
Prediction of the Successful
Completion of Requirements in Software
Development—An Initial Study

Witold Pedrycz, Joana Iljazi, Alberto Sillitti and Giancarlo Succi

Abstract A lot of requirements are discarded throughout the product development
process. However, resources are invested on them regardless of their fate. If it
would exist a model that predicts reliably and early enough whether a requirement
will be deployed or not, the overall process would be more cost-effective and the
software system itself more qualitative, since effort would be channeled efficiently.
In this work we try to build such a predictive model through modelling the lifecycle
of each requirement based on its history, and capturing the underlying dynamics of
its evolution. We employ a simple classification model, using logistic regression
algorithm, with features coming from an engineering understanding of the problem
and patterns observed on the data. We verify the model on more than 80,000 logs
for a development process of over 10 years in an Italian Aeronautical Company.
The results are encouraging, so we plan to extend our study on one side collecting
more experimental data and, on the other, employing more refined modeling
techniques, like those coming from data mining and fuzzy logic.

1 Introduction

During the typically long lifetime of a software system, certain requirements are
frequently modified or even completely deleted, due to factors like change of
business needs, increase of the complexity of the system itself, changes in mutual
dependencies, or disability to deliver the service [1, 2]. However, financial
resources, human and machine effort and time is invested on these requirements,

W. Pedrycz ⋅ J. Iljazi
Department of Electrical and Computer Engineering,
The University of Alberta, Edmonton, Canada

A. Sillitti
Center for Applied Software Engineering, Genoa, Italy

G. Succi (✉)
Innopolis University, Innopolis, Russia
e-mail: G.Succi@innopolis.ru

© Springer International Publishing Switzerland 2016
G. Jezic et al. (eds.), Agent and Multi-Agent Systems: Technology
and Applications, Smart Innovation, Systems and Technologies 58,
DOI 10.1007/978-3-319-39883-9_21

261



regardless their fate and final state. If there would be a model that could predict
early enough on the development life cycle that some requirements are more prone
to failure than others, the management of the processes would be more
cost-effective and deterministic [3]. This paper is focused on trying to predict such
failure using a suitable and simple mathematical model.

Empirical software engineering is an established discipline that employs when
needed predictive modeling to make sense of current data and to capture future
trends; examples of use are predictions of system failures, requests for services [3],
estimation of cost and effort to deliver [4, 5]. With respect to requirement modeling,
empirical software engineering has so far put most effort in lifecycle modeling
[6–8] and volatility prediction [9, 10]. In our view, the prediction of the fate of
requirements and of the associated costs has not received an adequate attention; in
this work we propose this novel viewpoint that centers its attention on this
neglected area of study.

In this work we use logistic regression to learn from historical sequences of data,
each sequence with a final label of success or a failure depending on its final
evolution state. in an industrial software system development process. The model is
experimented on a real data coming from 10 years of requirements properly eval-
uated in an Italian Aeronautical Company. The experimental data features more
than 6,000 requirements and 80,000 logs of their evolution.

As it is shown further, this results in a statistically significant model that is able
to detect failures and successes with a satisfactory precision. This analysis opens the
path for a future better understanding of the requirement lifecycle dynamics, the
identification of the typical patterns that show a future failure, and a broader
exploration of classifying techniques for data of software engineering processes.
Moreover, keeping in mind the limitations of the model we build, the next step
would be also a consideration of the trade-off between specificity and out of sample
generalization.

The paper is structured as follows: in Sect. 2 we present the state of the art, in
Sect. 3 the methodology followed in this early study is detailed, highlighting the
prediction method chosen and the way its performance is assessed. In Sect. 4 it is
presented the case study. The paper continues further with Sect. 5 where the lim-
itation of this work are outlined and the future work is presented. The paper is
concluded (Sect. 5) by summarizing the results of this work and its importance.

2 State of Art on Empirical Studies on Requirements

Requirements are an important part of the software development process; some of
their characteristics are studied broadly and the results of such studies are widely
present in the literature. However, as mentioned in the introduction, there is more to
explore especially in terms of empirical studies of requirements evolution [11]: in
this context the existing research is focused on two main directions. The first is
modeling the requirements evolution with the aim of understanding its dynamics

262 W. Pedrycz et al.



early on their specification [6] or during the lifecycle [8, 12], considering important
also developing tools to capture this evolution through logs of different stages of
development process [13].

The second direction has for long focused on the requirements volatility. There
are studies identifying some main reasons that can take a requirement not to suc-
ceed or to change frequently, business needs, requirement complexity and depen-
dency, environment of development, etc. [1, 2]. To the volatility issue, a few studies
approach it, as a reflection of the socio-technical changes in the world and in
industry. For instance, Felici considers changes not an error to deal with, but an
unavoidable part of software process development that reinforces the requirement
itself and saves the project from failing, by adapting continuously. In this case
except the cost accompanying the requirements volatility, the authors try to asso-
ciate also the benefit driven from the changes [14–16]. There is also a part of studies
that give importance to how changes propagate [17], and how they can be related to
an increase in defects present and in the overall project cost [18].

With respect to learning from historical data, there are empirical software
engineering studies attempting to build predictive models on requirements, some
using simple regression models for identifying which are the future volatile trends
and which requirements are more prone to change [9, 10], other using different
alternatives like building a rule-based model for prediction [7]. Describing changes
and stability points through scenario analysis is also another proposed solution [19].

In any case, what is relevant to stress with reference to our work, is that often the
deleted requirements are not taken in consideration at all in these analysis, or the
deletion process itself is considered simply as one of the changes that may happen
[10, 14]. Thus, despite being a fairly easy concept to grasp and challenging to work
with, there is almost no literature referring to failing requirements or trying to model
the requirement final state. We think that our unicity gives more value to this paper
since it shift the attention toward a field explored so little.

3 Methodology

The main goal of this study is to answer to the research question: “Can we predict
reliably the final status of a requirement of a software system analysing its historical
evolution through stages and the development environment? If so, how early on the
life cycle of the requirement can we perform the prediction?” Our aim is to build a
model to make this possible. We start by making a relevant assumption, that
requirements are independent of each other, meaning that the status of one
requirement does not affect the status of other requirements. This assumption is
quite stringent, and for certain perspective also unfeasible in the real world, still it is
the basis of the followup analysis, and, as we will see, its violation does not affect
the validity of our findings.

Prediction of the Successful Completion of Requirements … 263



3.1 Prediction Method

Machine learning is usually the right technique when we do not have an analytical
solution and we want to build an empirical one, based on the data and the
observable patterns we have [20]. Inside this field, supervised learning is used when
this data is labeled, meaning the dependent variable is categorical. This is also our
case, since we are dealing with a dichotomy problem, a requirement being suc-
cessful or failed, thus the main choice is to use supervised learning algorithms in
order to build a predictive model. Applying logistic regression algorithm, from the
supervised learning pool, would give not only classification of the requirement
objects into pass/fail, where pass stands for a success and fail for a never deployed
requirement, but also the probability associated with each class.

Logistic regression is an easy, elegant and yet broadly used and known to
achieve good results in binary classification problems. Assuming that we have d
predictors and n observations, with X being the matrix of observations and Θ the
matrix of the weights:

for X =
x11 . . . x1d
. . .
xn1

2
4

3
5 θ=

1
d

� �

the LR model is logitðXθÞ= 1
1+ e−X θ .

In order to learn Θ, the algorithm minimises the uncertainty, by first assuming an
independence between the observations. The result of the iterations is the dis-
criminant that divides the input space into pass and fail area. Thus, per any new
requirement data point, once learned the model and tuned with the right threshold,
we would be able to give a statistically significant probability value of it being a
future pass or fail.

3.2 Evaluation of Performance of Predicting Models

To assess the performance of the classifier we use the confusion matrix. The
confusion matrix values allow us to calculate the predicting ability and error made
in terms of type I and type II error. Clearly, since logistic regression delivers a
probability of belonging to a certain class, as we discussed in the section above, in
order to determine the label a threshold is used. As the threshold changes, also the
ability of classifiers to capture correctly passess and failures is channeled
(inclined/biased). We use the ROC curve analysis, through maximising the com-
bination of sensitivity-specificity of our model we obtain the best threshold value
and tune the model accordingly. Thus, the metrics we will use to measure per-
formance are: sensitivity, specificity and the Area Under the Curve. Sensitivity
shows the ability of the model to capture correctly fail-requirements in the dataset,

264 W. Pedrycz et al.



whereas the Specificity shows the ability to capture passes. The area under the curve
is calculated by plotting Sensitivity versus Specificity for threshold value from 0 to
1, whereas the formulas to calculate these two are below:

Confusion matrix Predict fail Predict pass

Real fail True Positive False Negative
Real pass False Positive True Negative

Sensitivity=
TruePositive

TruePositive+FalseNegative

Specificity=
TrueNegative

TrueNegative+FalsePositive

4 Case Study

4.1 Data Description and Processing

The data we use in this research come from an industrial software system, devel-
oped in an aeronautical company in Italy, Alenia Aermacchi. The data of the
development process are formated as a file of logs, presenting the history of 6608
requirements and 84891 activities performed on them on a time period from March
2002 to September 2011. Every log is characterized by the following attributes
summarized in the table:

Timestamp Date and time in which the requirement was firstly created in the log system
Version Version of the software product in which the requirement was first created
Developer Developer that performed this specific action on the requirement object, and

entered it in the log system
Activity The specific activity performed on the requirement
Requirement
ID

The identification number, unique per each requirement

There are 13 different activities performed on a requirement throughout the
development process, with the most significant numerically and interesting from the
process point of view being:

Prediction of the Successful Completion of Requirements … 265



createObject The requirement is created in the system
createLink Creates a link between different requirement objects and keeps count of it
modifyObject The requirement is modified
deleteObject The requirement object is deleted

The early identification of “deleteObject” is basically what we are after in this
study, since it means that the requirement was deleted from the system without ever
being deployed, this is what we will call a “fail”. Every other activity concluding
the lifecycle of the requirement present in database is considered a success, and the
requirement itself a “pass”. At this point is clear that once processed, we get
binomial labeling for the attributes characterizing the requirements lifecycle inside
this process. From a first statistical analysis, we notice that there is a dominance of
“modifyObject” activities in the requirements labeled as “fail.” The early attribute
selection is performed based on domain expertise and influenced by any possible
pattern that we identified, as mentioned above. The processed final requirement
records are the rows of a data frame whose columns are the potential features of the
predictive model we aim to build, except the ID that is used to keep track of the
specific object. Each requirement record is the characterized by elements presented
in the following table.

Requirement ID The identification number
Opening version The version where it was first created; it will also ensure a timeline on the

requirement objects
Developer The last developer that worked with the requirement
Number of
transitions

The cumulative number of activities performed on the requirement; this is
also an approximation of the number of modification a requirement goes
through.

Lifetime
duration

The longevity of a requirement, calculated as the difference between the
closing and the opening dates

Final state The label either pass or fail

4.2 Learning of the Model and Evaluation of Performance

We start with a slightly imbalanced time-ordered dataset of requirements. Each
record of it is a requirement object profiled by four features that we will try to use in
our model: version, number of Transitions, lifetime, developer. We allow the lack
of balance in order to give an initial bias toward the pass-class, considering that,
however, a false-pass costs less to the system than a false-fail. To learn the model,
stepwise regression is performed on the data. The statistically significant features

266 W. Pedrycz et al.



used by the model are: version, number of transitions and lifetime of the require-
ment. The steps followed are:

1. Dataset is divided into training and validation sets(respectively 75 %–25 %),
preserving the initial class distribution present on the original data, using
package “caret”

2. Logistic regression algorithm is run (10-k cross validation, repeated 3 times) on
training data to build the model.

3. ROC curve is plotted in order to find the best sensitivity-specificity values by
using the criteria “most top-left” on the roc curve. We notice: 79 % predictive
ability of the model (AUC = 0.79 with 95 % CI) and the best threshold being
0.27

4. Model is tested on the validation set, where for the best threshold value, the
results achieved in terms of predictivity are: sensitivity = 0.74 and
specificity = 0.95

Thus, the model built, out of all true failures can capture correctly 74 % of them
and out of passes 95 % of them, with the results being under 95 % CI. Below the
plot:

This classification model built and tested on the whole dataset of requirements
shows clearly for a possibility of predicting pass and fail requirements.

Prediction of the Successful Completion of Requirements … 267



5 Limitations and Future Work

We think that this work presents a novel idea that can move forward in several
directions, especially taking into account its limitations. The first limitation is
inherent with the single case study. This work has a very significant value given the
size of its dataset—a very rare situation in Software Engineering, and a quite unique
situation in the case of requirements evolution, however, it is a single case, and, as
usual a replication would be strongly advisable. The second limitation is that we have
assumed the requirements independent, while they are not. This situation is similar to
the one in which a parametric correlation is used while clearly its requirements are not
satisfied—still it has been experimentally verified that the predictive value still hold,
as it holds in this specific case. The third limitation is that we build a model having
available the whole stories of the requirements, while it would be advisable to be able
to predict early whether a requirement is going to fail. Therefore, the future studies
should focus on trying to build predictivemodels using only initial parts of their story.
The fourth limitation is that we do not take into account that the information on
requirements is collected manually by people, so it is subject to errors, and this study
does not take into consideration how robust the requirements are with respect to
human errors. So a follow-up study should consider whether a presence of an error,
for instance in the form of a white noise altering the logs of the requirements, would
alter significantly the outcome of the model. A future area of study is then to apply
more refined techniques from Machine Learning and from Fuzzy Logic to build a
predictive system. The joint application ofMachine Learning and Fuzzy Logic would
resolve by itself the last three limitations mentioned above, also building a more
robust and extensible system.

6 Conclusions

In this work we have presented how we can analyse the evolution of requirements
to predict those that will fail, thus building a model that could to decide where to
drop the effort of developers. The model is based on logistic regression and has
validated on data coming from an Italian aeronautical company, including more
than 6,000 requirements spanning more than 10 years of development. The results
of this early study are satisfactory and pave the way for followup work, especially
in the direction to make the model predictive, more robust, employing more refined
analysis techniques, like those coming from Data Mining and Fuzzy Logic.

Acknowledgments The research presented in this paper has been partially funded by Innopolis
University and by the ARTEMIS project EMC2 (621429).

268 W. Pedrycz et al.



References

1. Harker, S.D.P., Eason, K.D., Dobson, J.E.: The change and evolution of requirements as a
challenge to the practice of software engineering. In: Proceedings of 1st ICRE, pp. 266–272
(1993)

2. McGee, S., Greer, D.: Towards an understanding of the causes and effects of software
requirements change: two case studies. Requir. Eng. 17(2), 133–155 (2012)

3. Succi, G., Pedrycz, W., Stefanovic, M., Russo, B.: An investigation on the occurrence of
service requests in commercial software applications. Empirical Softw. Eng. 8(2), 197–215
(2003)

4. Boehm, B., Abts, C., Chulani, S.: Software development cost estimation approaches—a
survey. Ann. Softw. Eng. 10, 177–205 (2000)

5. Pendharkar, P., Subramanian, G., Rodger, J.: A probabilistic model for predicting software
development effort. IEEE Trans. Softw. Eng. 31(7) 2005

6. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of 3rd IEEE International Symposium on Requirements
Engineering, pp. 226–235, 6–10 Jan 1997

7. Le Minh, S., Massacci, F.: Dealing with known unknowns: towards a game-theoretic
foundation for software requirement evolution. In: Proceedings of 23rd International
Conference: Advanced Information Systems Engineering (CAiSE 2011). London, UK,
20–24 June 2011

8. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of requirements volatility during software
development lifecycle. In: Proceedings of ASWEC, pp. 28–37 (2004)

9. Loconsole, A., Borstler, J.: Construction and Validation of Prediction Models for Number of
Changes to Requirements, Technical Report, UMINF 07.03, Feb. 2007

10. Shi, L., Wang, Q., Li, M.: Learning from evolution history to predict future requirement
changes. In: Proceedings of RE 2013, pp. 135–144

11. Ernst, N., Mylopoulos, J., Wang,Y.: Requirements Evolution and What (Research) to Do
about It. Lecture Notes in Business Information Processing, vol. 14, pp. 186–214 (2009)

12. Russo, A., Rodrigues, O., d’Avila Garcez, A.: Reasoning about Requirements Evolution using
Clustered Belief Revision. Lecture Notes in Computer Science, vol. 3171, pp. 41–51 (2004)

13. Saito, S.; Iimura, Y., Takahashi, K., Massey, A., Anton, A.: Tracking requirements evolution
by using issue tickets: a case study of a document management and approval system. In:
Proceedings of 36th International Conference on Software Engineering, pp. 245–254 (2014)

14. Anderson, S.; Felici, M.: Controlling requirements evolution: an avionics case study. In:
Proceedings of 19th SAFECOMP, pp. 361–370 (2000)

15. Anderson, S.; Felici, M.: Requirements evolution from process to product oriented
management. In: Proceedings of 3rd PROFES, pp. 27–41 (2001)

16. Anderson, S.; Felici, M.: Quantitative aspects of requirements evolution. In: 26th Annual
International Computer Software and Application Conference, COMPSAC 2002, pp. 27–32,
26–29 Aug 2002

17. Clarkson, J., Simons, C., Eckert, C.: Predicting change propagation in complex design. In:
Proceedings of DETC’01, ASME 2001 Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. Pittsburgh, Pennsylvania, 9–12 Sept
2001

18. Javed, T., Maqsood, M., Durrani, Q.S.: A study to investigate the impact of requirements
instability on software defects. ACM SIGSOFT Softw. Eng. Notes 29(3), 1–7 (2004)

19. Bush, D., Finkelstein, A.: Requirements stability assessment using scenarios. In: Proceedings
of 11th ICRE, pp. 23–32 (2003)

20. Yaser, S.A.M, Malik, M.I., Hsuan-Tien, L.: Learning from data. http://www.amlbook.com/
support.html

Prediction of the Successful Completion of Requirements … 269

http://www.amlbook.com/support.html
http://www.amlbook.com/support.html

	21 Prediction of the Successful Completion of Requirements in Software Development—An Initial Study
	Abstract
	1 Introduction
	2 State of Art on Empirical Studies on Requirements
	3 Methodology
	3.1 Prediction Method
	3.2 Evaluation of Performance of Predicting Models

	4 Case Study
	4.1 Data Description and Processing
	4.2 Learning of the Model and Evaluation of Performance

	5 Limitations and Future Work
	6 Conclusions
	Acknowledgments
	References


