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Abstract Precise and unambiguous limbs motion tracking is one of the key aspects
laying behind natural human-machine communication. The paper presents a novel
approach to depth sensor (Microsoft Kinect) and inertial measurement units (IMU)
data fusion, providing more precise and stable hand joints tracking. The newmethod
substitutes, mainly described in literature, sensors-derived joints position fusion with
sensors-derived bones orientations fusion and subsequent joints positions estimation.
Obtained joints positioning precision became even 25%better than in other solutions.
The paper comprises also the method evaluation results. It was verified both against
professional motion tracking VICON system and Kalkbrenner method [6], the most
relevant to the presented solution.
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1 Introduction

Limbmotion tracking, understood as an unambiguous and delay-minimizing process
of limb’s joints 3D space position estimation, is a valid problem invaluable for current
researches onNatural User Interface design. It is used nowadays in several areas such
as entertainment (games and movies animations), interaction with scene objects in
augmented reality systems or motor skills rehabilitation. This last area, supported by
the computer system, constitutes a part of a wider subject named tele-rehabilitation.

For several years, the only possibility to obtain the limb joints tracking desired
accuracywas to exploit professionalmotion capture systems i.e.VICONorOptitrack.
However, since couple of years, there appear broadly available (and cheaper) devices
(i.e. game controllers) that allow to track selected aspects of human motion at user’s
home. On the other hand, nonprofessional solutions reveal several imprecisions and
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constraints that might be compensated by an appropriate controllers derived data
fusion.

In the paper two types of such devices were taken into consideration: Microsoft
Kinect 360—a RGB–d camera that is able to track whole human body and inertial
measurement units (IMU) consisting of accelerometer and gyroscope sensors that
are able to measure linear acceleration and angular speed. As the devices’ recording
frequencies are limited (30Hz for Kinect and 70Hz for IMU) and the context of
rehabilitation and hand gesture controlled object manipulation is considered, the
hand tracking accuracy is superior to the speed of hand movement.

Though several authors [2–4] have proved that Kinect and IMU data fusion
assures limbs joints positions tracking accuracy of about 2.5–3cm, presentedmethod
achieves better results: 2–2.5cm.

2 State of Art

Considered sensors have several measurement characteristics that should be taken
into consideration during the fusion. Microsoft Kinect controller loses its tracking
ability due to body parts occlusion [1]. Moreover, while tracking, lost joints may
affect the tracking accuracy of those which are fully visible to the sensor’s camera.
The rotation of user’s bodymight be an example of such scenario. Basing on author’s
experiments, if the user rotates more than 50◦ (angle between the user and camera
view directions), occluded shoulder joints (and almost half of the body) will be
invisible to the device and measurements of visible parts will be unstable.

Another important characteristic is that joints positions measurement accuracy
change with the distance between the human and the device [7]. Figure1 shows how
the estimated accuracy changes with a distance. As the most important IMU flaws,
the gyroscope measurement drift and the temperature related bias in accelerometer

Fig. 1 Position measurement accuracy in Z-axis to distance from the Kinect
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Fig. 2 Gravity measurement in temperature range 10–50 ◦C

measurements may be indicated [11, 17]. The influence of the temperature on the
bias is presented in Fig. 2.

The studied paper [9] estimates Microsoft Kinect general posture estimation vari-
ability in range 5–10cm. Moreover, the author pointed out that the length of tracked
bones vary between measurement frames in range 2–5cm.

Considering selected controllers, several hybrid data fusion approaches, improv-
ing positioning accuracy, can be found in the literature. Authors have elaborated
different approaches to sensors’ data fusion, which characterize various levels of
measurements reliability. The first group of approaches can be classified as meth-
ods which use Kinect measurements as a reference system and partially relay on its
measurements.

Bo et al. [2] described the joint angle (angle between joint adjacent bones) esti-
mation method exploiting 5 degrees of freedom (DOF) IMU and Kinect. In the initial
stage the method interprets the gyroscope and the accelerometer data separately and
their fusion by the linear Kalman filter (KF) is subsequently performed. The same
angle estimated with Kinect data is used to initially calibrate and then temporarily
correct the bias of the accelerometer estimation. There were no numerical results pro-
vided in the paper, however the presented charts suggest considerable improvement
of data fusion results.

A different approach was presented in a paper published by Destelle et al. [3].
Authors decided to use a set of 6DOF IMUs supported by amagnetometer,where each
unit was stuck to one of the tracked limb bones. Basing on gathered measurements,
orientation of each bone was estimated by the Madgwick’s algorithm [8] and their
superposition resulted in the full skeleton model. Kinect data was used twofold. The
first stage was to get the initial, reference skeleton frame to label data estimated
from inertial units and to improve the IMU calibration. That process resulted in the
hierarchical definition of bones orientations (inertial skeleton). The second stage of
Kinect exploitation was to track the position of the central body point (torso joint)
and then update the whole inertial skeleton relatively to this points displacement.
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Resulting, VICON-referenced knee joints angle estimation error varied between 4◦
and 14◦. It depended on cross correlated joints, the measurements were referenced
to, as there were no joints absolute angle estimation performed.

The newest method that could be qualified to this group, is the one presented in
2015 by Tian et al. [12]. Authors included geometrical constraints of the performed
motion in the estimation process, to eliminate estimations that are impossible to
achieve in the real life i.e. angle between forearm and arm cannot be greater than
180◦. The fusion algorithm used by authors is based on the Unscented Kalman
Filter (UKF) [15]. Presented results show that the algorithm is able to work also
while Kinect is outage, which was not obvious in previously described methods. To
estimate method accuracy, authors compared elbow angle measurements. Authors
published the information that angle measurements estimated by their fusion method
deviates less than 20 degree from the expected value.

The another group of published methods is based on the assumption that both
measurement devices’ imperfections need to be corrected continuously by the signal
fusion. In 2014 Feng and Murray-Smith [4] proposed the multi-rate Kalman filter-
based fusion method of joints positions, estimated by Kinect with linear acceleration
and velocity of this joint. Presented results showed that this approach stabilizes
measurements around the real value much faster than single rate KF. This is visible
especially when the movement starts/stops (Fig. 3). The accuracy of the presented
method can be estimated around 1.5–2cm (based on published diagrams). However,
presented results refer to very short time periods (up to 5 s), so it is impossible to
estimate how the method works in a long term.

A different approach was presented in the paper of Kalkbrenner et al. [6]. Authors
of this publication suggestedKalman-based linear fusion of joints estimated positions
retrieved from bones orientations superposed with the skeleton model (bones length)

Fig. 3 Joint position
estimation with the
multi-rate Kalman filter and
the single rate Kalman filter
[4]. Red line—multi-rate
Kalman filter, blue
line—single-rate Kalman
filter
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and Kinect measurements. Absolute joints positions estimation results were around
±2.5cm and seem to be the most accurate in long term experiments.

In the papers presented so far, motions, described as test movements, were per-
formed in the Kinect friedly way. It means that all tracked joints were fully visible
during every motion sequence and movements were done along the single axis and
didn’t include any occlusions.

The approach presented in 2013 byHelten et al. [5] ismore advanced thanmethods
presented so far and uses the pattern recognition to estimate the user’s current pose.
In the previously analyzed articles, the IMU data was always fused with Kinect
skeleton data and basing on that, multiple pose features were calculated. In this
article, Kinect is used as a depth camera and data from the depth stream is fused with
IMU measurements. The motion recording was performed with the use of six Xsens
MTx 9 DOF IMUs [18] which is a full set of professional inertial motion tracking
system. The proposed method is based on the idea of the visibility model that is built
from poses estimated on inertial and Kinect measurements, and then matched with
predefined poses stored in the database. However, such approach seems to be useless
in scenarios where you need to estimate joints positions and other limb features, as
it focuses on the general pose recognition.

Our method is the most similar to the Kalkbrenner approach, but our main contri-
bution consists in improved, weighted sensor contextual influence which results in
overall better absolute joints positions estimations. The method joints absolute posi-
tioning precision of about 2–2.5cm was verified against the ground-truth VICON
system.

3 Method

A method proposed by authors, bases on the continuous linear fusion of skeleton
bones orientations with respect to the current motion context. It takes into considera-
tion controllers reliability and compensates evaluation imperfections. The proposed
motion positioning method can be defined as a function f :

f (A,G, T, PK
0 , PK

1 , QK ,�t) => [pF
x , pF

y , pF
z ]t , (1)

where: A—accelerometer measurement, G—gyroscope measurement, T—temper-
aturemeasurement, PK

0 , PK
1 —start and endbone joints positionsmeasured byKinect

i.e. elbow and wrist, QK—bone orientation estimated by Kinect, t—current time
frame, �t—elapsed time between previous and current frame.

Orientations are contextually presented in two forms: quaternions and Euler
angles, and they are transformed between these formswith respect toNorth and South
Pole singularities. In the method authors exploited limbs joints positions (PK =
[pK

x , pK
y , pK

z ]) and bones orientations (QK = [qK
w , qK

x , qK
y , qK

z ]) supplied by the
Kinect device as well as accelerometer (A = [ax , ay, az]), gyroscope
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(G = [gx , gy, gz]) and temperature (T ) measurements from each IMU. Kinect joints
positions and IMU based marker locations on tracked limbs are presented in Fig. 6.

In the proposed method, data gathered from measurement devices, are denoised
in the first step and then used to calculate bones orientations. Then, orientations
calculated from IMU devices and measured by Kinect are fused together and in
the last step, bones length model is added to estimate absolute joints positions. The
general overview of the orientation-based fusion process is presented in Fig. 4.

The data processing is performed in two parallel threads. The first one per-
forms computations on the IMU data to estimate limbs orientations (quaternion)
and the second retrieves Kinect skeleton bones orientations (quaternion). Their con-
sequent, contextually-weighted and time-correlated, superposition results in fused
bones quaternions values which, assuming skeleton model, can be transformed into
estimated joints absolute positions. At the beginning of the first thread, the IMU
accelerometer bias was corrected with the (2), due to the device operating tempera-
ture destructive influence on its measurements.

A′ = A

1 + β(T − T0)
, (2)

where:

• A′—corrected accelerometer measurement,
• A—accelerometer measurement,
• T—temperature measurement,
• T0—device reference operating temperature. For used device T0 = 25 ◦C,
• β—correction factor. For used device β = 0.0011.

The value of β correction factor is the result of exploited IMU gravity regression
analysis as a function of the device operating temperature (Fig. 2). Next, the corrected
accelerometer data and gyroscope measurements were used to calculate quaternion
of adjacent bone orientation with the Madgwick’s filter [8]. The estimated orienta-
tion was then extrapolated to eliminate the observed delay. The linear extrapolation
algorithm was used in this step (3).

[Φ,Θ,Ψ ]′ = [Φ,Θ,Ψ ]t + γ([Φ,Θ,Ψ ]t − [Φ,Θ,Ψ ]t−1), (3)

Fig. 4 Orientation based fusion method
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where:
[
Φ, Θ, Ψ,

]′
—corrected orientation in the form of Euler angles;[

Φ, Θ, Ψ,
]
—orientation in the form of Euler angles; γ—extrapolation factor. For

used device γ = 0.5.
In the second thread, Kinect data needed to be denoised with no significant delay

in measurements. It was done by first-order exponential low-pass filter defined by
Eq.4. Both joint positions and orientations have been filtered in this step.

yt = αxt + (1 − α)yt−1, (4)

where: y—filtered data; x—noised data; α—filtration factor. α = 0.065.
The α factor value was estimated as a result of the analysis of the average Kinect

positioning error during hand motion sequence (Figs. 5 and 6).
Both devices work in different coordination spaces (Fig. 7) and they need to be

transformed into the common space before their data can be fused. As the majority
of data is gathered from Kinect, its coordination space was chosen as the main one.
That minimized additional computations that need to be done.

In the next step, the controllers’ quaternions fusion was performed. It started
with the assessment of Kinect measurements reliability. The user orientation to the
camera and joints positions measurement noise level were taken into consideration.
The noise level is measured by the high-pass filter in the form of Eq. (5). Sample
results for keeping hands with no motion and for with lost tracking are presented in
Fig. 8.

nt = δnt−1 + δ(Pt − Pt−1) (5)

[16] where:

• n—noise level,
• P—joint position,
• δ—filtration factor δ = 0.01.

Fig. 5 Kinect measurement accuracy to low-pass filter factor α
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Fig. 6 Kinect skeleton joints
positions and IMU location

Fig. 7 Devices coordination
spaces. a Kinect. b IMU
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Fig. 8 High-pass filter (Eq.5) results for joint position while joint is not occluded in any time
(a) and partially occluded (b). a Not occluded joint. b Occluded joint

If the user is rotated to Kinect camera more than 50o (the angle between the line of
user’s shoulders and the camera surface) or the noise level is too high (|n| > 0.0004
based on performed experiments) then Kinect measurements are classified as unreli-
able and are replaced with the difference between current and previous IMU–based
orientation estimations. The orientations fusion is defined as the complementary
process where rotations around each axis are joined with different weights. This
approach was motivated by the fact that the controllers have different measurement
abilities and accuracy along each axis.

If current Kinect’s data is classified as reliable, the fusion is expressed by the
following Eq. (6).

⎡
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Θ F

Ψ F

⎤

⎦

t

=
⎡
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wx 0 0
0 wy 0
0 0 wz

⎤

⎦
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Φ I

Θ I

Ψ I

⎤

⎦
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+
⎡

⎣
1 − wx 0 0

0 1 − wy 0
0 0 1 − wz

⎤

⎦
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⎣
ΦK

ΘK

Ψ K

⎤

⎦

t

(6)

where:
[
ΦX , Θ X , Ψ ,

]T
t —Euler form-based orientation; X denotes: F—fused, I—

IMU, K—Kinect, and wx , wy , wz: weights defining fusion factor of each axis rota-
tion. Defined as [0.98, 0.05, 0.65] respectively.

Weights used in Eq.6 describe the level of importance of IMUmeasurements and
need to be < 1. The higher value used, the more important measurement was. As
Kinect is not able to measure rotation along ‘x’ axis (Roll), weight close to 1 has
been used there. In case of usage of inertial sensors without magnetic sensor support,
rotation around gravity vector (‘y’ axis—Yaw) contains uncompensated time-related
drift, so, in this case, IMU measurement was discriminated. Third axis rotation was
measured by both devices, however IMU had slightly better accuracy than Kinect
which was reflected in weight >0.5.

As both devices, Kinect and IMU, work with different sampling frequency, dec-
imation technique has been used to pick the measurements from the closest time
frames.

In case of Kinect data unreliability, the fusion wasmade between previously fused
value and the IMU-based orientation update—between the previous and the current
measurements. The fusion formula is defined as follows (7):
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In this case wx value remains the same and it equals 0.98 and wy and wz get low
over the time according to the following function (Eq.8):

w =
(
1 − �tn

10

)
· 0.65, (8)

wherew—current weight value,�tn—amount of time in seconds when Kinect stays
unreliable.

When the controllers-fused orientation is estimated it must be recalculated to the
quaternion form. Then, basing on the known bone length, the position of the desired
joint might be calculated.

4 Results

In order to verify the elaborated method (orientation-based joints position estima-
tion) precision several experiments were performed. They were conducted with the
VICON motion capture system as a source of a ground-truth reference data. Five
users were monitored with Kinect controller, two IMUs attached to arm and forearm
bones (Fig. 6) and passive marker-based VICON system, simultaneously. Markers
were attached to the hand according to the schema presented in Fig. 9.

The PC used to record Kinect and IMU data was a 2.5 GHz Intel Core i7-4710HQ
CPU base computer with 8GB of RAM and SSD drive. The exploited Kinect device
was a dedicated Xbox 360 console controller. The software was implemented on
.Net Framework 4.5 with Kinect SDK v. 1.8. IMUs—these were MPU6050 devices
set up with scale ranges: ±4g for accelerometer and ±500◦/s for gyroscope. Inertial

Fig. 9 Used VICON Arm marker model (Pai [10])
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devices worked as a part of the self-made measurement device, built on the Arduino
Due platform. The data transmission between IMUs and the PC was done through
Bluetooth v. 2.0.

As a reference, measurements obtained from the optical multi-camera VICON
motion capture has been used. Such systems are broadly used in the industry as well
as to track the motion for i.e. biomechanical research [14]. According to data sheet
published by the producer, declared precision of this system is down to 0.5mm of
translation and 0.5o of rotation with refresh rate up to 250 fps [13]. Such accuracy
allows to use such measurements as ground-truth data. In performed experiments,
VICON system worked with refresh rate 100 fps.

Performed experiments examined the right hand joints (elbow, wrist) positioning
precision and the angle between the arm and the forearm estimation (the angle in the
elbow joint) during 4 different movement sequences (Fig. 10):

1. Elbow flexion up to an angle of 90◦.
2. Elbow flexion forward to an angle of 90◦.
3. Straighten the hand in front of a body.
4. Stand still for more than a minute.

Selected gestures comprised motions that might be considered as challenging
especially for Kinect. Each movement sequence started from the initial T-pose and
was performed multiple times and averaged. The proposed method was also com-
pared with the Kalkbrenner method precision, which was implemented according to
the description included in the article [6]. The position estimation accuracy for elbow
and wrist joints as well as the angle measurement accuracy has been presented in
Figs. 11, 12 and 13. The gray color was used for Kalkbrenner position-based method
results and the orange for the author’s, orientation-based method achievements.

Fig. 10 Movement
sequences performed during
tests
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Fig. 11 Elbow positioning average accuracy

Fig. 12 Wrist positioning average accuracy

Fig. 13 Elbow angle measurement average accuracy

Unfortunately, during performed tests, authors were not able to achieve the described
accuracy for the Kalkbrenner position-based method, however, the achieved results
were close to the declared ones. Results presented on charts show the improvement
in both: the position and the angle measurement accuracy. The average accuracy
for the position estimation was 2.5cm for the elbow and 2.9cm for the wrist. The
average angle measurement accuracy was 2.5o. The same values for position-based
fusion estimations were 2.8cm, 3.6cm and 5.9◦ respectively.
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5 Conclusion

The authors presented a new, orientation-based method for skeleton joints position-
ing. It was tested on variety of right hand movements. Obtained results have proven
that the method managed to compensate imperfections of both measurement devices
much better than previous approaches. Basing on the comparison of results gathered
from the orientation-based fusion and the position-based fusion, the improvement of
the estimation accuracy has been noticed and reached the rate of 15 up to 25%.

Obtained results prove that the novel data fusion approach, based on the bones
orientation, might be considered as an improved alternative to the well known, joint
position-based methods.
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