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Abstract. Model RB is a random constraint satisfaction problem with
a growing domain size, which exhibits exact phase transition phenom-
ena. Many hard instances with planted solutions can be generated via
Model RB, to be used as benchmarks for algorithmic competitions and
researches. In the past, some structural parameters of constraint hyper-
graphs are analyzed to show hardness of Model RB, such as hinge
width, decycling number, treewidth, and hypertree width. In this paper,
one more structural parameter of constraint hypergraphs of Model RB,
namely the fractional edge cover number, is analyzed. We show upper
and lower bounds on the fractional edge cover number of Model RB.
In particular, the fractional edge cover number of Model RB is shown
to be asymptotically linear in the number of variables, like hinge width,
decycling number, treewidth and hypertree width. These results together
provide further evidences on the hardness of Model RB.
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1 Introduction

Constraint satisfaction problems (CSPs) can model many real world problems,
such as n-queens, Latin squares, etc. A CSP instance is consist of a constraint
hypergraph on a set of variables and many constraints on the hyperedges. Each
constraint gives the compatible assignments of values to the variables in a hyper-
edge. The task is to decide if the instance is satisfiable, that is, if there is an
assignment of values to all the variables, such that it is compatible with all the
constraints. The Boolean satisfaction problem 3-SAT is a special case of CSPs,
where each variable only takes two different values and each constraint is a con-
junction of three variables or their negations.

Since 3-SAT is already an NP-complete problem, CSPs are hard to solve in
general. Many structural decomposition methods are developed to find tractable
classes of CSPs, such as tree decomposition [13], hypertree decomposition [1],
and fractional edge cover [11]. For constraint hypergraphs with a structural
parameter w and input size ||I||, usually we can solve these instances in time
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O
(||I||f(w)

)
, where f(w) is a function of w, such as a low degree polynomial

of w, or linear in w. When the structural parameter w is constantly bounded,
we get a tractable class of CSPs. At the moment, the most powerful structural
decomposition method is fractional hypertree decomposition [17].

On the other hand, random instances of CSPs can be generated by ran-
domly setting constraint hypergraphs, and then randomly setting compatible
assignments for each constraint. A parameter called density, which is the ratio
between the number of constraints and the number of variables, can be used to
control the number of constraints. With a small density and thus a small number
of constraints, the instances are likely to be satisfiable. With a large density and
thus a large number of constraints, the instances are unlikely to be satisfiable.
When the number of variables goes to infinity, such a change of satisfiability
may happen suddenly around a critical value of density. Such phenomena are
called the satisfiability phase transition of random CSPs. Moreover, the hardest
instances of CSPs are located around the satisfiability thresholds [2,3,5,6,19,20].
However, a rigorous link between the hardness of random instances and the sat-
isfiability phase transition is still unknown.

The most common random CSPs are random 3-SAT in theoretical computer
science and Model A,B,C,D in artificial intelligence. For random 3-SAT, the
exact satisfiability threshold is still unknown, although some upper and lower
bounds are shown in the past [4,18]. Moreover, if planted solutions are used
to generated satisfiable random instances with known solutions, the instances
usually become much easier to solve. For Model A,B,C,D, when the number
of variables goes to infinity, the satisfiability thresholds will go to zero, thus
they are useless in generating large hard instances [10]. A random CSP model,
called Model RB, is defined by Xu and Li [23], which has an increasing domain
size and exhibits exact phase transition phenomena. Many hard instances with
planted solutions can be generated via Model RB [24,26], to be successfully
used as benchmarks in various algorithmic competitions and in many research
papers, such as the annual CSP solver competitions, the annual Pseudo-Boolean
(0-1 Integer Programming) solver competitions, the annual MAX-SAT solver
competitions, and the annual SAT solver competitions, etc. [24].

In the past, the hardness of model RB is theoretically shown by exponential
lower bounds on the length of resolution [25], and some analysis on the evolu-
tion of its solution space [27,28], besides many experimental results [26]. Some
structural parameters of constraint hypergraphs are also analyzed to show hard-
ness of Model RB with respective to the structural decomposition methods, such
as hinge width [15], decycling number [12], treewidth [22], and hypertree width
[16]. In this paper, one more structural parameter of constraint hypergraphs of
Model RB, namely the fractional edge cover number [11], is analyzed. We show
upper and lower bounds on the fractional edge cover number of Model RB. In
particular, the fractional edge cover number of Model RB is shown to be asymp-
totically linear in the number of variables, like hinge width, decycling number,
treewidth and hypertree width. These results together provide further evidences
on the hardness of Model RB.
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This paper is structured as follows. After introducing definitions and some
facts on Model RB and fractional edge cover respectively, as well as a version
of Chernoff bound in Sect. 2, lower and upper bounds on fractional edge cover
number of Model RB are shown in Sect. 3. In Sect. 4, we conclude the paper with
remarks on our results and open problems.

2 Preliminaries

In this section, we give definitions and facts on Model RB and fractional edge
cover respectively, as well as a version of the Chernoff bound.

2.1 Model RB

An instance I of constraint satisfaction problem (CSP) is a triple (V,D,C). V
is a finite set of variables. D is a finite set of values, called domain. C is a set of
constraints. For each constraint, there is a subset of variables, called the scope of
this constraint. For a constraint scope with k variables, a subset of Dk is given
as compatible assignment of values to the variables in this scope. A solution of I
is an assignment of values to all variables which is compatible to all constraint.
If there is at least one solution, I is called satisfiable, otherwise unsatisfiable.
Given an instance, we are asked to decide if it is satisfiable, and in some cases
to find a solution if it exists.

A hypergraph is just a set system, which is consist of some subsets (called
hyperedges) of a finite set (called vertex set). A hypergraph H with vertex set
V and hyperedge set E is denoted by H = (V,E). The constraint hypergraph of
a CSP is consist of the scopes of the constraints in this CSP.

Model RB is a random CSP defined as follows [23].

1. Given n variables, each variable takes values in {1, 2, ..., d}, where d = nα

and α > 0 is a constant;
2. Select with repetition m = rn ln n random constraints, where r is a constant.

For each constraint, select without repetition k of n variables, where k ≥ 2 is
an integer constant;

3. Select uniformly at random without repetition (1 − p)dk compatible assign-
ments for each constraint, where 0 < p < 1 is a constant.

For an instance I of Model RB, the input size ||I|| is about
O

(
m(k log n + Dk)

)
, that is, for each of the m constraints, we list the k variables

involved and at most Dk compatible assignments.
It is known that in Model RB there exists satisfiability thresholds rcr =

− α
ln(1−p) [23].
Let HRB

n,r,k denote a random constraint hypergraph in Model RB.
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2.2 Fractional Edge Cover

Given a hypergraph H = (V,E), if there is a mapping

ψ : E → [0,∞),

such that ∑

e∈E,v∈e

ψ(e) ≥ 1, for every v ∈ V,

then ψ is called a fractional edge cover of H [11].
For a fractional edge cover ψ, The weight of hyperedge e under ψ is ψ(e).

The weight of ψ is
∑

e∈E ψ(e). The optimal fractional edge cover ψ∗ of H is a
fractional edge cover with the minimum weight over all possible fractional edge
covers of H. The fractional edge cover number of H, denoted by ρ∗(H), is the
weight of an optimal fractional edge cover ψ∗ of H [11], that is,

ρ∗(H) = min
ψ

∑

e∈E

ψ(e) =
∑

e∈E

ψ∗(e).

It is known that for a CSP instance I, the number of solutions of I is at most
||I||ρ∗(HI), where ||I|| is the size of I and HI is the constraint hypergraph of I. It
is known that the solutions of I can be enumerated in time ||I||ρ∗(HI)+O(1) [11].

2.3 Chernoff Bound

We say that a random event Q happens with high probability if the probability
of this event Pr(Q) goes to 1 asymptotically. We will use the following version
of Chernoff Bound [21].

Lemma 1 (Chernoff Bound). Given a random variable X, X follows a bino-
mial distribution, i.e., X∼ B(n, μ

n ). If 0 < ε < 1, then

Pr(X ≤ (1 − ε)μ) ≤ e−με2/2.

3 Fractional Edge Cover Number of Model RB

In this section, we will give lower and upper bounds on fractional edge cover
number of Model RB.

Suppose that ρ∗(HRB
n,r,k) is the fractional edge cover number of Model RB,

where n is the total number of vertices in the constraint hypergraph, k is the
number of vertices contained in each hyperedge, and rn ln n is the maximum
number of hyperedges. We can first give a lower bounds on HRB

n,r,k as follows.

Theorem 1. ρ∗(HRB
n,r,k) ≥ n

k .
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Proof. Let ψ be an arbitrary fractional edge cover of HRB
n,r,k. Then by definition

of fractional edge cover,
∑

e∈E,v∈e

ψ(e) ≥ 1, for all v ∈ V.

Now we summarize all these n inequalities over all vertices v ∈ V ,

∑

v∈V

⎛

⎝
∑

e∈E,v∈e

ψ(e)

⎞

⎠ ≥ n.

Since every hyperedge contains exactly k vertices, the weight ψ(e) of every
hyperedge e will appear exactly k times in the left hand side. Thus,

∑

v∈V

⎛

⎝
∑

e∈E,v∈e

ψ(e)

⎞

⎠ = k ·
∑

e∈E

ψ(e).

From the above two inequalities, we have

k ·
∑

e∈E

ψ(e) ≥ n,

or equivalently, ∑

e∈E

ψ(e) ≥ n

k
.

Since ψ is an arbitrary fractional edge cover, the last inequality also holds
for the optimal fractional edge cover ψ∗. Therefore,

ρ∗(HRB
n,r,k) =

∑

e∈E

ψ∗(e) ≥ n

k
.

We have finished the proof of this theorem. �	
After we get a lower bound on ρ∗(HRB

n,r,k) by a counting argument as above,
we will give a matching upper bound on ρ∗(HRB

n,r,k), by an explicit construction
of a fractional edge cover for HRB

n,r,k. To this end, we need a lower bound on the
minimum degree of vertices in HRB

n,r,k by Chernoff bound as follows.
Suppose that the degree of a vertex v is denoted by deg(v), and the minimum

degree of HRB
n,r,k is denoted by δ(HRB

n,r,k).

Lemma 2. δ(HRB
n,r,k) ≥ (1 − 2√

kr
) · kr ln n with high probability.

Proof. Let v be an arbitrary vertex in HRB
n,r,k. By definition of HRB

n,r,k, we repeat
for rn ln n times to randomly select hyperedges, and each time independently
select k different vertices from all n vertices to form an hyperedge. For an arbi-
trary hyperedge e, the vertex v is contained in e with probability k

n .
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For i = 1, ..., rn ln n, let Xi be a random variable with probability k
n to be 1,

and with probability 1 − k
n to be 0, respectively. All these Xi’s are independent

and identically distributed 0–1 variables. Then,

deg(v) =
rn lnn∑

i=1

Xi.

The random variable deg(v) has a binomial distribution B
(
rn ln n, k

n

)
. The

expectation μ of deg(v) is

μ = (rn ln n)
k

n
= kr ln n.

By the Chernoff bound, for any 0 < δ < 1,

Pr (deg(v) ≤ (1 − δ) · kr ln n) ≤ e−(kr lnn)δ2/2.

Let δ = 2√
kr

. If kr ≤ 4, (1 − δ) · kr ln n ≤ 0, this will lead to a trivial case.
Otherwise for kr > 4, we have 0 < δ < 1. Then

Pr
(

deg(v) ≤
(

1 − 2√
kr

)
· kr ln n

)
≤ e−2 lnn =

1
n2

.

By the Union bound,

Pr
(

∃v, deg(v) ≤
(

1 − 2√
kr

)
· kr ln n

)
≤ n · 1

n2
=

1
n

.

Thus,

lim
n→∞ Pr

(
δ(HRB

n,r,k) ≤
(

1 − 2√
kr

)
· kr lnn

)
= 0.

We have finished the proof of this lemma. �	
Once we have a lower bound δL on the minimum degree of variables in Model

RB, we can construct a fractional edge cover of Model RB by putting weight 1
δL

on each hyperedge. Since each variable is contained in at least δL hyperedges, the
sum of weight of hyperedges containing this variable is at least 1, which makes
sure that it is a fractional edge cover. In this way, we can get a matching upper
bound of ρ∗(HRB

n,r,k) as follows.

Theorem 2. ρ∗(HRB
n,r,k) ≤ n

k ·
(
1 − 2√

kr

)−1

, with high probability.

Proof. For a random constraint hypergrah HRB
n,r,k = (V,E) of Model RB, we

define a mapping ψ0 : E → [0,∞) as follows.

ψ0(e) =
(

1 − 2√
kr

)−1

· 1
kr lnn

, for all e ∈ E.
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Recall that with high probability,

δ(HRB
n,r,k) ≤

(
1 − 2√

kr

)
· kr ln n.

Thus with high probability, for each variable v,

∑

e∈E,v∈e

ψ0(e) = deg(v) ·
(

1 − 2√
kr

)−1

· 1
kr ln n

≥ 1.

Therefore, ψ0 is a fractional edge cover of HRB
n,r,k with high probability.

The weight of ψ0 is

∑

e∈E

ψ0(e) ≤ (rn ln n) ·
(

1 − 2√
kr

)−1

· 1
kr ln n

=
n

k
·
(

1 − 2√
kr

)−1

.

Thus fractional edge cover number of HRB
n,r,k is no larger than n

k ·
(
1 − 2√

kr

)−1

with high probability. We have finished the proof. �	

Note that the upper bound is only within a constant ratio
(
1 − 2√

kr

)−1

to
the lower bound. For fixed r, the more larger k is, the more tighter upper bounds
we get.

4 Conclusions

In this paper, we show linear lower and upper bounds on fractional edge cover
number of Model RB. Since the structural decomposition method based on frac-
tional edge cover runs in time exponential in fractional edge cover number, these
results provide evidence for hardness of Model RB.

The fractional edge cover number and hypertree width are incomparable
in the sense that, there are hypergraphs with bounded hypertree width and
unbounded fractional edge cover number, and vice versa [11]. The most pow-
erful structural parameter is fractional hypertree width, which supersedes both
fractional edge cover number and hypertree width [17]. To show lower and upper
bounds on fractional hypertree width for Model RB is an open problem.

Among these structural parameters, perhaps tree width is the best under-
stood on the classical random graphs. It is known that there is a threshold where
the tree width suddenly jumps from constant to linear in the number of vertices
[7–9,12–14]. Whether there are similar phenomena for the fractional edge cover
number and the fractional hypertree width on classical random graphs is also
unknown.

Acknowledgments. We thank Ms. Yu Song for drafting an earlier version of this
paper.
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