Screen Space Cone Tracing
for Glossy Reflections

Lukas Hermanns', Tobias Franke?, and Arjan Kuijper!2(®)
! Technische Universitit Darmstadt, Darmstadt, Germany
2 Fraunhofer IGD, Darmstadt, Germany
arjan.kuijper@igd.fraunhofer.de

Abstract. Indirect lighting (also Global Illumination (GI)) is an impor-
tant part of photo-realistic imagery and has become a widely used
method in real-time graphics applications, such as Computer Aided
Design (CAD), Augmented Reality (AR) and video games. Path tracing
can already achieve photo-realism by shooting thousands or millions of
rays into a 3D scene for every pixel, which results in computational over-
head exceeding real-time budgets. However, with modern programmable
shader pipelines, a fusion of ray-casting algorithms and rasterization is
possible, i.e. methods, which are similar to testing rays against geometry,
can be performed on the GPU within a fragment (or rather pixel-) shader.
Nevertheless, many implementations for real-time GI still trace perfect
specular reflections only. In this work the advantages and disadvantages
of different reflection methods are exposed and a combination of some
of these is presented, which circumvents artifacts in the rendering and
provides a stable, temporally coherent image enhancement. The benefits
and failings of this new method are clearly separated as well. Moreover
the developed algorithm can be implemented as pure post-process, which
can easily be integrated into an existing rendering pipeline.

1 Introduction and Motivation

In this work a novel method for real-time glossy reflections is presented. This
method can be implemented as a pure post-process, which simplifies the effort,
of integrating it into an existing graphics application, considerably. Similar algo-
rithms are already implemented, not only in video games, but also in CAD and
AR applications [2,4,16] and reflections for indirect lighting are essential in GI
simulations [14]. These reflections increase the photo-realism of Computer Gen-
erated Imagery (CGI) drastically.

Indirect lighting is implemented in a broad range of GI applications since
many years, particularly in film productions such as Terminator 2 (1991), Avatar
(2009), and the first feature-length computer animated motion picture Toy Story
(1995) [5]. From the very beginning, developers are striving to reduce the cal-
culation overhead or rather to accelerate the rendering process. This is because
accurate rendering can take several hours or days even on high performance com-
puter systems, depending on the scene and shading complexity. Therefore the
© Springer International Publishing Switzerland 2016

S. Lackey and R. Shumaker (Eds.): VAMR 2016, LNCS 9740, pp. 308-318, 2016.
DOI: 10.1007/978-3-319-39907-2_29

Screen Space Cone Tracing for Glossy Reflections 309

costs and duration to produce photo-realistic imagery can be very high. To solve
this, there are many algorithms to achieve photo-realism by approximating the
influence of indirect light, for both real-time and non real-time rendering [12].
Some of these simulate the indirect light by distributing many small direct light
emitters throughout the scene, called Virtual Point Light (VPL), but which
then requires new optimizations or rather hierarchies of spatial data structures
[10,14]. Still others store and propagate the indirect light through the scene
within a volume, called Light Propagation Volume (LPV), which then causes a
large memory footprint for large scenes and high resolution volumes. However,
methods like VPL and LPV lack an important part of indirect light, which will
be discussed in this work and is shown in the above image. Our novel approach
for real-time reflections is a rough approximation but still produces plausible
effects of indirect lighting. It is fast, fully dynamic, and can easily be integrated
into an existing rendering pipeline, because it is a pure post-process. Hence,
the result of an intermediate render pass is the only input for this effect. No
information about the scene is required.

2 Related Work

In this section we will analyze several approaches for real-time reflections and
then make a comparison to summarize their benefits and failings.

2.1 Analytical Area Lights

We start out with a simple method for glossy reflections which deals with
direct lighting only: Analytical Area Light (AAL). The three basic models of
light shapes are: Directional-, Point-, and Spot light. In classical fixed function
pipelines these are the usual lighting primitives to shade geometry. All of them
only have a position and optionally a direction, but neither an area nor vol-
ume. This makes it very easy and fast to determine the light intensity for each
pixel, because only a scalar product and the distance between that pixel and
the respective light source must be computed. However, every light source in
reality has a volume. This can be simulated more plausible with AALs, which
cover a specific area on the screen. The formulas for these light models resemble
the basics of ray tracing. Ray intersection tests are performed against all AALs
for every pixel, otherwise the nearest distance between the current pixel and
the primitive light geometry is computed. Since these light models require more
complex and more flexible calculations, they became popular with the advances
of programmable shader units in modern hardware, but the research around
them has begun long before [3]. In addition, glossy reflections can be simulated
easily by adding a further light attenuation depending on the surface rough-
ness. Contrariwise, they only allow direct lighting, since with indirect lighting
everything is treated as a light source, but AALs only provide limited shapes,
such as cuboids, spheres, cylinders, and capsules. Although there are more com-
plex AALs, such as fractals, these shapes are not enough to represent an entire
reflectable scene. Therefore, one can use them only as direct light emitters.

310 L. Hermanns et al.

Advantages: (1) accurate calculation for incident radiance and (2) easy to
implement. Disadvantage: direct lighting only.

2.2 Planar Reflections

We continue with one of the oldest methods for reflections of indirect light-
ing, which is still used in modern 3D engines: Planar Reflections. For planar
reflections there are two major methods: the first one is to use a stencil buffer
and the second one is to use a render target (also framebuffer). With the first
method, the stencil buffer operates as the name implies like a stencil. It allows
to reject pixels outside the stencil pattern. The reflected scene should only be
visible inside this pattern, and to generate it, the reflective geometry is ren-
dered with certain render states enabled. We can divided this algorithm into
the following steps: 1. Clear frame- and stencil buffers. 2. Render scene with
default settings but without reflective geometry. 3. Render reflective geometry
into stencil buffer. 4. Render scene inside the stencil pattern with mirrored view
transformation. In the second method, the steps of rendering the actual and the
mirrored scene are in the reverse order. We first have to render the mirrored
scene into the render target. Then the render target serves as the source of the
texture (and also of the reflective light color), which is mapped onto the reflec-
tive geometry, when the actual scene is rendered. In some cases this method
may be used but it has a larger memory footprint. This is a very simple method
which allows perfect specular reflections with correct geometry reconstruction.
The correct reconstruction originates from the fact that the scene is rendered
a second time, which can be very time consuming. This also means that the
performance depends on the scene complexity. Another disadvantage is that this
only works for planar reflectors such as mirrors or flat water puddles, because
the mirroring is due to a mirrored matrix transformation, which does not allow
any distortions. Note that this method has nothing to do with ray tracing or
something similar. It is just a secondary rasterization pass. However, there are
also hybrid approaches which combine geometry- and image-based rendering,
such as Forward Mapped Planar Mirror Reflections [1]. Such a technique is used
in the idTech 3 game engine (1999) and even older ones.

Advantages: (1) perfect reconstruction of reflected geometry and (2) Easy
to implement. Disadvantages: (1) Depends on scene complexity and (2) Planar
reflectors only.

2.3 Environment Maps

Another still widely used method are (localized-) Environment Maps (also Cube
Maps). In this case the scene is rendered from six view angles into a cube map
at a localized position. A cube map internally consists of six texture layers, one
for each cube face. This captures a 360 degree view in a single texture. These
cube maps are typically placed by an artist within a world editor and gener-
ated during the world building process this process is also called baking. Such
a cube map stores the entire light influence for the point where the cube map

Screen Space Cone Tracing for Glossy Reflections 311

was rendered. Usually the cube maps are additionally pre-filtered (or blurred)
to efficiently simulate a basic glossiness for all surfaces [8]. The blurring simu-
lates a wider distribution of reflection rays, which causes a glossy appearance.
As already mentioned: the reflections from each cube map are only correct for a
single 3D point. Whenever a cube map is used for other points, the reflections
are only correct for infinitely distant light. Such a candidate is the (nearly) infi-
nitely distant sun. To overcome this restriction several cube maps are generated
in a scene, between which the application must choose at runtime. To avoid the
popping effect (discrete switching between textures), some applications interpo-
late between the N nearest cube maps (the popping effect is visible in games
like Half-Life 2 and Portal using the Source Engine). A further improvement
are parallax corrected cube maps [13], which can adjust the singular location to
a cubic environment. However, even this method is severely limited due to its
cubic nature and needs further adaptation by artists. This technique is used in
the game Remember Me (2013) and the Source Engine (2004).

Advantages: (1) Easy to implement and (2) Very fast. Disadvantages:
(1) Must be placed by artist, (2) Limited to fixed count, and (3) Only correct
for infinitely distant light.

2.4 Image Based Reflections

We now continue with ray tracing like methods: Image Based Reflections (IBR).
In this method several IBR proxies are placed by an artist in the world editor,
whereat an IBR proxy is a box which captures a small volume in the scene which
is then rendered into a 2D texture. For each reflection ray an intersection test
against the plane, which is spanned by that box, is computed. These ray against
plane tests are very fast but this reflection model is only useful for nearly planar
reflectors such as building facades or streets for instance. Although a single plane
intersection test is fast some form of hierarchy is required if many IBR proxies
are used (e.g. 50+) to avoid testing against all planes for every pixel. In addition
the method is inappropriate for perfect specular reflections since the geometry
inside an IBR box is approximated by a plane. For glossy reflections the results
are reasonable because the distorted planar reflector can not be perceived exactly
by the viewer. This technique is used in the game Thief 4 (2014) from 2014 and
the Unreal Engine 3 (UE3) (2006).

Advantages: (1) Good visual approximation and (2) Very fast. Disadvantages:
(1) Must be placed by artist and (2) Nearly planar reflectors only.

2.5 Screen Space Local Reflections

Finally we look at a pixel based ray tracing method: Screen Space Local Reflec-
tions (SSLR). In a nutshell: we transform the reflection ray from view space
into screen space, and then move along this ray until we step through the depth
buffer. By this algorithm, we hope to find the intersection of a ray against the
scene geometry, which is stored in form of the depth buffer. That means, in
particular, we can only find intersections with geometry, which is already visible

312 L. Hermanns et al.

on the screen. This is why it is called a screen space effect. Many SSLR imple-
mentations perform this simple ray hit search only, which is commonly called
a linear ray march. Once the first hit is found, a binary search for refinement
can be done. To simulate glossy reflections most applications apply subsequent
blur passes to the reflection color buffer. But there are also alternatives where
several rays are casted and the average color forms the result. A frequently used
optimization, to find the ray intersections, is to render this pass only at half
resolution, which yields to acceptable results when a blur pass is applied any-
way. The advantage of SSLR is that it allows reflections of arbitrary geometry
(assumed the geometry is visible on screen). It can additionally be implemented
as a pure post-process or a set of consecutive post-processes, which alleviates
the effort to integrate it into a present 3D engine. It is moreover independent
of the scene complexity because the reflections are fetched from the color buffer
of a previous render pass. The calculations are computed for every pixel which
makes the algorithms effort proportional to the number of pixels on the screen.
Disadvantages are primarily the limitations of the screen boundary and the hid-
den geometry problem. This technique is used in UE3 and the game Killzone
Shadow Fall (2013). Such ray tracing approximations are state of the art in the
field of post-processing [7,11].

Advantages: (1) Reflection of arbitrary geometry and (2) Pure post process.
Disadvantages: (1) Hiden geometry problem and (2) Limited to screen space.

2.6 Screen Space Cone Tracing

Based on local reflections in screen space, we move on to a method which traces
cones instead of rays: SSCT [6]. Again, the cone is an approximation for many
reflection rays. The process is very similar to SSLR but in each iteration of the
ray march we sample from a certain MIPmap of the depth texture, which is a
further approximation of the actual cone. By relying on MIP-maps certain inte-
gration errors are unavoidable. This is due to solid angles that can subtend either
flat spaces or multiple pieces of geometry. It can manifest as alias or temporal
inconsistency when moving the camera view. Such errors will increase notably
as the cone angle size increases to simulate more glossy appearances. Thus for
SSCT using a proper texture filter is crucial. Next to nave MIP-mapping, manual
filtering by using slices of a 3D texture, where each slice is a Gaussian blurred
version of the original texture [9], has also been tested. The results are signifi-
cantly better in quality but loose the fast texture accesses since we sample from
a high resolution 3D texture.

Advantages: (1) Reflection of arbitrary geometry, (2) Pure post process, and
(3) Glossy reflections with arbitrary roughness. Disadvantages: (1) Hiden geome-
try problem, (2) Limited to screen space, and (3) Artifact avoidance is very slow.

2.7 Hi-Z Cone Tracing

The last presented method is from the book GPU Pro 5: HZCT [15]. The remark-
able concept with this method is on the one hand that the ray tracing and cone

Screen Space Cone Tracing for Glossy Reflections 313

tracing parts are clearly separated and on the other hand that the ray tracing
process is accelerated with hierarchical buffers. These hierarchical buffers will be
generated during the post-process in each frame and allow a faster, stable, and
precise ray tracing in screen space. While SSLR and SSCT use a binary search
to refine the intersection point, HZCT is much more target-oriented. However,
a disadvantage is that HZCT does not allow tracing rays which point towards
the camera. This is due to the ray setup in combination with the hierarchical
buffers. As soon as an intersection has been detected, the cone tracing pass inte-
grates all incident radiance from the intersection point to the ray origin using
the visibility buffer. The cone approximation is quite similar to that in SSCT
but it is combined with a visibility buffer to circumvent invalid integration over
a large solid cone angle.

Advantages: (1) Reflection of arbitrary geometry, (2) Pure post process,
(3) Glossy reflections with arbitrary roughness, (4) High stability and preci-
sion, and (5) Acceleration with hierarchical buffers. Disadvantages: (1) Hiden
geometry problem, (2) Limited to screen space, (3) Unable to ray trace towards
the camera, and (4) Complex to implement.

2.8 Comparison

The only method which provides perfect reconstruction of reflected geometry
here are planar reflections. All the other techniques merely approximate the
reflections in a more or less coarse manner. Unfortunately, planar reflections
are inappropriate for every reflective geometry which has not a planar shape.
Moreover the necessity of re-rendering the scene makes it unfeasible for post-
processing. Nevertheless, planar reflection is still a valuable fallback method,
especially when others fail with receiving scene information. A very efficient
method here are environment maps, which is at least beneficial as fallback, too.
Primarily because they can be pre-computed. But either with or without parallax
correction, using environment maps requires some adaptation by artists, i.e. the
reflections can not be computed as a pure post-process. At least the localization
within the scene must be managed with a world editor. This also applies to
IBR. From the screen space ray- and cone tracing methods, HZCT seems to
be the most advanced technique. The major benefits over SSLR and SSCT are
the stability, the precision, and the acceleration. However, like most ray tracing
algorithms in screen space, it is limited to the screen boundary and we have the
hidden geometry problem. Even HZCT does not solve these restrictions, but this
is where fallback methods are considered.

314 L. Hermanns et al.

3 Screen Space Cone Tracing

The core idea of this work is based on SSCT [6]. However, the implementation is
based on HZCT and will be slightly augmented with a fallback for rays pointing
towards the camera, to maximize the extent of reflection rays in screen space.
We will then provide a quality comparison to the original HZCT and a method
from the field of SSLR. The previous section presented benefits and failings of
related work. The most advanced technique for screen space reflections seems to
be HZCT. However, it does not cover the maximum extent of the screen space,
because rays pointing towards the camera can not be gathered. Fortunately, this
method separates ray tracing and cone tracing, thus the ray tracing part can be
augmented with linear ray marching for exceptional cases. After we review the
algorithm in detail we will take a closer look at a couple of SSLR methods. One
of them is a technique used in Killzone Shadow Fall, in which a mask buffer is
generated alongside the ray tracing process. This is later used to enhance the
blurring of the ray trace color buffer, which is required for glossy reflections in
this SSLR method. The blurred variants are stored inside the MIP-chain.

3.1 Overview of HZCT

Since the method is based on HZCT we continue with an overview of the differ-
ent passes as proposed in GPU Pro 5. The core algorithm can be divided into
five steps: Hi-Z Pass: Generates the entire MIP chain of the Hi-Z buffer. This
hierarchical buffer is required to accelerate the ray tracing. Pre-Integration
Pass: Generates the entire MIP chain of visibility buffer. This hierarchical
buffer is required for accurate radiance integration during cone tracing. Pre-
Convolution Pass: Pre-filters the color buffer. A blur pass of the default MIP-
map generation can be used here. Ray-Tracing Pass: Finds the ray inter-
sections. This pass requires the Hi-Z buffer. Cone-Tracing Pass: Integrates
incident radiance for a solid cone angle. This pass requires the Hi-Z-, the color-,
and the visibility buffers.

The last two steps can be combined into a single shader. It is also possible
to split them up, but this should only be taken into account when it really
matters, because particularly state changes to the framebuffer binding are very
time consuming and it would also increase the memory footprint.

3.2 Competitor: SSLR

Before we compare SSCT with SSLR methods we first take a closer look at glossy
reflections in SSLR, such as Killzone (- Shadow Fall). Although SSLR only uses
ray tracing there are several methods to implement glossiness. The nave approach
is to cast multiple rays and take the mean value of the color samples. A smarter
approach is to split the algorithm into multiple passes again and blur the ray
trace color buffer. This is how it is done in Killzone. A mask buffer is used to
enhance the blurring of the ray trace color buffer. We can divide this algorithm
into the following three steps: 1. The Ray-Tracing Pass generates the ray

Screen Space Cone Tracing for Glossy Reflections 315

trace color buffer and mask buffer. 2. The Blur Pass generates the MIP levels
for both the color- and mask buffer with a Gaussian blur. 3. The Reflection
Pass draws final reflections on the screen.

3.3 Optimizations

There are many ways for optimizations in post-processing effects. Particular for
ray tracing effects with multiple stages. As already mentioned, a frequently used
optimization is to render the respective effects only at half resolution. However,
this is usually only justifiable when blur passes are involved, which hide the
lower texture quality. Another issue is memory efficiency. Incoherent memory
access stalls the graphics pipeline, due to wasted memory bursts (larger blocks
of data for better cache utilization). The game Thief 4 approximates the normal
vectors with (0, 0, 1)T for better memory coalescing. The bump mapping (effect
to enhance shading appearance on textures) is implemented supplementary as
a post-process, i.e. the normal deviation is applied after the ray tracing. Fur-
thermore gradient-based texture operations should be avoided within dynamic
branching, or they should be at least moved out of flow control to prevent diver-
gence. They may force the pipeline to load texture data for program paths where
they are not needed, due to the massive parallelism on GPUs. In practice, this
means that the intrinsics textureLod/textureGrad should be preferred over tex-
ture (in GLSL) and SampleLevel/SampleGrad should be preferred over Sample
(in DirectX High Level Shading Language (HLSL)) respectively.

4 Results and Discussion

The example images compare our method SSCT with the original method HZCT,
then with the related method SSLR. All rendering times are determined with a
hardware timer query, which is very precise and they only reflect the rendering
duration of the effect, excluding the scene rendering. Figure 1 compares SSCT
with HZCT on a wooden cylinder on the floor which reflects the surrounding
tiles. In Fig. 2 the outside of a window is reflected on the floor. Here, HZCT
only captures a small amount of that window, but SSCT extends the range
of the reflective area. Moreover HZCT ignores the reflections on the front wall
completely, whereas SSCT additionally reflects the floor underneath the window.

In Fig. 3 glossy reflections are visible on the floor and the walls of the Sponza
Atrium. The scene itself is rendered neither with shadow mapping nor complex
BRDF models. Only a single directional light source is embedded and only the
stone floor reflects indirect light. Here, SSCT produces much better results than
SSLR for long ray traversals. Artifacts in SSLR are visible on the walls, due to
a constant step size in the ray marching. See also Table 1. The roughness factor
is also used for the normal deviation, to increase the rough appearance.

316 L. Hermanns et al.

Fig. 1. Looking down to the floor at a cylinder, which reflects the tiles (960 x 540
resolution. Left: SSCT rendering time =~ 3.49 ms Right: HZCT rendering time ~ 1.04 ms

Fig. 2. Looking down to the floor, which reflects the outside of a window (960 x 540
resolution). Top: SSCT rendering time & 2.25ms. HZCT rendering time &~ 1.12ms

Table 1. Performance results for various resolutions and roughness factors.

Resolution | Roughness | SSCT performance | HZCT performance | SSLR
performance

640 x 480 | 0.0 0.76 ms 0.69 ms 1.14 ms
640 x 480 0.1 0.81ms 0.74ms 0.68 ms
800 x 600 0.0 1.12ms 1.02ms 1.69 ms
800 x 600 | 0.1 1.17ms 1.10 ms 0.99 ms
960 x 540 0.0 1.50 ms 1.10ms 1.86 ms
960 x 540 | 0.1 1.54 ms 1.19 ms 1.09 ms
1280 x 768 | 0.0 2.45ms 1.92ms 3.31ms
1280 x 768 | 0.1 2.66 ms 2.07 ms 1.95ms
1920 x 1080 | 0.0 4.92 ms 4.07 ms 6.09 ms
1920 x 1080 | 0.1 5.30 ms 4.49 ms 4.02ms

Screen Space Cone Tracing for Glossy Reflections 317

Fig. 3. Glossy reflections are visible on the floor and the walls of the Sponza Atrium
(1920 x 1080 resolution). Top: SSCT rendering time & 5.30 ms, enlarged image detail
~. Bottom: SSLR rendering time ~ 5.19 ms, enlarged image detail

5 Conclusion

We have seen a novel method for local glossy reflections called SSCT. The imple-
mentation has been presented in detail and a comparison to other state of the
art methods has been shown as well. Our method is based on HZCT and is
augmented with a fallback for special cases. The advantages of our method over
other SSLR methods are, that the cone tracing produces more plausible looking
glossy reflections and it can be clearly separated from the ray tracing process.
Additionally the input parameters for SSCT are more correlated with the mate-
rial configuration of a BRDF. This is due to the cone tracing, which is derived
from multiple ray samples. That makes it much easy for artists to create plausi-
ble effects in 3D scenes. In contrast, most SSLR implementations merely blur the
entire ray trace color buffer, which is out of proportion to BRDF and material
parameters. Moreover the cone tracing in SSCT considers the amount of cone
intersection with the scene and takes several texture samples, while glossiness
in SSLR is usually based on a single and unweighted texture sample from the
blurred ray trace color buffer. We can, though, make use of ideas implemented
in SSLR: because of the modular nature of SSCT, we can further enhance the
image quality by using a mask buffer in the blur pass for the color buffer. How-
ever, our method still lacks solutions for the hidden geometry problem and the
screen boundary limitations. Only workarounds do exist to circumvent these

318 L. Hermanns et al.

restrictions. We can summarize, therefore, local reflections in pure screen space
effects are still an unsolved area of indirect lighting. Nevertheless, in prepared
scenes and in combination with other reflection techniques it can be very useful
with satisfying frame rates.

References

1. Bastos, R., Stiirzlinger., W.: Forward mapped planar mirror reflections. Technical
report, University of North Carolina at Chapel Hill (1998)

2. Bauer, F.; Knuth, M., Kuijper, A., Bender, J.: Screen-space ambient occlusion
using a-buffer techniques. In: Computer-Aided Design and Computer Graphics,
CAD/Graphics 2013, pp. 140-147. IEEE (2013)

3. Campbell, ITI, A.T., Fussell, D.S.: An analytic approach to illumination with area
light sources. Technical report, University of Texas at Austin, Austin, TX, USA
(1991)

4. Engelke, T., Becker, M., Wuest, H., Keil, J., Kuijper, A.: MobileAR browser -
a generic architecture for rapid AR-multi-level development. Expert Syst. Appl.
40(7), 2704-2714 (2013)

5. Henne, M., Hickel, H.: The making of “toy story”. In: Proceedings of the 41st IEEE
International Computer Conference, COMPCON 1996, pp. 463-468 (1996)

6. Hermanns, L., Franke, T.A.: Screen space cone tracing for glossy reflections. In:
ACM SIGGRAPH 2014 Posters, SIGGRAPH 2014, p. 102:1 (2014)

7. Johnsson, M.: Approximating ray traced reflections using screen-space data (2012)

8. Kautz, J., McCool, M.D.: Approximation of glossy reflection with prefiltered envi-
ronment maps. In: Proceedings of the Graphics Interface 2000 Conference, pp.
119-126 (2000)

9. Kuijper, A., Florack, L.: The relevance of non-generic events in scale space models.
Int. J. Comput. Vis. 1(57), 67-84 (2004)

10. Limper, M., Jung, Y., Behr, J., Sturm, T., Franke, T.A., Schwenk, K., Kuijper, A.:
Fast, progressive loading of binary-encoded declarative-3D web content. IEEE
Comput. Graphics Appl. 33(5), 26-36 (2013)

11. McGuire, M., Mara, M.: Efficient GPU screen-space ray tracing. J. Comput. Graph-
ics Tech. (JCGT) 3(4), 73-85 (2014)

12. Schwenk, K., Vo3, G., Behr, J., Jung, Y., Limper, M., Herzig, P., Kuijper, A.:
Extending a distributed virtual reality system with exchangeable rendering back-
ends - techniques, applications, experiences. Vis. Comput. 29(10), 1039-1049
(2013)

13. Sébastien, L., Zanuttini, A.: Local image-based lighting with parallax-corrected
cubemaps. In: ACM SIGGRAPH 2012 Talks, SIGGRAPH 2012, p. 36:1 (2012)

14. Stein, C., Limper, M., Kuijper, A.: Spatial data structures to accelerate the vis-
ibility determination for large model visualization on the web. In: Web3D14, pp.
53-61 (2014)

15. Uludag, Y.: Hi-Z screen-space cone-traced reflections. In: Engel, W. (ed.) GPU Pro
5, Chap. 4, pp. 149-192. CRC Press (2014)

16. Wientapper, F., Wuest, H., Kuijper, A.: Reconstruction and accurate alignment
of feature maps for augmented reality. In: 3DIMPVT 2011: The First Joint
3DIM/3DPVT Conference, pp. 140-147. IEEE (2011)

	Screen Space Cone Tracing for Glossy Reflections
	1 Introduction and Motivation
	2 Related Work
	2.1 Analytical Area Lights
	2.2 Planar Reflections
	2.3 Environment Maps
	2.4 Image Based Reflections
	2.5 Screen Space Local Reflections
	2.6 Screen Space Cone Tracing
	2.7 Hi-Z Cone Tracing
	2.8 Comparison

	3 Screen Space Cone Tracing
	3.1 Overview of HZCT
	3.2 Competitor: SSLR
	3.3 Optimizations

	4 Results and Discussion
	5 Conclusion
	References

