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Abstract. A critical challenge in data science is conveying the meaning
of data to human decision makers. While working with visualizations,
decision makers are engaged in a visual search for information to sup-
port their reasoning process. As sensors proliferate and high performance
computing becomes increasingly accessible, the volume of data deci-
sion makers must contend with is growing continuously and driving the
need for more efficient and effective data visualizations. Consequently,
researchers across the fields of data science, visualization, and human-
computer interaction are calling for foundational tools and principles to
assess the effectiveness of data visualizations. In this paper, we compare
the performance of three different saliency models across a common set of
data visualizations. This comparison establishes a performance baseline
for assessment of new data visualization saliency models.
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1 Introduction

A critical challenge in data science is conveying the meaning of data to human
decision makers. While working with visualizations, analysts or decision makers
are engaged in a visual search for information to support their reasoning process.
As sensors proliferate and high performance computing becomes increasingly
accessible, the volume of data that analysts must contend with is growing con-
tinuously. The resulting bloom of data and derived data products is driving the
need for more efficient and effective means of presenting data to human analysts
and decision makers. Consequently, researchers across the fields of data science,
visualization, and human-computer interaction are calling for foundational tools
and principles to assess the effectiveness of data visualizations [9]. In this paper,
we describe the need for a computational model of bottom-up, stimulus-driven
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visual saliency that is appropriate for abstract data visualization. We compare
the performance of three different saliency models across a common set of data
visualizations to establish a performance baseline for assessment of new data
visualization saliency models.

Human visual processing is guided by two parallel processes: bottom-up and
top-down visual attention [16]. When viewing an image, a person’s eye move-
ments are guided by both the visual properties of the image that capture bottom-
up attention (e.g. color, contrast, motion) and top-down processes such as task
goals, prior experience, and use of search strategies [8]. Many bottom-up models
are based on the neurophysiology of human and primate visual systems [1]. These
models construct a number of features from the image data and then highlight
differences in the features across multiple scales of image resolution. The chosen
features are based on the response of neurons in the visual processing system to
certain image characteristics such as luminance, hue, contrast and orientation.
Various models have explored the use of different visual features at different
scales to predict where humans will look in natural scene imagery.

Maps of bottom-up visual saliency have been valuable tools for studying how
people process information in natural scenes, and could also be useful for evaluat-
ing the effectiveness of data visualizations. Ideally, the most important informa-
tion in a data visualization would also have high visual saliency. This evaluation
approach has been demonstrated with scene-like data visualizations [12], but
it is unclear whether or not it is applicable to abstract data visualizations. In
addressing this question, it is important to consider how visual search may differ
between natural scene visualizations and abstract data visualizations. For the
latter, viewers are engaged in drawing conclusions about causality, efficacy or
consequences rather than identifying objects or properties of objects. The visual
appearance of their target (information) may not be well defined or known ahead
of time. The vast majority, if not all, existing computational models were devel-
oped and optimized to predict visual saliency for image-like, or natural, scenes
and may not perform as well when applied to abstract data visualizations. In
fact one published taxonomy of visual stimuli used in studies of gaze direction
lists only three types of stimuli: psychophysics laboratory stimuli, static nat-
ural scenes, and dynamic natural scenes [15]. To date, we have been unable to
find any published examples of bottom-up saliency models designed explicitly
for data visualizations. In the following sections, we compare the performance
of three high performing natural scene saliency models across a common set of
data visualizations.

2 Method

The MIT Saliency Benchmark [7] is an online source of saliency model per-
formance and datasets. The site scores and reports performance on author-
contributed saliency models on datasets where the human fixation positions are
not public. This approach prevents model performance inflation due to over-
fitting of the test dataset. We selected three saliency models, described below,
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listed on the MIT Saliency Benchmark site that span a range of performance
on natural scenes when measured on standard stimuli with a common set of
human gaze data. For baseline performance on natural scenes for each model,
we used results for the cat2000 data set [4] because it is the most recent (intro-
duced Jan 2015). MATLAB or Python code for each model was downloaded from
saliency.mit.edu and saliency maps were constructed with each model on a set
of data visualizations. We measured the performance of each model for the data
visualizations using the same eight metrics used for the saliency benchmark
project. We selected 184 example data visualizations from the Massachusetts
(Massive) Visualization Dataset [6] with corresponding eye-movement data [5]
from 33 viewers (average 16 viewers per visualization, minimum of 11, maximum
of 22). Figure 1 shows an example data visualization and corresponding human
fixation map. The MASSVIS samples were selected from infographic blogs, gov-
ernment reports, news media websites and scientific journals.

Cryptosporidium Prevalence in Sheep

(b)

Fig. 1. Example data visualization (a) and human fixation map (b).

2.1 Saliency Models

Itti, Koch and Nieber. Numerous saliency prediction models have been devel-
oped in recent years, taking a variety of approaches to predict which parts of
an image are likely to draw a viewer’s attention. Several of these approaches
involve the creation of feature maps that are weighted, combined, and filtered
to produce a visual saliency map. The most prominent of these models, the Itti,
Koch and Niebur model [11], is based on the properties of the human visual
system. The model detects changes in low-level features such as color, intensity,
and orientation at varying spatial scales. It then weights those features and uses
an iterative spatial competition process to create feature maps that are then
summed to produce the saliency map. More recently, other researchers have
developed new approaches to create saliency maps. When compared using the
MIT Saliency Benchmark, two visual saliency models that consistently perform
well with images of natural scenes are the Boolean Map based Saliency model
[20,21] and the Ensembles of Deep Networks model [19].
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Boolean Map Based Saliency. The Boolean Map based Saliency model
(BMS) [20] creates a set of Boolean maps to characterize images. It relies on
the Gestalt principle of figure-ground segregation and the idea that visual atten-
tion will be drawn to the figures in an image rather than the background. The
model randomly thresholds an image’s feature maps, such as the color map, to
generate a set of Boolean maps. For each Boolean map, the model uses the fea-
ture of surroundedness [21] (a connected region with a closed outer contour) to
identify figures within the image and to create an attention map. The attention
maps are then normalized and combined to form the full-resolution attention
map. This approach differs from many other saliency models because it utilizes
scale-invariant information about the topological structure of the images. It does
not use multi-scale processing, center-surround filtering, or statistical analysis of
features. Thus, it is a relatively simple model that focuses on identifying figures
within images.

Ensebles of Deep Networks. Like the classic Itti and Koch model, the ensem-
bles of Deep Networks (eDN) model is hierarchical with operations that are based
on the known mechanisms of the human visual cortex. However, rather than
hand-selecting visual features of interest, a guided search procedure is used to
optimize the model for identifying salient features. In other words, the saliency
prediction task is a supervised learning problem in which the model is opti-
mized for predicting where humans will look in natural scenes. Multiple high-
performing models are identified and the combination of the models is optimized.
Center bias and Gaussian smoothing are used to create the final saliency maps
from the model outputs. For this comparison, the eDN model coefficients pro-
vided by Vig et al., learned using natural scene stimuli rather than data visu-
alizations, were used to illustrate the difference in feature sensitivity across the
two stimuli types. Future comparisons of learned model coefficients across the
stimuli types could inform the development of saliency models for data visu-
alizations. Figure 2 shows examples of each saliency model applied to the data
visualization shown in Fig. 1.

(a) (b) ()

Fig. 2. Example saliency maps, (a) Itti, (b) BMS, (c) eDN, for data visualization shown
in Fig. 1.
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2.2 Comparison Metrics

Many different metrics have been proposed for comparing saliency and fixation
maps. Riche et al. provide a thorough review and taxonomy of published com-
parison metrics [17]. The authors use a two-dimensional taxonomy to organize
the various metrics. Along one dimension, they categorize the metrics as “value-
based,” “location-based” or “distribution-based.” Along the other dimension,
they categorize the metrics as “common,” “hybrid” or “specific.” Metrics cate-
gorized as common are generalized and were not originally designed for saliency
comparisons. Metrics categorized as hybrid are adapted from other fields to
work with saliency and fixation data. Metrics categorized as specific were devel-
oped directly for application to saliency comparisons. In order to compare model
performance on natural scenes and data visualizations, we elected to use the
eight comparison metrics used by the MIT Saliency Benchmark project. Of
the eight metrics, one was value-based, three were location-based, and four are
distribution-based, as described in more detail below.

Value-Based Metric. The normalized scanpath saliency metric (NSS)[2] first
standardizes saliency values to have zero mean and unit standard deviation, then
computes the average saliency value at human fixation locations. When NSS is
greater than one, the saliency map exhibits significantly higher values at fixation
locations compared to other locations.

Location-Based Metrics. Three of the comparison metrics are based on the
receiver-operator characteristic (ROC). For these metrics, the human gaze posi-
tions are considered positive examples and all other points are considered negative
examples. The saliency map is treated as binary classifier to separate the positive
and negative example sets at various thresholds and the area under the resulting
ROC curve (AUC) is computed. As the saliency map and fixation map become
more similar, AUC values approach one. Random chance agreement results in an
AUC value of 0.5. For all three implementations, the true positive rate is the pro-
portion of saliency values above the threshold at all fixation locations. For the
AUC-Judd implementation the false positive rate is the proportion saliency val-
ues above the threshold at non-fixated locations and the thresholds are sampled
from the saliency map values [17]. For the AUC-Borji implementation, the false
positive rate is based on saliency values sampled uniformly from all image pix-
els and the thresholds are sampled with a fixed stepsize [3]. For the shuffled AUC
implementation, the false positive rate is based on saliency values sampled uni-
formly from fixation locations on a random set of other images [3,22].

Distribution-Based Metrics. The similarity score (SIM) is a histogram inter-
section measure. Each distribution is scaled so that its sum is one. Similarity
is the sum of the minimum value between the two scaled distributions at each
point. When SIM equals one, the distributions are the same and when SIM equals
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zero, there is no overlap between the two distributions. The earth mover’s dis-
tance (EMD)[18] is based on the minimal cost to transform one distribution
(the saliency map) into the other distribution (the fixation map). Smaller values
of EMD represent better agreement between the saliency map and the fixation
map and when EMD equals zero, the two distributions are identical. The linear
correlation coefficient (CC) is a measure of the linear relationship between a
fixation map and a saliency map [2]. When CC is close to one, the linear rela-
tionship between the saliency map and the fixation map is nearly perfect. The
Kullback Leibler divergence (KL)[10] is a measure of the information lost when
the saliency map is used to approximate the fixation map. KL ranges from zero,
when the two maps are identical, to infinity.

3 Experimental Results

Figure 3 shows the performance of the three models on the natural scenes and
data visualizations. The results are displayed in the form of a percent difference
score that is negative when the models performed better on natural scenes and
positive when the models performed better on data visualizations. The corre-
sponding numerical values are shown in Table 1. Table2 shows the effect size,
using Glass’s delta across natural scenes and data visualization.
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Fig. 3. Model Comparison Across Stimuli Type and Metric. (a) Value-based metric,
(b) Location-based Metrics, (c¢) Distrbution-based Metrics. Results are displayed in the
form of a difference score that is negative when the models performed better on natural
scenes and positive when the models performed better on data visualizations.
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Table 1. Model Comparison Across Stimulus Type. First value in each pair is sample
mean; second value is standard error of the mean (SEM). Bold font indicates significant

differences between mean values for natural scenes and visualizations (p < 0.05).

Itti BMS eDN

Nat Vis Nat Vis Nat Vis
AUC-J | 0.77 £ 0.002 | 0.68 + 0.006 | 0.85 + 0.001 | 0.67 + 0.006 | 0.85 + 0.001 | 0.58 + 0.009
SIM 0.48 +0.002 | 0.57 +0.006 | 0.61 = 0.002 | 0.54 4+ 0.005 | 0.52 £ 0.002 | 0.52 £ 0.005
EMD 3.444+0.016 | 3.92+0.11 |1.95+0.013 |4.194+0.12 |2.64+0.013 | 4.48+0.12
AUC-B | 0.76 + 0.002 | 0.67 + 0.006 | 0.84 + 0.001 | 0.65 + 0.006 | 0.84 + 0.001 | 0.58 + 0.009
sAUC |0.59+0.002|0.64+0.007 | 0.59 +0.002 | 0.63 + 0.006 | 0.55 & 0.002 | 0.56 £+ 0.009
CcC 0.42 £0.004 |0.40 £0.017 |0.67 +0.002 | 0.32 +0.014 | 0.54 +0.002 | 0.20 £ 0.020
NSS 1.06 £0.012 | 0.64 £0.030  1.67 £0.012  0.52 £ 0.025 | 1.30 £ 0.006 | 0.30 £ 0.032
KL 0.92 + 0.006 | 0.63 + 0.019 | 0.83 £ 0.012 | 0.79 +0.021 | 0.97 + 0.006 | 0.78 + 0.018

Table 2. Glass’s Delta Effect Size for Model Comparison Across Stimulus Type. Bold
font indicates significant differences between mean values for natural scenes and visual-
izations (p < 0.05). For normalization of Glass’s delta, the natural scenes were treated
as the control group.

AUC-J.|SIM | EMD | AUC-B. |sAUC | CC NSS |KL
Itti | -0.98 |1.23 |0.66 |-0.98 |0.69 | —0.14 |-0.79|—-1.16
BMS|—-3.58 |—-1.00|3.79 | —-3.77 |0.58 | —3.21|—2.09|—-0.07
eDN | -5.34 | —-0.04 |3.07 |—-5.18 |0.14 | —4.22|-3.43|—-0.67

Generally, the models had poorer performance for data visualizations than for
natural scenes. All three models performed worse on visualizations than on nat-
ural scenes as measured by four of the eight metrics: the value-based metric NSS,
two location-based metrics, AUC-Judd and AUC-Borji, and the distribution-
based metric EMD. For these metrics, the effect sizes were largest for the BMS
and eDN models. The performance of the eDN model was not significantly dif-
ferent for visualizations and natural scenes when measured by the location-based
metric SAUC and the distribution-based metric SIM. Similarly, the performance
of the Itti model was not significantly different for visualizations and natural
scenes when measured by the distribution-based metric CC. However, for the
distribution-based metric KL, both the Itti and eDN models performed signifi-
cantly better for data visualizations than natural scenes. This is consistent with
the finding of Riche et al. [17] that the KL metric is quite different from the other
metrics. Because the KL metric does not take absolute location into account, but
considers only the statistical distribution of the map, two maps having similar
distributions can have very different location properties. The performance of the
BMS model was not significantly different for visualizations and natural scenes
when assessed by the KL metric. For this metric, the effect size was largest for the
Itti model followed by the eDN model, while the effect size for the BMS model
was close to zero. Of note, for the metrics where the performance of all three
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models was significantly different between visualizations and natural scenes, the
Itti model performed better on visualizations than either the BMS model or the
eDN model. This is contrary to the general trend in performance on natural
scenes for these metrics where eDN is the best performing saliency model.

4 Discussion and Conclusion

The visualizations used in this comparison study are all highly curated, employ-
ing text and graphic design principles to help viewers identify the most important
results. The Itti model may perform best on these data visualizations because
of its close ties to the human visual processing system, while other models have
been designed and optimized for natural scenes, placing less emphasis on faithful
representation of neural processes. The natural scene models may also under per-
form on data visualizations, since many graphical elements used in visualization
have smaller spatial extent than objects that typically appear in natural scenes.
The finer resolution graphical elements result in higher frequency components
to which natural scene models maybe insensitive. Another factor that may limit
the applicability of natural scene models is the use of text in data visualizations.
Text plays a significant role in human attentional allocation and the result-
ing direction of eye movements. The process of reading text in a visualization
would result in a higher density of fixations around text elements. Future work
should leverage a taxonomy of visualization elements such as the one described in
Munzner’s book [13]. Our future research will focus on data visualization tech-
niques for two-dimensional representation of high-dimensional data.

This comparison study has established a baseline that can be used to assess
the performance of new saliency models for data visualizations. The current
trend towards better model performance on natural scenes seems to come at the
expense of performance on data visualizations. This inverse relationship between
model performance on natural scenes and on data visualizations supports our
position that new saliency models are needed to aid development of generalized
theories of visual search for data visualizations. In future work, we will expand
on existing models of visual saliency to address these issues and investigate the
role of top-down visual attention in viewers’ navigation of abstract data visual-
izations. Developing general models of top-down sense-making has proven to be
quite difficult [14]. Knowledge elicitation techniques have been used to identify
top-down goals and strategies and the resulting influence on eye movements.
Other approaches have applied machine learning techniques to eye movement
data collected as experts perform a given task. The resulting models can pre-
dict expert attention allocation for new stimuli, but it is often difficult to use
these models to understand why experts allocate attention to certain content
and not to other content. Because of this difficulty, we advocate the combina-
tion of computational models of bottom-up saliency with empirical studies of
eye movements to identify tacit sense-making strategies.

As this work progresses, we will also explore the role of expertise in visual
processing of data visualizations. Expertise is a crucial factor in top-down visual
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attention, and its impact may be even greater with abstract visualizations, where
users cannot rely on their prior experience with real-world scenes to guide their
search. Visual search tasks using abstract data visualizations can be contrasted
with visual search tasks in complex decision making domains. For example, air-
port luggage screeners search x-ray imagery for prohibited items. In this domain,
as in many abstract visualizations, the visual appearance of the target is often
not known in advance and furthermore the target may be obscured by overlap-
ping items. However, the users’ knowledge about the image features may be quite
different. Luggage screening personnel have extensive training and experience in
how to search through images, but may have little expertise on the physics of
the image formation process. In contrast, experts such as scientists and engi-
neers who work with abstract data are likely to have very deep knowledge of
the physical properties driving the content of visualizations. These differences
should be considered as top-down factors are identified.
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