Maxwell) the behaviour of mixture of viscous and viscoelastic fluids can be
described. This model is called Oldroyd-B and it has the form

TC �1 ıT
ıt
D 2�

�
DC �2 ıD

ıt

�
; (6)

where symbols �1 is relaxation time and �2 is the retardation time (with dimension
of time).

For the numerical modelling of the generalized Newtonian and Oldroyd-B fluids
flow it is necessary to generalize the mathematical models. The constant viscosity
coefficient � is replaced by a shear rate dependent viscosity function �. P
/ where

shear rate P
 is defined by P
 D 2

q
1
2
tr D2. This function can be written in the

following general form (for more details see [14, 15])

�. P
/ D �1 C �0 � �1
.1C .� P
/b/a ; (7)

the following parameters found in [9] have been used for the flow simulations
presented in this paper:
�0 D 1:6 � 10�1 Pa s, �1 D 3:6 � 10�3 Pa s, a D 1:23; b D 0:64; � D 8:2 s.
To account for the viscoelasticity of fluids flow the equations for the conservation

of linear momentum 1 and mass 2 is considered where the extra stress tensor T is
decomposed into its Newtonian part Ts and its elastic part Te, T D Ts C Te, such
that

Ts D 2�sD (8)

and Te satisfies a constitutive equation of Oldroyd-B type, namely

@Te

@t
C .u:r/Te D 2�e

�1
D � 1

�1
Te C .WTe � TeW/C .DTe C TeD/; (9)

the �e denotes the elastic viscosity coefficient and �1 is the relaxation time,
�e D 4:0 � 10�1 Pa s and �1 D 0:06 s (according to [9]). The following four special
parameters settings related to four specific models will be used in our numerical
simulations:

Newtonian �s. P
/ D �
1

Te 
 0

Generalized Newtonian �s. P
/ Te 
 0

Oldroyd-B �s. P
/ D �
1

Te

Generalized Oldroyd-B �s. P
/ Te
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3 Numerical Solution

The mathematical models described above are solved numericaly the artificial com-
pressibility approach combined with the finite-volume discretization. The artificial
compressibility method [6, 8, 11] is used to obtain equation for pressure. It means
that the continuity equation is completed by a pressure time derivative term @p

ˇ2@t
,

where ˇ is positive parameter, making the inviscid part of the system of equations
hyperbolic

1

ˇ2
@p

@t
C div u D 0; (10)

the parameter ˇ in this work is chosen equal to the maximum inlet velocity. This
value ensures good convergence to steady state but is not large enough to make the
transient solution accurate in time. Therefore it is suitable for steady flows only. The
discretization is done by a cell-centered finite-volume method with hexahedral finite
volumes. The system including the modified continuity equation and the momentum
equations can be written

QRˇWtCFc
x CGc

yCHc
z D Fvx CGvy CHv

z C S; QRˇ D diag.
1

ˇ2
; 1; � � � ; 1/; (11)

where W is vector of unknowns, W D .p; u; v;w; te1; : : : ; te6/, by superscripts c and
v the inviscid and the viscous fluxes are denoted. The symbol S denotes the source
term.

Equation (11) is discretized in space by the finite volume method and the arising
system of ODEs is integrated in time by the explicit multistage Runge–Kutta scheme
[8, 10].

The flow is modelled in a bounded computational domain where a boundary is
divided into three mutually disjoint parts: a solid wall, an outlet and an inlet. At
the inlet Dirichlet boundary condition for velocity vector and for the stress tensor
is used and for the pressure homogeneous Neumann boundary condition is used.
At the outlet parts the pressure value is prescribed and for the velocity vector and
the stress tensor homogeneous Neumann boundary condition is used. The no-slip
boundary condition for the velocity vector is used on the wall. For the pressure and
stress tensor homogeneous Neumann boundary condition is considered.

4 Numerical Results

This section deals with the comparison of the numerical results of generalized
Newtonian and generalized Oldroyd-B fluids flow. Numerical tests are performed
in an idealized branched channel with the circle cross-section. Figure 1 (left) shows
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Fig. 1 Structure of the tested domain (left) and axial velocity profile of tested fluids (right). (a)
Structure of the domain. (b) Axial velocity profile

the shape of the tested domain. The computational domain is discretized using a
structured, wall fitted mesh with hexahedral cells. The domain is divided to 19
blocks with 125,000 cells.

All numerical results presented in this section were computed using in-house
software. The computational code was verified for the steady flow of an incom-
pressible fluid in a straight tube by prescribing a constant velocity profile at the inlet.
Fully developed velocity profiles for all tested fluids were used as the initial velocity
profile for following computations in the branching channel with T-junction. At the
outlet the constant pressure values are prescribed (0.0005 Pa (main channel) and
0.00025 Pa (branch)).

The computations were performed with the following model parameters: R D
0:0031m, R1 D 0:0025m, �e D 0:0004Pa s, �s D 0:0036Pa s, �1 D 0:06 s, U0 D
0:0615m s�1, � D 1050 kg m�3. In Fig. 1 the axial velocity profile for tested types
of fluids close to the branching is shown. The lines for Newtonian and Oldroyd-B
fluids are similar to the parabolic line, as was assumed. From this velocity profile is
clear that the shear thinning fluids attain lower maximum velocity in the central part
of the channel (close to the axis of symmetry) which is compensated by the increase
of local velocity in the boundary layer close to the wall.

In Fig. 2 the velocity isolines and the cuts through the main channel and the small
branch are shown.

The axial velocity isolines in the center-plane area for all tested fluids are shown
in the Fig. 3. It can be observed from these that the size of separation region
for generalized Newtonian and generalized Oldroyd-B fluids is smaller than for
Newtonian and Oldroyd-B fluids, see in detail Fig. 4.
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Fig. 2 Velocity isolines of steady flows for generalized Newtonian and Oldroyd-B fluids. (a)
Newtonian. (b) Generalized Newtonian. (c) Oldroyd-B. (d) Generalized Oldroyd-B
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Fig. 3 Axial velocity isolines in the center-plane area for generalized Newtonian and Oldroyd-B
fluids. (a) Newtonian. (b) Generalized Newtonian. (c) Oldroyd-B. (d) Generalized Oldroyd-B
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(a) (b)

(c) (d)

Fig. 4 Axial velocity isolines in the center-plane area in the separation region. (a) Newtonian. (b)
Generalized Newtonian. (c) Oldroyd-B. (d) Generalized Oldroyd-B

In the table the ratios of volume flow rates in the branches are presented. These
ratios are given by Q1=Q2 where Q1 is the volume flow rate in the small branch and
Q2 is the volume flow rate in the main channel (at the output).

Newtonian gen. Newtonian Oldroyd-B gen. Oldroyd-B

Ratio 0.781498 0.821212 0.779099 0.852804

5 Conclusions

Classical Newtonian and Oldroyd-B models, as well as their generalized (shear-
thinning) modifications have been considered to model flow in the branching
channel with T-junction, to investigate shear-thinning and viscoelastic effects in
steady flow simulations. Based on the above computation results we conclude that
in this type of the channel the numerical results for Newtonian and Oldroyd-B fluids
are similar. From the presented velocity profile is clear that the shear thinning fluids
(generalized Newtonian and Oldroyd-B fluids) attain lower maximum velocity in
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the central part of the channel (close to the axis of symmetry) which is compensated
by the increase of local velocity in the boundary layer close to the wall.

The numerical method used to solve the governing equations seems to be
sufficiently robust and efficient for the appropriate resolution of the given class of
problems.

The future work will be occupy with the numerical simulation of unsteady flows
for viscous and viscoelastic fluids in the three dimensional branching channel with
circle cross section.
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Science Foundation.
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Computational Simulations of Fractional Flow
Reserve Variability

Timur Gamilov, Philippe Kopylov, and Sergey Simakov

Abstract Fractional flow reserve (FFR) is the golden standard for making deci-
sion on surgical treatment of coronary vessels with multiple stenosis. Clinical
measurements of FFR require expensive invasive procedure with endovascular
ultrasound probe. In this work a method of FFR simulation is considered. It is based
on modelling 1D haemodynamics in patient-specific coronary vessels network
reconstructed from CT scans. In contrast to our previous studies we used explicit
minimum oscillating 2nd order characteristic method for internal nodes and 2nd
order approximation of compatibility conditions for discretization of boundary
conditions in junctions. The model is applied for simulating the change of FFR
due to variability of the vessels elasticity and autoregulation response rate.

1 Introduction

Multiple stenosis of coronary arteries is a common cardiovascular disease. It can
cause myocard ischemia, which frequently results in disability or death. Stenosis
is usually treated invasively by stenting or noninvasively by drugs therapy. The
choice is based on the estimate of haemodynamical importance of the stenosis. The
modern criterion of the coronary stenosis severity is fractional flow reserve (FFR)
[5]. FFR is calculated as a ratio of mean pressure distal to stenosis to mean aortic
pressure during vasodilator administration [5]. The values below 0.8 associated
with haemodynamic importance of the stenosis and recommendation of surgical
treatment. The FFR based decisions allows reducing the number of unnecessary
invasive treatment [10].
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Clinical measurements of FFR require expensive invasive procedure with
endovascular ultrasound probe. Modern methods of FFR estimation involve 3D
blood flow modelling in the local region of the studied vessel [5] (cFFR or
virtual FFR). It requires complex simulations of local coronary region with high
computational cost. Another approach is based on 1D haemodynamics simulation
in coronary region [1, 2, 8]. It allows to simulate substantial part of coronary region
with multiple stenoses. The 1D structure of coronary vessels can be reconstructed
from patient’s CT-scans [8]. In order to possibly decrease numerical resources
needed for regular massive simulations in clinic we used in this work the explicit
minimum oscillating second order characteristic method for internal nodes [4].
We present second order approximation of compatibility conditions along outgoing
characteristics for discretization of boundary conditions in junctions. This numerical
implementation is tested by grid refinement study (grid convergence).

The computational model is applied for simulating the change of FFR due to
variability of the vessels elasticity and autoregulation response rate (ARR). These
parameters may be affected by drugs administration, lifestyle or aging [6]. On the
other hand, patient specific values cannot be estimated with sufficient accuracy.
Thus, our method is a tool for an extended computational analysis of possible risk
factors and stenosis severity for an individual patient. Such an analysis is impossible
in general clinical studies.

2 Methods

The model of blood flow in coronary vascular network is based on unsteady viscous
incompressible fluid flow through the 1D network of elastic tubes [7]. It takes
into account patient-specific structure of coronary arteries. Systemic circulation is
reduced to a single large vessel. Veins structure is supposed to be the same as for the
arteries. The model is supplemented by autoregulation function according to [7]. In
this section we briefly describe the model.

The flow in every vessel is described by the mass and momentum balance
equations

@Ak=@tC @.Akuk/ =@x D 0; (1)

@uk=@tC @


u2k=2C pk=�

�
=@x D ffr.Ak; uk/ ; (2)

where k is the index of the vessel; t is the time; x is the distance along the vessel
counted from the vessel junction point; � is the blood density (constant); Ak.t; x/ is
the vessel cross-section area; pk is the blood pressure; uk.t; x/ is the linear velocity
averaged over the cross-section; ftr is the friction force. Elasticity of the vessel wall
is described by pressure-cross-section relation in the form

pk.Ak/ � p�k D �c2kf .Ak/ ; (3)
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where f .A/ is monotone S-like function

f .Ak/ D
(

exp .k � 1/� 1; k > 1

ln k; k 6 1;
(4)

p�k is the pressure in the tissues surrounding the vessel; ck is the velocity of small
disturbances propagation in the wall; k D Ak=A0k; A0k is the unstressed cross-
sectional area. At the vessels junctions the Poiseuille’s pressure drop condition is
applied

pk .Ak .t; Qxk// � plnode .t/ D "kRl
kAk .t; Qxk/ uk .t; Qxk/ ; k D k1; k2; : : : ; kM; (5)

and combined with the compatibility conditions of hyperbolic set (1), (2) along
outgoing characteristics and mass conservation condition.

At the terminal point of the venous system (x D xH) the pressure pH D 8mmHg
is set as the boundary condition. At the entry point of the aorta the blood flow is
assigned as the boundary condition

u.t; 0/ S.t; 0/ D QH .t/ ; (6)

where QH.t/ is cardiac output profile for normal conditions (heart rate 1 Hz, stroke
volume 65 ml [3]). Autoregulatory function is described as ck adaptation for the
changes of average pressure pk

ck;new
ck;old

D
s

pk;new
pk;old

; (7)

where pk;new D
1

.T3 � T2/lk

Z T3

T2

Z lk

0

p.x; t/dxdt; lk is the length of the k-th vessel;

pk;old D
1

.T2 � T1/lk

Z T2

T1

Z lk

0

p.x; t/dxdt; T1;T2;T3;T4 are the initial moments of

the successive averaging periods (successive cardiac cycles). The instant value of
ck is then calculated as

ck D ck;old C 
 t � T3
T4 � T3

.ck;new � ck;old/; (8)

where 0 6 
 6 1 is the ARR. 
 D 1 corresponds to the normal autoregulation,

 D 0 corresponds to the absence of autoregulation, 0 < 
 < 1 can be associated
with vasodilator administration, etc.

An essential feature of coronary hemodynamics is partial compression of
coronary arteries by myocard contraction during systole. It is simulated by setting
p� D Pcor

ext .t/ in (3). The shape of the function Pcor
ext .t/ is similar to the heart

outflow profile [2]. Maximum value is set to 120mmHg and 30mmHg and applied
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for terminal vessels of the left and right coronary arteries. Increased resistance is
simulated by multiplying Rk in (5) for all coronary vessels during systole by a factor
of 3 [9].

2.1 Patient-Specific 1D Coronary Network

The computational domain in a 1D network was generated on the basis of patient-
specific data. Processing of the CT scans requires complex algorithms described
in [2]. Segmentation algorithm exploits Hough Circleness transformation and
thresholding to find an initial mask, and Isopererimetric Distance Trees (IDT)
algorithm to cut initial mask. Hessian based Frangi Vesselness filter is used for
ostia points detection and small arteries segmentation. Then topological structure
reconstruction is produced using thinning approach.

The result is the network of 1D vessels presented in Fig. 1. Geometrical param-
eters of the vessels are presented in Table 1. The values of the parameters Rk were
set as follows (see Fig. 1 for vessel’s notation): 20 Ba�s

cm3 for the aorta (No. 1 and 2),
7200 Ba�s

cm3 for the right coronary artery (No. 3–9), 720 Ba�s
cm3 for the left coronary artery

(No. 10–18). The values of the parameters ck were set as follows: 1050 cm/s for the
aortic root (No. 1), 840 cm/s for the aorta (No. 2), 1200 cm/s for the right coronary
artery (No. 3–9), 950 cm/s for the left coronary artery (No. 10–18). Parameters ck

Fig. 1 The 1D reconstruction of the arterial part. Stars designate stenoses. RCA—right coronary
artery, LCA—left oronary artery, LCX—left circumflex artery, LAD—left anterior descending
artery
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Table 1 Parameters of the arterial tree: lk is the length, dk is the diameter

k lk; cm dk ;mm k lk; cm dk;mm k lk; cm dk;mm k lk; cm dk;mm

1 5:28 21:7 6 6:75 1:52 11 6:1 3:0 16 5:4 1:91

2 60:0 25:1 7 5:01 2:50 12 2:05 1:17 17 0:38 1:01

3 2:72 3:1 8 1:27 1:19 13 1:75 1:21 18 2:62 1:19

4 1:44 1:31 9 5:65 0:157 14 1:39 3:8

5 1:40 2:73 10 0:59 3:6 15 12:1 2:05

were taken from clinical studies of pulse wave velocity [6]. Parameters Rk were
fitted to set blood flow in coronary arteries to physiological conditions [2, 3].

The patient considered in this work was diagnosed with stenosis in three vessels
(see Fig. 1): �LCA D 0:45, �LCX D 0:2, �LAD D 0:5, where � is lumen fraction.
Stenoses were simulated by separating diseased vessel into three parts: stenosed,
proximal and distal. Parameters of the stenosed part were set as A0st D �A0, Rst D
lst
l�2

R, where lst D l=3 is length of the stenosed part.

2.2 Numerical Implementation

Equations (1), (2) are closed by (3) and solved by the explicit minimum oscillating
second-order grid-characteristic method from [4]. Boundary conditions are set by
combining Pouseuille’s pressure drop condition (5) for every vessel in junction
and mass conservation. This set should be extended by compatibility conditions
for hyperbolic set (1), (2) along outgoing characteristic. The result of the finite-
difference discretization of the compatibility conditions of (1), (2) on the upper time
layer tnC1 can be reduced to the form

u.tnC1; Qxk/ D ˛nC1L;R A.tnC1; Qxk/C ˇnC1
L;R : (9)

where Qxk D 0;Lk; index L corresponds to the input of the vessel; index R
corresponds to the input of the vessel. In particular, the second order approximation
at the vessel’s input gives

˛nC1L D wn
0; ˇnC1

L D Œwn
0.�

n
0 .2S

nC1
1 � 1

2
SnC12 /� Sn0/�

� .�n
0 .2u

nC1
1 � 1

2
unC12 /� un0/C �nC1f nC1fr;0 �=.1�

3

2
�n
0 /;

(10)
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where �nC1 D tnC1 � tn ; � D �nC1
h
�1; �1 D u �

s
A

�

@p

@A
; h is the spatial step;

w D
s
1

�S

�
@p

@S

�
. At the vessel’s output

˛nC1R D �wn
J ; ˇnC1

R D Œ�wn
J.�

n
J .
1

2
SnC1J�2 � 2SnC1J�1 /� SnJ/�

� .�n
J .
1

2
unC1J�2 � 2unC1J�1 / � unJ/C �nC1f nC1fr;0 �=.1C

3

2
�n
J /:

(11)

where J is the index of rightmost node.
Convergence of the numerical scheme was studied by consecutive increase the

number of spatial segments by a factor of two. Each simulation was performed for
a single vessel with diameter 2:1 cm, length 10 cm and ck D 700 cm/s. At the input
blood flow was prescribed (6); at the output the constant pressure 10mmHg was set.
Error was calculated by the Runge method as

Ek D max
i

ˇ̌
ˇ̌uki � Qui
Qui

ˇ̌
ˇ̌ ; (12)

where uk is the numerical solution on a grid with 10 � 2k C 1 nodes and Qu D u5

is the solution on the grid with 10 � 25 C 1 nodes. Comparison is shown on Fig. 2
using logarithmic scale. Numerical simulations provide the values of the order of

Fig. 2 Grid convergence of numerical scheme: solid line—2nd order approximation, dashed
line—1st order approximation [7]



Computationl Simulations of FFR Variability 505

convergence 1.8 and 1.3 for the 2nd order method for internal nodes and 2nd and
1st order approximations of compatibility conditions respectively.

3 Results

Computational model from Sect. 2 was applied for simulating the change of FFR
due to variability of the vessels elasticity and ARR. The FFR is calculated under the
vasodilator administration as

FFR D Pdist

Paortic
; (13)

where Pdist is the average pressure in coronary artery distal to the stenosis, Paortic

is the average aortic pressure. Vasodilator administration is simulated by doubling
S0 and decreasing R by the factor of 5. This method showed good agreement with
clinical results with relative error less than 17% [2]. Two series were performed: for
the stenosis in LAD of 55 % (Sect. 2.1) and 95 %.

Studying the change of the FFR due to the variability of the vessels elasticity
was performed by multiplying ck by � (0:4 6 � 6 2:0). It represents typical
physiological and pathological range (� D 1 corresponds to the reference values
(see Table 1), � < 1 and � > 1 corresponds to the increased elasticity and stiffness).
Substantial change of FFR up to ˙5% is observed from Fig. 3 for the � � 1. It
corresponds to the variation of the ck up to ˙20%. Both substantial stiffening and
softening results in asymptotic behavior.

Studying the change of the FFR due to the variability of the ARR was performed
by 
 alteration (0 6 
 6 1). Dramatical decrease of the FFR (up to 95 %)
is observed from Fig. 4 for the values 
 < 0:5. It may correspond to the high
concentration of vasodilator or autoregulation failure.

In both cases the increase of the stenosis in LAD from 55 % up to 95 % results
in FFR decrease up to 14 % and does not affect other vessels. It means that severe
stenoses are more sensitive. We conclude that ARR strongly affects the coronary
blood flow. It should be carefully included to the numerical models. Impact of the

Fig. 3 The change of FFR due to the variation of elasticity
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Fig. 4 The change of FFR due to the variation of ARR

elasticity variation is less recognizable. According to our study accuracy of the ck
should be less than 10 %.

4 Discussion

Our ultimate goal is to develop a computational tool for fast and robust noninvasive
evaluation of FFR for individuals based on the limited patient-specific noninvasively
collected data. In this work we developed numerical model based on 2nd order
approximation for both internal nodes along the vessels and vessel’s junctions. The
numerical implementation was tested by grid refinement study. It showed better
(order of 1.8) convergence rate than the model of the explicit monotone 1st order
approximation (order of 1.3).

The model was applied for simulating the change of FFR due to variability of
the vessels elasticity and ARR. This study was motivated by the two facts: these
parameters can’t be measured for individual patient in regular clinic; sensitivity
of FFR to these parameters may be substantial. From numerical experiments we
observe that accuracy of the elasticity estimation should be better than 10 %.
Impact of ARR is up to 95 %, which means ARR itself should be thoroughly
analyzed and the use of vasodilators should be carefully planned. In some numerical
experiments the values of FFR were simulated under active autoregulation. It
is not standard for invasive measurements during vasodilators administration in
clinic. Thus we conclude (see Fig. 4), that measured FFR may be underestimated.
The further joint clinical and computational research may improve personal FFR
evaluation.

Acknowledgements The research was supported by Russian Science Foundation (RSF) grant 14-
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On the Mathematical Modeling of Monocytes
Transmigration

Oualid Kafi, Adélia Sequeira, and Soumaya Boujena

Abstract Monocytes play a significant role in the atherosclerosis development.
During the inflammation process, monocytes that circulate in the blood stream
are activated. Upon activation, they adhere to the endothelium and extravasate
through the latter to migrate into the intima. In this work we are concerned with
the transmigration stage. Micropipette aspiration experiments show that monocytes
behave as polymeric drops during suction. In our study, the constitutive equations
for Oldroyd-B fluids are used to capture the viscoelastic behavior of monocytes. We
first establish and analyze a simplified mathematical model describing the coupled
deformation-flow of an individual monocyte in a microchannel. Then we describe
the numerical implementation of the mathematical model using the level set method
and show the numerical results. Further extensions of this model are also discussed.

1 Introduction

The formation and development of atherosclerotic plaques result from a biochemical
and mechanical interaction between the vessel wall and circulating blood. The
crucial step in the formation of plaques is the presence of oxidized lipoproteins in the
subendothelial region, which causes the local activation of the factors responsible
for the infiltration of the monocytes and T lymphocytes in the vessel wall. Thus
atherosclerosis is an immuno-inflammatory disease, with various components of the
immune system assuming a protective or deleterious role in its development. The
study of mathematical and numerical models of atherosclerosis has the potential
to understand better the inflammation process and eventually to contribute to its
treatment. The accumulation and continued recruitment of monocytes are associated
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with the development of vulnerable plaques [1]. Our main goal is to develop a
simplified Oldroyd-B drop model for monocytes transmigration. In fact, numerical
modeling of viscoelastic flows is of great importance for complex engineering appli-
cations involving food products, paints or plastics and many biological materials,
including blood. Viscoelastic fluids are examples of a broader class of fluids called
non-Newtonian fluids, that have the ability to store and release energy and for which
the extra-stress tensor cannot be expressed as a linear, isotropic function of the
components of the velocity gradient. One of the simplest nonlinear constitutive
models for non-Newtonian incompressible viscous fluids is the rate type frame
invariant Oldroyd-B model which can be derived from the kinetic theory of polymer
dilute solutions.

A mathematical and numerical study of a simplified time-dependent viscoelastic
flow is presented in [2]. The model was simplified in order to prove the global
existence in time in Banach spaces, using the implicit function theorem and
a maximum regularity property for a three fields Stokes problem. In [3], the
authors propose a stabilized Galerkin/least squares implementation of the Oldroyd-
B equations since the standard Galerkin finite element methods are prone to
numerical oscillations, and solutions break down as fluid elasticity increases. The
implementation of the Oldroyd-B equations in Comsol Multiphysics using this
method show good agreement with results published in the literature. On the other
hand, several papers address the computational modeling of flow dynamics of free-
flowing, tethered (captured), rolling and adherent monocytes. We shall mention [4],
where the authors investigate the effects of cell deformability and viscoelasticity on
receptor-mediated leukocyte adhesion to endothelium or a ligand coated surface in
a parallel plate flow chamber using computational fluid dynamics techniques. The
leukocyte is modeled as a compound viscoelastic drop (a nucleus covered by a thick
layer of cytoplasm). The nucleus, cytoplasm, and extracellular fluid are considered
as Newtonian or viscoelastic liquids of high viscosity. The 3D numerical code is
based on the Volume-of-Fluid method and the Giesekus constitutive equation is
implemented in the code to capture viscoelasticity of the cytoplasm and nucleus.
More recently, the authors in [5] developed a 2D mathematical model, in which
leukocytes are regarded as compound viscoelastic capsules with a nucleus. The
effects of several factors on flow dynamic characteristics of tethered cells, including
the cell length, the inclination angle, the drag and lift forces acting on the cell
were investigated. We shall also mention [6] where authors analyzed the coupled
deformation-flow of individual leukocytes in microfluidic parabolic shear blood
flow using a level set method.

In this paper we briefly present existence results for the solution of an Oldroyd-B
drop model, since the theoretical study is not our goal. Unlike the usual formulation
cited for example in [2, 4], in this work, the density is not constant. The choice
of this formulation for our model is motivated by the fact that in the numerical
approximation the density is represented by the level set function as it will be
shown below. Next we will describe the numerical method to simulate the coupled
deformation-flow in a microchannel with a perforated barrier modeling a leaky
junction. The simulations are done using Comsol Multiphysics 4.3b [7].
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2 The Simplified Oldroyd-B Problem

Let ˝ be a bounded domain of RN , (N D 2 or 3), with boundary @˝ 2 C1.˝/
(with a unit external normal n) and t 2 .0;T/. The unknowns of the simplified
model are the velocity u, the density �, the pressure 
 and � is the extra-stress
tensor associated to the Oldroyd-B constitutive equations. u0, �0, �0, �p (polymer
viscosity), � (relaxation time) and�s (solvent viscosity) are given. Then the coupled
problem can be written as:

.Ps/

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

�
@u
@t
� 2�s div �.u/Cr
 D div �; in ˝ � .0;T/;

div u D 0; in ˝ � .0;T/;
u.�; 0/ D u0; in ˝;

u.x; t/ D 0; on @˝ � .0;T/;
� C �

�
@�

@t
C .u � r/� � �.ru/ � .ru/T�

�
� 2�p�.u/ D 0; in ˝ � .0;T/;

�.�; 0/ D �0; in ˝;
@�

@t
C u � r� D 0; in ˝ � .0;T/

�.�; 0/ D �0; in ˝:

Since the mathematical analysis is not the main goal of this work, we list below a
series of results [8, 9] leading to the proof of the existence of solution of problem
.Ps/ using a fixed point argument. The novelty of these results, when compared to
the cited ones is that in this case the density is not constant. The usual notations for
the Sobolev spaces are used below. For more details the reader can refer to [10, 11].

Lemma 1 Let q 2 Œ1;C1� and a0 2 W1;q.˝/. Let v 2 L1.0;T; lip/ (where lip is
the space of bounded functions with bounded derivatives) such that div v D 0 and
v � � D 0 on @˝ . Then the transport problem

.D/

8<
:
@a

@t
C v � ra D 0; in˝ � .0;T/

a.�; 0/ D a0; in˝:

has a unique solution such that a 2 C.0;T;W1;q.˝// if q < C1
and a 2 L1.0;T;W1;1.˝//\ C.0;T;

T
0<r<1

W1;r.˝// if q D C1.

Furthermore for all t 2 Œ0;T�, ka.t/kW1;q.˝/ � e

Z t

0

krv.s/kL1.˝/ ds ka0kW1;q.˝/

and if a 2 Lp.˝/ for a p 2 Œ1;C1Œ then ka.t/kLp.˝/ D ka0kLp.˝/.
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Lemma 2 Let w 2 L1.0;T;H3.˝// and �0 2 H2.˝/ then there exists a unique
function � 2 C.0;T;H2.˝// such that

.ES /

8<
:
� CWe

�
@�

@t
C g.�;rw/C B.w; �/

�
D 2!�.w/; in ˝ � .0;T/;

�.�; 0/ D �0; in˝:

Moreover there exists a constant C0 such that

k�kL1.0;T;H2.˝// � .k�0k2H2.˝/ C
2!

C0We
/ exp C0 kwkL1.0;T;H3.˝// :

g.�;ru/ D ��.ru/ � .ru/T� , B.u; �/ D .u � r/� , � D �s C �p, ! D �p

�
, and

We D �U

L
(where We is the Weissenberg number, U and L are the characteristic

flow velocity and channel length, respectively).

Let us consider the following Banach space D
1� 1p ;p
Ar

.˝/ that stands for a fractional

domain of the Stokes operator in Lr.˝/ (the vector-fields of D
1� 1p ;p
Ar

.˝/ have 2 � 2
p

derivatives in Lr.˝/, are divergence-free and vanish on @˝). e�tAr is the semigroup
associated to Ar (Helmoltz decomposition of the operator	).

Lemma 3 Let ˝ be a C2C� bounded domain (for some � > 0),
1 < p; r < C1 and q 2 .N;C1� such that q � r. Let u0 2 D

1� 1p ;p
Ar

.˝/ and
f 2 Lp.0;T;Lr.˝//. Moreover, we assume that � solution of .D/ verifies 8.x; t/ 2
˝ � .0;T/ 0 < Q� � �.x; t/ < L� < C1 ( Q� and L� are positive constants) and
for some value ˇ 2 .0; 1�, � 2 L1.0;T;W1;q.˝// \ Cˇ.Œ0;T�;L1.˝// then the
problem

.S /

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

�
@u
@t
� �	uCr
 D f ; in˝ � .0;T/;

div u D 0; in ˝ � .0;T/;
u.�; 0/ D u0; in ˝;

u.x; t/ D 0; on @˝ � .0;T/;

has a unique solution .u; 
/ such that

u 2 C.Œ0;T�;D
1� 1

p ;p

Ar
.˝// \ Lp.0;T;W2;r.˝/ \ W1;r

0 .˝//, 
 2 Lp.0;T;W1;r.˝//

and
@u
@t
2 Lr.0;T;Lp.˝//;

Based on the previous results we can prove the following theorem:
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Theorem 4 Let 1 < p < C1, q 2 .N;C1� such that q � 2, u0 2 D
1� 1p ;p
A2

.˝/,
�0 2 H2.˝/, �0 2 W1;q.˝/ and T > 0 satisfying ku0k < 2. Considering the
application

� W RT �! C .Œ0;T�;W3;2.˝// � C .Œ0;T�;W1;q.˝// � C .Œ0;T�;H2.˝//

. Qu; Q�; Q�/ 7�! .u; �; �/

where: (a) � is the unique solution of .D/ with v D Qu, (b) � solution of .E S/ with
w D Qu and (c) u solution of .S / with � D Q� and f D div. Q�/, then the application
� has a fixed point for some 0 < T� � T. This fixed point is a solution of problem
.Ps/.

3 Numerical Results

3.1 Setting up the Numerical Model

As a first approximation the microchannel can be considered as a rectangular
geometry separated by a perforated structure, see Fig. 1. The motion of a single
cell was explored in this computational domain: 12R � 8R. The undisturbed flow
without any cell inside is considered as fully developed with a parabolic velocity
profile u0. The fluid enters the microchannel by the left hand side, such that the
velocity changes along the Y-axis as u0 D .U y

H .1 � y
H /; 0/. Here H is the height

of the channel above the structure, which is four times the radius of the cell R,
and U D 1:05 � 10�3 (m/s) is the centerline velocity of the undisturbed parabolic
flow. On the structure boundaries as well as on the edges surrounding the channel
the flow satisfies no-slip boundary conditions. The boundary condition at the edge
close to the inflammation zone is the null pressure. In this study, the monocyte was

Fig. 1 Oldroyd-B drop model of individual cell. The membrane is modeled as an interface with a
constant surface tension, the fluid inside the cell is modeled as an Oldroyd-B viscoelastic fluid, the
fluid outside is modeled as a Newtonian fluid
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assumed to be the only blood cell behaving like a liquid drop, i.e., it is deforming
continuously from a spherical shape into other shapes. In the next section we give
a comparison in terms of the shape deformation and volume fraction when the
intracellular liquid is modeled as a homogeneous Newtonian viscous liquid drop
[6], and when it is a viscoelastic drop.

3.2 Numerical Implementation

The level set method is particularly well suited for the numerical study of models
with fluid-interface motion. The interface is represented implicitly and the equation
of motion is numerically approximated using schemes built from hyperbolic con-
servation laws. The level set interface finds the fluid interface by tracing the isolines
of the level set function given by a function �. The equation governing the transport

and reinitialization of � is given by
@�

@t
C v � r� D 
rr � ."rr� � �.1� �/ r�jr�j/,

where v(m/s) is the velocity transporting the interface, 
r(m/s) and "r(m) are
reinitialization parameters, such that "r D hc=2, with hc the characteristic mesh
size in the region passed by the interface and 
r is the maximum velocity magnitude
occurring in the model. This equation is written here in the form used by Comsol
in the numerical implementation. The equation is coupled to the Navier-Stokes
equations through the level set function and the velocity field. The Navier-Stokes
equations read as follows

�.
@v
@t
C v � rv/ D �r� C Fst; div v D 0;

where the surface tension force is Fst D r � Œ�stfI C .�nnT/gı�, I is the
identity matrix, n is the interface unit normal, and ı is a Dirac delta func-
tion. As already seen in Sect. 2, � denotes the total stress tensor �.p; v; �/ D
�p C 2�s

c�.u/ C � . The Oldroyd-B constitutive equation is given by: � C
�

�
@�

@t
C .v � r/� � �.rv/ � .rv/T�

�
�2�p

c�.v/ D 0;where �.v/ D 1

2
.rvCrvT/

is the rate of the strain tensor. If � D 0 the Oldroyd-B model will be reduced to the
Newtonian model.

The solution vector contains the unknowns Œv p � ��. The resulting coupled
system was solved using a finite element method based on Lagrange quadratic
elements for the flow velocity and extra stress components and Lagrange linear
elements for the pressure, with a maximum time step of 10�3s. All the computations
were performed with the automatic mesh generated by the direct Pardiso solver
which corresponds to 14,119 degrees of freedom in the case of the Newtonian
droplet model and 17,083 in the case of viscoelastic Oldroyd-B droplet model.
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3.3 Results

In Fig. 2 the images show how the fluid 2 (cell) travels down through the fluid
1 (plasma) and adheres to the structure below (endothelial layer). When the cell
crawls, its shape remains circular due to the surface tension and the high viscosity
of the cell (parameters of monocytes used in this model are given in Table 1).
When the cell reaches the hole (the leaky junction), it deforms to transmigrate in
the direction of the outlet pressure free (inflammation zone). The viscosity plays
an important role in the motion and deformation of the cell. A constant viscosity
accelerates the motion and deformation of the cell modeled as a Newtonian liquid
drop. In contrast, when the cell is modeled as an Oldroyd-B viscoelastic droplet, the
viscosity is higher (see Table 1) and the cell’s motion and deformation slow down
significantly. The results lead us to estimate the risk associated with the development
of vulnerable plaques. Hence the Newtonian droplet model overestimates the risk of
plaque formation since in this case there is a faster accumulation and continued
recruitment of monocytes, compared to the behavior of a cell modeled as an
Oldroyd-B viscoelastic droplet.

Fig. 2 Snapshots showing the volume fraction of fluid 2 (cell) and the arrow velocity field at
t D0.01s, 0.2s and 0.4s (from the top to the bottom) for Oldroyd-B and Newtonian droplet models
(left and right, respectively)
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Table 1 Parameters used for the numerical simulations, some of them were taken from [6] and
others were provided by the Institute of Molecular Medicine (IMM – FML) in Lisbon, Portugal.
(Subscripts c and ec denote cell and extracellular fluid)

Parameters Value Description Parameters Value Description

Rm 5.5�m Monocyte radius RE 35�m Endothelial cell
radius

�ec 1000 kg�m�3 Plasma density �c 1063 kg�m�3 Monocyte density

�ec 0.001 Pa�s Plasma viscosity �p
c 0.05 Pa�s Monocyte

polymer viscosity

�st 24�N/m Surface tension �s
c 0.001 Pa�s Monocyte solvent

viscosity

4 Conclusion

We developed and analyze a simplified mathematical model describing the coupled
deformation-flow of an individual monocyte in a microchannel. This model has
been implemented in Comsol, using a non-conservative level set method for the
simulation of the two phase flow interface. Results obtained using models for
a Newtonian droplet liquid and an Oldroyd-B viscoelastic droplet have been
qualitatively compared. This preliminary work describes the theory and implemen-
tation of the level set method for two fluids with different flow behaviors. Since
the subendothelial layer is a conjonctive tissue, future studies should focus on
developing more realistic models for this structure. However, we conclude that the
results obtained so far are, qualitatively, in agreement with those observed by the
experimentalists working in the field.
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Parallel Two-Level Overlapping Schwarz
Methods in Fluid-Structure Interaction

Alexander Heinlein, Axel Klawonn, and Oliver Rheinbach

Abstract Parallel overlapping Schwarz preconditioners are considered and applied
to the structural block in monolithic fluid-structure interaction (FSI). The two-
level overlapping Schwarz method uses a coarse level based on energy minimizing
functions. Linear elastic as well as nonlinear, anisotropic hyperelastic structural
models are considered in an FSI problem of a pressure wave in a tube. Using our
recent parallel implementation of a two-level overlapping Schwarz preconditioner
based on the Trilinos library, the total computation time of our FSI benchmark
problem was reduced by more than a factor of two compared to the algebraic one-
level overlapping Schwarz method used previously. Finally, also strong scalability
for our FSI problem is shown for up to 512 processor cores.

1 The Two-Level Overlapping Schwarz Preconditioner

The GDSW preconditioner [5] is a two-level additive Schwarz preconditioner

M�1GDSW D ˚


˚TA˚

��1
˚T C

NX
iD1

RT
i
QA�1i Ri; (1)

with a special choice of energy minimizing coarse space functions ˚ . The coarse
space functions are discrete harmonic extensions of the restrictions of the null space
of A to connected components (vertices, edges, and faces) of the interface � of a
nonoverlapping domain decomposition. For the elasticity problems considered here,
the null space is spanned by the three translations r1; r2; r3 and three (linearized)
rotations r4; r5; r6.
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Let I D ˝ n � be the set of degrees of freedom (d.o.f.) in the interior of a
subdomain. Then the basis functions of the GDSW coarse space are defined by

˚ D
��A�1II AT

� I˚�
˚�

�
D
�
˚I

˚�

�
; (2)

where ˚� D
�
RT
�1G�1 : : : R

T
�MG� N


; and R� j is the restriction from � onto �j,

the j-th interface component. The matrices G� j are chosen such that their columns
form a basis of the restriction of the matrix G to the indices corresponding to �j. For
GDSW, the condition number bound

�


M�1GDSWK

� � C

�
1C H

ı

��
1C log

�
H

h

��

was shown in [5]. Here, H and h are the typical subdomain and finite element
diameters and ı denotes the overlap.

We have implemented a parallel GDSW preconditioner based on Trilinos [8]
and report on parallel scalability for model problems in [7]. Currently, we use
UMFPACK 5.3.0 to solve the problems on the subdomains (from algebraic or
geometric overlapping Schwarz) and MUMPS 4.10.0 in MPI-parallel mode for
the coarse problem. From our experience, on modern AMD or Intel processors,
UMFPACK is often not slower than MUMPS if the matrices are small although
Umfpack often uses more memory.

We use a one-to-one correspondence of subdomains to cores.

2 Monolithic Fluid-Structure Interaction

We use the software environment from [3], i.e., we use the LifeV software library
3.6.2 coupled to FEAP 8.2. As opposed to [3], where a convective explicit (CE)
approach was used for the fluid, we now use a fully implicit scheme, and the
linearized systems are now preconditioned using a FaCSI preconditioner applying a
SIMPLE preconditioner for the fluid; see [4].

2.1 Model Description

The fluid-structure interaction (FSI) problem consists of the fluid problem

8<
:
�f

�
@u
@t

ˇ̌
ˇ̌
X
C ..u� w/ � r/u

�
� r � � f .u; p/ D 0 in ˝ f

t � .0;T�;
r � u D 0 in ˝ f

t � .0;T�;
(3)
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which corresponds to the incompressible Navier-Stokes equations in Arbitrary
Lagrangian Eulerian (ALE) formulation, cf. [6], and the structural problem

�s
@2ds

@t2
� r � .FS/ D 0 in ˝s � .0;T�: (4)

Here, ˝ f
t and ˝ f are the fluid domain in the actual and the reference configuration,

respectively,˝s is the structural reference configuration, and � D @˝ f \@˝s is the
FSI interface. In (3), @

@t jX D @
@t Cw � r is the ALE derivative and X corresponds to

the fluid coordinates in reference configuration, �f denotes the density of the fluid,

u and p are the velocity and pressure, respectively, w D @df
@t jX is the velocity and

df the displacement of the computational fluid domain, and � f .u; p/ is the Cauchy
stress tensor. In (4), ds is the displacement of the structure, �s is the density of the
structure, and FS are the first Piola-Kirchhoff stresses.

The ALE mapping At D id C df is obtained by solving an additional geometry
problem

8<
:
�	df D 0 in ˝ f ;

df D ds on �;
df � nf D 0 on @˝ f n�;

i.e., by means of a discrete harmonic extension. The fluid, structural, and geometry
problems are coupled by the geometric adherence (5), the continuity of the
velocities (6), and the continuity of the stresses (7) on � ,

df D ds; (5)

@ds

@t
D u ıAt; (6)

.detŒF�/�1F�T � f nf ıAt C .FS/ ns D 0: (7)

Here, nf and ns are the outer normal vectors of the fluid and the structural domain,
respectively, and F is the deformation gradient.

2.2 Monolithic Coupling in FSI

We use finite differences, in a fully implicit scheme, for the approximation of the
time derivatives of both the fluid and the structure equations. We use piecewise
quadratic (P2) finite elements for the structure and geometry problems and P2–P1
mixed finite elements for the fluid, using conforming meshes at the FSI interface.
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The monolithic approach leads to a single nonlinear system containing the fluid
(F), the structure (S), the geometry (H) problem, and the coupling conditions,

0
BBB@
F.unC1

f ; pnC1;dnC1
f / C 0 C CT

1 	nC1 C 0
0 C S .dnC1

s / C CT
3 	nC1 C 0

C1 unC1
f C C2 dnC1

s C 0 C 0
0 C C4dnC1

s C 0 C H dnC1
f

1
CCCA D

0
BB@

bf

bs

C2 dn
s

0

1
CCA : (8)

Here, 	 is the vector of Lagrange multipliers. For conforming meshes, we have
C1j� D Ij� , C3j� D �Ij� , C2j� D 1=	t C3, C4j� D Ij� ; where Ij� is the identity
matrix defined on the interface � .

2.3 Linearization and Parallel Monolithic Preconditioner

As in [3], we solve the nonlinear monolithic FSI problem (8) using an inexact
Newton method, i.e., the Newton equation is solved iteratively only up to a given
tolerance. The corresponding tangent JM, associated with (8), reads

JM D

0
BB@
D.uf ;p/F 0 CT

1 Ddf F
0 DdsS CT

3 0

C1 C2 0 0

0 C4 0 H

1
CCA �

0
BB@
D.uf ;p/F 0 CT

1 Ddf F
0 DdsS 0 0

C1 C2 0 0

0 C4 0 H

1
CCA DW PDN : (9)

Here, D.uf ;p/F denotes the linearization of the fluid operator, Ddf F the shape
derivatives, and DdsS the linearization of the structural operator.

We solve the linearized system using a GMRES iteration with the FaCSI
preconditioner [4], which is based on a factorization of the matrix PDN . The fluid
block is treated further by static condensation of the interface degrees of freedom
and the use of a SIMPLE preconditioner for the fluid block; see [4]. The inverses
appearing in the application of the FaCSI preconditioner are replaced by algebraic
(for geometry, fluid, or structure, separately) and geometric one-level overlapping
Schwarz preconditioners (for the structure) or the GDSW preconditioner (for the
structure).

3 Numerical Results for Fluid-Structure Interaction

We consider our FSI problem while applying different preconditioners to the
structural block – but without replacing the IFPACK preconditioners for the fluid
and geometry blocks. We then report on the resulting performance of the full
monolithic FSI simulation.
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The default preconditioner for the structural block is IFPACK, a parallel algebraic
overlapping Schwarz preconditioner from Trilinos [8]. The systems from LifeV use
block coordinate numbering, i.e., all x variable first. Our parallel preconditioner has
two potential advantages over IFPACK: it uses a geometric overlap, and it can use a
coarse space, for better robustness and improved numerical scalability. We consider
three different meshes; cf. Fig. 1 and Table 1. We apply zero-displacement Dirichlet
boundary conditions to the structure at the inlet and the outlet. A pressure wave in a
tube (see Fig. 2) is created by applying a constant normal stress � � n D 1:33 kPa at
the inflow for t � 0:003s. We consider three different material models for the wall,
i.e., a linear elastic (LE), a Neo-Hookean (NH), and a realistic anisotropic nonlinear
material model (�A), cf. [1, 2], which we have already considered in FSI for arterial
walls in [3]. For linear elasticity, we use E D 400 kPa and � D 0:3, for Neo-Hooke,

Inflow

Outflow
Mesh #1: Interior radius of the structure 0.15cm

Outer radius of the structure 0.21cm
Length 2.5cm

Mesh #2: Interior radius of the structure 0.08cm
Outer radius of the structure 0.1cm
Length 5cm

Mesh #3: Interior radius of the structure 0.08cm
Outer radius of the structure 0.11cm
Length 10cm

Fig. 1 Geometry of the FSI problem. The number of d.o.f. is almost identical for all geometries
and well-balanced between fluid (F) and structure (S), cf. Table 1

Table 1 Number of degrees of freedom of the different meshes

Mesh Velocity (F) Pressure (F) Displacement (S) Displacement (G)

#1 393;903 17;261 379;080 393;903

#2 401;763 17;775 373;032 401;763

#3 376;623 17;352 346;320 376;623

Fig. 2 Fluid pressure (top) and structural deformation (bottom) for the linear elastic (left), the Neo-
Hookean (middle), and the �A (right) material model at t D 0:003s. The structural displacement
is magnified by a factor of 10. The figure also illustrates the significantly different behavior for the
material models
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� D 77:2 kPa and � D 3833 kPa, and for the �A model, we use the parameters
from [2, (�A Set 2)].

3.1 Time to Solution Using Different Preconditioners
for the Structure Block

We perform simulations of the pressure wave in a tube for a total simulation time
T D 0:01s. We use a time step 	t D 0:0001s, 0:0002s, 0:0004s, or 0:0005s,
i.e., we solve 100, 50, 25 or 20 monolithic nonlinear systems. The nonlinear
problems are solved using, on average, 5.1 (LE 0:0001s), 5.6 (NH 0:0001s), 6.6
(�A 0:0001s), 6.1 (LE 0:0002s), 6.3 (NH 0:0002s), 7.9 (�A 0:0002s), 7.4 (LE
0:0004s), 7.9 (NH 0:0004s), 11.9 (�A 0:0004s), 8.4 (LE 0:0005s), or 9.5 (NH
0:0005s) Newton iterations, and a preconditioned GMRES iteration is used to solve
the linearized monolithic systems in each Newton step. Our stopping criterion for
Newton is a mixed criterion with a relative and absolute tolerance of 10�8 , i.e.,
the Newton iteration is stopped when minfkrnk1; krnk1=kr0k1g < 10�8, and for
GMRES a relative tolerance of 10�6 , i.e., the GMRES iteration is stopped when
krnk2=kr0k2 < 10�6. With k � k1 and k � k2 we refer to the corresponding vector
norms. The computations were performed on a Cray XT6 (Universität Duisburg-
Essen). We compare the number of iterations and the computing times in Table 2;

Table 2 Average computing time per time step (in minutes) and average number of GMRES
iterations per Newton step for the pressure wave in a tube problem; see Fig. 3 for the total runtimes.
Linear elasticity (LE), Neo-Hooke (NH), and a nonlinear, anisotropic hyperelastic material law to
model an arterial wall (�A); see also Fig. 2. The time step is 	t and the final simulation time is
T D 0:01s. We compare IFPACK with the one-level overlapping Schwarz preconditioner (OS1)
and the GDSW preconditioner with and without rotations (GDSW/GDSW-nr) on 128 cores of a
Cray XT6m. No convergence for �A and 	t D 0:0005. Best numbers in bold face

One-level Schwarz GDSW w/o rot.

IFPACK (OS1) (GDSW-nr) GDSW

GMRES GMRES GMRES GMRES

	t Struct. Time iter Time iter Time iter Time iter

0.0001s LE 5:0 m 53:4 5:1m 50:8 5:4m 51:8 5:3m 50:8
NH 8:6m 89:8 6:8 m 59:3 7:1m 55:0m 7:0m 52:7
�A 19:7m 214:7 9:9 m 82:0 10:5m 81:0 10:6m 79:1

0.0002s LE 8:9m 95:8 7:8m 74:5 7:0m 60:7 6:8 m 58:0
NH 14:2m 152:4 9:8m 87:5 9:6m 77:2 9:0 m 66:0
�A 33:3m 316:7 13:2 m 96:9 13:8m 94:1 13:9m 90:7

0.0004s LE 15:3m 147:2 14:1m 124:5 10:9m 84:4 9:6 m 71:9
NH 24:7m 226:5 17:8m 145:7 16:2m 117:9 13:6 m 88:4
�A 63:0m 399:9 27:0m 145:4 27:1m 135:5 23:5 m 108:5

0.0005s LE 19:4m 169:0 17:7m 142:0 13:0m 93:7 11:3 m 76:3
NH 33:5m 261:5 24:2m 171:0 20:9m 133:2 17:1 m 96:1



Two-Level Overlapping Schwarz Methods in Fluid Structure Interaction 527

Fig. 3 Total number of GMRES iterations (top) and total runtime (bottom) for the pressure wave in
a tube FSI problem using Mesh #1 and 128 cores; see also Table 2. We use different preconditioners
for the structure block. “OS1” is the one-level Schwarz preconditioner, “GDSW-nr” is the GDSW
preconditioner without rotations, and “GDSW” is the GDSW preconditioner with full coarse space

see also Fig. 3. When using our preconditioner, we consider three cases: only using
the first level (OS1), using the first and coarse level but neglecting the rotations
(r4; r5; r6) when constructing the coarse level (GDSW-nr), and using the full GDSW
preconditioner (GDSW), i.e., with first and coarse level. In the case where rotations
are neglected (GDSW-nr) no geometric information is needed for the construction
of the coarse problem. For all overlapping Schwarz preconditioners, including
IFPACK, we specify an overlap of ı D 2h. We perform the comparison using
Mesh #1 and 128 cores.

In Table 2, for a small time step, all preconditioners show a very similar
performance with respect to the number of GMRES iteration as well as the timings.
However, for a larger time step, where the weight in front of the mass matrix is
small, the number of iterations and the timings for IFPACK quickly deteriorate.
The other methods, which use a geometric overlap, show a better performance. The
use of a coarse space gives further improvements: for the largest time steps the
GDSW preconditioner is the fastest method. Neglecting the rotations in the GDSW
preconditioner (GDSW-nr), which makes the preconditioner more algebraic, yields
a number of iterations which falls between the one-level preconditioner and the
GDSW preconditioner with the full coarse space. For our experiments, it thus seems
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that for GDSW-nr it is not easy to amortize the cost for the coarse level compared
to OS1.

The use of the GDSW preconditioner with the full coarse space, however, can
be recommended as a new default. For smaller time steps the performance of all
preconditioners is similar and for larger time steps it is clearly the fastest option:
for the most challenging structural model (�A) combined with the largest time step
the monolithic FSI simulation is more than 2.5 times faster when using the GDSW
preconditioner instead of IFPACK; see Table 2. This is especially remarkable since,
in our monolithic preconditioner, we have only exchanged the preconditioner for the
structural block whereas the timings are for the complete FSI simulation.

3.2 Strong Scaling for the Fluid-Structure Interaction Problem

In Figs. 4 and 5, we present strong parallel scaling results for the first time step for
the pressure wave in a tube using 	t D 0:0001s and 	t D 0:0002s, respectively,
for a linear elastic tube. The computations were performed on the JUQUEEN
supercomputer (JSC Jülich, Germany). For the structure, we have used our new
default preconditioner, i.e., the GDSW preconditioner including rotations, with
overlaps of ı D 1h and ı D 2h. For the fluid and the geometry blocks, we have
used the IFPACK preconditioner with overlap ı D 2h. We present the GMRES
iterations per Newton step and the total runtime for a time step. The timings are for
the first time step of the fully coupled FSI simulation.

For all cases, we observe good scalability results but also a significant influence
of the geometry on the performance: the properties of the domain decompositions
result in different numbers of GMRES iterations. The simulation is stopped before
the wave has reached the outflow. Therefore, reflections at the outflow are not
relevant, here. The scaling is slightly worse for a time step of 0:0002s, which is
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Fig. 4 Strong scaling (16 to 512 cores) for FSI using linear elasticity and 	t D 0:0001s. The
computing time for one time step is shown. Always 3 Newton steps
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Fig. 5 Same as Fig. 4 but using 	t D 0:0002s. Newton steps vary from 3 to 5

partially a result of a higher number of Newton iterations. For Mesh #3, we observe
the lowest number of iterations, the best numerical scalability, the lowest computing
times, and the best parallel scalability.
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Finite Volume Scheme for Modeling of NAPL
Vapor Transport in Air

Ondřej Pártl, Michal Beneš, and Peter Frolkovič

Abstract We present a mathematical and numerical model for non-isothermal,
compressible flow of a mixture of two ideal gases subject to gravity. This flow is
described by the balance equations for mass, momentum and energy that are solved
numerically by the scheme based on the method of lines. The spatial discretization is
carried out by means of the finite volume method, where the staggered arrangement
of variables is employed. The time integration is realized by the Runge-Kutta-
Merson method. The article also contains test results obtained by the presented
numerical scheme.

1 Introduction

Detailed description of compositional flow through porous media and free space
above it is a part of the research carried out within the context of environment
protection, new energy resources and climate change [3, 5]. The subject of our
research is the NAPL (Non-Aqueous Phase Liquids) vapor transport driven by air
flow in porous medium and above its surface. Our aim is to describe such a flow
and to discuss its nature. In this paper, we present the part of our model describing
the non-isothermal, compressible, free flow above the porous medium in which we
also include gravity effects. Hence our model differs from the other models for
multicomponent free flow because, to the best of our knowledge, research in this
field concentrates on incompressible flows (e.g., [3, 8, 9]) or compressible flows
without gravity effects (e.g., [7, 10]). These models also differ in the complexity of
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the interaction among the species. We also present results of a numerical test carried
out by our scheme.

2 Mathematical Model

From the theory of gas mixtures described in [2, 4, 6], it follows that a mixture of
two polyatomic ideal gases (the first one will be referred to as ‘gas’ and the second
one as ‘NAPL vapor’) can be described by the following conservation laws:

@�=@tCr � .�v/ D 0 (conservation of mass); (1)

@�n=@tCr � Œ�n .vC Vn/� D 0 (conservation of NAPL vapor mass); (2)

@.�v/=@tCr � .PC �v˝ v/ D �g (conservation of momentum); (3)

@.�e/=@tCr � .QC �evC P � v/ D �g � v (conservation of energy): (4)

In this paper, vectors and matrices are printed in the bold font, whereas their
components are in the non-bold font, i.e., v D .v1; v2/. The quantities which refer
to the gas or NAPL vapor are denoted by the subscript g and n, respectively; the
quantities without subscript refer to the whole mixture. � Œkg � m�3� represents the
density, t Œs� the time, v Œm � s�1� the velocity, �i Œkg �m�3� the partial density of the
component i (

P
i2fn;gg �i D �), Vi Œm � s�1� the diffusion velocity of the component

i, P ŒPa� the pressure tensor and g Œm � s�2� the gravitational acceleration vector.
The symbol ˝ stands for the tensor product, e Œm2 � s�2� is the specific energy and
Q Œkg � s�3� the heat flow vector. The fluxes Vi, P and Q are defined as

Vi D �Pj2fn;gg Di;j


dj C kTj .rT=T/

�
; i D g; n; (5)

P D pI � 2�S; (6)

Q D ��rT C p
P

i2fn;gg
�
kTi C �

��1
pi
p

	
Vi; (7)

where di Œm�1� denotes the diffusion driving force defined by

di D r .pi=p/C .pi=p � Xi/ .rp=p/ ; (8)

where pi ŒPa� and Xi Œ�� stand for the partial pressure and mass fraction of the
component i (

P
i2fn;gg pi D p,

P
i2fn;gg Xi D 1), respectively, and p ŒPa� is the

pressure.Di;j Œm2 �s�1� is the multicomponent diffusion coefficient, where Di;j D Dj;i

andDi;i D �


�j=�i

�
Dj;i if �i ¤ 0; otherwise,Di;i is not needed. kTi Œ�� is the thermal

diffusion ratio, kTn D �kTg, � Œkg �m�1 � s�1� denotes the dynamic viscosity, S Œs�1�
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the rate-of-shear tensor defined by

Si;j D .1=2/


@vj=@xi C @vi=@xj

� � .1=3/r � vıi;j; (9)

where xi Œm�, i D 1; 2, are spatial coordinates, and ıi;j is the Kronecker delta. � Œkg �
m �K�1 � s�3� denotes the thermal conductivity coefficient, T ŒK� the thermodynamic
temperature and � D cp

cv
Œ�� the ratio of specific heats, where cp ŒJ � kg�1 � K�1� and

cV ŒJ �kg�1 �K�1� are the specific heat at constant pressure and volume, respectively.
System (1), (2), (3), and (4) is supplemented by the formula �e D cV� T C 1

2
�v2

and by the ideal gas equation of state � D pM= .RT/, where R ŒJ � K�1 � mol�1�
stands for the gas constant, and M Œkg � mol�1� is the molar mass defined by M D�P

i2fn;gg Xi=Mi

	�1
, where Mi Œkg �mol�1� is the molar mass of the component i. If

we combine the previous equations with the Mayer relation M.cp�cV/ D R, we get
the formula which relates the energy to the pressure p D .� � 1/ 
�e � 1

2
v2�

�
.

Note that for �n D 0, the governing equations reduce to the compressible Navier-
Stokes equations and the corresponding energy balance equation.

The previous system is solved in a rectangular domain ˝ � R
2 and on a time

interval Œtini; tfin�, where the initial conditions are

�.tini; x/ D �ini.x/; �n.tini; x/ D �n;ini.x/; (10)

T.tini; x/ D Tini.x/; v.tini; x/ D vini.x/ (11)

for x 2 ˝ . The boundary conditions will be discussed in Sect. 4.

3 Numerical Solution

The aforementioned mathematical problem is solved by means of the method of
lines. The spatial discretization is carried out by the finite volume method, where
the staggered arrangement of the variables is used [12]. For the time integration, the
Runge-Kutta-Merson method [11] is employed. The primary variables are �, �n, �e,
�v1 and �v2.

The rectangular computational domain ˝ is covered by the orthogonal mesh
depicted in Fig. 1, i.e., ˝ is covered by rectangles. All of the scalar variables are
defined at the vertices (referred to as s-nodes) of these rectangles. The variables �v1
and �v2 are defined at the midpoints (referred to as 1- and 2-nodes, respectively) of
the vertical and horizontal edges of these rectangles, respectively. The upper indices
s, 1 and 2 refer to the s-, 1- and 2-nodes. Each s-, 1- and 2-node that does not lie on
@˝ is surrounded by a rectangular finite volume each edge of which lies on the axis
of symmetry of the line segment connecting this node with a neighboring s-, 1- and
2-node, respectively (see Fig. 1).
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Fig. 1 Mesh of rectangles
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Moreover, the mesh covering the domain˝ is extended by one layer of auxiliary
rectangles [1] (the extension of ˝ is denoted by Q̋ ), and the boundary conditions
are prescribed at the corresponding s-, 1- and 2-nodes (called ‘dummy nodes’) lying
in these rectangles. Therefore, equations (1), (2), (3), and (4) are solved in the whole
of ˝ .

We shall use the following notation (see Fig. 1):

– X s D ˚
xsi
�Ns

iD1, X
1 D ˚

x1i
�N1
iD1 and X 2 D ˚

x2i
�N2
iD1 and QX s D ˚

xsi
� QNs

iD1, QX 1 D˚
x1i
� QN1
iD1 and QX 2 D ˚

x2i
� QN2
iD1 are the sets of all s-, 1- and 2-nodes in ˝ and in Q̋ ,

respectively.

– �˛
i D

n
jj x˛j is a neighbour of x˛i

o
.

– V˛i is the finite volume associated with the node x˛i .
– x˛i;j is the midpoint of the line segment connecting the nodes x˛i and x˛j .
– � ˛

i;j is the common face of the volumes V˛i and V˛j .
– f .x˛i / D f ˛i and f .x˛i;j/ D f ˛i;j, where the time coordinate is omitted.
– Œf �k denotes the k-th component of the vector f , when there are too many symbols

in the definition of f .

The preceding notation will be used for scalar- (f ) as well as vector-valued (f )
functions.

The numerical scheme is derived by integrating each of equations (1), (2), (3),
and (4) over a corresponding volume V˛i , applying the Green formula and using the
following approximation formulas:

–
R
V˛i

f .x/ dx
:D jV˛i jf ˛i , where jV˛i j denotes the area of V˛i .

–
R
V˛i
.rf / .x/ dx

:D jV˛i j .rf /˛i .

–
R
@V˛i

f .x/ � n dx
:DPj2�˛i j� ˛

i;j jf˛i;j � n˛i;j, where j� ˛
i;j j denotes the length of � ˛

i;j , and
n˛i;j is the unit outward normal with respect to � ˛

i;j .
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We get the system of ordinary differential equations (the dummy nodes are used),

jVs
i j P�si C

P
j2�˛i j� s

i;jj�si;jvs
i;j � ns

i;j D 0; i D 1; 2; : : :NsI (12)

jVs
i j P�sn;i C

P
j2�˛i j� s

i;jj�sn;i;j
�
vs
i;j C Vs

n;i;j

	
� nsi;j D 0; i D 1; 2; : : :NsI (13)

jV˛i j P.�v˛/˛i C jV˛i j
�
.rp/˛i


˛
CPj2�˛i j� ˛

i;j j
h
.P � pI/˛i;j � n˛i;j

i
˛

CPj2�˛i j� ˛
i;j j.�v˛/˛i;jv˛i;j � n˛i;j D jV˛i j�˛i g˛; i D 1; 2; : : :N˛; ˛ D 1; 2I

(14)

jVs
i j P.�e/si C

P
j2�˛i j� s

i;jj
h
.P � v/si;j C Qs

i;j C .�e/si;jvs
i;j

i
� nsi;j

D jVs
i jg � .�v/si ; i D 1; 2; : : :NsI

(15)

where

Vs
n;i;j D �

P
l2fn;gg Ds

n;l;i;j

�
dsl;i;j C ksTl;i;j

�
rTs

i;j=T
s
i;j

		
; (16)

dsl;i;j D r .pl=p/si;j C


psl;i;j=p

s
i;j � Xs

l;i;j

� 
rpsi;j=psi;j� ; (17)

P˛i;j D .pI � 2�S/˛i;j ; ˛ D s; 1; 2; (18)

Qs
i;j D �� .rT/si;j C psi;j

P
l2fn;gg

�
ksTl;i;j C �

��1
�
psl;i;j=p

s
i;j

		
Vs

l;i;j: (19)

For stability reasons, the term
R
V˛i
rp is approximated as a volume integral in (14),

and the underlined terms are modified by the full upwind formula f ˛i;j D f ˛i if v˛i;j �
n˛i;j � 0; otherwise, f ˛i;j D f ˛j , ˛ D s; 1; 2.

In equations (12), (13), (14), and (15), only the function values that are really
needed are calculated. This is realized in the following way: First, we calculate all
of the values �.xsi /, i D 1; 2; : : : QNs. Second, we calculate all of the values v˛.x˛i /,
.�v˛/ .x˛i /, i D 1; 2; : : : QN˛ , ˛ D 1; 2. The missing values of � are obtained via
interpolation, where the same interpolation as in the next paragraph is employed.
Third, we calculate the rest of the scalar variables at all of the s-nodes in Q̋ .

In general, the function values at the midpoints of the finite volume faces are cal-
culated via linear interpolation from the nearest function values. If the functions �, p
and �e are supposed to be approximately exponential in the xi direction (e.g., due to
initial conditions), their values are interpolated exponentially in this direction. The
same applies for extrapolation. The fractions �k=� D Xn and pk=p are interpolated
only linearly. �n is calculated from � and Xn. Thus, we have, for example (see Fig. 1
for the notation), �12

:D 

�s4 C �s5

�
=2, v2.x12/

:D v2;u�v2;d
Œx21�2�Œx23�2

.
�
xs4

2
� �x232/ C v2;d ,

where v2;u D


v2.x21/C v2.x22/

�
=2 and v2;d D



v2.x23/C v2.x24/

�
=2.
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The spatial derivatives are calculated from the nearest values as well. We have,
for example, .@v1=@x1/.x12/

:D 
v1.x11/� v1.x13/� = 
�x111 � �x131�.
Our experience indicates that the exponential extrapolation of � and p on the

boundary together with the approximation of
R
V2i
Œrp�2 as a volume integral in (14)

is necessary if we model a system in which the density and pressure distribution is
exponential. If, for example, the linear extrapolation is employed in such a case, the
numerical scheme produces non-physical oscillations of the state variables which
grow without limits.

4 Numerical Test

In this section, we present results of one of our numerical tests. Describing the
boundary conditions, we shall use the abbreviations lef, rig, top, bot which refer to
the left, right, top and bottom edge of Q̋ . The values of the physical constants used
in this section are listed in Table 1.

We consider the domain ˝ D .0:0; 3:0/ � .�0:5; 0:5/, where the units are
Œm�, and there are 60 and 20 squares in the x1- and x2-direction, respectively. The
same squares are used as the auxiliary rectangles. The following hydrostatic initial
(tini D 0:0s) conditions are considered: vini.x/ D vref, �n;ini.x/ D 0, Tini.x/ D Tref,

�ini.x/ D pref
Mg

RTref
exp

�
Mgg2
RTref

x2
	

.

At the dummy nodes, the following setup for v, �, �n and p is employed:

– Left edge. vjlef.x/ D vref, �jlef.x/ D .pref C 100:0/ Mg

RTref
exp

�
Mgg2
RTref

x2
	

,

�njlef.x/ D Xn;ref�jlef.x/; the pressure p is extrapolated constantly.
– Right edge. vjrig.x/ D vref; the densities � and �n and the pressure p are

extrapolated constantly.
– Top and bottom edge. vjtop.x/ D vref, vjbot.x/ D vref; the density �n is calculated

from Xn, which is extrapolated constantly. In accordance with the information at
the end of Sect. 3, the density � and the pressure p are extrapolated exponentially.

The coefficient kTn is calculated using the formula kTn D 0:35XnMM�1n , which is
based on information in [2].

Table 1 Values of constant physical parameters

Par. Value Unit Par. Value Unit

Dg;n �8:35 � 10�5 m2 � s�1 g1 0.0 m � s�2

� 1:725 � 10�5 kg �m�1 � s�1 g2 �9.81 m � s�2

� 0:02428 kg �m � K�1 � s�3 pref 101,325 Pa

� 1:4 � Tref 295.15 K

Mg 0:02896 kg �mol�1 Xn;ref 0.001 �
Mn 0:13139 kg �mol�1 vref;1 1.0 m � s�1

R 8:3144621 J � K�1 �mol�1 vref;2 0.0 m � s�1
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The numerical results are presented in Figs. 2 and 3. We can see how the wave of
higher density and non-zero density of NAPL vapor moves towards the right edge
(the final density distribution in the x2-direction equals to the density prescribed on
the left edge at every x1 2 Œ0:0; 3:0�). Note that the wavefront in Fig. 3 seems to be
skew because due to gravity, the density (unlike the mass fraction of NAPL vapor)
varies in the x2-direction.

Finally, Fig. 4 shows the density distribution calculated with the spatial mesh
which has 240 and 80 squares in the x1- and x2-direction, respectively. Comparison
between Figs. 3 and 4 indicates the numerical convergence.

Fig. 2 Mass fraction of NAPL vapor Xn Œ�� on mesh 60� 20 at time t D 1:5 s

Fig. 3 Density � Œkg �m�3� on mesh 60� 20 at time t D 1:5 s

Fig. 4 Density � Œkg �m�3� on mesh 240� 80 at time t D 1:5 s
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5 Conclusions

In the numerical results, our numerical scheme did not produce any non-physical
oscillation in the density �n, mass fraction Xn and pressure p, and in the regions
where the gradient of the solution is discontinuous, it adds a certain amount of
artificial diffusion. Further, the modifications on the scheme mentioned at the end
of the Sect. 3 seem to be necessary if we model a system in which the spatial
distribution of pressure and density is exponential.
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Numerical Solution of Constrained Curvature
Flow for Closed Planar Curves

Miroslav Kolář, Michal Beneš, and Daniel Ševčovič

Abstract This paper presents results of computational studies of the evolution law
for the constrained mean curvature flow. The considered motion law originates in
the theory of phase transitions in crystalline materials. It describes the evolution
of closed embedded curves with constant enclosed area. In the paper, the motion
law is treated by the parametric method, which leads into the system of degenerate
parabolic equations for the parametric description of the curve. This system is
numerically solved by means of the flowing finite volume method enhanced
by tangential redistribution. Qualitative and quantitative results of computational
studies are presented.

1 Introduction

The objective of this article is to investigate the numerical solution of non-local,
area preserving curvature flow for closed planar curves. The flow is given by the
following geometric evolution equation

v� D ��� C F; where F D 1

L.�t/

Z
�t

�� ds; (1)

�tjtD0 D �ini: (2)

Here, �t is a C1 smooth Jordan curve of the length L.�t/ D
R
�t

ds evolving in time.
It is evolved in the direction of the outer normal with velocity v� and driven by
the curvature �� and the particular non-local force term F. Our objective is to find
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a family f�t W t 2 .0;Tmax/g of closed nonselfintersecting planar curves evolving
from the initial curve �ini according to (1). Although the evolution Eq. (1) does not
involve a tangential redistribution term, any parametrization of the initial curve in (2)
inherently incorporates initial redistribution of grid points which is then propagated
along curve evolution.

Equation (1) belongs to a family of constrained curvature driven flows described
by general evolution law

v� D ��� C G;

where G is a possibly non-local force term preserving some quantity. In our case,
the particular choice of the force term as

R
�t
�� ds

ı
L.�t/ leads to the area preserving

curvature flow. Such geometric motion laws similar to (1) are discussed in the
literature (see, e.g., [1–5]). Another geometric evolution laws similar to (1) treating,
e.g., the length preserving curvature flow or the isoperimetric ratio gradient flow are
studied and discussed in, e.g., [6].

The constrained motion driven by the curvature has also been investigated, in [7,
8] within the context of a modification of the Allen-Cahn equation (see [9, 10]). The
non-local character of the geometric governing equation (1) is strongly connected
with the studies of the recrystallization phenomena, where a fixed, previously melted
volume of the liquid phase solidifies again (see [11]).

2 Parametric Method

The method presented in this paper is based on parametric description of the smooth
time-dependent curve �t (t � 0) by means of the vectorial mapping

X.u; t/ D .X1.u; t/;X2.u; t//;

where u 2 Œ0; 1� is a dimensionless parameter in a given fixed interval. Through-
out this paper, the parametrization is orientated counter-clockwise and periodic
boundary conditions at u D 0 and u D 1 are imposed, i.e., X.0; t/ D X.1; t/ and
@uX.0; t/ D @uX.1; t/.

Consequently, geometrical quantities of interest can be prescribed by the
parametrization X. The unit tangent and normal vectors t� and n� are defined
straightforwardly, and the curvature is given by Frenet formulae:

t� D @uX
j@uXj ; n� D @uX?

j@uXj ; �� .X/ D � 1

j@uXj@u
�
@uX
j@uXj

�
� n� :

Here X? D .X2;�X1/. This choice is in accordance with the rule det.n� ; t� / D 1.
Notice that in our case the curvature of the unit circle is �� D 1. The normal velocity
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is just a projection of the point velocity v� D @tX to the normal direction n� , i.e.,
v� D v� � n� . Finally, the curve �t evolves according to the law (1) provided
the parametric mapping X satisfies the following system of degenerate parabolic
equations

@tX D 1

j@uXj@u
�
@uX
j@uXj

�
C F

@uX?

j@uXj ; (3)

XjtD0 D Xini; (4)

for t 2 .0;Tmax/ and u 2 Œ0; 1�. The driving force F of flow (1) written by means of
the parametrization X becomes

F D
Z
�t

�� ds
ı
L.�t/ D

Z 1

0

�� .X/j@uXjdu
ıZ 1

0

j@uXjdu:

For details on this approach, we refer he reader to, e.g., [12–15]. Another approach
dealing with area preserving flows is based on the tangential velocity dependent on
the Laplace-Beltrami operator acting on the curvature. For such geometric flows (see
[16]) is well known that they describe area preserving geometric flows. The main
advantage of this approach is in fast and straightforward numerical treatment, which
is noticeable especially when comparing to other interface capturing methods, such
as the level-set method [17] or the phase-field method [18]. However, this approach
itself is not able to treat the cases, where changes in curve topology occurs (like
merging or splitting). For such a task, separate algorithms have to be developed [19].

We denote

A.�t/ D 1

2

Z 1

0

det.X; @uX/du: (5)

Then the flow (1) preserves the quantity A D A.�t/, i.e., A.�t/ D A.�ini/ for all
t � 0. For a closed curve, the quantity A.�t/ represents the enclosed area. Here we
remind the following result, which is known for the case when �t is the Jordan curve
(see e.g., [20]).

Remark 1 Let f�tgt�0 be a family of C1 smooth Jordan curves evolving in the
normal direction according to (1) and parametrized by the mapping X satisfying (3–
4). Then

dA.�t/

dt
D 0:
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3 Tangential Effects

By nature of law (1), the tangential terms do not affect the shape of the curve. Hence
they are not important from the analytical point of view. However, considering
numerical treatment of (1), properly chosen tangential terms can significantly affect
the solution. Discussion on the concept of the so called tangential redistribution
can be found in, e.g., [21]. For technical details of the tangential redistribution
for our parametric model, we refer the reader to [6, 12]. Notice that these papers
are concerned with non-locally dependent tangential velocities. As far as locally
dependent tangential velocities are concerned, we mention a tangential velocity
proposed and analyzed by Dziuk and Deckelnick in [22]. Resulting parametric
model (3) enhanced by tangential redistribution has the following form

@tX D 1

j@uXj@u
�
@uX
j@uXj

�
C ˛ @uX
j@uXj C F

@uX?

j@uXj ; (6)

where ˛ is a possibly non-local function of time and curvature. In our model,
we use the tangential redistribution discussed and applied in [6], which forces the
discretization points to be placed asymptotically uniformly along the curve. In this
case, the tangential term ˛ satisfies

1

j@uXj@u˛ D �� v� �
1

L.�t/

Z
�t

�� v� dsC !
�
L.�t/

j@uXj � 1
�
;

where ! is a given scalar parameter. To ensure the uniqueness of the solution, ˛ is
required to fulfill the condition

R
�t
˛ds

ı
L.�t/ D 0.

4 Numerical Solution

In our approach, the time evolving curve �t is approximated as a piece-wise linear
curve, and for the spatial discretization of governing equations (6), the flowing finite
volume method is used. For technical details and discussion on the method, we
refer the reader to, e.g., [5, 6, 12, 13, 21]. The discrete nodes Xi D X.t; ui/ for
i D 0; : : :M are placed along the curve �t, and linear segments connecting the
neighboring nodes represent the finite volumes. We denote dj D jXj � Xj�1j for
j D 1; : : :M, where X0 D XM . Similarly to the discrete nodes Xi, we consider
discretized tangential coefficients ˛i. For the way how to appropriately calculate the
redistribution coefficients ˛i within the context of used numerical scheme see, e.g.,
[12], where the problem of tangential redistribution is analyzed in detail. Finally,
our semi-discrete scheme for solving (6) within the context of the motion law (1) is
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the following

dXi

dt

di C diC1
2

D
�

XiC1 � Xi

diC1
� Xi �Xi�1

di

�
C F

.X?iC1 � X?i�1/
2

C˛i .XiC1 � Xi�1/
2

; (7)

�i D � 2

di C diC1

�
XiC1 � Xi

diC1
� Xi � Xi�1

di

�
�X
?
iC1 �X?i�1
di C diC1

(8)

F D 1PM
lD1 dl

MX
lD1

�l
dlC1 C dl

2
; (9)

Xi.0/ D Xini.ui/; (10)

for i D 1; : : : ;M: This system is solved by means of the 4th-order explicit Runge-
Kutta-Merson scheme with the automatic time step (denoted as 	tk) control and
the tolerance parameter " D 10�6. The initial time step was chosen as h2; where
h D 1=M is the mesh size dividing the parameter range Œ0; 1�.

5 Computational Studies

We present some results of our qualitative and quantitative computational studies
for the closed curves dynamics driven by (6) and treated by numerical scheme (7),
(8), (9) and (10). In the following examples, we demonstrate how a solution of (6)
evolves in time and approaches the circular shape.

We have measured the experimental orders of convergence (EOC) for our
scheme. The measurements were performed indirectly – as the testing parameter
for computation of EOC, the quantity A.�t/ representing the area of the enclosed
curve was chosen. We measured the differences given by the area at the initial time
A.�ini/, and the areas A.�Ti/ at given data output times Ti; i D 1; : : : ;N. For given
mesh with M segments, we evaluate the maximum and the discrete L1 (with time
steps 	tk) norms, i.e.,

error1.M/ D maxiD1;2;:::N jA.�ini/ � A.Ti/j;

error2.M/ D 1

TN

NX
kD1
jA.�ini/ � A.Ti/j	tk:

Both errors depend on the number of finite volumes M. We estimate the order of
convergence between two meshes with M1 and M2 volumes as

EOC D log .errori.M1/=errori.M2//
ı

log .M2=M1/ ; i D 1; 2:
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Fig. 1 The area-preserving mean curvature flow (1) in Example 1, where the initial eight-folded
curve asymptotically approaches the circular shape. The curve �t is depicted for time levels t D 0,
t D 0:005, and t D 0:5

Table 1 Table of EOCs for
Example 1

M error1 EOC error2 EOC

100 0.007069986241 – 0.007061259667 –

200 0.002014614725 1.8112 0.002015348016 1.8089

300 0.000944083352 1.8694 0.000945069453 1.8677

400 0.000543526916 1.9192 0.000544287109 1.9180

500 0.000352173540 1.9447 0.000352741175 1.9439

Example 1 In Fig. 1, we show the qualitative behavior of the numerical solution
of problem (1), where the initial eight-folded curve �ini is given as X.0; u/ D
rini.u/.cos 2�u; sin 2�u/; u 2 Œ0; 1� with rini defined as

rini.u/ D 0:5C 0:2 cos.16�u/; u 2 Œ0; 1�:

The motion is captured in the time interval Œ0; 0:5� and the number of finite volumes
in Fig. 1 is M D 200. The curve �t approaches the circular shape and the quantity
A.�t/ – the area enclosed by the curve�t is preserved. The initial curve �ini encloses
the area of 0.84823 and at t D 0:5 the curve�t encloses the area of 0.846215385275.
The values of EOC for various meshes are in Table 1.

Example 2 In Fig. 2, we show the qualitative behavior of the numerical solution of
problem (1), where the initial curve �t with high variation of curvature is given by
the parametric equations

X.0; u/ D 
.1C 0:4 cos.12�u/C 0:2 cos.6�u// cos.2�u/;

.2:5C 0:4 sin.12�u/C 0:2 sin.4�u// sin.2�u/
�

u 2 Œ0; 1�:

The motion is captured in the time interval Œ0; 5� and the number of finite volumes
in Fig. 2 is M D 200. The curve �t approaches the circular shape and the quantity
A.�t/ – the area enclosed by the curve�t is preserved. The initial curve �ini encloses
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Fig. 2 The area-preserving mean curvature flow (1) in Example 2, where the initial curve
asymptotically approaches the circular shape. The curve �t is depicted for time levels t D 0,
t D 0:025, and t D 5

Table 2 Table of EOCs for
Example 2

M error1 EOC error2 EOC

100 0.030290732384 – 0.029986248027 –

200 0.009389794295 1.6897 0.009293578786 1.6900

300 0.004615850440 1.7514 0.004570165389 1.7505

400 0.002751185152 1.7987 0.002724720989 1.7978

500 0.001827489090 1.8333 0.001810281006 1.8324

the area of 7.85398 and at t D 5 the curve �t encloses the area of 7.863369794295.
The values of EOC for various meshes are in Table 2.

6 Conclusion

In this paper, we investigated the area-preserving mean curvature flow for closed
Jordan curves in terms of qualitative and quantitative behavior of the approximate
solution obtained numerically by means of the flowing finite volume method
enhanced by the tangential redistribution of discretization points. Computational
results suggest that the order of convergence of our numerical scheme approaches
2 in space when the convergence ratio is measured for the error measured in
the enclosed area. Our studies are in agreement with theoretical indications that
the solution of constrained problem (1) approaches the circular shape in steady
state (see [1, 7]). This behavior corresponds to real expectations in modeling of
recrystallization phenomena in solids.
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Analysis of a T; � � � Formulation of the Eddy
Current Problem Based on Edge Finite Elements

Alfredo Bermúdez, Marta Piñeiro, Rodolfo Rodríguez, and Pilar Salgado

Abstract The goal of this work is the analysis of a time-harmonic eddy current
model with prescribed current intensities imposed on the boundary of the conduct-
ing domain. We will study a T; � � � formulation, which combines a current vector
potential T with a scalar potential �. A significant advantage of this method is that
the expensive vector unknown T has to be computed only in conductors. Moreover,
the proposed numerical method avoids the building of cutting surfaces what is very
convenient in the case of complex geometries.

1 Introduction

This work deals with the solution of a time-harmonic eddy current problem defined
in a three-dimensional domain; sources will be given in terms of the current
intensities that cross some parts of the boundary of the conducting domain. This
problem has been studied by using different unknowns (see, for instance, Chapter 8
of [1]). We will focus on the well-known T; � � � formulation, which combines a
vector potential T, defined only in the conducting domain, with a scalar potential �,
supported in the whole domain. This kind of formulation is one of the most used in
commercial software for the solution of three-dimensional eddy current problems
(e.g., Cedrat Flux R�, ANSYS Maxwell R�).

Concerning the discretization, “edge” finite elements will be employed for the
approximation of the vector potential and standard Lagrange finite elements for
the scalar potential. This formulation also needs the computation of a source field
function in the dielectric domain, the so-called “impressed vector potential”, which
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we propose to do by means of a numerical method based on the Biot-Savart law.
This approach is based on the ideas proposed in [3] and eliminates the necessity of
building cutting surfaces, in conductors or in dielectrics. One great advantage of this
formulation is the low computational effort needed for its solution because the only
vector unknown T has to be computed only in conductors, where there are generally
far fewer degrees of freedom.

The outline of the paper is as follows: in Sect. 2, we derive the proposed
formulation for the eddy current problem; in Sects. 3 and 4, we perform the
mathematical analysis of this formulation in the continuous and discrete cases,
respectively; finally, some numerical results are reported in Sect. 5.

2 T; � � � Formulation of the Eddy Current Problem

Eddy currents in linear, homogeneous and isotropic media are usually modeled by
the low-frequency harmonic Maxwell equations,

curlH D J; (1)

i!�H C curlE D 0; (2)

div.�H/ D 0; (3)

along with Ohm’s law

J D �E; (4)

where E is the electric field, H the magnetic field, J the current density, ! the
angular frequency,� the magnetic permeability and � the electric conductivity. Note
that the latter is non-zero only in conducting media.

Although Maxwell equations (1), (2), (3) and (4) concern the whole space, for
computational purposes we restrict them to a simply connected three-dimensional
bounded domain˝ , which consists of two parts,˝C and˝D, occupied by conductors
and dielectrics, respectively (see Fig. 1). Domain˝ is assumed to have a Lipschitz-
continuous connected boundary @˝ and˝D is supposed to be connected. We denote
by �C , �D and �I the open surfaces such that N�C WD @˝C\ @˝ is the outer boundary
of the conductors, N�D WD @˝D\ @˝ that of the dielectrics and N�I WD @˝C\ @˝D the
interface between both domains. We also denote by n the outer unit normal vector
to @˝ .

The connected components of the conducting domain, ˝n
C
, n D 1; : : : ;N, are

supposed to intersect the boundary of ˝ . Moreover, we assume that the outer
boundary of each of them, @˝n

C
\ @˝ , has two disjoint connected components,

both of them being the closure of non-zero measure open surfaces: the “current
entrances” � n

J
, n D 1; : : : ;N, where the conductor is connected to an alternating
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Fig. 1 Sketch of the domain (left). Current filaments (right)

electric current source, and the “current exits” � n
E

, n D 1; : : : ;N. We denote
�J WD � 1

J
[ � � � [ � N

J
and �E WD � 1

E
[ � � � [ � N

E
. Furthermore, we assume that

N� n
J
\ N� m

J
D ; and N� n

E
\ N� m

E
D ;, 1 � m; n � N, m ¤ n, and N�J\ N�E D ;.

To solve Eqs. (1), (2), (3) and (4) in a bounded domain, it is necessary to add
suitable boundary conditions. We consider the following ones:

Z
� n

J

curlH � n D In; n D 1; : : : ;N; (5)

E � n D 0 on �E [ �J ; (6)

�H � n D 0 on @˝: (7)

Conditions (5) account for the source data: the input current intensities In crossing
each � n

J
, n D 1; : : : ;N. Conditions (6) and (7) will appear as natural boundary con-

ditions of the weak formulation of the problem. The former implies the assumption
that the electric current is normal to the current entrance and exit surfaces, whereas
the latter means that the magnetic field is tangential to the boundary.

Our first goal is to introduce auxiliary unknowns which will be used to solve
Eqs. (1), (2), (3) and (4) with boundary conditions (5), (6) and (7). First of all, note
that given a complex vector of currents, I D .In/NnD1 2 C

N , there exists T0 2
H.curlI˝/ such that

Z
� n

J

curlT0 � n D In for n D 1; : : : ;N and curlT0 D 0 in

˝D. Such T0 is usually called an “impressed vector potential” and can be defined in
different ways (e.g., see [4]).

On the other hand, from Eq. (1), we have that div J D 0 in ˝C and J � n D 0

on �I . Therefore, J � curlT0 also satisfies these equations and, moreover,
Z
� n

J

.J �
curlT0/ � n D 0 for n D 1; : : : ;N. Hence, it can be proved that there exists T 2
H.curlI˝C/ such that J� curlT0 D curlT and T �n D 0 on �I . Such a T is called
a “current vector potential”. Let QT 2 H.curlI˝/ be the extension by zero to ˝ of
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T. Then, curlH D J D curl QT C curlT0, so that, since ˝ is simply connected,
H D QT C T0 � grad� for some � 2 H1.˝/=C; � is usually called a “magnetic
scalar potential”.

Taking the previous decomposition into account, the time-harmonic eddy current
problem (1), (2), (3), (4), (5), (6) and (7) can be written as follows:

i!� .T0 C T � grad�/C curl
�
1

�
curl.T0 C T/

�
D 0 in ˝C;

div
�
�.T0 C QT � grad�/

	
D 0 in ˝;

�
1

�
curl.T0 C T/

�
� n D 0 on �E [ �J ;

�.T0 C QT � grad�/ � n D 0 on @˝:

Our next goal is to introduce a weak formulation of this problem. First, let us
define the following closed subspace of H.curlI˝C/:

Y WD fG 2 H.curlI˝C/ W G � n D 0 on �I g :

Then, we derive the following weak form of the so called T; � � � formulation:

Problem 1 Given T0 2 H.curlI˝/, find T 2 Y and � 2 H1.˝/=C such that

Z
˝C

i!�.T � grad�/ � NGC
Z
˝C

1

�
curlT � curl NG

D �
Z
˝C

i!�T0 � NG �
Z
˝C

1

�
curlT0 � curl NG 8G 2 Y ;

�
Z
˝C

i!�T � grad N C
Z
˝

i!� grad� � grad N 

D
Z
˝

i!�T0 � grad N 8 2 H1.˝/=C:

We advance that Problem 1 has multiple solutions .T; �/; however, H WD QT C
T0 � grad� is uniquely determined for all of them. In the following section, we
will define a well-posed auxiliary problem whose solution will lead us to obtain a
particular solution of this formulation.
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3 Mathematical Analysis of the T; � � � Formulation

In order to perform the analysis of the T; ��� formulation, we will write Problem 1
in terms of an auxiliary field bH WD H�T0 and then will apply some results from [2].

First, let us write a weak formulation of the eddy current model in terms of the
impressed vector potential T0, analogous to that introduced in [2]. To this end, we
define

X WD fG 2 H.curlI˝/ W curlG D 0 in ˝Dg

and

V WD
n
G 2X W hcurlG � n; 1i� n

J
D 0; n D 1; : : : ;N

o
;

which is a closed linear manifold of X . The resulting formulation is as follows:

Problem 2 Given T0 2 H.curlI˝/, find bH 2 V such that

Z
˝

i!�bH � NGC
Z
˝C

1

�
curlbH � curl NG

D �
Z
˝

i!�T0 � NG �
Z
˝C

1

�
curlT0 � curl NG 8G 2 V :

By using the techniques from [2], we can prove the following result.

Theorem 3 Problem 2 has a unique solution.

Remark 4 If .T; �/ is any solution to Problem 1, then it can be proved that bH D
QT � grad� solves Problem 2. Conversely, if bH is the solution of Problem 2, then
it can be written as bH D QT � grad�, with QT being the extension by zero to ˝
of T 2 Y such that .T; �/ is a solution to Problem 1. This decomposition of bH
is not unique, unless a gauge condition is imposed. Therefore, Problem 1 is not
well-posed. However, from the computational point of view, it is more interesting to
obtain one particular solution of this underdetermined problem, because the more
expensive vector unknown has to be computed only in conductors. Let us finally
notice that the magnetic field can be subsequently computed as H D T0 C QT �
grad�.

4 Finite Element Discretization

In this section we will discretize Problem 1 and will proceed as in the previous
section for its analysis. From now on, we assume that ˝ , ˝C and ˝D are
Lipschitz polyhedra and consider regular tetrahedral meshes Th of ˝ such that
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each element K 2 Th is contained either in N̋C or in N̋D (h stands as usual for
the corresponding mesh-size). Therefore, Th.˝D/ WD

˚
K 2 Th W K � N̋D

�
and

Th.˝C/ WD
˚
K 2 Th W K � N̋C

�
are meshes of ˝D and ˝C, respectively.

We employ edge finite elements to approximate the current vector potential T,
more precisely, lowest-order Nédélec finite elements:

N h.˝C/ WD fGh 2 H.curlI˝C/ W GhjK 2 N .K/ 8K 2 Th.˝C/g;

where, for each tetrahedron K,

N .K/ WD ˚Gh 2 P
3
1.K/ W Gh.x/ D a � xC b; a;b 2 C

3; x 2 K
�
:

For the magnetic potential �, we use standard finite elements:

Lh.˝/ WD
˚
 h 2 H1.˝D/ W  hjK 2 P1.K/ 8K 2 Th

�
:

We introduce the subspace

Y h WD fGh 2 N h.˝C/ W Gh � n D 0 on �I g � Y

and a discrete impressed vector potential Th
0 2 N h.˝/ satisfying curlTh

0 D 0 in

˝D and
Z
� n

J

curlTh
0 � n D In for n D 1; : : : ;N. We describe in Remark 8 at the end

of this section how one such Th
0 can be computed in practice.

Then, the discretization of Problem 1 reads as follows:

Problem 5 Given Th
0 2 N h.˝/, find Th 2 Y h and �h 2 Lh.˝/=C such that

Z
˝C

i!�.Th � grad�h/ � NGh C
Z
˝C

1

�
curlTh � curl NGh

D �
Z
˝C

i!�Th
0 � NGh �

Z
˝C

1

�
curlTh

0 � curl NGh 8Gh 2 Y h;

�
Z
˝C

i!�Th � grad N h C
Z
˝

i!� grad�h � grad N h

D
Z
˝

i!�Th
0 � grad N h 8 h 2 Lh.˝/=C:
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Consider now the following subspaces:

X h WD fGh 2 N h.˝/ W curlGh D 0 in ˝Dg �X ;

V h WD
(
Gh 2X h W

Z
� n

J

curlGh � n D 0; n D 1; : : : ;N
)
� V :

In terms of the variable bHh WD QTh � grad�h (where, as above, QTh is the extension
to ˝ by zero of Th), Problem 2 is discretized as follows:

Problem 6 Given Th
0 2 N h.˝/, find bHh 2 V h such that

Z
˝

i!�bHh � NGh C
Z
˝C

1

�
curlbHh � curl NGh

D �
Z
˝

i!�Th
0 � NGh �

Z
˝C

1

�
curlTh

0 � curl NGh 8Gh 2 V h:

Following once more [2], we can prove the following results.

Theorem 7 Problem 6 has a unique solution.

Remark 8 As in the continuous problem, given Th
0 2 N h.˝/, Problem 5 has at

least one solution and the solution of Problem 6 can be written as bHh D QTh�grad�h
with .Th; �h/ 2 Y h�Lh.˝/=C being a solution of Problem 5. This decomposition
is not unique and, therefore, Problem 5 is not well posed unless a gauge condition
were imposed. There are many possible ways to overcome this drawback. For
example, we have solved Problem 5 by means of an iterative solver (the generalized
minimal residual method).

Theorem 9 Let Hh WD QTh � grad�hCTh
0 be defined from a solution of Problem 5.

Furthermore, let us assume that the magnetic field H satisfies Hj˝C
2 Hr.curl;˝C/

and Hj˝D
2 Hr.˝D/

3 with r 2 
 1
2
; 1

. Then,

kH �HhkH.curlI˝/ � Chr
h
kHkHr.˝D/

3 C kHkHr.˝D/
3

i
;

where C is a strictly positive constant independent of h and H.

Remark 10 A possible way to compute a discrete impressed vector potentialTh
0 is as

follows. Let HBS be the Biot-Savart field in ˝ corresponding to N current filaments
Ln, one for each ˝n

C
as shown in Fig. 1, each one carrying an intensity In (n D

1; : : : ;N):

HBS.r/ WD
1

4�

NX
nD1

Z
Ln

In dl � r � r0

jr� r0j3 :



554 A. Bermúdez et al.

Then, we can take as Th
0 the field in N h.˝/ with its degrees of freedom defined for

each edge ` of the mesh Th by

Z
`

Th
0 � � WD

( R
`
HBS � �; if ` � N̋D;

0; if ` � ˝C[ �C ;

where � is a unit tangent vector to `. It can be checked that HBS satisfies curlHBS D 0

in˝D and
R
� n

J
curlHBS�n D In, n D 1; : : : ;N. Moreover, it has no singularities in the

computational dielectric domain ˝D, since the current filaments Ln do not intersect
N̋

D. Furthermore, there are analytic expressions allowing to compute exactly the
integrals above. Finally, since the resulting field bHh WD Hh � Th

0 is curl-free in ˝D

and
R
� n

J
curlbHh �n D 0 for n D 1; : : : ;N, there is no need to include cutting surfaces

in the domain, even though˝D is not simply connected.

5 Numerical Results

In this section we report the numerical results obtained for an academic test
that confirm the results stated in Remark 8 and the convergence of the proposed
methodology.

We take as conducting domain, a piece of an infinite cylinder with radius R as
shown in Fig. 2 (left), composed by a conducting material with electric conductivity
� carrying an alternating current I.t/ D I0 cos.!t/, surrounded by dielectric
material. We can obtain the analytical solution of the associated eddy current

E

H

I(t) = I ( t)cos0

Dielectric ( )DConductor (      )C

R

103 104 105 106
10−2
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100

R
el

at
iv

e 
er
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r

Number of d.o.f.

Relative error

O(h) convergence

Fig. 2 Section of an infinite cylinder carrying an alternating current (left). Convergence order in
H.curlI˝/ (right)
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problem, which is:

H.x/ D
(

I0I1.
p
i!���/

2�RI1.
p
i!��R/

e� ; if � � R;
I0
2��

e� ; if � > R;

where I1 is the modified Bessel function of the first kind, and � D
q
x21 C x22

and e� WD .�x2; x1; 0/=� are the radial coordinate and the angular unit vector in
cylindrical coordinates, respectively.

When comparing the numerical solution obtained from an implementation of
Problem 5 with the exact one, we obtain the error curve shown in Fig. 2 (right),
which shows that an order of convergence O.h/ is clearly attained in this case, in
agreement with the theoretical results. Note that an arbitrary dashed line whose
slope corresponds to the theoretical order of convergence O.h/ is included to allow
for comparison.
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Two Variants of Stabilized Nodal-Based FEM
for the Magnetic Induction Problem

Utku Kaya, Benjamin Wacker, and Gert Lube

Abstract We consider the time-dependent magnetic induction model as a step
towards the resistive magnetohydrodynamics (MHD) model in incompressible
media. Conforming nodal-based finite element (FE) approximations of the induction
model with Taylor-Hood type FE as well as equal-order FE for the magnetic field
and the magnetic pseudo-pressure are investigated. We consider a stabilized nodal-
based FEM for the numerical solution. Error estimates are given for the semidiscrete
model in space. Finally, we present results for the magnetic flux expulsion problem.

1 Introduction

We consider the numerical approximation of the induction equation

%@tbC �r � r � bCrr � r � .u � .%b// D fb; r � b D 0 (1)

for the magnetic field b and the magnetic pseudo-pressure r with given flow field u,
force term fb, current density % and magnetic diffusivity �. The standard approach
to the numerical solution of (1) consists of curl-conforming FEM, see [10], but has
disadvantages in implementation [11]. Thus nodal elements are preferable due to
their efficiency and implementation convenience. The paper [5] caused a revival
of nodal-based FEM for the Maxwell problem. Stabilization techniques of residual
type based on nodal-based FEM were considered for the Maxwell problem, e.g. in
[1] and [3]. Extensions of nodal-based stabilized FEM to the resistive MHD model
can be found in [2] where the focus is on equal-order interpolation of all unknowns.
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Here the goal is to provide a unique approach to nodal-based FE-methods with
conforming Taylor-Hood type and equal-order element pairs for the approximation
of .b; r/ in problem (1). These discrete models are augmented by standard global
stabilization techniques for the divergence-free constraint.

2 Continuous Magnetic Induction Equation

The norm of a Banach space X is denoted by k � kX . X0 denotes the dual space of X.
We denote by .�; �/G the inner product in L2.G/ and by k�kWm;p.G/;m 2 N0; p � 1 the
norm on the Sobolev space Wm;p.G/ for subdomains G � ˝ of a bounded Lipschitz
polyhedral domain ˝ � R

d; d 2 f2; 3g. In case of G D ˝ we will omit index ˝ .
Moreover, we use the spaces

H.curlI˝/ WDfv 2 L2.˝/d s.t. r � v 2 L2.˝/dg;
H0.curlI˝/ WDfv 2 H.curlI˝/ s.t. n � v D 0 on @˝g;
H.divI˝/ WDfv 2 L2.˝/d s.t. r � v 2 L2.˝/g;

H.div 0I˝/ WDfv 2 H.divI˝/ s.t. r � v D 0g:

L2.a; bIXd/, .a; b/ � R is the completion of C.Œa; b�IXd/ with kvkL2.a;bIXd/ D

.v; v/L2.a;bIXd/

� 1
2 induced by .v;w/L2.a;bIXd/ D

R b
a



.v;w/Xd

�
dt. Moreover,

L1.a; bIXd/ is induced by the norm kvkL1.a;bIXd/ D supa�t�b kv.t/kXd .
Consider problem (1) as saddle-point problem for the magnetic field b and the

pseudo-pressure r as Lagrange multiplier for the divergence-free constraint: Find a
pair .b; r/ satisfying

%@tb� r � .u � %b/C �r � .r � b/Crr D f; r � b D 0: (2)

The initial condition b.x; 0/ D b0.x/ is required to be solenoidal. For simplicity,
we use the solution spaces C WD H0.curlI˝/ and S WD H1

0.˝/ supplemented with
the norms

kckC WD
p
�
�
`�1kckL2.˝/d C kr � ckL2.˝/d

	
;

kskS WD ��
1
2

�
kskL2.˝/ C `krskL2.˝/d

	

where ` D `.˝/ ensures dimensional consistency of the norms.
In problem (2) we multiply with test functions c 2 C resp. q 2 S, integrate

over ˝ and several terms by parts, and impose the given boundary conditions. The
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curl-gradient formulation reads: Find b W Œ0;T�! C; r W Œ0;T�! S s.t.

.%@tb; c/ � .u � %b;r � c/C .�r � b;r � c/ C .rr; c/ D .f; c/; (3a)

� .rs;b/ D 0 (3b)

for all .c; s/ 2 .C; S/ a.e. in .0;T/ with the assumption f 2 H.div 0I˝/: We
introduce the bilinear forms a W C �C! R and b W C � S! R as

a.b; c/ WD .�r � b;r � c/ � .u � %b;r � c/; b.c; r/ WD .rr; c/

and c.b; rI c; s/ WD a.b; c/C b.c; r/ � b.b; s/. Then the weak form of (3) reads:

%.@tb, c/C a.b; c/ C b.c; r/ D .f; c/ 8c 2 C; (4a)

� b.b; s/ D 0 8s 2 S; (4b)

and in compact form as �.@tb, c/C c.b; rI c; s/ D .f; c/; 8.c; s/ 2 C � S.
The choice of function spaces above yields r � 0 a.e. in ˝ . The well-posedness

of (4) follows from Lemma 3 and Theorem 4 in [8].

Lemma 1 Let u 2 ŒL1.˝/�d. The bilinear form a satisfies Gårding’s inequality

a.b;b/ � 
kbk2C � �kbk2L2.˝/d for all b 2 C (5)

with constants 
 WD 1
4
and � WD �

2`2

�
1 C

h
%kukL1.˝/d `

�

i2	
: Furthermore, it is

bounded, i.e. ja.b; c/j � MkbkCkckC for all b; c 2 C.

Theorem 2 For problem (3) with f 2 L2.0;TIL2.˝/d/ and b.0/ 2 L2.˝/d, we
obtain the estimate

%kb.t/k2L2.˝/d C 2

Z t

0

e
3�
% .t��/kb.�/k2Cd� � %e

3�
% tkb.0/k2L2.˝/d

C 1

�

Z t

0

e
3�
% .t��/kf.�/k2L2.˝/dd�:

Let V D C \ H.div 0;˝/ and H D H.div 0;˝/. Since b.c; s/ D �.rs; c/ D
.s;r � c/ D 0 for all c 2 V, problem (3) is equivalent to the problem with built-in
constraint: For given b0 2 H, f 2 L2.0;TIV0/, find b W Œ0;T�! V s.t.

.%@tb; c/C a.b; c/ D .f; c/ 8c 2 V; a.e. in Œ0;T�: (6)
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Moreover, V � H � H0 � V0 form a Gelfand-triple: fV; k � kCg and fH; k � kL2.˝/dg
are Hilbert spaces. Corollary 3.49 in [10] states

kbkL2.˝/d � CFkbkC 8b 2 V: (7)

Thus, V is continuously embedded in H. Now, Lemma 1 allows the application
of the main theorem for linear evolution problems, see [12], Theorem 23.A. This
implies that for (6) there exists a unique solution u 2 W .0;TIV/ WD fu 2
L2.0;TIV/ W 9u0 2 L2.0;TIV0/g: Hence, we obtain an existence result for the curl-
gradient formulation (3), see Theorem 8 of [8].

Theorem 3 For f 2 L2.0;TIL2.˝/d/ and b0 D b.0/ 2 H.div 0;˝/, there exists a
unique solution .b; r/ 2 W .0;TIC/ � L2.0;TI S/ of problem (3).

3 Discretization of the Induction Problem

Let Th D fKigMiD1 be a non-overlapping admissible decomposition of the bounded
polyhedron ˝ into convex polyhedral subdomains Ki s.t. ˝ D [M

jD1Kj with
elements Ki of diameter hi D diam.Ki/ and h D maxiD1;:::;M hi: Let Th be shape-
regular. We consider nodal-based FE-spaces with

Nk.˝/ D fvh 2 C 0.˝/ s.t. vhjK 2Pk.K/ 8K 2 Thg: (8)

with the set Pk.K/ of polynomials of maximal degree k 2 N.

Remark 4 Please note that the following numerical analysis can be similarly
performed for quadrilateral and hexahedral elements.

For the discrete magnetic field and pseudo-pressure, we apply Taylor-Hood
type pairs .bh; rh/ 2 Ch D



ŒNkC1.˝/�d \ C

� � 
ŒNk.˝/�
d \ S

�
or equal-order

pairs .bh; rh/ 2 Ch D


ŒNk.˝/�

d \ C
� � 
ŒNk.˝/�

d \ S
�

with k � 1. Such
H1-conforming Galerkin ansatz requires stabilization since (i) a discrete inf-sup
condition in subspaces of C � S is not known and (ii) the approximation of singular
solutions b 2 V \ H.div 0I˝/ with b 62 V \ H1.˝/d is not possible, see [1]. A
potential stabilized problem is:

Find bh 2 L2.0;TICh/ with b0h 2 L2.0;TIC0h/ and rh 2 L2.0;TI Sh/ s.t.

.�@tbh; ch/C a.bh; ch/ C b.ch; rh/ C sb.bh; ch/ D .f; ch/ 8ch 2 Ch; (9a)

� b.bh; sh/ C sr.rh; sh/ D 0 8sh 2 Sh; (9b)
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a.e. in .0;T/ with the stabilization terms

sb.bh; ch/ WD
X
K2Th

�b.r � bh;r � ch/K ; sr.rh; sh/ WD
X
K2Th

�r.rrh;rsh/K :

We set cs.bh; rhI ch; sh/ WD c.bh; rhI ch; sh/C sb.bh; ch/C sr.rh; sh/: In the stability
analysis we apply the mesh-dependent semi-norm

jjj.ch; sh/jjjh WD
� X

K2Th

�bkr � chk2K C
X
K2Th

�rkrshk2K
	 1
2
:

Lemma 5 Let f 2 L2.0;TIL2.˝/d/ and bh.0/ 2 L2.˝/d. Then, for t 2 Œ0;T� and
with Cu WD 3�=%, we have

%kbh.t/k2L2.˝/d C
Z t

0

2eCu.t��/
�
kbh.�/k2C C jjj.bh.�/; rh.�//jjj2h

	
d�

� %eCutkbh.0/k2L2.˝/d C
Z t

0

��1eCu.t��/kf.s/k2L2.˝/d d�:

Proof One can proceed in Ch � Sh as in the proof of Theorem 2 with additional
control of the stabilization term kj � kjh on the L.H.S. �

Lemma 6 There exists a unique solution .bh; rh/ of problem (9).

Proof Equation (9b) with sh D rh yields �.bh;rrh/ C P
K �rkrrhk2L2.K/ D 0:

Assuming minK �r � �0 > 0 and using the definition of norm k � kC, we obtain

krrhkL2.˝/ � ��
1
2

0 kbhkL2.˝/ � `.��0/� 12 kbhkC: (10)

Hence there exists an invertible Gh W Ch ! Sh with rh D Ghbh. Now we add (9a)
and (9b) with .ch; sh/ D .bh;Ghbh/. Then Lemma 5 implies

%kbh.t/k2L2.˝/d C
Z t

0

2eCu.t��/
�
kbh.�/k2C C jjj.bh.�/;Ghbh.�//jjj2h

	
d�

� %eCutkbh.0/k2L2.˝/d C
Z t

0

��1eCu.t��/kf.s/k2L2.˝/d d�: (11)

The Cauchy-Lipschitz theorem yields existence and uniqueness of bh W Œ0;T�! Vh.
Finally, (10) guarantees existence and uniqueness of rh W Œ0;T�! Sh. �

Note that full control of rrh is essential in order to enforce the conditionr �b D
0. From (10), we come up with the suggestion �r � `2��1:
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Let .b; r/ be the solution of (3) and .bh; rh/ be the solution of (9). Then, by
subtracting (9) from (3), we obtain Galerkin orthogonality

%.@t.b � bh/; ch/C cs.b� bh; r � rhI ch; sh/ D sb.b; ch/C sp.r; sh/ D 0 (12)

for any .ch; rh/ 2 Ch � Sh since r � 0 and r � b D 0. Let jb and jr be appropriate
interpolation operators in Ch � Sh. We decompose the errors as

b� bh D .b � jbb/C .jbb� bh/ � "b C eb;

r � rh D .r � jrr/C .jrr � rh/ � "r C er:

Set .ch; rh/ D .eb; er/ in (12). Then we write

%

2

d

dt
kebk2L2.˝/d C cs.eb; erI eb; er/ D �.@t"b; eb/� I � II

with I D c."b; "rI eb; er/; II D sb."b; eb/C sr."r; er/; thus r D jrr D 0 yields

I D
hp
�kr � "bkL2.˝/d C

�X
K

%2kuk2L1.K/�
�1k"bk2L2.K/

	 1
2
ip
�kr � ebkL2.˝/d

C
�X

K

��1r k"bk2L2.K/
	 1
2 jjj.eb; er/jjjh;

jIIj D
X
K

�b.r � "b;r � eb/K C
X
K

�r.r"r;rer/K � jjj."b; "r/jjjhjjj.eb; er/jjjh:

So we obtain

%

2

d

dt
kebk2L2.˝/dC�kr � ebk2L2.˝/d � %ku � ebkL2.˝/dkr � ebkL2.˝/d

C jjj.eb; er/jjj2h �S1kebkL2.˝/d C S2
p
�kr � ebkL2.˝/d C S3jjj.eb; er/jjjh (13)

with S1 D k@t"bkL2.˝/d , S2 D
p
�jr � "bkL2.˝/d C

�P
K

%2kuk2L1.K/

�
k"bk2L2.K/

	 1
2
,

S3 D jjj."b; "r/jjjh C
�P

K �
�1
r k"bk2L2.K/

	 1
2
. Young’s inequality in (13) gives

%
d

dt
kebk2L2.˝/d C

�

2
kr � ebk2L2.˝/d �

�
1C %2kuk2L1.˝/d

��1
	
kebk2L2.˝/d

Cjjj.eb; er/jjj2h � S1
2 C 2S22 C S3

2: (14)
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For b 2 L2.0;TIHkC1.˝/d/ and @tb 2 L2.0;TIHk.˝//, interpolation gives

S21 D k@t"bk2L2.˝/d � C
X
K

h2kK j@tbj2Hk.!K/
; (15a)

S22 � C
X
K

h2kK
�
�C %2kuk2L1.K/h

2
K�
�1	jbj2

HkC1.!K /
; (15b)

S23 � C
X
K

h2kK
�
�bd

2 C h2K�
�1
r

	
jbj2

HkC1.!K /
(15c)

where !K 2 ˝ denotes an appropriate patch around cell K.
Now, (15c) suggests to set �r�b � h2K which with �r � `2��1 yields

�r � `2��1; �b � h2K�`
�2: (16)

Moreover, from (15b) we observe boundedness of the parameter-dependent coeffi-
cient under a restriction on the mesh width hK with

Rmh WD kukL1.K/hK
�

� Cp
�
: (17)

Theorem 7 Assume that b 2 L2.0;TI ŒHkC1.˝/�d/; @tb 2 L2.0;TI ŒHk.˝/�d/ and
r D 0 is a solution of (3). Moreover, let bh.0/ D jbb.0/. Under the parameter
choice (16) and mesh width restriction (17), we obtain

%keb.t/k2L2.˝/d C C
Z t

0

e QCu.t�s/
�
�kr � eb.s/k2L2.˝/d C jjj.eb.s/; er.s//jjj2h

	
ds

�
Z t

0

e QCu.t�s/C
X
K

h2kK
�
j@tb.s/j2Hk.!K /

C jb.s/j2HkC1.!K /

	
ds:

(18)

Proof Substituting (15) in (14), multiplication with e�QCut with QCu WD 1 C
%2kuk2

L1.˝/d
��1 and integration over (0,T) with an arbitrary t 2 .0;T� provides (18)

since eb.0/ D jbb.0/� bh.0/ D 0: �

4 Numerical Simulations

While computations with the Taylor-Hood pair P2=P1 on triangular meshes were
performed using FreeFem++ [6], we employed Gascoigne3d [4] for equal-order pair
Q1=Q1 on quadrilateral meshes. Temporal discretizations performed by A-stable
BDF2 and strongly A-stable fractional step theta scheme, respectively.
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The parameter choice (16) refers to the worst case of singular solutions b 2
V \ H.div 0I˝/ which do not belong to H1.˝/d. Numerical results for the flow
around a re-entrant corner for equal-order pairs in [1] and for Taylor-Hood type
pairs in [8] show that this choice is appropriate. The situation is slightly different for
smooth solutions b 2 V \ H1.˝/d. The PSPG-stabilization of the pseudo-pressure
is still required for equal-order interpolation whereas it can be omitted for Taylor-
Hood type elements.

Consider the flux expulsion phenomenon as magnetic field distortion in an
infinitely long cylinder with radius R D 0:5 and cross-section ˝ D .�0:5; 0:5/2.
A magnetic field b D b0ey pervades a conducting fluid in rigid body rotation (with
given velocity u D .�y; x; 0/; r < R) inside the cylinder and the remainder being
quiescent, i.e. u D .0; 0; 0/;R < r. Boundary @˝ is taken to be conducting. The
exact solution for b can be found in [9] or [8].

The distortion of the field b becomes greater with increasing magnetic Reynolds
number Rm D Q!R2

�
with Q! D 1

2
.r � u/ D 1. Then b is gradually expelled from

the rotated fluid via combination of twisting of b-lines and cross-stream diffusion
which is related to the skin effect in conventional electromagnetism. In consequence
of the dominance of convection over diffusion, we observe the formation of internal
layers with width O.

p
Rm/:

We do not expect optimal convergence due to the discontinuity in the velocity
field and the presence of internal layers. For magnetic Reynolds up to Rm D 1000,
we found slightly better error rates for the P2=P1 pair compared to Q1=Q1,
see Fig. 1. Moreover, we considered a further local projection stabilization of the
Lorentz term r� .u � .%b// for the equal-order case. The analysis of this paper can
be easily extended to this case. For the Q1=Q1-pair this leads to improved results.
Recent computations show that this stabilization is really required for even larger
magnetic Reynolds numbers.
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Fig. 1 Flux expulsion: convergence plots for kb � bhkL2.˝/d and kr � b� bhkL2.˝/d for Rm D
102; T D 2500 (left) and Rm D 103; T D 106 (right)
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The problem of flux expulsion can be studied with more complicated examples
in [9]. In [7], one can find further simulations of problems for given velocity fields
u with different variants of eddies acting on the magnetic field.

5 Summary: Conclusions

We considered the application of Taylor-Hood type and equal order FE pairs for the
magnetic field and the pseudo-pressure in the time-dependent magnetic induction
problem. We gave a stability and convergence analysis for the spatially semi-
discretized problem. In particular, we derived formulas for stabilization parameters
of the divergence-free constraint of the magnetic field in a different way than in [1].
An additional local projection stabilization of the Lorentz term improved the results
for increasing magnetic Reynolds numbers.
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Modeling of a Three-Dimensional Spherulite
Microstructure in Semicrystalline Polymers

H. Emre Oktay and Ercan Gürses

Abstract A finite element (FE) model, that explicitly discretizes a single 3D
spherulite is proposed. A spherulite is a two-phase microstructure consisting of
amorphous and crystalline regions. Crystalline regions, that grow from a central
nucleus in the form of lamellae, have particular lattice orientations. In the FE
analyses, 8-chain and crystal viscoplasticity constitutive models are employed.
Stress-strain distributions and slip system activities in the spherulite microstructure
are studied and found to be in good agreement with the literature. Influences of
the crystallinity ratio on the yield stress and the initial Young’s modulus are also
investigated.

1 Introduction

Semicrystalline polymers (SCP) is a subset of polymers that stand out due to
their toughness, high impact strength and wear resistance. Although some funda-
mental deformation mechanisms of SCPs are identified, a clear description of all
stages of deformation is not available. Micromechanical multi-scale computational
approaches may provide insight on the influence of deformation mechanisms taking
place at the lower scales on the macroscopic response.

Segments of the polymer chains in SCPs orient in an orderly fashion to form
crystalline lamellar structures. Unordered chains exist in SCPs as well, forming
regions that are similar to the amorphous polymers. Crystalline lamellae could
form complex structures such as spherulites where the lamellae grow from a
central nucleus in radial directions. Between the lamellae, amorphous regions exist.
Amorphous regions host tie chains that form interlamellar connections binding
multiple lamellae together. As a result, amorphous and crystalline phases deform
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together and consistently. SCPs possess the deformation mechanisms of polymeric
and crystalline materials. Crystalline phase of SCPs is orders of magnitude stiffer
than the amorphous phase. Similar to the metals, dislocation based crystalline slip
is the major plastic deformation mechanism of the crystalline phase. Amorphous
phase on the other hand, is much easier to deform up to a locking stretch.

In literature homogenization techniques are used to obtain the macroscopic
response of multi-phase materials. In these techniques, response of the constituent
phases are generally represented by different constitutive equations. Additionally,
to account for the crystalline texture, multiple crystalline grains are employed with
orientations that are statistically representative of a crystalline texture. Then, the
macroscopic response of the model is obtained by homogenization of the response
of each individual grain via homogenization techniques [12, 16]. These studies
do not explicitly take into account the spherulite morphology. Instead, randomly
oriented aggregates are considered to be representative for the initially isotropic
response of the spherulite morphology. Nevertheless, these models are advantageous
for modeling SCPs having preoriented texture. One approach to consider the
spherulitic morphology while employing the above models is solving representative
volume elements (RVE) of spherulite with finite element method analysis [14, 15].
In these studies, due to the constitutive models employed at integration points,
consistent deformation of amorphous and crystalline phases is accounted for at the
microscale. However, at a higher scale level, consistent deformation of amorphous
and crystalline phases within the spherulite is not addressed.

In this study we propose a three dimensional FEM discretization of a spherulite
as an extension of our disk-like model [10]. The model allows consideration of
arbitrary crystallinity ratios. Stress-strain distribution within the model is investi-
gated for its compliance with the characteristic features of spherulite deformation.
Heterogeneous slip system activity within the spherulite is compared with the
literature. Influence of crystallinity ratio on the initial elastic modulus and the yield
stress is reported.

2 Constitutive Models and Finite Element Model

Two constitutive models, employing finite deformation theory, are used in this study.
A crystal viscoplasticity model is employed for the crystalline phase. The model
utilizes the multiplicative decomposition of the deformation gradient F D FeFp into
elastic and plastic contributions Fe and Fp, respectively. Plastic flow is restricted
to slip in given directions on predefined planes. Each one of these (direction, plane)
pairs are referred to as a slip system. Rate of plastic deformation Lp is the sum of the
slip rates on all slip systems, i.e., Lp D PFpFp�1 DPN

˛D1 P
˛s˛ ˝m˛ . Here, s˛ and
m˛ are defined in the reference configuration and are the slip direction and slip plane
normal vectors, respectively. P
˛ is the slip rate of the slip system ˛. Evolution of the
plastic component of deformation gradient is computed by utilizing the exponential
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integration scheme, i.e.,

Fp
nC1 D 	Fp

nC1F
p
n D exp.	t

PN
˛D1 P
˛nC1s˛ ˝m˛/Fp

n: (1)

Tensor exponential is computed numerically according to the series expansion
given in [5]. Stresses are calculated through Saint Venant-Kirchhoff Hyperelasticity
S D C

e W Ee. Here, S is the lattice based Second Piola-Kirchhoff stress, Ce is the
fourth order elastic stiffness tensor and Ee D .FeTFe � I/=2 is the elastic Green-
Lagrange strain tensor. Evolution of the slip rates P
˛ are defined by a power law
type constitutive equation

P
˛ D P
0


�˛=�˛y

� ˇ̌
�˛=�˛y

ˇ̌n�1
(2)

where P
0, �˛y , n are the reference shear rate, the critical resolved shear stress and the

rate sensitivity parameter, respectively. �˛ D ReT�Re W .s˛ ˝m˛/ is the Schmid
shear stress [5]. Re is the rotation tensor and � D FeSFe�T is the lattice based
Kirchhoff stress. Material parameters of the model are presented in Table 1. Slip
systems and �˛y values are given in Table 2. The 8-chain [2] rubber elasticity model
is used for the amorphous phase. Employed values of the amorphous phase material
parameters; bulk modulus � D 2GPa, shear modulus � D 35MPa and locking
stretch �lock D 7 are taken from [16] for the high density polyethylene (HDPE).

A spherulite FEM model is constructed by dividing a cube into amorphous
and crystalline regions. Crystalline phase regions (lamellae) originate from the
nucleus as shown in Fig. 1a. Lamellae could be grouped into three according to
their shapes. There are total 6, 8 and 12 lamellae in the lamella group FC, C and
ME respectively. Lamellae of FC, C and ME are directed towards the face centers,
corners and mid points of the edges of the cube, respectively. Regardless of the
lamellae group they belong, edge lengths of the pyramid bases are of equal length.
In this study Polyethylene (PE) spherulite is considered. Therefore, orientation of
crystallographic axes comply with the following criteria: (i) crystal lamella growth

Table 1 Material parameters employed in crystalline phase material model

Elastic constants for PE crystal [3] Viscoplasticity parameters [16]

C11 C33 C12 C13 C44 C66 P
0 n �0

[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] Œs�1� [MPa]

7 81 3.8 4.7 1.5 1.6 1� 10�3 9 8

Table 2 Slip systems of polyethylene crystal [8]

Slip system �˛y =�0 Slip system �˛y =�0

Chain slip .100/Œ001� 1:0 Transverse slip .100/Œ010� 1:66

.010/Œ001� 2:5 .010/Œ100� 2:5

f110gŒ001� 2:5 f110g ˝1N10˛ 2:2
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(a) Red: lamellae FC, 
Yellow: lamellae C, 
Blue: lamellae ME

(b) Regions with the
same coordinate sys-
tems are shown in
same colors.

Fig. 1 (a) Categorization of lamellae of the spherulite model according to lamellae geometry,
(b) typical regions of each lamellae group where the same coordinate system is employed for
crystallographic orientation

is in the b lattice axis direction [9], (ii) interface between the amorphous phase and
the lamellae is {201} crystallographic plane [6]. For the first condition a spherical
coordinate system, origin of which is located at the nucleus is employed. Then, b
lattice axis is oriented in the direction of the radial basis vector er. Note that any
lamella of our model has multiple large planar surfaces as shown in Fig. 1a that
form interfaces with the amorphous phase. In this study it is decided to satisfy the
condition (ii) for each interface of a lamella. To this end, each lamellae is divided
into regions according to the interface plane they belong and different orientations
are assigned to each region to satisfy the condition (ii). Lamellae belonging to
groups FC, C and ME are divided into 2, 6 and 5 regions respectively shown in
different colors in Fig. 1b. e� basis vector of the spherical coordinate system is
selected to define the orientation of the chain. For each lamella region, orientation of
the coordinate system is selected such that interface plane normal vector lies in the
plane spanned by er and e� . Finally, to set the desired angle between the interface
normal and the chain direction, the coordinate system is rotated 35ı around the b
axis.

3 Results

Strain distribution within the spherulite strongly depends on the orientation of
lamellae with respect to the loading direction. In literature, spherulite is divided into
three regions according to the lamella orientation with respect to the tensile loading
direction [9]. These regions, referred to as the equatorial, polar and inclined regions,
are defined as follows: In polar regions, lamella growth direction is nearly parallel
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Fig. 2 Equatorial, polar and inclined regions of spherulite and the representative lattice directions
for the tensile loading along x direction

(a) (b) (c) 

Fig. 3 Spatial variation of stress and strain components at 3 % macroscopic engineering strain.
1/8th of the spherulite is hidden for visualization. In (a) dark and light colored regions are
amorphous and crystalline, respectively. (a) Two different phases. (b) Nominal strain in loading
direction. (c) Cauchy stress along the radial direction

to the loading direction. In equatorial regions lamellae growth direction is nearly
perpendicular to the loading direction. Regions that neither belong to the equatorial
nor to the polar regions belong to the inclined region, see Fig. 2. Figure 3 presents
the spatial variation of stress and strain components within the spherulite at 3 %
engineering strain. In Fig. 3 it is seen that stress and strain depend on the distance
from the nucleus, while the maximum values are at the nucleus. Radial stresses in
equatorial regions are compressive. After the nucleus, maximum strain occurs at the
amorphous phase of equatorial regions showing interlamellar separation, indicating
that deformation begins at nucleus and spreads along the equatorial regions along
the radius. All of these observations are in agreement with the important features of
spherulite deformation presented in [11].

Slip system activities at the engineering strain of 0.163 are reported below.
As the measure of activity, accumulated plastic slip

P
tD0 j	t P
˛j is employed for

each slip system, where 	t is the time increment. In Table 3 relative activities of
each slip system throughout the microstructure are presented. Relative activity of
a slip system is the ratio of the sum of accumulated slip of that system to the
sum of accumulated slip of all slip systems at all integration points of the model.
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Table 3 Relative activities of slip systems within the equatorial, polar, inclined regions and the
complete spherulite between 0 and 0.163 engineering strain levels

(1
00

)[
00

1]

(0
10

)[
00

1]

(1
10

)[
00

1]

(1
N 10)

[0
01

]

(1
00

)[
01

0]

(0
10

)[
10

0]

(1
10

)[
1
N 10]

(1
N 10)

[1
10

]

Equatorial (%) 73:9 0:6 0:6 1:0 0:9 0:0 11:3 11:7

Polar (%) 9:3 0:6 0:5 0:5 2:2 0:1 43:8 43:0

Inclined (%) 19:0 10:1 5:5 5:6 41:8 1:0 8:4 8:6

Complete spherulite (%) 34:0 3:8 2:2 2:4 15:0 0:4 21:1 21:1

Table 3 also presents the relative activities of each slip system within equatorial,
polar and inclined regions separately. Considering the complete spherulite, from
Table 3 it is seen that {110}

˝
1N10˛, (100)[001] and (100)[010] are the most active

slip systems. These systems are the dominant slip systems of polar, equatorial and
inclined regions, respectively. In inclined regions, all slip systems are active. In
equatorial regions only the (100)[001] and {110}

˝
1N10˛ systems have considerable

activity. Finally in polar regions (100)[001], (100)[010] and {110}
˝
1N10˛ systems

have activity.
From Fig. 4a it is seen that (100)[001] slip system is active in the equatorial

and some of the inclined regions. In the polar region, there is a slight activity. In
Fig. 4b, (010)[001] slip system is seen to have almost no activity in the polar and
equatorial regions, while it is active in the inclined regions. In Fig. 4e it is seen that
(100)[010] slip system is active and dominant only in the inclined regions. From
Fig. 4f it is seen that (010)[100] has negligible activity throughout the spherulite.
Since (010)[100] and (100)[010] slip systems are orthogonal to each other, observed
activity difference between these systems is only due to the difference between
their slip resistances. According to Fig. 4g, h, {110}

˝
1N10˛ slip systems have activity

in all lamellae. High activity of (100)[001] chain slip in equatorial regions are in
agreement with the expectations of [7], as it facilitates the chain alignment to the
loading direction. Activity of {110}

˝
1N10˛ slip system in equatorial regions is in

agreement with [1] where slip on {110}
˝
1N10˛ is expected in equatorial regions.

In summary, two slip systems are observed to be active in equatorial regions in
our study: (100)[001] and {110}

˝
1N10˛. Activity of (100)[001] and {110}

˝
1N10˛ is in

harmony with [7] and [1], respectively. In inclined regions [1] expects chain slip
and slip on the {110} planes. In inclined regions, all chain slip systems are active
in our study. In the polar regions [1] expects {110}

˝
1N10˛ as the major slip system

parallel to our finding. Finally, the effect of the crystallinity is studied. Figure 5
presents the comparison of the yield stress and the Young’s modulus obtained from
this study with the experimental study of [4]. It is seen that the predictions of this
study, especially the slopes of change of the yield stress and the Young’s modulus
are in good agreement with [4].
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X

Y

Z

Accumulated slip

+0.00e+00
+1.00e−03
+3.00e−02
+5.00e−02
+7.00e−02
+9.00e−02
+1.00e−01
+2.00e−01
+3.00e−01
+4.00e−01
+6.00e−01
+1.14e+00

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 4 Distribution of slip amounts shown for a vertical cut and an inclined cut with a normal
vector of (0,1,1). Loading is in the x-direction. (a) (100)[001]. (b) (010)[001]. (c) (110)[001]. (d)
(1N10)[001]. (e) (100)[010]. (f) (010)[100]. (g) (110)[1N10]. (h)

(1N10)[110]

3D finite element model of a single spherulite is studied. Stress and strain
distribution characteristics of the model indicate that the model possesses the
important features of the spherulite deformation. Slip system activities throughout
the spherulite are reported. Influences of crystallinity ratio on the yield stress and the
initial elastic modulus are investigated. A general good agreement with the literature
is found. It should be noted that this study considers a single spherulite. On the other
hand, the study of [4] is on macroscopic samples that are composed of multiple
spherulites. As discussed in [7] and also recently presented in [13]; the macroscopic
strain, in general, is accommodated by not a single spherulite but a collection of
spherulites. Therefore, a multi-spherulitic model may be more representative for a
comparison with the results of [4].
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Fig. 5 Comparison of findings of this study with experimental study of [4] on the variation of
macroscopic yield stress and Young’s modulus with crystallinity ratio. (a) Yield stress. (b) Young’s
modulus

Acknowledgements This work was supported by the Scientific and Technological Research
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Numerical Approximation of Interaction
of Fluid Flow and Elastic Structure Vibrations

Jan Valášek, Petr Sváček, and Jaromír Horáček

Abstract This paper deals with flow induced vibrations of an elastic body. A
simplified model of the human vocal fold is mathematically described. In order
to consider the time dependent domain the arbitrary Lagrangian-Eulerian method
is used. The viscous incompressible fluid flow and linear elasticity models are
considered. The developed numerical schemes for the fluid flow and the elastic
body are implemented by the in-house developed solver based on the finite
element method. Preliminary numerical results testing the convergence of solver
are presented.

1 Introduction

The problem of interaction of fluid flow and elastic structure is widely spread in
nature and it has important applications not only in technical practice. Beside well-
known bridge oscillations in wind or stability of an airfoil in fluid flow, see [3], the
biological applications are newly investigated, as e.g. blood flow in arteries or flow
induced vibrations of vocal folds, see e.g. [8, 10] or [12].

The coupled problem of fluid-structure interaction (FSI) can be solved by many
different approaches but in most of them the arbitrary Lagrangian Eulerian (ALE)
method for description of fluid flow in time dependent domain is used, see [12]. In
this paper the considered mathematical model is presented and the discretization by
the finite element method (FEM) is described. The fluid and structural problems are
solved by specific solvers on each domain and coupled via boundary conditions on
the common interface. This partitioned scheme is strongly coupled.

J. Valášek (�) • P. Sváček
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The numerical results are presented for a simple test case, where the convergence
of the numerical solution in time and space steps are tested.

2 Mathematical Model

For the sake of simplicity a two dimensional problem – shown in Fig. 1 – is
considered. Here, domain ˝s

ref denotes the reference representation of an elastic

structure, ˝ f
ref is the reference domain occupied by the fluid at the time instant

t D 0 and �Wref D �W0 is the common interface. At time instant t the fluid domain
˝

f
ref turns to ˝ f

t . The deformation of domain˝s D ˝s
ref at time t is handled by the

Lagrange approach, i.e. in the reference coordinates.

2.1 Elastic Structure

The motion of elastic body ˝s
ref is described by the partial differential equation

expressing dynamical equilibrium between inertia force and the applied surface and
volume forces

�s
@2u
@t2
� @�

s
ij

@xj
D fs in ˝s � .0;T/; (1)

where the vector u.x; t/ denotes the displacement vector, fs is the volume force, �s is
the structure density and �ij are the components of the Cauchy stress tensor. These
components are for the isotropic Hooke’s material and small displacements given
by

� sij D �sdiv u ıij C 2�sesij.u/; (2)

Fig. 1 Scheme of vocal folds model with boundaries marked before and after deformation
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where ıij is Kronecker’s delta and esjk.u/ D 1
2

�
@uj
@xk
C @uk

@xj

�
is the strain tensor with

the Lame’s constants �s; �s. Problem (1) is completed with the given initial and
boundary conditions

(a) u.X; 0/ D u0.X/; for X 2 ˝s;

(b)
@u
@t
.X; 0/ D u1.X/ for X 2 ˝s; (3)

(c) u.X; t/ D uDir.X; t/ for X 2 � s
Dir; t 2 .0;T/;

(d) � sij.X; t/ n
s
j .X/ D qsi .X; t/; for X 2 � s

Wt
; t 2 .0;T/;

where the �Wt ; �
s

Dir are mutually disjoint parts of the boundary @˝ D �Wt [ � s
Dir

(see Fig. 1) and nsj .X/ are components of outer unit normal to �Wt .

2.2 ALE Method

In order to address the time discretization on time dependent domain ˝
f
t the

ALE method is used. This method is based on a difeomorphic mapping At of any
reference point X 2 ˝ f

ref on the point of deformed domain x D At.X/ 2 ˝ f
t . The

ALE domain velocity wD, i.e. the velocity of a point with the given reference X, is
defined by

wD.x; t/ D OwD.A
�1
t .x/; t/; t 2 .0;T/; x 2 ˝ f

t ; (4)

where OwD.X; t/ D @
@t At.X/; for t 2 .0;T/ and X 2 ˝ f

ref . The ALE derivative, i.e.
the time derivative with respect to a fixed reference X, can be expressed as (see e.g.
[9])

DA

Dt
f .x; t/ D @f

@t
.x; t/C wD.x; t/ � rf .x; t/: (5)

2.3 Fluid Flow

The motion of the viscous incompressible fluid in a time dependent domain ˝ f
t is

modelled by the Navier-Stokes equations written in the ALE form

DAv
Dt
C ..v � wD/ � r/v � � f	vCrp D 0; div v D 0 in ˝ f

t ; (6)
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where v.x; t/ denotes the fluid velocity, p is the kinematic pressure and � f is the
kinematic fluid viscosity.

The system of Eqs. (6) is equipped with zero initial and the following boundary
conditions

(a) v.x; t/ D wD.x; t/ for x 2 � f
Dir [ �Wt ; t 2 .0;T/;

(b) v.x; t/ D vDir.x; t/ for x 2 � f
In; t 2 .0;T/; (7)

(c) p.x; t/nf � � f @v
@nf

.x; t/ D �1
2

v.v � nf /� for x 2 � f
Out; t 2 .0;T/;

where nf here denotes outer unit normal to boundary � f
Out. The last condition (7 c)

is the modified do-nothing boundary condition according to [2], which increases the
stability of the scheme and suppresses backward inlet through the outlet boundary.

2.4 Coupling Conditions

The FSI problem is solved by the partitioned approach. This means that the elastic
structure and the fluid flow problem is approximated by different solvers and
coupled together with the aid of the interface boundary conditions prescribed on the
interface �Wt . Let us mention here that the location of the interface is also unknown
at each time instant t and depends on the establishing force equilibrium between the
aerodynamic and elastic forces. Thus �Wt depends on the displacement u at time t
by

�Wt D
˚
x 2 R

2j x D X C u.X; t/; X 2 �Wref

�
: (8)

The force equilibrium at �Wt leads to the dynamic condition prescribed in
problem (1) by boundary condition (3 d), where

qsi .X; t/ D
2X

jD1
�f
�
pıij � � f

�
@vi

@xj
C @vj

@xi

��
nfj .x/; (9)

and where nfj denotes the components of the unit normal (here to interface �Wt )

oriented out of ˝ f
t at x D X C u.X; t/; X 2 �Wref .

Furthermore on the interface �Wt the kinematic condition (7a) is prescribed.
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3 Numerical Model

The FSI problem is now discretized in space using the FEM. For the time
discretization of (1) and (6) the Newmark scheme and the backward differentiation
formula of second order (BDF2) are used, respectively. The time interval Œ0;T� is
divided equidistantly, i.e. tn D n	t.

3.1 Elastic Structure

First, Eq. (1) is reformulated in the weak sense by multiplying of Eq. (1) by a test
function ' 2 V, integration over ˝s, using the Green’s theorem and Hooke’s
law (2). It means that we seek u 2 V such that

�
�s
@2u
@t2

;'

�
˝s

C 
�s.div u/ ıij C 2�sesij.u/; e
s
ij.'/

�
˝sD .fs;'/˝sC .qs;'/� s

Neu
;

(10)

holds for all ' 2 V. Here .�; �/˝s denotes scalar product in the space L2.˝s/ and
L2.˝s/, the space V D V � V , where V D f� 2 W1;2.˝s/j� D 0 on � s

Dirg, and
W1;2.˝/ is the Sobolev’s space, see [1].

Replacing the space V by it’s subspace Vh � V, the solution is sought in the form
uh.x; t/ DPNh

jD1 ˛j.t/'j.x/, where functions 'j form a base of Vh and Nh D dimVh.
Then Eq. (10) can be written in the matrix form

M
T R̨ CK

T˛ D b.t/; (11)

where the vector b.t/ D .bi.t// H) bi.t/ D .fs;'i/˝s C .qs;'i/� s
Neu

and the
elements of the matrices M D .mij/;K D .kij/ are given by

mij D .�s'j;'i/˝s ; kij D .�s.div 'j/ ırl C 2�sesrl.'j/; e
s
rl.'i//˝s ;

The resulting system of second order ordinary differential Eqs. (11) is solved by
Newmark method, see [4].

3.2 Fluid Flow

In order to discretize Eq. (6) in time the BDF2 scheme is applied, so the ALE
derivative is approximated by

DAv
Dt

.tnC1/ � 3vnC1 � 4vn C vn�1

2	t
; (12)
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where for a fixed time instant tnC1 we denote vi.x/ D vi.Qx/ for Qx D Ati.A
�1
tnC1

.x//,

i 2 fn � 1; ng and x 2 ˝ f
nC1. For the sake of simplicity in what follows the time

index nC1 shall be omitted, e.g.˝ f WD ˝ f
tnC1

.
The application of BDF2 in Eq. (6) and the standard derivation of the weak

formulation yields

 
3v � 4vn C vn�1

2	t
;˚

!
˝ f

C c.vI vI˚/C 1

2
..v � n/Cv;˚/

�
f

Out
C

C� f .rv;r˚/˝ f � .p;r˚/˝ f C .q; div v/˝ f D 0; (13)

which should be satisfied for any test function ˚ from the space X D X � X; X D
ff 2 W1;2.˝ f /j f D 0 on � f

Dir [ � f
In [ � f

WtnC1
g � W1;2.˝ f / and any q 2 M D

L2.˝ f /. Here, the term c.�; �; �/ is the form defined by

cnC1.zI vI˚/ D 1

2
...z � 2wnC1

D / � r/v;˚/˝ f � 1
2
..z � r/˚; v/˝ f : (14)

During derivation of this scheme the nonlinear boundary condition (7c) naturally
arises, see [2].

Then by FEM we approximate spaces X and M by the finite dimensional spaces
Xh and Mh, so the solution v � vh can be expressed as linear combination of basis
functions leading to the system

�
A.v�h / B
B
T 0

� �
ˇ




�
D
�

g
0

�
; (15)

where ˇ;
 are vectors of linear combination coefficients, A.v�h / D 1
	tMCC.v�h /C

D and the elements of the matrices M D .mij/;C D .cij/;D D .dij/ and vector
g D .gi/ are given by

mij D 3

2
.˚ j;˚ i/˝ f ; cij D cnC1.v�h I˚ jI˚ i/; dij D � f .r˚ j;r˚ i/˝ f ;

bij D .�qj; div ˚ i/˝ f ; gi D .4un � un�1

2	t
;˚ i/˝ f : (16)

The nonlinear system of Eqs. (15) is solved by the linearization v�h D vn and then the
mathematical library UMFPACK is employed, see [5]. The P1-bubble/P1 elements
are used in the numerical simulations, which according to [6] satisfy the well-known
Babuška-Brezzi condition.
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4 Numerical Results

All numerical simulation were performed on the mesh of vocal fold model M5
suggested by paper [7] and shown in Fig. 2. Here, only one half of the channel
with assumption of solution symmetry was used due to reduction of computation
cost and verification of the preliminary results.

All numerical results were achieved for flow driven vibrations from reference
state ˝s

ref induced by parabolic inlet profile with maximum v1 D 0:15m=s, � f D
1:5 � 10�5 m2=s and �f D 1:7 kg=m3. The material properties are the same as in
[11]. Examples of flow field at two time instants is shown in Fig. 3. The structure
deformation was enabled after tS D 0:01 s, where the fluid field is fully developed.
Although the start of simulation is unphysical – sudden release of interaction, after
a short time (0:15 s) periodic oscillations around a deflected position arose.

The solution on three meshes (a coarse, once refined and twice refined mesh) for
	t D 2 � 10�4s was performed. Figure 4 shows the displacement of the point A in
direction x and it’s Fourier transformation for different meshes. The time signals are
very similar, small difference can be seen in the frequency spectra, where the first
dominant frequency is shifted by 7Hz because of shorter time signal.

Fig. 2 The triangulation of the (coarse) computational domain˝ f
0 and of the vocal fold model M5

(dimensions in [m]). From the top of vocal folds was chosen point A D Œ0:00628I�0:00057�

Fig. 3 The detail of the flow field at two time instants t D 0:075 and 0:45 s together with the
pressure isolines. The order of the vocal fold displacements is 10�4 m
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Fig. 4 The time signal for the displacement of point A in direction x and below its scaled Fourier
transformation jF.u/j without first 0:01 s. Mesh 1 is the most coarse one. Frequency spectrum was
rescaled to have maximum at 1

Fig. 5 The time signal of the displacement of point A in direction y and below its scaled
Fourier transformation jF.u/j with excluded first 0:01 s. Frequency spectrum was rescaled to have
maximum at 1

The solution for three time steps t1 D 2 �10�4 s, t2 D 1 �10�4 s and t3 D 5 �10�5 s
was analyzed on the coarse mesh. The results are shown in Fig. 5. It can be seen that
agreement is good, the Fourier transformation confirms the excitation of mainly
first two modes for all cases on time interval of 1 s. Similar result was achieved for
example by [12].
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5 Conclusion

This contribution described the mathematical model of the FSI problem and its
numerical approximation. The simple test case was computed and the convergence
of presented method in time and space was demonstrated. The results showed that
this method is for given case sufficiently accurate if the appropriately fine grid and
enough small time step are used.
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Comparison of Nonlocal Operators Utilizing
Perturbation Analysis

Burak Aksoylu and Fatih Celiker

Abstract We present a comparative study of integral operators used in nonlocal
problems. The size of nonlocality is determined by the parameter ı. The authors
recently discovered a way to incorporate local boundary conditions into nonlocal
problems. We construct two nonlocal operators which satisfy local homogeneous
Neumann boundary conditions. We compare the bulk and boundary behaviors of
these two to the operator that enforces nonlocal boundary conditions. We construct
approximations to each operator using perturbation expansions in the form of Taylor
polynomials by consistently keeping the size of expansion neighborhood equal to ı.
In the bulk, we show that one of these two operators exhibits similar behavior with
the operator that enforces nonlocal boundary conditions.

1 Introduction

The integral operators under consideration are used, for instance, in peridynamics
(PD) [11] and nonlocal diffusion [5, 8]. PD is a nonlocal extension of continuum
mechanics developed by Silling [11]. PD is based on nonlocal interactions. As a
result, nonlocal boundary conditions (BC) are used. The authors recently discovered
a way to incorporate local BC into nonlocal theories [3, 4, 7], in particular into PD.

We present a comparative study of operators used in nonlocal problems. We
consider problems in 1D and choose the domain ˝ D .�1; 1/. We define the
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governing operator related to PD by

Au.x/ WD cu.x/�
Z
˝

C.x � y/u.y/dy; x 2 ˝; (1)

where C; u 2 L2.˝/ and c D R˝ C.y/dy. The kernel function C.x/ is assumed to be
even. An important first choice of C.x/ is the canonical kernel function �ı.x/ whose
only role is the representation of the nonlocal neighborhood, called the horizon, by
a characteristic function. Namely,

�ı.x/ WD
�
1; jxj < ı
0; otherwise.

The size of nonlocality is determined by ı and we assume ı < 1.
In R

d; d � 1, we discovered that the PD governing operator (1) is a bounded
function of the classical (Laplace) operator [7]. We generalized this theoretical
result to bounded domains [3, 4]. The main idea of the generalization is as follows.
Building on the theoretical result, we generalized the standard integral based
convolution in (1) to an abstract convolution operator which is defined by a Hilbert
(complete and orthonormal) basis. This basis is induced by the classical operator
with prescribed local BC on bounded domains. The nonlocal operator becomes a
function of the classical operator. By prescribing BC to the classical operator, we
construct a gateway to incorporate local BC into nonlocal theories.

Through the use of local BC, we plan to solve important elasticity applications
which require local BC such as contact, shear, and traction. In addition, we
anticipate to eliminate the surface effects which are seen in PD due to employing
nonlocal BC. Incorporation of local BC leads to a modification of the original PD
governing operator in (1).

The operatorsM and N defined below employ the even part of u. For notational
convenience, we denote the orthogonal projections that give the even and odd parts,
respectively, of a function by Pe;Po W L2.˝/ ! L2.˝/; whose definitions are

Peu.x/ WD u.x/C u.�x/
2

; Pou.x/ WD u.x/� u.�x/
2

: (2)

In this paper, we present a comparative study of the following three operators. For
x 2 ˝ ,

L u.x/ WD cu.x/�
Z
˝

�ı.x � y/u.y/dy; (3)

M u.x/ WD cu.x/�
Z
˝

O�ı.x � y/Peu.y/dy; (4)

N u.x/ WD cu.x/�
Z
˝

O�ı.jx � yj � 1/Peu.y/dy: (5)
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Kernel functions are obtained by extensions from ˝ D .�1; 1/ to Ő D .�2; 2/ with
ı D 0:2 and their corresponding supports. (a) Kernel function �ı.x/. (b) Support of �ı.x� y/. (c)
Kernel function O�ı.x/, periodic extension of �ı.x/jx2˝ to Ő . (d) Support of O�ı.x� y/. (e) Kernel
function O�ı.1� jxj/. (f) Support of O�ı.1� jx� yj/

Here, we define the extended domain Ő WD .�2; 2/ and denote the periodic
extension of �ı.x/jx2˝ to Ő by O�ı.x/; see Fig. 1. We construct approximationseL ;fM ;fN to each governing operator L ;M ;N using perturbation expansions.
Similar expansions were used by the first author [1, 2] and in higher order gradient
applications [6, 9, 10].
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2 Operator Definitions

For x 2 .�2; 2/, kernel functions in (3), (4), and (5) are defined as

�ı.x/ WD
�
1; x 2 .�ı; ı/
0; otherwise:

O�ı.x/ WD
�
1; x 2 .�2;�2C ı/ [ .�ı; ı/ [ .2 � ı; 2/
0; otherwise:

O�ı.1 � jxj/ WD
�
1; x 2 .�1 � ı;�1C ı/[ .1 � ı; 1C ı/
0; otherwise:

The corresponding convolution kernels are

�ı.y � x/ WD
(
1; y 2 .x � ı; xC ı/
0; otherwise:

O�ı.y � x/ WD
(
1; y 2 .x � 2; x � 2C ı/ [ .x � ı; xC ı/ [ .xC 2� ı; xC 2/
0; otherwise:

O�ı.1 � jy � xj/ WD
(
1; y 2 .x � 1 � ı; x � 1C ı/[ .xC 1 � ı; xC 1C ı/
0; otherwise:

With a slight abuse of notation, for functions O�ı.�/ W Ő ! R and its bivariate version
O�ı.�; �/ W ˝ �˝ ! R, we use the same notation; O�ı.x� y/ D O�ı.x; y/. In Fig. 1, we
depict the support of O�ı.x; y/.

For integration, we need to consider the following y-ranges

˝L WD .�1; 1/\ f.x � ı; xC ı/g;
˝M WD .�1; 1/\ f.x � 2; x � 2C ı/[ .x � ı; xC ı/ [ .xC 2 � ı; xC 2/g;
˝N WD .�1; 1/\ f.x � 1 � ı; x � 1C ı/ [ .xC 1 � ı; xC 1C ı/g:

2.1 Boundary Conditions

The classical operator satisfying homogeneous Neumann BC is given by

ANu D � 4

�2
u 00;



Comparison of Nonlocal Operators 593

where 0 denotes the weak derivative and u 2 H2
0.˝/. AN has a purely discrete

spectrum �.AN/ consisting of simple eigenvalues,

�.AN/ D
˚
k2 W k 2 N

�
:

A normalized eigenvector corresponding to the eigenvalue k2 is given by

eNk .x/ WD
(

1p
2
; k D 0

cos


k�
2
.xC 1/� ; k ¤ 0; k 2 N

:

The sequence


eNk
�
k2N is a Hilbert basis of L2.˝/. Using this basis, we define the

generalized convolution operator on ˝ for C; u 2 L2.˝/ [3, 4] as follows

C �N u.x/ WD
X
k2N
heNk jCi heNk jui eNk .x/; (6)

where h�j�i denotes the inner product in L2.˝/.
We want to obtain an integral representation for (6). For this, we need several

ingredients. Let bC.x/, x 2 .�2; 2/ denote periodic extension of the kernel function
C.x/, x 2 .�1; 1/. Since C.x/ is even, so isbC.x/. Then,bC.x/ D bC.jxj/. The integral
representation of C�N is based on the following decomposition of bC.jxj/ based on
the “half-wave symmetry.”

bC.jxj/ D bC.jxj/CbC.1 � jxj/
2

C
bC.jxj/�bC.1 � jxj/

2
;

DW bC1.x/CbC2.x/:
Then, the integral representation of C �N in (6) takes the following form [3, 4]

C �N u.x/ D
Z
˝

bC.jx � yj � 1/Peu.y/dyC 
N;C
Z
˝

u.y/dy; (7)

where 
N;C WD �
p
2�1
2
p
2

R
˝
C1.y/dyC

p
2C1
2
p
2

R
˝
C2.y/dy: Hence,

d

dx
C �N u.x/ D d

dx

Z
˝

bC.jx � yj � 1/Peu.y/dy:
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Observe that only the convolution part survives after differentiation. This allows us
to induce several governing integral operators that satisfy homogeneous Neumann
BC. As a result, we can obtain the operator N u in (5) with general kernel functionbC.jx � yj � 1/

N u.x/ WD cu.x/�
Z
˝

bC.jx � yj � 1/Peu.y/dy: (8)

Note that

bC.jxj � 1/ D bC1.x/�bC2.x/: (9)

Using the fact that bC.x/ is 2-periodic and after some algebraic manipulation, we
conclude that both bC1.x/ and bC2.x/ are 2-periodic. Due to (9), bC.jxj � 1/ is also
2-periodic. Consequently, bC.jxj � 1/ is an even and 2-periodic function, a crucial
property that we will also use for constructing the other governing operator; see (13).

Remark 1 bC1.x/ and bC2.x/ have an additional property of half-wave symmetry.
Namely, for every x 2 Œ0; 1=2�,

C1.x/ D 1

2
ŒC.x/C C.1 � x/� D 1

2
ŒC.j1 � xj/C C.1 � j1 � xj/� D C1.1 � x/;

C2.x/ D 1

2
ŒC.x/ � C.1 � x/� D 1

2
ŒC.1 � j1 � xj/� C.j1 � xj/� D �C2.1 � x/:

These identities have been used in obtaining the integral representation in (7).

Next, we want to show that the governing operator in (8) satisfies the homoge-
neous Neumann BC. We begin with rewriting N u.x/ as follows

N u.x/ D cu.x/�
Z
˝

.1=2/
�bC.jx � yj � 1/CbC.jxC yj � 1/

	
u.y/�dy:

For simplicity, assuming that C is sufficiently smooth and differentiating both sides,
we obtain

d

dx
N u.x/ D cu0.x/�

Z
˝

.1=2/

�bC0.jx � yj � 1/ jx� yj
x � y

CbC0.jxC yj � 1/ jxC yj
xC y

�
u.y/�dy: (10)

The case of non-smooth C can be handled by splitting the integral into parts where
C is piecewise smooth. Here, u0.x/ denotes the initial velocity, and hence, we always
assume that it satisfies homogeneous Neumann BC, i.e., u0.�1/ D u0.1/ D 0

because initial values automatically satisfy the given BC. Furthermore, since bC.y/
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is even,bC0.y/ is odd. Evaluating (10) at x D �1 gives

d

dx
N u.�1/ D cu0.�1/�

Z
˝

.1=2/
�bC0.y/.�1/CbC0.�y/.�1/	 u.y/dy

D cu0.�1/�
Z
˝

.1=2/
�bC0.y/.�1/�bC0.y/.�1/	 u.y/dy

D 0: (11)

Similarly, at x D 1, we have

d

dx
N u.1/ D cu0.1/�

Z
˝

.1=2/
�bC0.�y/.C1/CbC0.y/.C1/	 u.y/dy

D cu0.1/�
Z
˝

.1=2/
�
�bC0.y/.C1/CbC0.y/.C1/	 u.y/dy

D 0: (12)

2.2 An Alternative Governing Operator

The main property we exploit in satisfying the BC is the evenness of the kernel
function. Inspired by this fact, we can define a simpler alternative governing
operator that satisfies homogeneous Neumann BC

M u.x/ WD cu.x/�
Z
˝

bC.x � y/Peu.y/dy (13)

D cu.x/�
Z
˝

.1=2/
�bC.x � y/CbC.xC y/

	
u.y/�dy: (14)

In a similar fashion to (11) and (12), one can easily show that (14) satisfies the BC.

3 Perturbation Expansions

We construct approximations eL ;fM ;fN to L ;M ;N using perturbation expan-
sions in the form of Taylor polynomials by consistently keeping the size of the
expansion neighborhood equal to ı in each case. This leads to Taylor polynomial of
u.y/ at different y locations such as y D x;�x; x�1; xC1. That way, approximations
of u.y/ all have error O.ı3/, which means that we maintain consistent error among
approximate operators.

For each operator, we have 3 intervals, on which the Taylor polynomials are
guaranteed to have the size of the expansion neighborhood equal to ı in the
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corresponding y-range. We list the y-ranges, depict them in Fig. 1 as shaded regions.
Then, we utilize a Taylor polynomial which defines the approximate integrand
Qf�;�.x; y/. Eventually, we calculate the approximate operator for the corresponding
interval.

We easily see that c D R
˝
�ı.y/dy D 2ı. For convenience, we prefer to useeL u.x/ � 2ıu.x/, fM u.x/ � 2ıu.x/, and fN u.x/ � 2ıu.x/. The calculations for

approximations eL ;fM ;fN are given in a systematic way. We also report values
at transition points for each approximate operator.

3.1 Operator QL

The integrand is fL .x; y/ D �u.y/: We have 3 intervals, left, center, and right
denoted by `;c, and r, respectively. IL ;` WD .�1;�1Cı/, IL ;c WD .�1Cı; 1�ı/,
and IL ;r WD .1� ı; 1/.

3.1.1 OperatoreL `; x 2 IL ;` D .�1; �1 C ı/

y 2 RL ;` D .�1; xC ı/; y � x 2 .�x � 1; ı/ � .�ı; ı/; jy � xj < ı

RL ;` W u.y/ D u.x/C .y � x/u0.x/C .y � x/2

2
u00.x/C O.ı3/;

QfL ;`.x; y/ D �u.x/� .y � x/u0.x/ � .y � x/2

2
u00.x/;

eL `u.x/� 2ıu.x/ D
Z

RL ;`

QfL ;`.x; y/dy

D Œ�x � 1 � ı�u.x/C 1

2
Œx � .�1 � ı/� Œx � .�1C ı/� u0.x/

C�1
6
Œx � .�1 � ı/� �x2 � .ı � 2/xC 1 � ı C ı2 u00.x/:

3.1.2 OperatoreL c; x 2 IL ;c D .�1 C ı; 1 � ı/

y 2 RL ;c D .x � ı; xC ı/; y � x 2 .�ı; ı/; jy � xj < ı

QfL ;c.x; y/ D QfL ;`.x; y/;
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eL cu.x/� 2ıu.x/ D
Z

RL ;c

QfL ;c.x; y/dy

D �ı
3

3
u00.x/� 2ıu.x/:

3.1.3 OperatoreL r; x 2 IL ;r D .1 � ı; 1/

y 2 RL ;r D .x � ı; 1/; y � x 2 .�ı;�xC 1/ � .�ı; ı/; jy � xj < ı

QfL ;r.x; y/ D QfL ;`.x; y/;

eL ru.x/� 2ıu.x/ D
Z

RL ;r

QfL ;r.x; y/dy

D Œx � 1� ı�u.x/C �1
2
Œx � .1C ı/� Œx � .1 � ı/� u0.x/

C1
6
Œx � .1C ı/� �x2 C .ı � 2/xC 1� ı C ı2 u00.x/:

3.1.4 Values ofeL at Boundary and Transition Points

eL `u.�1/ D �ı
3

6
u00.�1/C �ı

2

2
u0.�1/C ıu.�1/

eL `u.�1C ı/ D eL cu.�1C ı/ D �ı
3

3
u00.�1C ı/

eL cu.1� ı/ D eL ru.1 � ı/ D �ı
3

3
u00.1 � ı/

eL ru.1/ D �ı
3

6
u00.1/C ı2

2
u0.1/C ıu.1/:

3.2 OperatoreM

The integrand is fM .x; y/ D �Peu.y/. Similar to the eL case, we have 3 intervals:
IM ;` WD .�1;�1C ı/, IM ;c WD .�1C ı; 1 � ı/, and IM ;r WD .1 � ı; 1/.
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3.2.1 OperatorfM `; x 2 IM ;` D .�1; �1 C ı/

y 2 RM ;` D .xC 2 � ı; 1/; yC x 2 .2xC 2 � ı; xC 1/ � .�ı; ı/; jyC xj < ı
y 2 RM ;`�c D .�1; xC ı/; y � x 2 .�x � 1; ı/ � .�ı; ı/; jy � xj < ı:

RM ;` W u.y/ D u.�x/C .yC x/u0.�x/C .yC x/2

2
u00.�x/C O.ı3/;

RM ;`�c W u.y/ D u.x/C .y � x/u0.x/C .y � x/2

2
u00.x/C O.ı3/;

QfM ;`.x; y/ D �Peu.x/C .yC x/Pou
0.x/� .yC x/2

2
Peu
00.x/;

QfM ;`�c.x; y/ D �Peu.x/� .y � x/Pou
0.x/ � .y � x/2

2
Peu
00.x/:

fM `u.x/ � 2ıu.x/ D
Z

RM;`

QfM ;`.x; y/dyC
Z

RM;`�c

QfM ;`�c.x; y/dy

D q`.x/Peu
00.x/� .xC 1 � ı/2Pou

0.x/� 2ıPeu.x/: (15)

3.2.2 OperatorfM c; x 2 IM ;c D .�1 C ı; 1 � ı/

y 2 RM ;c D .x � ı; xC ı/; y � x 2 .�ı; ı/; jy � xj < ı

QfM ;c.x; y/ D QfM ;`�c.x; y/;

fM cu.x/� 2ıu.x/ D
Z

RM;c

QfM ;c.x; y/dy

D �ı
3

3
Peu
00.x/ � 2ıPeu.x/:
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3.2.3 OperatorfM r; x 2 IM ;r D .1 � ı; 1/

y 2 RM ;r D .�1; x � 2C ı/; yC x 2 .x � 1; 2x � 2C ı/ � .�ı; ı/; jyC xj < ı
y 2 RM ;r�c D .x � ı; 1/; y � x 2 .�ı;�xC 1/ � .�ı; ı/; jy � xj < ı:

QfM ;r.x; y/ D QfM ;`.x; y/;

QfM ;r�c.x; y/ D QfM ;`�c.x; y/;

fM ru.x/ � 2ıu.x/ D
Z

RM;r

QfM ;r.x; y/dyC
Z

RM;r�c

QfM ;r�c.x; y/dy

D qr.x/Peu
00.x/C .x � 1C ı/2Pou

0.x/ � 2ıPeu.x/: (16)

Remark 2 Expressions of the coefficients q`.x/ and qr.x/ of Peu00.x/ in (15)
and (16), respectively, are quite involved. So, we prefer not to report them.

3.2.4 Values offM at Boundary and Transition Points

fM `u.�1/� 2ıu.�1/ D �ı
3

3
Peu
00.�1/� ı2Pou

0.�1/� 2ıPeu.�1/

fM `u.�1C ı/ � 2ıu.�1C ı/ D �ı
3

3
Peu
00.�1C ı/� 2ıPeu.�1C ı/

fM cu.�1C ı/ � 2ıu.�1C ı/ D �ı
3

3
Peu
00.�1C ı/� 2ıPeu.�1C ı/

fM cu.1� ı/� 2ıu.1� ı/ D �ı
3

3
Peu
00.1 � ı/ � 2ıPeu.1 � ı/

fM ru.1� ı/� 2ıu.1� ı/ D �ı
3

3
Peu
00.1 � ı/ � 2ıPeu.1 � ı/

fM ru.1/� 2ıu.1/ D �ı
3

3
Peu
00.1/C ı2Pou

0.1/� 2ıPeu.1/:

3.3 OperatoreN

The integrand is fN .x; y/ D �Peu.y/. We have 3 intervals: IN ;` WD .�1;�ı/,
IN ;c WD .�ı; ı/, and IN ;r WD .ı; 1/.
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3.3.1 Operator fN `; x 2 IN ;` D .�1; �ı/

y 2 RN ;` D .xC 1 � ı; xC 1C ı/; y � .xC 1/ 2 .�ı; ı/; jy � .xC 1/j < ı:

RN ;` W u.y/ D u.xC 1/C Œy � .xC 1/�u0.xC 1/

C Œy � .xC 1/�
2

2
u00.xC 1/C O.ı3/;

QfN ;`.x; y/ D �Peu.xC 1/

�Œy � .xC 1/�Pou
0.xC 1/� Œy � .xC 1/�

2

2
Peu
00.xC 1/;

fN `u.x/� 2ıu.x/ D
Z

RN ;`

QfN ;`.x; y/dy

D �ı
3

3
Peu
00.xC 1/� 2ıPeu.xC 1/:

3.3.2 Operator fN c; x 2 IN ;c D .�ı; ı/

y 2 RN ;`�c D .xC 1 � ı; 1/; y � .xC 1/ 2 .�ı;�x/ � .�ı; ı/; jy � .xC 1/j < ı
y 2 RN ;r�c D .�1; x � 1C ı/; y � .x � 1/ 2 .�x; ı/ � .�ı; ı/; jy � .x � 1/j < ı:

RN ;`�c W u.y/ D u.xC 1/C Œy� .xC 1/�u0.xC 1/C Œy � .xC 1/�2
2

u00.xC 1/C O.ı3/

RN ;r�c W u.y/ D u.x � 1/C Œy � .x � 1/�u0.x � 1/C Œy� .x � 1/�2
2

u00.x � 1/C O.ı3/

QfN ;`�c.x; y/ D QfN ;`.x; y/;

QfN ;r�c.x; y/ D �Peu.x � 1/� Œy� .x � 1/�Pou
0.x � 1/ � Œy � .x � 1/�

2

2
Peu

00.x � 1/:
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fN cu.x/ � 2ıu.x/ D
Z

RN ;`�c

QfN ;`�c.x; y/dyC
Z

RN ;r�c

QfN ;r�c.x; y/dy

D 1

6
.x3 � ı3/Peu

00.xC 1/ � 1
6
.x3 C ı3/Peu

00.x � 1/C
1

2
.x2 � ı2/Œ�Pou

0.xC 1/C Pou
0.x � 1/�C .x � ı/Peu.xC 1/ � .xC ı/Peu.x � 1/:

3.3.3 Operator fN r; x 2 IN ;r D .ı; 1/

y 2 RN ;r D .x � 1 � ı; x � 1C ı/; y � .x � 1/ 2 .�ı; ı/; jy � .x � 1/j < ı:

QfN ;r.x; y/ D QfN ;r�c.x; y/;

fN ru.x/� 2ıu.x/ D
Z

RN ;r

QfN ;r.x; y/dy

D �ı
3

3
Peu
00.x � 1/� 2ıPeu.x � 1/:

3.3.4 Values of fN at Boundary and Transition Points

fN `u.�1/� 2ıu.�1/ D �ı
3

3
Peu
00.0/� 2ıPeu.0/

fN `u.�ı/� 2ıu.�ı/ D �ı
3

3
Peu
00.1 � ı/� 2ıPeu.1 � ı/

fN cu.�ı/� 2ıu.�ı/ D �ı
3

3
Peu
00.1 � ı/� 2ıPeu.1 � ı/

fN cu.ı/� 2ıu.ı/ D �ı
3

3
Peu
00.ı � 1/� 2ıPeu.ı � 1/

fN ru.ı/� 2ıu.ı/ D �ı
3

3
Peu
00.ı � 1/� 2ıPeu.ı � 1/

fN ru.1/� 2ıu.1/ D �ı
3

3
Peu
00.0/� 2ıPeu.0/:
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4 Comparison of Operators

4.1 Comparison in the Bulk

The interval .�1 C ı; 1 � ı/ is usually referred as the bulk of the domain. The
behavior in the bulk is considered to be the main behavior of the operator especially
when ı � 1. That is why, it is important to find out the operator behavior in the
bulk. By construction, the notion of bulk is slightly different for the N operator.
The intervals .�1;�ı/ and .ı; 1/ will be referred as bulk in the case of N . We list
the bulk behavior of each operator:

eL cu.x/ D �ı
3

3
u00.x/; x 2 .�1C ı; 1 � ı/; (17)

fM cu.x/� 2ıu.x/ D �ı
3

3
Peu
00.x/ � 2ıPeu.x/; x 2 .�1C ı; 1 � ı/; (18)

fN `u.x/� 2ıu.x/ D �ı
3

3
Peu
00.xC 1/� 2ıPeu.xC 1/; x 2 .�1;�ı/; (19)

fN ru.x/� 2ıu.x/ D �ı
3

3
Peu
00.x � 1/� 2ıPeu.x � 1/; x 2 .ı; 1/: (20)

We start comparing the operators with eL c and fM c. Then, by substituting u D
Peu in (18) and using P2e D Pe, we arrive at

fM cPeu.x/ D �ı
3

3
Peu
00.x/: (21)

In order to match (17) with (21), we also substitute u D Peu and we get

eL cPeu.x/ D �ı
3

3
Peu
00.x/:

Then, we conclude that the action of eL c and fM c agree in the bulk when restricted
to the even component of u.x/.

In order to compare fN ` and fN r with eL c, we substitute u D Peu in (19)
and (20), which gives us the following results:

fN `Peu.x/� 2ıPeu.x/ D �ı
3

3
Peu
00.xC 1/� 2ıPeu.xC 1/ (22)

fN rPeu.x/� 2ıPeu.x/ D �ı
3

3
Peu
00.x � 1/� 2ıPeu.x � 1/: (23)
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In order to cancel the 2ıPeu.x/ with 2ıPeu.xC1/ and 2ıPeu.x�1/ in (22) and (23),
respectively, we need to make the following assumption:

u.x/ D u.x � 1/ D u.xC 1/; x 2 .�1;�ı/[ .ı; 1/: (24)

This property holds, for instance, when u is 1-periodic. Namely,

u.x/ D u.x � 1/; x 2 R: (25)

We may conclude that the assumption (24) is triggered because of the half-wave
symmetry property, noted in Remark 1, employed when constructing the integral
operator N . In summary, we conclude that eL c agrees with fN ` and fN r when
restricted to the even component of u.x/ where u.x/ is 1-periodic.

4.2 Comparison of Higher Order Approximations in the Bulk

If we use a higher order Taylor approximation, for instance, for the eL ` operator
x 2 IL ;` D .�1;�1C ı/, we get following expansion of y 2 RL ;` D .�1; xC ı/

u.y/ D
�
I C .y � x/DC � � � C .y � x/2n

.2n/Š
D2n

�
u.x/C O.ı2nC1/:

Then the error of the following operators is O.ı2nC2/:

eL cu.x/ D .�2/
�
ı3

3Š
D2 C ı5

5Š
D4 C � � � C ı2nC1

.2nC 1/ŠD
2n

�
u.x/;

fM cPeu.x/ D .�2/
�
ı3

3Š
D2 C ı5

5Š
D4 C � � � C ı2nC1

.2nC 1/ŠD
2n

�
Peu.x/;

fN `Peu.x/ D .�2/
�
ı3

3Š
D2 C ı5

5Š
D4 C � � � C ı2nC1

.2nC 1/ŠD
2n

�
Peu.xC 1/;

fN rPeu.x/ D .�2/
�
ı3

3Š
D2 C ı5

5Š
D4 C � � � C ı2nC1

.2nC 1/ŠD
2n

�
Peu.x � 1/:

Note that all these expressions on the right hand side can be written as a function of
D2. This is an indication that all the above approximate operators are functions of
the Laplace; see the extended discussion in [7].
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4.3 Comparison at the Boundary and Transition Points

We monitor where we can capture the factor �ı3
3

next to u00.x/ and Peu00.x/ terms.
We consider this as an indication that the bulk behavior is captured at that point. By
using transition values computed in Sect. 3.1, first note that

eL `u.�1C ı/ D eL cu.�1C ı/ D �ı
3

3
u00.�1C ı/

eL ru.1� ı/ D eL cu.1� ı/ D �ı
3

3
u00.1 � ı/:

At transition points x D �1C ı; 1� ı, we conclude that we can define a continuous
extension of eL from the pieces eL `; eL c, and eL r.

In order to monitor boundary and bulk behavior, we need to manipulate boundary
and transition expressions of the fM given in Sect. 3.2 by u D Peu. Then, using
implications of (2), i.e., PePo D 0 and P2e D Pe, we obtain

fM `Peu.�1/ D �ı
3

3
Peu
00.�1/

fM `Peu.�1C ı/ D �ı
3

3
Peu
00.�1C ı/

fM cPeu.�1C ı/ D �ı
3

3
Peu
00.�1C ı/

fM rPeu.1� ı/ D �ı
3

3
Peu
00.1 � ı/

fM rPeu.1/ D �ı
3

3
Peu
00.1/:

Similar to the eL case, we can define a continuous extension of fMPe at transition
points from the pieces fM `Pe;fM cPe, and fM rPe.

In order to monitor boundary and bulk behavior of fN , we manipulate boundary
and transition expressions given in Sect. 3.3 by u D Peu. Then, by assuming (25),
we obtain

fN `Peu.�1/ D �ı
3

3
Peu
00.�1/

fN `Peu.�ı/ D fN cPeu.�ı/ D �ı
3

3
Peu
00.�ı/

fN cPeu.ı/ D fN rPeu.ı/ D �ı
3

3
Peu
00.ı/

fN rPeu.1/ D �ı
3

3
Peu
00.1/:
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We can also define a continuous extension of fN Pe at transition points from the
pieces fN `Pe; fN cPe, and fN rPe.

Note that values of fMPe at boundary and bulk points exhibit the bulk behavior
of eL . In addition, under assumption (25), values of fN rPe and fN `Pe at boundary
points also exhibit the bulk behavior of eL . These might be indications that the
surface effect issue observed in PD can be eliminated if M and N are used as
governing operators. This is a future research avenue.

5 Conclusion

The important property we seek is to obtain �ı3=3 as the coefficient of the term
with the second derivative. We identify this as the bulk behavior. Both fMPe andfN Pe exhibit the same bulk behavior as eL Pe. Furthermore, the bulk behavior is also
observed at all boundary and transition points for fMPe and fN Pe. The comparison
of fN to eL and fM requires the assumption of (25). Due to this restriction, we
conclude that eL agrees with fM more than it does with fN .

In the expansion of fMPe, the coefficients of Peu00.x/ are all equal to �ı3=3 at
transition points as well as at boundary points. This can be interpreted as the best
possible agreement with the Laplace operator. Such an agreement may indicate that
the surface effects observed in PD can be eliminated especially when M is used as
governing operator. For future research, by eliminating the assumptions u D Peu
and (25), we plan to construct governing operators that agree with L in the bulk.
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Pricing of Basket Options Using Dimension
Reduction and Adaptive Finite Differences
in Space, and Discontinuous Galerkin in Time

Lina von Sydow, Paria Ghafari, Erik Lehto, and Mats Wångersjö

Abstract European basket options are priced by solving the multi-dimensional
Black–Scholes–Merton equation. Standard numerical methods to solve these prob-
lems often suffer from the “curse of dimensionality”. We tackle this by using
a dimension reduction technique based on a principal component analysis with
an asymptotic expansion. Adaptive finite differences are used for the spatial
discretization. In time we employ a discontinuous Galerkin scheme. The efficiency
of our proposed method to solve a five-dimensional problem is demonstrated
through numerical experiments and compared with a Monte-Carlo method.

1 Introduction

Pricing of options is something that’s going on daily in banks and financial institutes.
For many options there exist no analytical solution to the pricing problem and fast
and accurate numerical methods are of utmost importance.

We consider a Black–Scholes–Merton market [1, 8] with one risk free asset with
price process B.t/ and d risky assets with processes S.t/ D .S1.t/ � � � Sd.t// given by
the following dynamics

dB.t/ D rB.t/dt;
dS1.t/ D ˛1S1.t/dtC �1S1.t/dW1.t/;

:::

dSd.t/ D ˛dSd.t/dtC �dSd.t/dWd.t/;
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where r 2 R is the short rate of interest, and Wi are correlated Wiener processes with
hdWi; dWji D �ijdt. Finally ˛i, �i 2 R are the local mean of return and volatility of
Si respectively. An option issued on S that at time of maturity T pays ˚.S/ can be
priced from

u D e�r.T�t/EQ Œ˚.S.T//� ; (1)

where E
Q Œ�� denotes the expected value under the risk-neutral measure Q. A

standard way to price multi-dimensional problems is to use a Monte-Carlo method,
simulating paths of Si.t/ combined with (1). This approach is known to converge
very slowly.

In [1] and [8] it was independently shown that the price u of an option issued on
the risky asset can be obtained from solving the Black–Scholes–Merton equation

@u
@t C

Pd
iD1 rsi @u@si C 1

2

Pd
i;jD1 �i�j�ijsisj @

2u
@si@sj
� ru D 0;

u.T;S/ D ˚.S/: (2)

We consider European basket options that at time of maturity pays

˚.S/ D max.
dX

iD1
�isi � K; 0/; (3)

where �i determines the fraction of asset Si in the basket and K is the so called
strike price of the option. A standard discretization of (2) leads to the “curse of
dimensionality” – the number of degrees of freedom of the discretized problem
grows exponentially in the number of dimensions d. We will therefore introduce a
dimension reduction techique based on a principal component analysis (PCA) and
asymptotic expansions.

The outline of the paper is as follows: In Sect. 2, the dimension reduction
technique is presented. The discretization in space and time is discussed in Sects. 3
and 4 respectively. Section 5 is devoted to the presentation of numerical results and
we give concluding remarks in Sect. 6.

2 Dimension Reduction

We follow [2, 3, 12] and make the following change of variables

x D QT lnSC Nb�; (4)

where � D T � t, bi D Pd
jD1 qji.r �

�2j
2
/ and Q is the eigenvector-matrix of the

covariance matrix ˙ with elements ˙ i;j D �i�j�ij . Implementing the changes to (2)
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and (3) gives

@u
@�
� 1

2

Pd
iD1 �i @

2u
@x2i
C ru D 0

u.0; x/ D max
�Pd

iD1 �ie
Pd

jD1 qjixj � K; 0
	
;

(5)

where �i are the eigenvalues of ˙ . Here j�1j > j�2j > � � � > j�dj.
The dimension reduction process is completed by an asymptotic expansion

where we approximate each of the non-principal dimensions by a linear asymptotic
expansion. Following [2, 3, 12] the asymptotic expansion of the solution is given by

u D u.1/ C
dX

iD2
�i

@u

@�i

ˇ̌
ˇ̌
N�DN�.1/

C O.jj N� � N�.1/jj2/ (6)

where u.1/ is the solution to the one-dimensional problem in the principal direction
(corresponding to the largest eigenvalue), N� D .�1; �2; : : : ; �d/, and N�.1/ D
.�1; 0; : : : ; 0/. The derivatives in (6) can be approximated by a finite difference
method

@u

@�i

ˇ̌
ˇ̌
N�DN�.1/

D u.1;i/ � u.1/

�i
C O.�2i / (7)

where u.1;i/ is the solution to the two-dimensional problem on the plane spanned
by the principal axis x1 and axis i corresponding the ith largest eigenvalue. Thus,
the d-dimensional problem is broken down to one one-dimensional and .d � 1/
two-dimensional problems. From (6) and (7) we see that if the eigenvalues �i, i D
2; : : : ; d are small, the error introduced from the expansion is small.

3 Adaptive Finite Differences in Space

The PCA and asympotic expansions lead to the following PDEs to solve

@u

@�
D L u; (8)

where the one- and two-dimensional spatial operators are defined respectively by

L u D 1

2
�1
@2u

@x21
� ru; (9a)

L u D 1

2
�1
@2u

@x21
C 1

2
�i
@2u

@x2i
� ru; i D 2; : : : ; d: (9b)
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We apply a discretization in space using finite differences on a structured but
possibly non-equidistant grid. The number of grid points in dimension i is Ni,
i D 1; : : : ; d. The second derivative in direction i is approximated as

@2u.xik/

@x2k
Ð aiku.xi.kC1//C biku.xik/C ciku.xi.k�1//; (10)

where aik D 2
hik.hi;k�1Chik/

, bik D �2
hi;k�1hik

, cik D 2
hi;k�1.hi;k�1Chik/

. The approxima-
tion (10) is second-order accurate in space if there is a smooth variation of the
grid such that hi;k�1 D hi;k.1C O.hi;k//.

We will use the computational domain x0i � 5 � xi � x0i C 5, i D 1; : : : ; d, where
x0 D QTlnS0 C NbT. At the boundaries of the computational domain we need to
impose some boundary conditions. In the principal axis we use Dirichlet boundary
conditions, while we approximate the solution across the boundaries in the other
dimensions to be linear

u D 0; x1 D x01 � 5; (11a)

u D
dX

iD1
�ie

Pn
jD1 qij.xj�bj�/ � Ke�r� ; x1 D x01 C 5; (11b)

@2u

@x2i
D 0;

�
xi D x0i � 5;
xi D x0i C 5;

i D 2; : : : ; d: (11c)

Next, we introduce spatial adaptivity for (8) with (9a), i.e. the 1D-problem in the
principal axis. The outline of the adaptive algorithm is the same as in e.g.[9]:

1. Solve the PDE once using a coarse equidistant grid with Nc
1 grid-points.

2. Create a new spatial grid aiming to fulfil the required accuracy.
3. Solve the PDE using the new adaptive grid with N1 grid-points.

We will here only briefly discuss how to construct the adaptive grid, for a
thorough explanation, see [5, 6, 9, 10, 16] . Assume that for the computed solution
uh using space-step h, it holds that uh D uCh2c.x/CO.h3/. Using the second order
accuracy also in the local discretization error  h we get  h D h2.x/ C O.h3/.
Omitting higher order terms we obtain after some algebraic manipulations  h D
.ı2h � ıh/=3 where ıh D Ahuh. Estimating  Nh using space-steps Nh and 2Nh gives
.x/ D  Nh.x/=Nh2.x/ and we get j h.x/j D

ˇ̌
h2.x/ �  Nh.x/=Nh2.x/

ˇ̌
. In order to

control the local discretization error and keep j h.x/j � � for some � > 0, we

use h.x/ D Nh.x/ 
�=j Nh.x/j�1=2. Since the local discretization error varies over
time and we want to have the same spatial grid for all 0 < � < T, we will use

 Nh.x/ D max.j . T3 /Nh .x/j; j . 2T3 /Nh .x/j; j .T/Nh .x/j/.
For the two-dimensional problems (8), and (9b), we will in the principal axis

use the adaptive grid computed. In the other axis we will use an equidistant grid
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using � N1=5 grid-points. For a small number of grid-points like this, steps 1. and
2. above cost relatively much and the usage of equidistant points is preferable.

4 Discontinuous Galerkin in Time

The spatial discretization defined in Sect. 3 results in d systems of ordinary
differential equations

du.�/
d� D Au.�/C f .�/; 0 � t � T; u.0/ D u0 D ˚; (12)

where the vector f .�/ contains the boundary conditions. We will use a dG scheme
to discretize (12), as in [4, 7, 11, 14, 15, 17, 18]. In [15] it was shown that for option
pricing problems, dG is superior to other time-stepping schemes such as backwards
differentiation formula of order 2, Crank-Nicolson and Rannacher time-stepping.

Divide .0;T/ into M subintervals fIm D .�m�1; �m/gMmD1 of size k D T=M.
Define P r.Im/ as the space of polynomials of degree r or less on the interval
Im and U D fU W Um 2 P r.Im/g to be the finite element space containing
the piecewise polynomials. In the dG method the finite element solution U is
continuous within each time interval Im, but may be discontinuous at the nodes
�1; : : : ; �M�1. We define the one-sided limits of a piecewise continuous function
u.�/ as uCm WD lims!0C u.�mC s/, u�m WD lims!0C u.�m � s/ and the jump across �m
as Œum� WD uCm � u�m .

The solution of (12) using a dG method of degree r (with order of accuracy 2rC1)
can be obtained by findingU 2 U such that

R
Im
. PU�AU/w.�/ d�CŒUm�1�w.�m�1/ DR

Im
fw.�/ d�; for m D 1; : : : ;M, all w.�/ 2 U and U�0 D u0.
Let f'grjD0 be a basis of the polynomial space Pr.�1; 1/ and let time shape func-

tions on time interval Im be given by 'jıF�1m , where the mapping Fm defines a linear
mapping Fm W .�1; 1/ ! Im. Expanding Um in Pr.Im/ Um D Pr

jD0 um;j.'j ı F�1m /

and using the basis f'grjD0 as test functions w.t/, we get after some algebraic
manipulations

�
C˝ I � k

2
G˝A

�
um D k

2
f1 C f2; (13)

where ˝ denotes the Kronecker product, u is the coefficient vector of Um, um D

um;0 : : : um;r

�T
, and

f 1m;i WD
R 1
�1.f ı Fm/'i d�; Cij WD

R 1
�1 '

0
j'i d� C 'j.�1/'i.�1/;

f 2m;i WD 'i.�1/
Prm

jD0 'j.1/um�1;j; Gij D
R 1
�1 'j'i d�:
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The time-integration of the Dirichlet boundary condition at x01 C 5 requires the
integration of (11b). This is accomplished using the composite trapezoidal rule with
100 intervals within each time-step.

Equation (13) forms a linear system of size .r C 1/N for each time step. Using
the temporal shape functions 'i.�/ D .i C 1=2/1=2Li.�/, with Li denoting the i-th
Legendre polynomial on .�1; 1/, this system decouples into rC 1 linear systems of
size N, [14]. We get G D I and

Cij D �ij
�
iC 1

2

�1=2 �
jC 1

2

�1=2
; �ij D

(
.�1/iCj if j < i

1 otherwise
; i; j D 0; : : : ; r:

It can be shown that C is diagonalizable in C at least for 0 � r � 100, [17]. Thus
there exists a matrix Q 2 C

.rC1/�.rC1/ such that Q�1CQ D � D diag.ı0; : : : ; ır/.
Multiplying (13) by Q�1 ˝ I from the left gives a block-diagonal system that
decouples into

�
ıjM � k

2
A
�

wm
j D gj; j D 0; : : : ; r;

where wm WD .Q�1 ˝ I/um and g WD .Q�1 ˝ I/


k
2
f1 C f2

�
. Hence, in each

time step we have to solve r C 1 linear systems of size N, which greatly reduces
the time of computation and the usage of computer memory compared to solving
the whole system (13) of size .r C 1/N. The linear systems of equations are
solved using restarted GMRES(6), [13], with an incomplete LU-factorization as
preconditioner [9].

5 Numerical Results

We use an example from [12] and consider the highly correlated basket
option defined by the parameters in Table 1. However, we consider a
call option (3) while a put option is considered in [12]. We have N� D

Table 1 Parameters for five-dimensional problem considered

r T K Equity NS0 � N� �ij

0.05 1 1 Deutsche Bank

Hypo -Vereinsbank

Commerzbank

Allianz

Münchner Rück

0
BBBBB@

1

1

1

1

1

1
CCCCCA

0
BBBBB@

0:381

0:065

0:057

0:270

0:227

1
CCCCCA

0
BBBBB@

0:518

0:648

0:623

0:570

0:530

1
CCCCCA

0
BBBBB@

1:00 0:79 0:82 0:91 0:84

0:79 1:00 0:73 0:80 0:76

0:82 0:73 1:00 0:77 0:72

0:91 0:80 0:77 1:00 0:90

0:84 0:76 0:72 0:90 1:00

1
CCCCCA
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.1:4089; 0:1124; 0:1006; 0:0388; 0:0213/ for this problem. When we employ
adaptivity we have used Nc

1 D 21 in the coarse initial solution.
The implementation was made in MATLAB and run on an Apple MacBook Pro

with 3.1 GHz Dual-Core Intel Core i7, Turbo Boost up to 3.4 GHz and 16 GB
SDRAM.

We start by comparing the solution obtained using a Monte-Carlo method to price
the option with the value obtained using our proposed method.

– Monte-Carlo method with 109 sampling paths: 0.22461.
– Our proposed method with N1 D 2594 and 20 time-steps of dG with r D 1:

0.22443.

We see that the error introduced by truncating the asymptotic expansion is in the
order of� 10�4. We aim for a discretization that does not make the error in the final
solution substantially larger.

First, we study the effect of using adaptivity in the principal axis x1. In Fig. 1a
we display the error in the solution as a function of the number of grid-points in the
principal axis. The CPU-time as a function of error is presented in Fig. 1b. Note,
that the somewhat erratic convergence behaviour is due to the fact that we study the
point-wise error in x0 only. From Fig. 1a, b it is clear that the rate of convergence is
close to the expected second-order for both the equidistant grids and adaptive grids.
The error is smaller using adaptive grids using a certain number of grid-points and
the CPU-time to reach a certain accuracy is considerably smaller.

Next, we study the error introduced by the discretization in time. In Fig. 2a we
present the error as a function of number of adaptive grid-points in the principal
axis using 6 and 20 time-steps respectively. It is clear that the error in the solution
is not increased by using fewer amount of time-steps. Finally, in Fig. 2b we present
the CPU-time it takes to compute the solution as a function of error. It is obvious
that we gain by using the smaller number of time-steps. With adaptive grid-points

N1

0020510010502

Er
ro

r

10-5

10-4

10-3

Equidistant
Slope -2.12
Adaptive
Slope -1.79

(a)

Error
10-5 10-4 10-3

C
PU

-ti
m

e 
(s

)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Equidistant
Adaptive

(b)

Fig. 1 Comparison of adaptive and equidistant grids. (a) Error as a function of N1. (b) CPU-time
as a function of error
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N1

20 30 40 50 70 100 150

Er
ro

r

10-6

10-5

10-4

10-3

20 time-steps
6 time-steps

(a)

Error
10-6 10-5 10-4 10-3

C
PU

-ti
m

e 
(s

)

0

0.5

1

1.5
20 time-steps
6 time-steps

(b)

Fig. 2 Comparison of 6 and 20 time-steps with dG using r D 1. (a) Error as a function of N1. (b)
CPU-time as a function of error

in space and 6 time-steps of dG with r D 1 it takes less than 0.5 s to compute a
solution that has an error< 10�4 which is the accuracy that we aimed for. The time
to compute a solution with the same accuracy level using a Monte-Carlo method is
several minutes.

6 Conclusions

We consider the numerical solution of the multi-dimensional Black–Scholes–
Merton equation to price basket options. A principal component analysis together
with an asymptotic expansion is used to reduce the dimensionality of the underlying
problem. The resulting PDEs are discretized in space with adaptive finite differences
and a discontinuous Galerkin scheme in time. The efficiency of the proposed
method is demonstrated for a five-dimensional basket option with highly correlated
underlying assets.
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On the Stability of a Weighted Finite Difference
Scheme for Hyperbolic Equation with Integral
Boundary Conditions

Jurij Novickij, Artūras Štikonas, and Agnė Skučaitė

Abstract We consider second order hyperbolic equation with nonlocal integral
boundary conditions. We study the spectrum of the weighted difference operator
for the formulated problem. Using the characteristic function we investigate the
spectrum of the transition matrix of the three-layered finite difference scheme
and obtain spectral stability conditions subject to boundary parameters 
0, 
1 and
piecewise constant weight functions.

1 Introduction

In the theory of differential equations there often arise problems described by
equations of mathematical physics with rather complicated nonclassical conditions
modeling different life’s processes. New applications are found in particle diffu-
sion [1] and heat conduction [2]. Partial differential equations of the hyperbolic
type with integral conditions often occur in problems related to fluid mechanics [3]
(dynamics and elasticity), linear thermoelasticity [4], vibrations [5]. A survey on
nonlocal boundary problems is presented in [6].

Consider the hyperbolic equation

@2u

@t2
� c2

@2u

@x2
D f .x; t/; .x; t/ 2 ˝ � .0;T�; (1)
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where˝ D .0; 1/, with the classical initial conditions

ujtD0 D �.x/; @u
@t

ˇ̌
ˇ̌
tD0
D  .x/; x 2 ˝ WD Œ0; 1�; (2)

and the additional nonlocal integral boundary conditions

u.0; t/ D 
0
1Z
0

ˇ0.x/u.x; t/ dxC vl.t/; t 2 Œ0;T�; (3)

u.1; t/ D 
1
1Z
0

ˇ1.x/u.x; t/ dxC vr.t/; t 2 Œ0;T�; (4)

where f .x; t/, �.x/,  .x/, vl.t/, and vr.t/ are given functions, 
0 and 
1 are given
parameters, ˇ0.x/ and ˇ1.x/ are weight functions. Further we consider c0 D 1 for
simplicity. In this paper we focus on the weight functions of the type ˇ.xI a0; a1/ D
1; a0 � x � a1, and ˇ.xI a0; a1/ D 0, otherwise, where a0, a1 2 Œ0; 1�. We are
interested in sufficiently smooth solutions of the nonlocal problem (1), (2), (3) and
(4) (all the coefficients in (1), (2), (3) and (4) are smooth enough that the solution
U 2 C4;4).

2 A Weighted Finite Difference Scheme

2.1 Notation

We introduce grids

!h WD ˚xiW xi D ih; i D 0; n� I !� WD ˚tjW tj D j�; j D 0;N� I
!h
1=2 WD

˚
xi�1=2 D .xi�1 C xi/=2; i D 1; n; x�1=2 D x0; xnC1=2 D xn

� I
h D 1=nI � D T=NI hiC1=2 D xiC1=2 � xi�1=2; i D 0; nI

!h WD fx1; : : : ; xn�1g ; Q!� WD ˚t1; : : : ; tN� ; !� WD ˚t1; : : : ; tN�1� I
where n C 1 and N C 1 are the numbers of grid points for x and t directions,
accordingly, and n, N � 2.

We use the notation Uj
i WD U.xi; tj/ for the function defined on the grid (or parts

of the grid) !h � !� . Instead of writing indices we denote zUj WD Uj�1 and bUj WD
UjC1 on grids Q!� and !�[ft0g, respectively. Later in this paper we use the following
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notations U.�/ D �1zUC .1� �1 � �2/U C �2bU, �1; �2 2 R. We define a space grid
operator

ı2x W !h ! !h;


ı2xU

�
i WD

Ui�1 � 2Ui C UiC1
h2

;

and the time grid operators

@t W !� ! Q!� ; @tU WD U � zU
�

; @2t W !� ! !� ; @2t U WD
zU � 2U C bU

�2
:

LetH and H be spaces of grid functions on !h and !h, respectively. Similarly, let
H� and H� be spaces of grid functions on !� and !� . We also denote H � H� as a
space on !h � !� . We define the inner products

ŒU;V� WD
nX

iD0
UiVihiC1=2; U;V 2H; and .U;V/ WD

n�1X
iD1

UiVih; U;V 2 H:

Remark 1 For every function U 2 H there exists a function VU 2 H, such that
VU D U, 8i D 1; n � 1.

2.2 Discrete Problem

Now we state a difference analogue of the differential problem (1), (2), (3) and (4).
We define a weighted finite difference scheme (FDS) approximating the original
differential equation (1):

@
2

t U � ı2xU.�/ D F;


xi; t

j
� 2 !h � !� ; (5)

where � is a weight parameter of FDS. The initial conditions are approximated as
follows:

U0 D ˚; @tU1 D � xi 2 !h; (6)

We rewrite the boundary conditions using the defined inner products:

U0 D 
0ŒB0;U�C Vl; tj 2 !� ; Un D 
1ŒB1;U�C Vr; tj 2 !� : (7)

The functions B0 and B1 in the Eq. (7) correspond to the weight functions in
Eqs. (3) and (4). Piecewise constant functions ˇ0.x/ D ˇ.xI �00 ; �01 / and ˇ1.x/ D
ˇ.xI �10 ; �11 /, can be replaced with the difference analogue Bk

i D Bk
i .a0; a1/ D
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1 if a0 � xi � a1, and Bk
i D 0, otherwise. In the problem (5), (6) and (7) we

approximate functions f , �,  , vl and vr by grid functions F 2 H � H� ; ˚;� 2H;
and Vl;Vr 2H� .

Remark 2 We consider without loss of generality that functions Bki.a0; a1/ are
defined on the uniform grid !h.

Remark 3 Both the boundary conditions (7) and the initial conditions (6) are
defined at the points t0 and t1. At these points conditions are consistent. Properly
choosing right hand side functions in (5), (6) and (7) one can obtain required
approximation accuracy. For example, if � D  C 0:5�.ı2xU0C f 0/ the differential
problem (1), (2), (3) and (4) is approximated by (5), (6) and (7) with accuracyO.h2/.

2.3 The Three-Layer Finite Difference Scheme

Conditions (7) form a system of two linear equations for unknowns U0 and Un. We
express these unknowns via inner points Ui, i D 1; n � 1, and obtain

U0 D Q
0. QB0;U/CeV0; Un D Q
1. QB1;U/CeV1; (8)

where Q
0 D 
0d�1, Q
1 D 
1d�1 and

QB0 D
�
1 � h
1B1n

2

	
B0 C h
1B0n

2
B1; eV0 D d�1

�
h
0
2
B0nVr C

�
1 � h
1

2
B1n
	
Vl

	
;

QB1 D h
0B
1
0

2
B0 C

�
1 � h
0B

0
0

2

	
B1; eV1 D d�1

�
h
1
2
B10Vl C

�
1 � h
0

2
B00

	
Vr

	
;

d D h2
0
1
4

ˇ̌̌
ˇB
0
0 B

0
n

B10 B
1
n

ˇ̌̌
ˇ� h

2
.
0B

0
0 C 
1B1n/C 1:

Problem (5), (8), according to [7, 8], can be transformed to the algebraic problem
if d ¤ 0. We have the following curves, displayed on Table 1, when the problem
can not be transformed to the algebraic one.

By substituting expressions (8) into Eq. (5) for i D 1 and i D n � 1 we rewrite it
in the form

AbUC BUC CzU D �2F; (9)

A D IC �2�1�; B D �2IC �2.1 � �1 � �2/�; ;C D IC �2�2� (10)
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Table 1 Degeneration curves of the FDS with integral NBC with weights

Case B00 B0n B10 B1n Degeneration curve

1 0 0 0 0 Empty set ;
0 0 1 0

0 1 0 0

2 0 0 0 1 Horizontal line 
1 D 2=h

0 0 1 1

0 1 0 1

3 1 0 0 0 Vertical line 
0 D 2=h

1 0 1 0

1 1 0 0

4 1 0 0 1 Two lines 
0 D 2=h or 
1 D 2=h

1 0 1 1

1 1 0 1

5 0 1 1 0 Hyperbola 
0
1 D 4=h2

0 1 1 1 h2
0
1 C 2h
1 D 4

1 1 1 0 h2
0
1 C 2h
0 D 4

6 1 1 1 1 Line 
0 C 
1 D 2=h

where A, B, C, and

� D 1

h2

0
BBBBBBBBBB@

2 � ha1 �1 � ha2 �a3 : : : �han�3 �han�2 �han�1
�1 2 �1 : : : 0 0 0

0 �1 2 : : : 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 : : : 2 �1 0

0 0 0 : : : �1 2 �1
�hb1 �hb2 �hb3 : : : �hbn�3 �1 � hbn�2 2 � hbn�1

1
CCCCCCCCCCA
; (11)

are .n � 1/ � .n � 1/ matrices, I is the identity matrix, 0 is a zero matrix, ai D
Q
0 QB0i ; bi D Q
1 QB1i ; i D 1; n � 1. Finally, F D 
eF1; : : : ;eFn�1

�|
, where eFi D Fi,

i D 2; n � 2 andeFi D eFi


Fi;Vl;Vr

�
, i D 1; n � 1.

2.4 The Two-Layer Finite Difference Scheme

We represent the three-layer scheme (9) as an equivalent two-layer scheme

bW D SWCG; (12)
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using notations

W D
 

UzU
!
; S D

��A�1B �A�1C
I 0

�
; G D

�
�2A�1F

0

�
: (13)

One can study the stability conditions for the two-layer difference scheme (12)
by analyzing the spectrum of the matrix S. Note that the matrices S and � are
nonsymmetric (matrix � is nonsymmetric except the classical case 
1 D 0 and

2 D 0).

3 Spectrum Analysis

3.1 The Eigenstructure of the Matrix �

One of the ways to investigate the stability of discrete problems is to study the
eigenstructure of the transition matrix of finite difference scheme. So, we investigate
an eigenvalue problem

�U D �U;

for .n � 1/ � .n � 1/ matrix � which is in general equivalent to Sturm–Liouville
Problem (SLP) for the difference operator with nonlocal boundary conditions

� ı2xU D �U; U 2 !h; (14)

U0 D 
0ŒB0;U�; Un D 
1ŒB1;U�: (15)

Instead of investigating eigenvalues � 2 C� WD C we use a bijection � D �.q/
from complex plane Cq to C�:

� D 4

h2
sin2

qh

2
; q WD ˛ C {ˇ (16)

where Cq D fq D ˛W 0 < ˛ < �=hg [ fq D {ˇWˇ � 0g [ fq D �=hC {ˇWˇ � 0g.
The points q D 0 and q D �=h are the branch points of the map (16). So, every
eigenvalue �i D �.qi/ conforms to qi, i D 1; n� 1 and vice versa.

Now we investigate the spectrum of matrix � in detail. The general solution
of (14) in the case of q ¤ 0, q ¤ �=h is U D C0 cos .qx/C C1 sin .qx/, x 2 !h. By
substituting it into (15) we have




0ŒB0; cos .qx/� � 1�C0 C 
0ŒB0; sin .qx/�C1 D 0;



1ŒB1; cos .qx/� � cos q
�
C0 C




1ŒB1; sin .qx/� � sin q

�
C1 D 0:

(17)
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A nontrivial solutions of system (17) exist if its determinant is equal to zero:


0
1

ˇ̌
ˇ̌ŒB0; cos .qx/� ŒB0; sin .qx/�
ŒB1; cos .qx/� ŒB1; sin .qx/�

ˇ̌
ˇ̌C 
0

ˇ̌
ˇ̌ cos q sin q
ŒB0; cos .qx/� ŒB0; sin .qx/�

ˇ̌
ˇ̌

� 
1ŒB1; sin .qx/�C sin q D 0:

3.2 The Structure of the Spectrum of the Matrix S

In this section we investigate the relation between eigenvalues and eigenvectors of
the two transition matrices � and S. We denote �k.A/, �k.B/ and �k.C/ as the k-th
eigenvalue of matrices A, B and C accordingly. We denote that the matrices �k.A/,
�k.B/ and �k.C/ commute (see [9]).

Let � be the eigenvalue of the matrix S. Consider the eigenvalue problem

det.S � �I/ D det

��A�1B � �I �A�1C
I ��I

�
D det A�1 det.A�2 C B�C C/ D 0:

The above defined determinant is simplified to get a characteristic equation for the
eigenvalues of the generalized nonlinear eigenvalue problem

.�2AC �BCC/U D 0; U ¤ 0: (18)

We note that the eigenvalues � of the matrix S coincide with the eigenvalues of
the generalized nonlinear eigenvalue problem (18). Let us clarify the relationship
between the eigenvalues � of the matrix S and the eigenvalues � of the matrix �.
We denote Vk as an eigenvector of matrix �. Substituting it into Eq. (18) we obtain



�2AC �BC C

�
Vk D



�2�k.A/C ��k.B/C �k.C/

�
Vk D 0: (19)

So, eigenvalues of the matrix S satisfy the quadratic equation:

�2�k.A/C ��k.B/C �k.C/ D 0; k D 1;N � 1: (20)

Equation (20) determines the relation between eigenvalues�m
k and �k. The value

of �m
k can be complex as well as real, depending on the parameters �1, �2, � and

eigenvalues �k.
According to the root criterion (see [10]) the roots of the second order polynomial

a�2 C b� C c are in the closed unit disc of complex plane and those roots of
magnitude 1 are simple if

jcj2 C jab � bcj � jaj2; jbj < 2jaj: (21)
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(a) (b) (c)

Fig. 1 Stability regions for different values of weights �1 and �2. (a) �1 D 0:125k, k D 1; 5,
�1 C �2 D 0:25. (b) �1 D 0:48 � 0:05k, k D 1; 3, �1 C �2 D 0:5. (c) �2 D 0:1k, k D 1; 5,
�1 C �2 D 1

The quadratic polynomial coefficients for Eq. (20) are of the form: a D 1 C �1z,
b D �.2 � .1 � �1 � �2/z/, c D 1 C �2z, z D �2�. Expressing z from (20) and
substituting � D e{' , ' 2 .��;C�� we obtain the formula for the boundary of the
stability region:

z D z@.'/ D 2.1� cos'/ .1 � .�1 C �2/.1� cos'/ � .�1 � �2/{ sin '/

.1 � .�1 C �2/.1 � cos'//2 C .�1 � �2/ sin2 '
: (22)

In the work [11] we fully investigated the stability regions for the case of �1 ¤ �2
and obtained a result, that the stability region exists only if �1 � �2. If a spectrum
has complex eigenvalues, under the condition � D �1 D �2, then FDS is unstable.

One can see the stability regions under various 
1 and 
2 parameters on the
Fig. 1a–c. We notice, that Rez@ is even and Imz@ is odd functions, so the stability
region is symmetric with respect to the real axis. The stability region is inside the
boundary @S for �1 C �2 < 1=2 (see Fig. 1a), and outside the boundary @S for
�1 C �2 > 1=2 (see Fig. 1c). The boundary points z 2 @S n f0g belongs to the
stability region (see Fig. 1a). In the case �1 C �2 D 1=2 (and �1 ¤ �2) boundary @S
divides complex plane into two unbounded parts (see Fig. 1b). The stability region
is in the right-hand-side of the complex plane for �1 > �2.

Example 4 Let us take boundary conditions of the form u.0; t/ D 0 and u.1; t/ D

1
R 3=4
1=4

u.x; t/ dx (differential SLP was studied in [12]). The spectrum of formulated
discrete problem (integrals approximated with trapezoid formula) was investigated
in work [13]. The study is based on the investigation of characteristic curves on the
part of a complex plane Cq, where � D 4=h2 sin2.�qh=2h/ (Fig. 2). The points
of the spectrum belongs to a spectrum curves. These curves Nj, j D 1; 7 are
shown in Fig. 2b, c. Every spectrum point moves along the spectrum curve while

 2 .�1;C1/. One can compare Fig. 2c with the stability regions shown in Fig. 1,
keeping in mind relation z D �2�.
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(a) (b) (c)

Fig. 2 Eigenspectrum of the numerical problem with one integral NBC. (a) Characteristic
function. (b) Spectrum view on Cq. (c) Spectrum view on C�

The same situation is general for NBCs with not full integrals (see [13]). Except
some the special cases complex eigenvalues exist.

Corollary 5 FDS is unstable for sufficiently small � � �� if the corresponding SLP
has complex eigenvalues.

Remark 6 If the corresponding SLP has complex eigenvalues then FDS can be
stable for some � > 0 values’ intervals only if we select special �1 and �2 values
in the case �1 > �2, �1 C �2 > 0:5, 
0 D 0, and 
1 < 
�. In the case 
0 ¤ 0 and

1 ¤ 0 situation is more complex (see system (17)) and is under investigation.
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A Riemannian BFGS Method for Nonconvex
Optimization Problems

Wen Huang, P.-A. Absil, and Kyle A. Gallivan

Abstract In this paper, a Riemannian BFGS method is defined for minimizing
a smooth function on a Riemannian manifold endowed with a retraction and a
vector transport. The method is based on a Riemannian generalization of a cautious
update and a weak line search condition. It is shown that, the Riemannian BFGS
method converges (i) globally to a stationary point without assuming that the
objective function is convex and (ii) superlinearly to a nondegenerate minimizer.
The weak line search condition removes completely the need to consider the
differentiated retraction. The joint diagonalization problem is used to demonstrate
the performance of the algorithm with various parameters, line search conditions,
and pairs of retraction and vector transport.

1 Introduction

In the Euclidean setting, the BFGS method is widely viewed as the best quasi-
Newton method for solving smooth unconstrained optimization problems [5, 12].
Its global and superlinear local convergence is well understood for convex problems
(see [5] and references therein). However, for nonconvex problems, its convergence
properties are more intricate. Recently, Dai [4] has produced a nonconvex cost
function for which the standard BFGS method does not converge. Modified BFGS
methods exist that converge globally to critical points of nonconvex cost functions
[10, 11].

Many Riemannian versions of the BFGS method have appeared, [6, 9, 13–15],
but complete global and local convergence analyses that are not restricted to a
specific cost function or a manifold are only given in two of them [9, 13]. The
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analyses of both methods require the cost function to satisfy a Riemannian version
of convexity for global and superlinear local convergence.

In this paper, we generalize to manifolds the approach in [11] for nonconvex
problems by using a Riemannian version of the cautious update of the Hessian
approximation, and additionally a weak line search condition [3, (3.2), (3.3)]. Global
and local superlinear convergence results are stated and the joint diagonalization
problem [16] is used as an example to demonstrate numerical performance.

A key advantage of the proposed method over those in [9, 13] is that it offers more
leeway on the choice of the vector transport. The version in [13] requires vector
transport by differentiated retraction, which may not be available to users or may
be too expensive. The version in [9] requires only the action of the differentiated
retraction along a particular direction. In fact, any method that uses the Riemannian
second Wolfe condition will require at least the action of the differentiated retraction
along some particular direction. The proposed method is even less demanding: it no
longer requires the second Wolfe condition, and the differentiated retraction can be
completely avoided.

This paper is organized as follows. Section 2 presents notation used in this paper.
Section 3 defines the Riemannian version of BFGS. Global and local convergence
results are stated in Sect. 4. Numerical experiments are reported in Sect. 5.

2 Notation

The underlying concepts of Riemannian geometry can be found, e.g., in [1, 2]. We
follow the notation of [1]. Let f denote a cost function defined on a d-dimensional
Riemannian manifold M with the Riemannian metric g W .x; �x/ 7! gx.x; �x/ 2 R.
Tx M denotes the tangent space of M at x and TM denotes the tangent bundle,
i.e., the set of all tangent spaces. For any x 2 Tx M , [x denotes the function such
that [x W Tx M ! R W �x 7! gx.x; �x/.

A retraction is a C1 map R W TM !M such that R.0x/ D x for all x 2M and
d
dtR.t�x/jtD0 D �x for all �x 2 Tx M . The domain of R does not have to be the entire
tangent bundle, however, it is usually the case in practice. In this paper, we assume
that R is well-defined whenever needed. Rx denotes the restriction of R to Tx M .
A vector transport T W TM ˚ TM ! TM ; .x; �x/ 7! Tx�x with associated
retraction R is a mapping1 such that, for all .x; x/ in the domain of R and all �x; &x 2
Tx M , it holds that (i) Tx�x 2 TR.x/M , (ii) Tx is a linear map. An isometric
vector transport TS additionally satisfies gRx.x/.TSx �x;TSx &x/ D gx.�x; &x/. The
vector transport by differentiated retraction TR is defined to be TRx �x WD d

dtRx.xC
t�x/jtD0.

1This mapping is not even required to be continuous in the definition. The smoothness is imposed
in the convergence analyses.
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3 Riemannian BFGS Method with Cautious Update

The proposed Riemannian generalization of the BFGS method with cautious update
is stated in Algorithm 1.

When M is a Euclidean space, the line search condition in Step 4 of Algorithm 1
is weak since it has been shown in [3, Sections 3 and 4] that many line search
conditions, e.g., the Curry-Altman condition, the Goldstein condition, the Wolfe
condition and the Armijo-Goldstein condition, imply either (1) or (2) if the gradient
of the function is Lipschitz continuous. In the Riemannian setting, note that the
function f ı Rx W Tx M ! R is defined on a linear space. It follows that the
Euclidean results about line search are applicable, i.e., the above conditions also
imply either (1) or (2) when the gradient of the function satisfies the Riemannian
Lipschitz continuous condition [1, Definition 7.4.1].

Among several possible Riemannian generalizations of the BFGS update formula

[9, 13, 15], we opt here for BkC1 D QB � QBksk. QB�

k sk/
[

. QB�

k sk/
[sk
C yky

[
k

y[ksk
; where QBk D TS˛kk ı

Bk ı T �1S˛kk
, yk D ˇ�1k grad f .xkC1/ � TS˛kk grad f .xk/, sk D TS˛kk˛kk, and ˇk

is an arbitrary number satisfying jˇk � 1j � Lˇk˛kkk and Lˇ > 0 is a constant.
The motivation for introducing ˇk is to make this update subsume the update in [9],
which uses ˇk D k˛kkk

kTR˛kk
˛kkk .

If y[ksk > 0, then the symmetric positive definiteness of QBk implies the symmetric
positive definiteness of BkC1 [9]. The positive definiteness of the sequence fBkg

Algorithm 1 Cautious RBFGS method
Input: Riemannian manifold M with Riemannian metric g; a retraction R; isometric vector

transport TS, with R as the associated retraction; continuously differentiable real-valued
function f on M , bounded below; initial iterate x0 2 M ; initial Hessian approximation B0

that is symmetric positive definite with respect to the metric g; convergence tolerance " > 0;
constants �1 > 0 and �2 > 0 in the line search condition;

1: k 0;
2: while k grad f .xk/k > " do
3: Obtain k 2 Txk M by solving Bkk D � grad f .xk/;
4: Set xkC1 D Rxk .˛kk/; where ˛k > 0 is computed from a line search procedure to satisfy

either

hk.˛k/� hk.0/ � ��1 h
0

k.0/
2

kkk2 (1)

or

hk.˛k/� hk.0/ � �2h0

k.0/; (2)

where hk.t/ D f .Rxk .tk//.
5: Define the linear operator BkC1 W TxkC1

M ! TxkC1
M by (3);

6: k kC 1;
7: end while
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is important in the sense that it guarantees that the search direction is a descent
direction. However, not all line search conditions imply y[ksk > 0. In the existing
papers [9, 13], the Wolfe condition with information about TR is used to guarantee
y[ksk > 0. In this paper, instead of enforcing y[ksk > 0 by the Wolfe condition, we
guarantee symmetric positive definiteness of BkC1 by resorting to the following
cautious update formula

BkC1 D
( QBk � QBksk. QB�

k sk/
[

. QB�

k sk/
[sk
C yky

[
k

y[ksk
; if y[ksk
kskk2 � #.k grad f .xk/k/

QBk; otherwise,
(3)

where # is a monotone increasing function satisfying #.0/ D 0 and # strictly
increasing at 0. Formula (3) reduces to the cautious update formula of [11] when
M is a Euclidean space. Using update (3) does not require the Wolfe condition,

which yields more leeway for choosing a line search condition. When y[ksk
kskk2 6�

#.k grad f .xk/k/, BkC1 can be set to be any given constant matrix, e.g., id, rather
than QBk. The choice does not affect the theoretical results given later.

4 Convergence Analysis

Due to length limitations, we only state the convergence results without proofs. The
proofs will be given in a forthcoming paper. Theorems 1 and 2 state the global and
local convergence results respectively.

Theorem 1 Let fxkg be a sequence generated by Algorithm 1. Assume that the level
set ˝ D fx 2 M j f .x/ � f .x0/g is compact, that there exists L1 > 0 such
that kT grad f .x/ � grad f .Rx.//k � L1kk for all and  such that, and that the
function Of D f ıR is radially L-C1 function [1, Definition 7.4.1] for all x 2 ˝ . Then
lim infk!1 k grad f .xk/k D 0.
Theorem 2 Let fxkg be a sequence generated by Algorithm 1 that converges to a
nondegenerate minimizer x� of f . Suppose there exists a neighborhood Q̋ of x� such
that

1. the objective function f is twice continuously differentiable in Q̋ and there
exists positive constants a10 and a11 such that for all y 2 Q̋ , kHess f .y/ �
TS Hess f .x�/T �1S

k � a10kk; where  D R�1x�
y;

2. the retraction R is twice continuously differentiable in Q̋ and there is
a constant a5 such that for all x; y 2 Q̋ , maxt2Œ0;1� dist.Rx.t/; x�/ �
a9 max.dist.x; x�/; dist.y; x�//; where  D R�1x y;

3. the isometric vector transport TS with associated retraction R is continuous and
satisfiesT0x�x D �x for all �x 2 Tx M ,kTS�TRk � QLkk and kT �1S

�T �1R
k �

QLkk for some constant QL.
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Then there exists an index k0 such that ˛k D 1 satisfies either (1) or (2) for k � k0.
Moreover, if ˛k D 1 is used for all k � k0, then xk converges to x� superlinearly,
i.e., limk!1 dist.xkC1;x

�/

dist.xk;x�/
D 0.

It is shown in [7, Theorem 5.2.4] that ˛k D 1 eventually satisfies the two
frequently used line search conditions, i.e., the Wolfe condition hk.˛k/ � hk.0/ C
c1˛kh0k.0/ and h0k.˛k/ � c2h0k.0/, where 0 < c1 < 0:5 < c2 < 1 and the Armijo-
Goldstein condition hk.˛k/ � hk.0/C �˛kh0k.0/, where ˛k is the largest value in the
set ft.i/jt.i/ 2 Œ%1t.i�1/; %2t.i�1/�; t.0/ D 1g, 0 < %1 < %2 < 1 and 0 < � < 0:5.
Therefore, if ˛k D 1 is attempted first using one of the line search conditions, then
the superlinear convergence of Algorithm 1 is obtained. At present, no conditions
on �1 and �2 in (1) and (2) that guarantee a similar result are known.

If h0.t/ must be evaluated at t ¤ 0 in line search conditions, such as
the Wolfe condition, then the action of vector transport by differentiated
retraction is required only in a particular direction. More specifically, h0.t/ D
gRxk .tk/

.grad f .Rxk.tk//;TRtk
k/ requires the action of vector transport by

differentiated retraction, TR�, with  and � on a same direction. This is discussed in
[9] and one approach to resort to as little information on the differentiated retraction
as possible is also proposed. If h0.t/ is not required at t ¤ 0, such as in the Armijo-
Goldstein condition, then the differentiated retraction can be completely avoided
since TR0k

k D k.

5 Experiments

In this section, we investigate numerically the impact of choosing the Wolfe versus
the Armijo-Goldstein condition in Step 4 of on Algorithms 1.

5.1 Problem, Retraction, Vector Transport and Step Size

The joint diagonalization (JD) problem on the Stiefel manifold [16] is used to
illustrate the numerical performance:

min
X2St.p;n/

f .X/ D min
X2St.p;n/

�
NX
iD1
k diag.XTCiX/k22;

where St.p; n/ D fX 2 R
n�pjXTX D Ipg, matrices C1; : : : ;CN are given symmetric

matrices, diag.M/ denotes the vector formed by the diagonal entries of matrix M,
and k � k2 denotes the 2-norm.

The Stiefel manifold St.p; n/ can be viewed as a submanifold of R
n�p. The

chosen Riemannian metric g on St.p; n/ is the metric endowed from its embedding
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space, i.e., g.X; �X/ D tr.TX�X/. With this Riemannian metric g, the gradient
is given in [16, Section 2.3]. As discussed in [8, Section 2.2], a tangent vector
X 2 TX M can be represented by a vector in the embedding space R

n�p or a d-
dimensional coefficient vector of a basis of TX M , where d D np � p.pC 1/=2 is
the dimension of St.p; n/. In our experiments, we use a d-dimensional representation
of tangent vectors. By varying the basis and fixing the coefficients, one can define
the vector transport by parallelization [8, Section 2.3.1 and 5]. The implementation
of vector transport is then simply an identity [7, Section 9.5].

The retraction is chosen to be qf retraction [1, (4.7)]

RX.X/ D qf.X C X/; (4)

where qf denotes the Q factor of the QR decomposition with nonnegative elements
on the diagonal of R.

5.2 Tests and Results

The Ci matrices are selected as Ci D Ri C RT
i , where the elements of Ri 2 R

n�n are
independently drawn from the standard normal distribution. The initial iterate X0
is given by applying Matlab’s function orth to a matrix whose elements are drawn
from the standard normal distribution using Matlab’s randn. The code can be found
in http://www.math.fsu.edu/~whuang2/papers/ARBMNOP.htm.

Let RBFGS-W and RBFGS-A denote Algorithm 1 with the Wolfe condition and
the Armijo-Goldstein condition respectively. Since the Wolfe condition requires the
evaluation of h0.t/ at t ¤ 0, we use the locking condition proposed in [9], which
restricts the retraction R and the isometric vector transport TS:

TS� � D ˇTR� �; ˇ D k�k
kTR� �k

: (5)

Let RV1 denote retraction (4) and the vector transport by parallelization, which
does not satisfy the locking condition (5); RV2 denote retraction (4) and the vector
transport using the approach of [9, Section 4.2], which does satisfy the locking
condition (5) but the vector transport is not smooth and relatively expensive.

The experimental results with various parameters and algorithms are reported
in Table 1. Note that there is no result for RBFGS-W with RV1 since the well-
definedness of RBFGS-W requires the locking condition. It can be seen that the
performances of the Armijo-Goldstein condition and the Wolfe condition with the
chosen algorithms are similar.

RBFGS with RV1 performs worse than RBFGS with RV2 in the sense of number
of function and gradient evaluations. This implies that the locking condition, to
some extent, reduces the number of function and gradient evaluations in RBFGS

http://www.math.fsu.edu/~whuang2/papers/ARBMNOP.htm
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Table 1 An average of 1000 random runs of RBFGS. n D 12, p D 8, c1 D � D 10�4. iter, nf ,
ng, nV and t denote the number of iterations, number of function evaluations, number of gradient
evaluations, number of vector transport and computational time (millisecond) respectively

Armijo-Goldstien: Œ%1; %2� Wolfe: c2
N Œ 1

2
; 1
2
� Œ 1

4
; 3
4
� Œ 1

16
; 15
16
� Œ 1

64
; 63
64
� 1

2
3
4

15
16

63
64

RV1 128 iter 239 194 191 191 n n n n
nf 306 213 206 206 n n n n
ng 240 195 192 192 n n n n
nV 477 389 381 381 n n n n
t 31.8 26.3 25.8 26.1 n n n n

512 iter 196 191 191 191 n n n n
nf 215 208 208 207 n n n n
ng 197 192 192 192 n n n n
nV 392 382 383 383 n n n n
t 93.2 89.6 88.8 89.2 n n n n

RV2 128 iter 146 164 167 147 123 132 136 142

nf 170 197 203 168 186 184 168 165

ng 147 165 168 148 167 162 150 147

nV 293 327 335 294 413 422 420 426

t 26.4 28.9 29.4 26.4 28.0 27.6 26.0 25.6

512 iter 149 149 153 148 131 138 140 151

nf 169 169 175 166 197 189 171 180

ng 150 150 154 149 176 166 153 156

nV 298 299 305 296 434 436 431 449

t 78.2 77.6 78.9 77.5 89.2 84.7 79.1 80.0

with either the Armijo-Goldstein condition or the Wolfe condition. Note that even
though h0.t/ at t ¤ 0 is not used in the Armijo-Goldstein line search condition, the
locking condition can still reduce the number of function and gradient evaluations.
However, due to the low complexities on vector transport, RBFGS-A with RV1 still
have competitive performance in the sense of computational time.

6 Conclusion

The results demonstrate the global convergence expected in the algorithm. While the
locking condition is no longer required, we see that using it reduces the number of
function and gradient evaluations. For problems such as joint diagonalization with
large enough N so those evaluations are dominated computationally, a reduction in
overall time results.
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Discrete Lie Derivative

Marc Gerritsma, Jeroen Kunnen, and Boudewijn de Heij

Abstract Convection is an important transport mechanism in physics. Especially,
in fluid dynamics at high Reynolds numbers this term dominates. Modern mimetic
discretization methods consider physical variables as differential k-forms and their
discrete analogues as k-cochains. Convection, in this parlance, is represented by the
Lie derivative, LX . In this paper we design reduction operators, R from differential
forms to cochains and define a discrete Lie derivative, LX which acts on cochains
such that the commutation relation RLX D LXR holds.

1 Introduction

Differential forms have a natural discrete analogue in terms of cochains. The exterior
derivative, d, which represents the gradient, curl and divergence operator is naturally
represented at the discrete level by the coboundary operator, ı. If R denotes the De
Rham or the reduction map, which converts continuous variables to discrete degrees
of freedom, we have the commutation relation Rd D ıR, see [1–3, 6, 9, 10, 13, 14].

This fully discrete representation of the exterior derivative is possible, because
the exterior derivative is an intrinsic operator, which means that this operation is
coordinate- and metric-free. The coboundary operator, likewise, does not depend on
the mesh size, the shape of the mesh or the order of the numerical method, and is
therefore referred to as a topological operator.

The Lie derivative, LX , which represents the rate of change of a differential form
in the direction of a vector field X is also an intrinsic operator and therefore we
expect that there exists a purely discrete operator LX which operates on cochains
and satisfies the commutation relation RLX D LXR.

Convective transport and the use of the Lie derivative of differential forms have
been addressed in various papers, see, for instance, [3, 4, 8, 12]. Most of these
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methods are based on Bossavit’s extrusion idea, which requires the complete flow
associated with the convective velocity field. In [13] the Lie derivative is evaluated
by means of inner-products and musical operators1 which are metric-dependent. In
the framework of compatible discrete operator schemes, Cantin and Ern present a
discrete contraction operator, [5].

The difficulty of constructing a fully discrete Lie derivative can be traced back
to the dual interpretation of differential forms. A 1-form, for instance, can be inter-
preted as the “thing which occurs under integral signs”, [7]. This interpretation leads
to the discrete representation of 1-forms as 1-cochain, where the reduction operation
consists of integrating the 1-form over a 1-chain. In the second interpretation a 1-
form at a point p is an element of the cotangent space, T�p .M /, which is the space
of linear functionals acting on the linear vector space Tp.M /. It is this second
interpretation which allows the pointwise contraction with a vector field and the
definition of a fully discrete Lie derivative.

2 Properties of the Lie Derivative

Let X 2 X.M / be a smooth vector field, then the Lie derivative of a k-form
!.k/ along the vector field will be denoted by LX!

.k/. The Lie derivative has the
following properties:

The Lie derivative is linear w.r.t. differential forms, i.e. if ˛.k/; ˇ.k/ 2 �k.M /

and �; � 2 R then

LX.�˛
.k/ C �ˇ.k// D �LX.˛

.k//C �LX.ˇ
.k// :

The Lie derivative is linear in the vector fields, i.e. if X; Y 2 X.M / and
�; � 2 R then

L.�XC�Y/!.k/ D �LX!
.k/ C �LY!

.k/ :

The Lie derivative satisfies a Leibniz rule for the wedge product, i.e. if ˛.k/ 2
�k.M / and ˇ.l/ 2 �l.M /, then ˛.k/ ^ ˇ.l/ is an .kC l/-form and

LX


˛.k/ ^ ˇ.l/� D 
LX˛

.k/
� ^ ˇ.l/ C ˛.k/ ^ 
LXˇ

.l/
�
:

1The vector space Tp.M / and T�

p .M / are ismorphic, but there is no natural isomorphism. One
way to associate vectors v to covectors ˛ is by means of the metric tensor: ˛i D gijvj. With
this association we have v[ D ˛ and ˛] D v. By construction the musical operators are metric-
dependent.
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For a 0-form f .0/ the Lie derivative can be written in any of the equivalent forms

LXf
.0/ D �Xdf .0/ D hdf .0/;Xi D XŒf � ; (1)

where �X is the interior product, d the exterior derivative and h�; �i denotes point-wise
duality pairing between a covector, df .0/, and a vector, X. For general k-forms !.k/

the Lie derivative can be evaluated by Cartan’s magic formula

LX!
.k/ D d�X!

.k/ C �Xd!.k/ :

3 Derivations at a Point

Consider a point p 2 M and a convex neighborhood Up of p. Let Cm
p be the set of

all Cm functions on Up. A linear map D W Cm
p ! R is called a point derivation if

for all f ; h 2 Cm
p it satisfies the Leibniz rule

D.f � h/p D D.f /p � h.p/C f .p/ � D.h/p 2 R :

The set of all point derivations Dp at a point p 2 M form a linear vector space,
Dp.M /, and it can be shown that this linear vector is isomorphic to the tangent
space Tp.M /, see [15].

When f 2 Cm
p , m � 1, there exist functions g1.x/; : : : ; gd.x/ 2 Cm�1

p such that

f .x/ D f .p/C
dX

iD1
.xi � pi/gi.x/ ; x 2 Up ; (2)

see [15, Lemma 1.4] or [11, §3.4]. If vp D c1.@1/pC: : :Ccd.@d/p is a vector defined
at p 2M , then

vpŒf � D vpŒf .p/�C
dX

iD1
vpŒ.x

i � pi/gi.x/�

D 0C
dX

iD1
vpŒx

i � pi�gi.p/C .xi � pi/pvpŒg� D
dX

iD1
cigi.p/ ; (3)

where we used vŒxi� D ci. So a point-wise exact evaluation of the Lie derivative
is possible if the vector field is defined in the points p and the function values of
gi.x/ are known at the points p. In conventional mimetic methods such as [1, 6, 10],
the reduction or De Rham map of a 0-form (functions) is done by only evaluating
the value of the function in points, i.e. Rp.f / D f .p/. However, (3) reveals that the
value of f at the point p is irrelevant. For a discrete Lie derivative more information
is necessary and therefore the newly proposed reduction operator evaluates f and
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the functions gi.x/ in the points. If R.1/
p denotes the reduction of f .0/ in a point p, it

is given by

R.1/
p .f / WD .fp; g1;p; : : : ; gd;p/ ; (4)

where fp D f .p/ and gi;p D gi.p/. So instead of associating one value to a point, we
now associate with all points in the mesh a vector of length .1 C d/. We will refer
to such a vector in a point as a vector-valued 0-cochain.

The conventional reduction, in which only the functional value at the point p is
sampled will be referred to as R.0/

p .f / D fp D f .p/. If the vector field, v is known at
all points p, then the following diagram commutes

f
Lv�����! Lvf

R
.1/
p

??y ??yR.0/
p

.fp; g1;p; : : : ; gn;p/
Lv�����! c1g1;p C : : :C cngn;p

That is, we have for all f 2 Cm.˝/, m � 1

R.0/
p .Lvf / D LvR

.1/
p .f / : (5)

The commutating diagram which defines the discrete Lie derivative applied to 0-
forms, is graphically represented in Fig. 1, where f .x/ D sin.2�x/ C 3 cos.3�x/
and v.x/ D 0:5 sin.14�x/@x. Note that the reduction for f is R

.1/
p , i.e. it samples

function values and derivatives, while the reduction of the Lvf is done with the
‘conventional’R.0/

p which only evaluates the value in a point. If we take the exterior
derivative of (3) we have

df .x/ D
NX
iD1

�
.xi � pi/dgi.x/C gi.x/dxi


:

This allows us to define the exterior derivative in a point p, by setting x D p

df jp D gi.p/dxi : (6)

This implies that c1g1;pC : : :C cngn;p is the point-wise contraction of v D vi@xi and
the point-wise exterior derivative (6), which is one of the forms of the Lie derivative
given in (1). It follows that if v and w are vector fields that this construction gives
the pointwise L.vCw/f D Lvf C Lwf and Lv.f C h/ D Lvf C Lvh. It remains to show
that this construction satisfies the Leibniz rule.
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Fig. 1 Graphical representation of the commutation relation (5). In the top row the continuous
Lie derivative is applied to the f . In the bottom row the discrete Lie derivative is applied to the
vector-valued 0-cochain (4). The reduction R

.1/
p samples the function value and the local gradient,

while R
.0/
p only samples the function values

Assume that f .x/ and h.x/ can be written in the form (2) for x 2 Up, i.e. for
f ; h 2 Cm

p there exist functions gi; ki 2 Cm�1
p such that

f .x/ D f .p/C
dX

iD1
.xi � pi/gi.x/ ; h.x/ D h.p/C

dX
iD1
.xi � pi/ki.x/ ;

for x 2 Up. Then we have

f .x/ � h.x/ D f .p/ � h.p/

C
dX

iD1
.xi � pi/

2
4f .p/ki.x/C gi.x/h.p/C

dX
jD1
.xj � pj/gi.x/kj.x/

3
5

Then the reduction R.1/
p .f � h/ is given by

R.1/
p .f �h/ D .f .p/h.p/; f .p/k1.p/Cg1.p/h.p/; : : : ; f .p/kd.p/Cgd.p/h.p// : (7)
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The reduction (7) defines the product of vector-valued cochains which turns the
linear space of vector-valued 0-cochains into an algebra. When we apply the discrete
Lie derivative to (7), we obtain

LvR
.1/
p .fh/ D f .p/ � LvR

.1/
p .h/C LvR

.1/
p .f / � h.p/ ;

therefore the discrete Lie derivative satisfies the Leibniz rule.

4 The Discrete Lie Derivative of a 1-Cochain

Let a.1/ D ai.x/dxi be a differential 1-form, then the conventional reduction, denoted
by R.0/

e associates with each edge e in the cell complex the value

R.0/
e .a.1// WD

Z
e
a.1/ ;

where the subscript e in the reduction operator indicates that it reduces the 1-form
to values associated with edges. For the extended reduction, denoted by R

.1/
pe , we

will reduce the 1-form at the nodes and at the edges

R.1/
pe .a

.1// D .a1;p; : : : ; ad;p; Nae/ ; (8)

where Nae D R
.0/
e .a.1// and ai;p D ai.p/. So in this reduction we have the point-

wise evaluation of the functions ai.x/ and the integral value along the edges of the
grid. For an exact 1-form a.1/ D df , the functions ai.x/ are given by gi.x/ according
to (6). Contraction of this reduced 1-form with a vector defined at p is then given by

�vjp R.1/
pe .a

.1// D c1a1.p/C : : :C cdad.p/ D hv; ai.x/dxiip : (9)

The discrete Lie derivative applied to reduced 1-forms then follows from the
application of the coboundary operator, ı, to (9). So to every edge we assign the
value hv; ai.x/dxiipC1 � hv; ai.x/dxiip, where .p C 1/ and p denote the boundary
points of the edge under consideration. This construction implies that the following
diagram commutes.

(10)

This commutation relation is graphically depicted in Fig. 2, where we used a.1/ D df
with the same vector field and the same f as in the previous test case. In the lower left
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Fig. 2 Graphical representation of the commutation relation (10). In the top row the continuous
Lie derivative is applied to a.1/. In the bottom row the discrete Lie derivative is applied to the
reduced 1-form R

.1/
pe .a.1//. This reduction samples function values (red dots) and integral values

(red bars)

plot in this figure, we see that we sample a.x/dx in the points (red dots) and evaluate
the integral over the edges (red bars). The integrals in the lower right plot are exact.
While the reduction in Fig. 2 was performed in 10 points and along 9 edges, Fig. 3
shows the same discrete operation in 100 points and along 99 edges. Note that in
the one-dimensional case, the value assigned to an edge equals the flux on the right,
hv; ai.x/dxiipC1 minus the flux on the left hv; ai.x/dxiip. This construction resembles
the one used in finite volume methods. The current method differs from conventional
finite volume methods in that the value of a is available at the cell interfaces, whereas
in finite volume methods this value needs to be reconstructed from the cell averages.
Such a reconstruction inevitably requires approximation and leads to error in the
approximation of the Lie derivative. The current approach avoids the approximation
step and is therefore exact.
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Fig. 3 Graphical representation of the commutation relation (10), where we used 100 points and
99 edges

5 Conclusion

This paper introduces a fully discrete Lie derivative and outlines the construction
for 0-forms and 1-forms. This requires new reduction operators for both 0-forms
and 1-forms. To complete the discretization method reconstruction operators, I ,
need to be defined which commute with the discrete Lie derivative, [1, 10]. These
operators will be addressed in future work.
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