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Preface

This volume contains the papers presented at FAW 2016: The 10th International
Frontiers of Algorithmics Workshop held during June 29–July 1, 2016, in QingDao,
China.

FAW 2016 received 54 submissions. Each submission was reviewed by at least two
Program Committee members. The committee decided to accept 25 papers.

The previous nine meetings were held during August 1–3, 2007, in Lanzhou, June
19–21, 2008, in Changsha, June 20–23, 2009, in Hefei, August 11–13, 2010, in
Wuhan, May 28–31, 2011, in Jinhua, May 14–16, 2012, in Beijing, June 26–28, 2013,
in Dalian, June 28–30, 2014, in Zhangjiajie, and July 3–5, 2015, in Guilin.

We had three invited plenary speakers at FAW 2016: Thomas Erlebach (Leicester
University, UK), Jianer Chen (Central South University, PRC, Texas A&M University,
USA), and Binhai Zhu (Montana State University, USA). We express our sincere
thanks to them for their contributions to the conference and proceedings.

We would like to thank the Program Committee members and external reviewers for
their hard work in reviewing and selecting papers. We are also very grateful to all the
authors who submitted their work to FAW 2016. Finally, we would like to thank the
editors at Springer and the local organization chairs for their hard work in the prepa-
ration of this conference.

April 2016 Daming Zhu
Sergey Bereg
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Algorithms for Queryable Uncertainty

Thomas Erlebach

Department of Computer Science, University of Leicester, Leicester, UK
t.erlebach@leicester.ac.uk

Abstract. Queryable uncertainty refers to settings where the input of a problem
is initially not known precisely, but exact information about the input can be
obtained at a cost using queries. A natural goal is then to minimize the number
of the queries that are required until the precise information that has been
obtained about the input is sufficient for solving the problem. The performance
of an algorithm can be measured using competitive analysis, comparing the
number of queries made by the algorithm to the minimum possible number of
queries. We describe the witness set algorithm concept and how it yields
query-competitive algorithms for minimum spanning tree and cheapest set
problems under uncertainty. We also discuss the problem variant where the
algorithm can make a bounded number of simultaneous queries in each round
and the goal is to minimize the number of rounds.



On Relating Parameterized Tractability
and Polynomial-Time Approximability

Jianer Chen

1School of Information Science and Engineering, Central South University,
People’s Republic of China

2Department of Computer Science and Engineering,
Texas A&M University, USA

Parameterized algorithms and approximation algorithms are both popular approaches to
solving computationally difficult problems. A good parameterized algorithm becomes
practically effective when the parameter values are small, while a good approximation
algorithm provides solutions that are practically acceptable. Thus, problems with good
parameterized algorithms and problems with good approximation algorithms are both
regarded as “easier” problems, in particular when the problems are hard in terms of
traditional complexity theory (i.e., NP-hard problems). As a consequence, there has
been increasing research interests in the study of relationship between these two com-
putational paradigms, from viewpoints of both theoretical and practical computing
sciences.

We survey the major research results in the past decades on the relationship between
parameterized tractability and polynomial-time approximability of NP-optimization
problems, including those that are of interesting in complexity theoretical study and
those that are related to algorithmic technique development. We present general tech-
niques that enable us to show that a large class of approximable problems are param-
eterized tractable, and general techniques that are based on the parameterized
complexity and lead to good approximation algorithms for a large class of optimization
problems. In particular, we give a precise characterization of the approximation class
FPTAS in terms of the parameterized complexity. Our study leads to new lower bound
techniques that allow us to prove inapproximability of optimization problems based on
their parameterized complexity, which makes it possible to study the practical limita-
tions of the approximation class with polynomial-time approximation schemes (i.e.,
PTAS). In the study of development of algorithmic techniques, we present general
techniques that translate one to the other between parameterized algorithms and
approximation algorithms. In particular, our show, as an example, how the techniques
allow us to develop parameterized algorithms and approximation algorithms for the
MAXIMUM AGREEMENT FOREST problem on multiple phylogenetic trees, improving a long
line of series results in the literature.



Genomic Scaffold Filling: A Progress Report

Binhai Zhu

Department of Computer Science,
Montana State University, Bozeman, MT 59717-3880, USA

bhz@montana.edu

Abstract. The genomic scaffold filling problem has attracted a lot of attention
since 2010. The general problem is on filling an incomplete sequence (sequence
scaffold) I into I′, with respect to a complete reference genome G, such that the
number of adjacencies between G and I′ is maximized. The problem is
NP-complete and APX-hard, and admits a 1.2-approximation. In this survey
paper, we will first review the progress being made for this setting.

However, the sequence input I is not quite practical and does not fit most
of the real datasets (where a scaffold is more often given as a list of contigs).
Then, we will review the most recent progress on this new version of the
genomic scaffold filling problem where, (1) a scaffold S is given, the missing
genes X = c(G) − c(S) can only be inserted in between the contigs, and the
objective is to maximize the number of adjacencies between G and the filled S′,
and (2) a scaffold S is given, a subset of the missing genes X′ � X = c(G) − c(S)
can only be inserted in between the contigs, and the objective is still to maxi-
mize the number of adjacencies between G and the filled S″. Some open
problems will be posed for further research.
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Algorithms for Queryable Uncertainty

Thomas Erlebach(B)

Department of Computer Science, University of Leicester, Leicester, UK
t.erlebach@leicester.ac.uk

Abstract. Queryable uncertainty refers to settings where the input of
a problem is initially not known precisely, but exact information about
the input can be obtained at a cost using queries. A natural goal is then
to minimize the number of the queries that are required until the pre-
cise information that has been obtained about the input is sufficient for
solving the problem. The performance of an algorithm can be measured
using competitive analysis, comparing the number of queries made by
the algorithm to the minimum possible number of queries. We describe
the witness set algorithm concept and how it yields query-competitive
algorithms for minimum spanning tree and cheapest set problems under
uncertainty. We also discuss the problem variant where the algorithm
can make a bounded number of simultaneous queries in each round and
the goal is to minimize the number of rounds.

1 Introduction

In traditional algorithms research, one normally assumes that the precise input
to a problem is given to the algorithm in advance (offline algorithms) or revealed
to the algorithm over time (online algorithms). Motivated by real-world appli-
cations, one can also consider settings where the input is initially given with
some uncertainty and the algorithm can obtain precise information about the
input using queries. We refer to the uncertainty in such settings as queryable
uncertainty. In many cases it is natural to assume that queries incur a cost, and
so one wants to minimize the number of queries (or the total cost of queries)
that are required until the precise information that has been obtained suffices for
computing a solution to the given problem. The performance of an algorithm can
then be measured using competitive analysis, comparing the number of queries
made by the algorithm to the minimum possible number of queries.

There are numerous application areas where queryable uncertainty arises.
For example, Kahan [1] considered a setting where the inputs are the locations
of moving objects (e.g., airplanes). An uncertainty area containing the current
position of a plane can easily be determined based on a known past position and
the maximum speed of the plane. Determining the exact current position of a
plane is possible but expensive as it involves a radio communication with the
pilot. If one wants to determine the pair of airplanes with the minimum distance
between each other, doing so with a minimum number of radio communications
is a natural objective. Another application arising in distributed settings with
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 1–7, 2016.
DOI: 10.1007/978-3-319-39817-4 1
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Fig. 1. Initial instance of MST-U (left) and resulting instance after four queries (right)

database caches was considered by Olston and Widom [2]. Local database caches
maintain intervals of values that are guaranteed to contain the exact value.
The master server needs to replicate an updated value of a data item to the
caches only when the new value lies outside that interval. Here, the intervals
stored in the local cache correspond to uncertainty areas, and the operation of
requesting the exact value of a data item from the master server corresponds
to a query. More generally, any setting where estimates of the input values are
easily available and exact values can be obtained at a cost can be seen as an
application of queryable uncertainty.

As a concrete problem in the context of queryable uncertainty, let us con-
sider the minimum spanning tree (MST) problem under uncertainty, denoted by
MST-U. One is given an undirected graph G = (V,E) together with an uncer-
tainty area Ae for every edge e ∈ E. The exact weight of edge e ∈ E, denoted
by we, is initially unknown to the algorithm, but it is guaranteed that we ∈ Ae.
The task is to output the edge set of a minimum spanning tree of G = (V,E)
with respect to the edge weights we for e ∈ E. If the algorithm queries edge e,
the exact weight we of edge e is revealed. If only the initial uncertainty areas are
known, it may be impossible to determine the edge set of an MST. Whenever
the algorithm queries an edge, it receives the exact weight of that edge before
querying another edge. It may not be necessary to query all edges, because it
can be possible to determine that an edge is part of the MST (or not part of the
MST) even if some edge weights are not known precisely.

As an example, consider the instance of MST-U shown in Fig. 1 (left), where
the uncertainty area of every edge is an open interval. Without making queries
it is not possible to determine the edge set of an MST, since one cannot know
e.g. whether the edge g with weight in (4, 8) or the edge f with weight in (6, 10)
has a smaller exact weight. Only the edges e and h will surely be contained in
the edge set of the MST. An algorithm might now query the edges f, g, j, i in
that order, producing the situation shown in Fig. 1 (right). At this point, one
can determine that {e, g, h, j} is the edge set of an MST, and the problem is
solved. The algorithm has made four queries in total. In hindsight, it would have
been enough to query only the edges g and i, as knowing the exact weights of
these two edges would also have shown that wg < wf and wj < wi. No single
query would have been sufficient to determine the edge set of an MST, so the
optimal number of queries in this example is two. The ratio between the number
of queries made by the algorithm and the optimal number is 2.
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while instance is unsolved do
W ← a witness set of the current instance;
query all u in W ;

end
Algorithm 1. Witness set algorithm

The rest of the paper is structured as follows. In Sect. 2 we give definitions
of queryable uncertainty and query-competitive algorithms and describe witness
set algorithms. Related work is discussed in Sect. 3. Results for minimum span-
ning tree and cheapest set problems under uncertainty are described in Sects. 4
and 5, respectively. The direction of round-competitive algorithms is introduced
in Sect. 6, and we conclude in Sect. 7.

2 Preliminaries

In a setting with queryable uncertainty, an instance of a problem typically con-
sists of some structural information S, a set U of elements with uncertain values,
and a function A that maps each element u ∈ U to a set Au called uncer-
tainty area. The exact values of the uncertain input elements, which are initially
unknown to the algorithm, are represented by a function w that maps each u ∈ U
to its exact value wu, and it is guaranteed that wu ∈ Au. A query of an element
u ∈ U reveals its exact value wu. We can view a query of u ∈ U as the operation
of replacing Au by the singleton set {wu}.

For a given instance I = (S,U,A,w) of a problem in the model of queryable
uncertainty, we let φ(S,U,w) denote the set of solutions. It depends only on the
exact values wu for u ∈ U , but not on the uncertainty areas Au. An algorithm
only receives (S,U,A) as input. The goal of the algorithm is to compute a solution
in φ(S,U,w) after making a minimum number of queries. Queries are made one
by one, and the results of previous queries can be taken into account when
determining the next query. By OPT I (or simply OPT ) we denote the minimum
number of queries that provide sufficient information for computing a solution in
φ(S,U,w). An algorithm that makes ALGI queries to solve an instance I is called
(strongly) ρ-query-competitive (or simply ρ-competitive) if ALGI ≤ ρOPT I for
all instances I of the problem. For randomized algorithms, ALGI refers to the
expected number of queries that the algorithm makes on instance I.

The concept of witness set algorithms was introduced by Bruce et al. [3] and
stated in general form by Erlebach et al. [4]. For a given instance I = (S,U,A,w)
of an uncertainty problem, a set W ⊆ U is called a witness set if it is impossible
to determine a solution without querying at least one element of W . A witness
set algorithm (see Algorithm 1) is an algorithm that repeatedly determines a
witness set and queries all its elements. If it can be shown that every witness
set used by the algorithm has size at most k, it follows that the algorithm is
k-query-competitive [3,4].
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3 Related Work

As far as we are aware, Kahan [1] was the first to study query-competitive
algorithms in the model of queryable uncertainty. He gave query-competitive
algorithms with optimal competitive ratio for the problems of computing the
maximum, the median and the minimum gap of n real values that are given
as uncertainty areas in the form of intervals. Bruce et al. [3] studied geomet-
ric problems where the input points lie in regions represented by uncertainty
areas. They introduced the concept of witness set algorithms and gave 3-query-
competitive algorithms for the problems of computing maximal points or the
points on the convex hull of a given set of uncertain points in Euclidean space.
Query-competitive algorithms were studied for the minimum spanning tree prob-
lem in [4,5] and for cheapest set problems in [6]; we will discuss these results in
more detail in Sects. 4 and 5. Gupta et al. [7] and Tseng and Kirkpatrick [8] con-
sidered variants of the model where queries yield more refined estimates instead
of precise values. Goerigk et al. [9] studied the knapsack problem in a model of
queryable uncertainty where the item weights are uncertain and the number of
queries is bounded. The setting where the uncertain values follow known proba-
bility distributions was considered by Guha and Munagala [10], who also related
adaptive query strategies to non-adaptive ones (where all queries must be speci-
fied in advance and are executed in parallel) for that setting. Non-adaptive query
strategies were considered by various authors, see e.g. [2,11,12]. We refer to [13]
for a more extensive survey of queryable uncertainty.

4 MST Under Uncertainty

The problem MST-U, which was defined in Sect. 1, was considered by Erlebach
et al. [4]. They assume that each uncertainty area is either an open interval
or a singleton set. (In fact, they note that their results hold also for a certain
generalization of open intervals.)

An instance of the problem is specified by a graph G = (V,E) and the
uncertainty areas Ae and exact weights we of each edge e ∈ E. Denote the
infimum and supremum of an uncertainty area Ae by Le and Ue, respectively.
For two edges e and f , define e < f if Le < Lf or Le = Lf and Ue < Uf . Define
e ≤ f if e < f or Le = Lf and Ue = Uf . For a cycle C, an edge e ∈ C is called
an always maximal edge if e is a maximum-weight edge in C for every possible
choice of exact values wf ∈ Af for all f ∈ C. The algorithm presented in [4],
called U-RED (see Algorithm 2), processes the edges in the order defined by the
≤ relation and adds them to an initially empty graph T . When an edge closes
a cycle, there are two cases: If the cycle has an always maximal edge, that edge
is removed from T . Otherwise, two edges f and g of the cycle are selected and
queried. It can be shown that {f, g} is a witness set, and therefore the algorithm
is 2-query-competitive.

Erlebach et al. [4] also gave a lower bound showing that no deterministic
algorithm for MST-U can achieve competitive ratio smaller than 2, implying
that algorithm U-RED is best possible among deterministic algorithms.
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index all edges such that e1 ≤ e2 ≤ . . . ≤ em;
let T be a graph on V without any edges;
for i ← 1 to m do

add ei to T ;
if T has a cycle C then

if C contains an always maximal edge e then
delete e from T ;

else
let f ∈ C such that Uf = max{Uc|c ∈ C};
let g ∈ C − {f} such that Ug > Lf ;
query f and g;
restart the algorithm;

end

end

end
return T

Algorithm 2. U-RED algorithm (from [4])

They left open whether it is possible to achieve a ratio better than 2 using
a randomized algorithm. Their lower bound construction only yielded a lower
bound of 1.5 for the competitive ratio of randomized algorithms. Megow et al. [5]
recently answered this question affirmatively and presented a randomized algo-
rithm with competitive ratio 1 + 1/

√
2 ≈ 1.707 for MST-U. In their algorithm

they make use of a carefully adapted water-filling scheme from [14] for online
bipartite vertex cover. They also extend their results to the case of non-uniform
query costs.

5 Cheapest Set Under Uncertainty

The cheapest set problem under uncertainty (CSU) was considered by Erlebach
et al. [6]. An instance of the problem consists of a set U of elements, a family F of
subsets of U , an uncertainty area Au for each u ∈ U , and the exact weight wu for
each u ∈ U . The task is to determine a cheapest set S ∈ F , i.e., a set such that
the sum of the exact weights of its elements is minimized. Many combinatorial
optimization problems (including the minimum spanning tree problem) can be
viewed as cheapest set problems.

Define a robust cheapest set to be a set C in F with the following property:
For any choice of exact weights wu ∈ Au for the elements u of U \ C, there
are weights wu ∈ Au for each element u ∈ C such that C is a cheapest set. The
algorithm proposed for CSU by Erlebach et al. [6] repeatedly queries all elements
of a robust cheapest set until a cheapest set can be identified. They can show
that all sets queried by the algorithm, except at most one, are witness sets. For
the case that all sets in F have cardinality at most d, their algorithm therefore
makes at most dOPT + d queries. They also showed that this is best possible
among deterministic algorithms.



6 T. Erlebach

For the special case of CSU where the sets correspond to edge sets that form a
multi-cut in a tree with d terminal pairs, they presented an improved algorithm
that makes at most dOPT + 1 queries, which was also shown to be optimal
among deterministic algorithms.

6 Round-Competitive Algorithms

We have so far assumed that queries are made sequentially and the choice of
the next query can depend on the outcomes of all previous queries. In some
application scenarios, it is meaningful to consider a setting where a number of
queries can be made in parallel. The queries are then made in rounds. The set
of queries to be executed in one round must be specified at the start of that
round, and the answers of the queries become available at the end of the round.
One natural problem formulation then assumes that an upper bound k on the
number of queries that can be executed in each round is given, and the goal
is to minimize the number of query rounds that are necessary until sufficient
information about the input has been obtained for determining a solution. We
call this variant of an uncertainty problem the round-style variant of the problem.
If we denote by ALGr

I the number of query rounds required by algorithm ALG
on instance I and by OPT r

I the optimal number of query rounds, we say that the
algorithm is ρ-round-competitive for a round-style problem if ALGr

I ≤ ρOPT r
I

for all instances I of the problem. Note that OPT r
I = �OPT I/k�, where OPT I

is the optimal number of queries for instance I.
The direction of round-style problems with queryable uncertainty does not

seem to have received much attention up to now. We believe that this is an
interesting direction to pursue in the future. For example, the round-style variant
of MST-U could be studied. If the bound on the number of queries per round is
k = 2, it is easy to see that algorithm U-RED can be interpreted as a round-style
algorithm and that it is 2-round-competitive. For the case of arbitrary k, it is not
difficult to show a constant lower bound larger than 2 on the competitive ratio
of any round-style algorithm. It would be interesting to obtain tight bounds on
the best possible round-competitive ratio for every value of k.

Another variant of round-style problems is obtained if one assumes that the
number of rounds is fixed and the goal is to minimize the total number of queries.
In the case where only a single query round is allowed, this leads to the non-
adaptive query model that has been considered by various authors, see e.g. [2,
11,12]. The case where the bound on the number of rounds is larger than one
does not seem to have received much attention so far.

7 Conclusions

We have discussed the model of queryable uncertainty and some of the existing
work in this area, explained the concept of witness set algorithms and described
query-competitive algorithms for MST-U (from [4]) and CSU (from [6]).
Furthermore, we made some remarks about possible directions for research in
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round-competitive algorithms. Another interesting direction could be consider-
ing problems in the model of queryable uncertainty where the objective to be
minimized is a combination of query cost and the cost of the solution that is
being output. For example, such a setting could be relevant to scheduling prob-
lems where the processing times of tasks are uncertain and a query corresponds
to performing a code analysis that runs on the same processor that executes the
scheduled tasks once the schedule has been determined.
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Abstract. The genomic scaffold filling problem has attracted a lot of
attention since 2010. The general problem is on filling an incomplete
sequence (sequence scaffold) I into I ′, with respect to a complete refer-
ence genome G, such that the number of adjacencies between G and I ′ is
maximized. The problem is NP-complete and APX-hard, and admits a
1.2-approximation. In this survey paper, we will first review the progress
being made for this setting.

However, the sequence input I is not quite practical and does not fit
most of the real datasets (where a scaffold is more often given as a list
of contigs). Then, we will review the most recent progress on this new
version of the genomic scaffold filling problem where, (1) a scaffold S is
given, the missing genes X = c(G)−c(S) can only be inserted in between
the contigs, and the objective is to maximize the number of adjacencies
between G and the filled S′, and (2) a scaffold S is given, a subset of the
missing genes X ′ ⊂ X = c(G) − c(S) can only be inserted in between
the contigs, and the objective is still to maximize the number of adja-
cencies between G and the filled S′′. Some open problems will be posed
for further research.

1 Introduction

Since 2001, the cost of sequencing a genome has been reduced significantly,
with the current cost being around $1 k. This results in a lot of genomes
being sequenced, usually not completely finished (they are typically called draft
genomes). On the other hand, the cost to finish these genomes completely has
not been decreased as much [6]. The result is that we are having more and more
draft genomes. Nonetheless, for many tools analyzing the genomic data we do
need complete genomes. For instance, to compute the reversal distance between
two genomes we do need two complete genomes. Hence, there is a need to turn
a draft genome into a complete one.

To make the result biologically interesting, Munoz et al. first proposed the
following scaffold filling problem (on multichromosomal genomes with no gene
repetition) as follows [24]. Given a complete (permutation) genome R and an
incomplete scaffold S, fill the missing genes in R − S into S to have S′ such
that the genomic distance (or DCJ distance [26]) between R and S′ is mini-
mized. It was shown that this problem can be solved in polynomial time. In [16],
Jiang et al. considered the case for singleton genomes without gene repetition
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 8–16, 2016.
DOI: 10.1007/978-3-319-39817-4 2
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(i.e., permutations), using the simplest breakpoint distance as the similarity mea-
sure. It was not surprising that this problem was shown to be polynomially solv-
able; in fact, even for the two-sided case when both the input scaffolds, being a
reference to each other, are incomplete permutations.

When the genomes and scaffolds contain gene repetitions, the problem
becomes harder. (That should not be considered as a surprise as even comput-
ing certain similarity measure between two complete genomes is NP-complete,
for instance, with the exemplar breakpoint distance [2,4,7,9,19], exemplar adja-
cency number [8,10], or the minimum common string partition [11].) The simi-
larity measure adopted for the scaffold filling problem is the number of common
(string) adjacencies, which can be computed in polynomial time [2,15,16]. In
[15,16], it was shown by Jiang et al. that filling a scaffold to maximize the
number of common string adjacencies (SF-MNSA) is NP-hard. (Formally, the
problem is to fill an incomplete sequence scaffold I into I ′, with respect to a com-
plete reference genome G, such that the missing letters in G−I are inserted back
to I and the number of common adjacencies between G and I ′ is maximized.)
A factor-1.33 approximation was designed in [15,16], and this bound has been
improved to 1.25 [21], and to 1.20 [17]. For the corresponding two-sided case, i.e.,
when two sequence scaffolds are references to each other, the problem admits a
factor-1.5 approximation with the number of common adjacencies between the
filled scaffolds being maximized [22]. Using the number of common adjacencies
as a parameter, it was shown that this problem is also fixed-parameter tractable
(FPT) — this only handles that case when G and I ′ are not very similar so it is
only of a theoretical meaning [5].

Recently, a practical factor is seriously considered [18]. Firstly, the ‘scaffold’
used in most of these papers is an incomplete sequence, i.e., a missing gene can
be inserted anywhere in such a ‘scaffold’. In practice, most of the real datasets
are not in this format; in fact, a scaffold in a real dataset is usually composed of
a sequence of contigs, where a contig is usually computed with mature tools like
Celera Assembler [1], hence should not be arbitrarily altered. This case was only
briefly considered a few years ago [16,24]. Secondly, take a complete reference
genome G and a scaffold S, there is no guarantee that the filled scaffold S′ is
of the same length as that of G; in fact, sometimes we could know roughly the
length of the target genome S∗ (S′ should be as close to S∗ as possible). Then,
we might only need to insert a subset of letters in G − S into S (to obtain S′).

Formally, the above two problems are called One-sided Scaffold Filling (One-
sided-SF-max), and One-sided Subset Scaffold Filling (One-sided-SF-max(⊂))
respectively. (For the important practical case when a gene can only appear at
most d times in G, we call the corresponding problems One-sided-SF-max(d)
and One-sided-SF-max(⊂, d) respectively.) The objective function in both cases
are to maximize the number of common adjacencies between the reference and
the filled scaffold.

The paper is organized as follows. In Sect. 2, we give the preliminaries. In
Sect. 3, we review the results in three categories: when genomes have no gene
duplications, approximation results for the one-sided cases, and FPT results for
the one-sided cases. We conclude the paper in Sect. 4 by giving directions for
further research.
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2 Preliminaries

Throughout this paper we focus only on singleton genomes (i.e., each is a
sequence). But the results can be easily generalized to multichromosomal or
circular genomes, with minor changes.

At first, we review some necessary definitions, which are also defined in [16,
27]. We assume that all genes and genomes are unsigned, and it is straightforward
to generalize the result to signed genomes. Given a gene set Σ, a string P is
called permutation if each element in Σ appears exactly once in P . We use c(P)
to denote the set of elements in permutation P . A string A is called sequence if
some genes appear more than once in A, and c(A) denotes genes of A, which is
a multi-set of elements in Σ. For example, Σ = {a, b, c, d}, A = abcdacd, c(A)
= {a, a, b, c, c, d, d}. A sequence scaffold is an incomplete sequence, typically
obtained by some sequencing and assembling process. A substring with m genes
(in a sequence) is called an m-substring, and a 2-substring is also called a pair ;
as the genes are unsigned, the relative order of the two genes of a pair does not
matter, i.e., the pair xy is equal to the pair yx. Given an incomplete sequence
(or sequence scaffold) A = a1a2a3 · · · an, let PA = {a1a2, a2a3, . . . , an−1an} be
the set of pairs in A.

Definition 1. Given two sequence scaffolds A = a1a2 · · · an and B = b1b2 · · · bm,
if aiai+1 = bjbj+1 (or aiai+1 = bj+1bj), where aiai+1 ∈ PA and bjbj+1 ∈ PB, we
say that aiai+1 and bjbj+1 are matched to each other. In a maximum matching of
pairs in PA and PB, a matched pair is called an adjacency, and an unmatched
pair is called a breakpoint in A and B respectively.

It follows from the definition that sequence scaffolds A and B contain the
same set of adjacencies but distinct breakpoints. The maximum matched pairs in
B (or equally, in A) form the (common) adjacency set between A and B, denoted
as a(A,B). We use bA(A,B) and bB(A,B) to denote the set of breakpoints in
A and B respectively. We illustrate the above definitions in Fig. 1.

For a sequence A and a multi-set of elements X, let A + X be the set of
all possible resulting sequences after filling all the elements in X into A. We
define a contig as a string over a gene set Σ whose contents should not be
altered. A scaffold S is simply a sequence of contigs 〈C1, ..., Cm〉. We define
c(S) = c(C1) ∪ · · · ∪ c(Cm). Now, we define the problems on scaffolds formally.

Given two incomplete sequences (or sequence scaffolds) A = a1a2 · · · an and
B = b1b2 · · · bm, as we can see, each gene except the four ending ones is involved
in two adjacencies or two breakpoints or one adjacency and one breakpoint. To
get rid of this imbalance, we add “#” to both ends of A and B.

Definition 2. Scaffold Filling to Maximize the Number of (String) Adjacencies
(SF-MNSA).

Input: two sequence scaffolds A and B over a gene set Σ and two multi-sets of
elements X and Y , where X = c(B) − c(A) and Y = c(A) − c(B).

Question: Find A∗ ∈ A + X and B∗ ∈ B + Y such that |a(A∗, B∗)| is
maximized.
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sequence scaffold A = 〈c b c e d a b a 〉
sequence scaffold B = 〈a b a b d c〉

PA = {cb, bc, ce, ed, da, ab, ba}
PB = {ab, ba, ab, bd, dc}

matched pairs : (ab ↔ ba), (ba ↔ ab)

a(A,B) = {ab, ba}
bA(A,B) = {cb, bc, ce, ed, da}
bB(A,B) = {ab, bd, dc}

Fig. 1. An example for adjacency and breakpoint definitions.

The one-sided SF-MNSA problem is a special instance of the SF-MNSA
problem where one of X and Y is empty. We formally define it as follows.

Definition 3. One-sided SF-MNSA.

Input: a complete sequence G and an incomplete sequence scaffold I over a gene
set Σ, a multi-set X = c(G) − c(I) �= ∅ with c(I) − c(G) = ∅.
Question: Find I∗ ∈ I + X such that |a(I∗, G)| is maximized.

Note that while the two-sided SF-MNSA problem is more general and more
difficult, the One-Sided SF-MNSA problem is more practical as a lot of genome
analysis are based on some reference genome [24]. We next consider the usual
scaffolds composed of sequences of contigs.

Definition 4. One-Sided-SF-max.

Input: a complete genome G and a scaffold S = 〈C1, C2, ..., Cm〉 where G and
the contig Ci’s are over a gene set Σ, a multiset X = c(G) − c(S) �= ∅.
Question: Find S∗ ∈ S + X such that |a(S∗, G)| is maximized.

One-Sided-SF-max(⊂) is exactly the same as One-Sided-SF-max except that
only a subset X ′ ⊂ X need to be inserted into S. When a gene can appear at
most d times in G, the two versions of problems are abbreviated as One-Sided-
SF-max(d) and One-Sided-SF-max(⊂, d) respectively.

3 Current Status

We review the current status for the research on the genomic scaffold filling
problems.

3.1 Results on Filling Permutation Scaffolds

When the genomes contain no duplicated genes, the genomic scaffold filling prob-
lems are all known to be polynomially solvable. For the one-sided case, when the
distance measure is DCJ (double-cut-and-join) and the scaffolds are composed of
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contigs, Munoz et al. used the breakpoint graph to obtain a polynomial-time solu-
tion (in fact, a linear-time solution after the breakpoint graph is constructed).
Later, the result was generalized to the two-sided case by Jiang et al. [16]. When
the distance measure is the breakpoint distance, and when the scaffolds are
incomplete permutations (meaning missing genes can be inserted anywhere),
Jiang et al. showed that both of the one-sided and two-sided problems can be
solved in O(n2) time, where n is the total number of genes in the input [16].

Recently, Liu et al. [23] studied the one-sided scaffold filling problem when
the scaffold S is given as a set of contigs, i.e., S = 〈C1, C2, · · · , Cm〉. Let the
complete reference genome (permutation) be R and let X = c(R) − c(S). Let
α(Ci), β(Ci) be the first and last letter of Ci respectively. Then 〈βi, αi+1〉 (or
simply βiαi+1) constitutes a slot where missing genes can inserted between βi

and αi+1. We write β0 = −∞ and αm+1 = +∞, where 〈−∞, α1〉 and 〈αm,+∞〉
are the leftmost and rightmost (open) slot respectively.

Define a type-1 (resp. type-2) substring s of length � ≥ 1, over X, as one
which can be inserted in the slot 〈βi, αi+1〉, for some i, to increase the total
number of adjacencies by � + 1 (resp. �).

Note that if βiαi+1 is already an adjacency with respect to R, then in general
it is possible that s is inserted in the slot to generate |s| + 1 adjacencies (while
destroying the adjacency βiαi+1). However, when the genome contains no gene
duplication it can be shown that there exists an optimal solution which always
preserves such an existing adjacency βiαi+1.

Similarly, define a type-3 substring s of length � ≥ 1, over X, as one which
can be inserted in the slot 〈βi, αi+1〉, for some i, to increase the number of
adjacencies by � − 1. Note that a type-3 substring can only form adjacencies
internally, hence it does not matter where we insert s — provided that it does
not destroy any existing adjacency.

Clearly, due to that there is no gene duplication in R, a type-i substring with
length � must be a substring (or the reversal of a substring) of R. (This property
does not hold when there are gene duplications.) We show an example as follows:

R = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15〉,
S = 〈 1,3 , 5,6 , 15,2 , 14,13,10,9 〉.

We have α1 = 1, β1 = 3, α2 = 5, β2 = 6, α3 = 15, β3 = 2, α4 = 14, β4 = 9. Then,
X = {4, 7, 8, 11, 12} are missing from S. The optimal solution is

S∗ = 〈 1,3 , 4, 5,6 , 7, 8, 15,2 , 11, 12, 14,13,10,9 〉.

In this case, 4 is type-1, 〈7, 8〉 is type-2, and 〈11, 12〉 is type-3.
Then, Liu et al. [23] tried to first identify type-i substrings, and then fill them

in the other of i = 1, 2, 3. The running time is dominated by the computation
of a maximum matching in a bipartite graph, which takes O(n2.5) time. We
summarize the results in following Table 1.
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Table 1. Results on scaffold filling when the genomes contain no gene duplications. In
the first column, ‘contigs’ means a scaffold is composed of a list of contigs, ‘permutation’
means a scaffold is an incomplete permutation.

Problem Distance/Similarity measure Status

One-sided, singleton, contigs breakpoint/adjacency number P [23]

One-sided, multichromosome, contigs DCJ P [24]

two-sided, singleton, permutation breakpoint/adjacency number P [16]

two-sided, multichromosome, contigs DCJ P [16]

3.2 Results on One-Sided Scaffold Filling

When the genomes contain duplicated genes, the genomic scaffold filling prob-
lems become NP-hard. The past effort has been mainly focused on the one-sided
case. (We comment that the two-sided SF-MNSA can be approximated with
a factor 1.5 [22].) So we will focus on One-sided SF-MNSA and One-sided-SF-
max, representing that the scaffold is an incomplete sequence and a list of contigs
respectively.

For One-sided SF-MNSA, Jiang et al. first showed that it is NP-hard by a
reduction from Exact Cover by 3-Sets (X3C) [15,16]. Subsequently, a factor-
1.33 approximation was given [15,16]. The main idea is that when a scaffold is a
sequence (meaning missing genes can be inserted anywhere), there is no type-3
substrings. Then, the idea is to maximize the inserted type-1 substrings of length
one and two, using a greedy method. Finally, for the remaining genes, it can be
done so that each inserted one contributes at least one adjacency. (This last step
is in fact not trivial, the details were filled later [21,27].)

In [21], the approximation factor was improved to 1.25. The idea was to
insert i-type-1, i = 1, 2, 3, substrings using a mixture of greedy search, maximum
matching and local search. Then, for the remaining genes, it can be done so that
each inserted one contributes at least one adjacency. Recently, the approximation
factor for One-sided SF-MNSA was improved to 1.2 and the problem was shown
to be APX-hard [17]. The method was based on non-oblivious local search [20].
(As of this writing, it seems there was a small bug in the proof and a paper was
devoted in this proceeding to fix that.)

While the research on the One-sided SF-MNSA has been fruitful, it does not
help much on solving the practical problem. The main reason is that a scaffold in
reality is usually computed with mature tools, like Celera Assembler [1]. Hence,
in real datasets a scaffold is usually given as a list of contigs, each should not be
altered arbitrarily. Recently, research on this version, formally called One-sided-
SF-max, has been started.

In [18], a simple reduction from Hamiltonian Path to One-sided-SF-max was
constructed. Thus, the problem is NP-hard. Then, a factor-2 approximation was
presented using greedy search on type-1 substrings of length one and two, also
on type-2 substrings of length one. Finally, a maximum matching method was
used to make sure that for each pair useful genes, at least one adjacency can be
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Table 2. Approximation results on One-sided SF-MNSA, Two-sided SF-MNSA, and
One-sided-SF-max.

Problem Similarity measure Approximation ratio

One-sided SF-MNSA adjacency number 1.33 [15,16]

One-sided SF-MNSA adjacency number 1.25 [21]

One-sided SF-MNSA adjacency number 1.20 [17]

Two-sided SF-MNSA adjacency number 1.50 [22]

One-sided-SF-max adjacency number 2.00 [18]

computed. (Formally, a gene is useful if it can contribute some adjacency in an
optimal solution.)

We summarize the approximation results for One-sided SF-MNSA, Two-
sided SF-MNSA, and One-sided-SF-max in following Table 2.

3.3 Parameterized Results on Scaffold Filling

In this subsection, we briefly review the FPT results on scaffold filling. (Readers
are referred to [12,13,25] for standard FPT concepts and definitions.) In fact,
as scaffold filling is a maximization problem, any FPT algorithm parameterized
on the solution size is only of theoretical meaning.

In [5], Bulteau et al. showed that SF-MNSA is FPT, and the running times
are O∗(2O(k)) for the one-sided case and O∗(2O(k log k)) for the two-sided case
respectively. The technique is based on color-coding [3] and subset enumeration.

In [18], it was shown that One-sided-SF-max(d) is FPT and the running time
is O∗((2d)O(k)) and when d is unbounded whether it is FPT is still open. On
the other hand, it was shown that One-sided-SF-max(⊂), parameterized by the
number of genes inserted, is W[1]-hard. The reduction is from the Partial Vertex
Cover (PVC) problem (via the standard FPT-reduction from Independent Set
to PVC) [14]. Again, we list the corresponding results in following Table 3.

4 Future Research Directions

In this paper, we have thoroughly reviewed the current research on scaffold filling
problems. While many theoretically interesting results have been obtained, a lot

Table 3. FPT results/status on SF-MNSA, One-sided-SF-max and One-sided-SF-
max(⊂).

Problem Parameter k FPT status

SF-MNSA adjacency number FPT [5]

One-sided-SF-max adjacency number open [18]

One-sided-SF-max(⊂) number of genes inserted W[1]-hard [18]
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still need to be done to make practical impact on the problem. We list some of
these problems as follows.

1. For One-sided-SF-max, is it possible to design an approximation algorithm
with a factor less 2? less than 1.5?

2. For One-sided-SF-max, is it possible to design an FPT algorithm parameter-
ized by the solution size? As a positive answer will not solve the practical
problem, how about using the number of breakpoints as a parameter? Is the
problem FPT then?

3. For One-sided-SF-max(⊂), is it possible to design an FPT approximation
with a factor less than 2?
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Abstract. Scaffolding is one of the main stages in genome assem-
bly. During this stage, we want to merge contigs assembled from the
paired-end reads into bigger chains called scaffolds. For this purpose,
the following graph-theoretical problem has been proposed: Given an
edge-weighted complete graph G and a perfect matching D of G, we
wish to find a Hamiltonian path P in G such that all edges of D appear
in P and the total weight of edges in P but not in D is maximized. This
problem is NP-hard and the previously best polynomial-time approxima-
tion algorithm for it achieves a ratio of 1

2
. In this paper, we design a new

polynomial-time approximation algorithm achieving a ratio of 5−5ε
9−8ε

for
any constant 0 < ε < 1. Several generalizations of the problem have also
been introduced in the literature and we present polynomial-time approx-
imation algorithms for them that achieve better approximation ratios
than the previous bests. In particular, one of the algorithms answers an
open question.

Keywords: Approximation algorithms · Randomized algorithms · Scaf-
folding · Matchings

1 Introduction

Sequencing the whole genome of an organism is a vital component for detailed
molecular analysis of the organism, and genome projects are now underway or
complete [6]. Unfortunately, with current genome-sequencing technologies, it is
impossible to continuously read from one end of a long chromosome to the other.
So, a commonly used method for sequencing a chromosome is to first randomly
shear multiple copies of the chromosome into many small fragments of varying
sizes, then accurately sequence the fragments to obtain reads, and further assem-
ble the reads into a sequence of the whole chromosome. The assembling process
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 17–28, 2016.
DOI: 10.1007/978-3-319-39817-4 3
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typically consists of two steps. The first step is called contigging, where we use
confident overlaps between the reads to piece together larger segments of con-
tinuous sequences called contigs (each of which consists of two strands, namely,
the forward strand and the reverse strand). The second step is called scaffolding,
where we linking contigs together into scaffolds by using longer fragments of a
known length whose ends are sequenced (called paired-end reads). A recent com-
prehensive evaluation of available software tools shows that scaffolding is still
computationally intractable [4].

The scaffolding problem can be formulated as the problem of finding a special
Hamiltonian path in an edge-weighted complete graph G as follows [5]. For each
contig c, G has two vertices fc and rc, where fc corresponds to the forward
strand of c while rc corresponds to the reverse strand of c. The edge {fc, rc} is
assigned a weight of 0 in G and is called a dummy edge for convenience. Each
non-dummy edge {u, v} of G corresponds to a bundle of paired-end reads each of
which connects strand u (of a contig c) with strand v (of another contig c′), and
the weight of {u, v} in G is equal to the size of the corresponding bundle. In case
no such bundle exists for {u, v}, then the weight of {u, v} in G is 0. Note that
the set D of dummy edges is a perfect matching of G. A Hamiltonian path P in
G is D-valid if P contains all dummy edges of G. Given G and D, the objective
is to compute a D-valid Hamiltonian path in G such that the total weight of
edges in P is maximized over all D-valid Hamiltonian paths in G.

The scaffolding problem is NP-hard [1,2]. Indeed, the problem is APX-hard
because the maximum asymmetric traveling salesman problem is APX-hard [7]
and can be reduced to the scaffolding problem as follows. Given an edge-weighted
digraph G, we construct an (undirected) graph H from G by splitting each
vertex u of G into two vertices uin and uout so that (1) {uin, uout} is an edge
(of weight 0) in both H and D and (2) each arc (u, v) in G is transformed into
an edge {uout, vin} (of the same weight as (u, v)) in H. Mandric and Zelikovsky
[5] propose two heuristics for the scaffolding problem. One of them is based
on maximum-weight matching and the other is based on the greedy method.
Although their heuristics perform well in practice, the heuristics are not shown
to have a worst-case performance guarantee.

In order to take the desired structure of the genome (namely, the number
of circular or linear chromosomes) into consideration, Chateau and Giroudeau
[1,2] generalizes the scaffolding problem as follows. In addition to G and D, we
are also given two nonnegative integers σp and σc. Instead of a single D-valid
Hamiltonian path in G, we want to find a collection of exactly σp paths and
exactly σc cycles such that the paths and cycles are disjoint and contain all edges
of D. For convenience, we refer to such a collection as a D-valid (σp, σc)-cover
of G. Note that a D-valid Hamiltonian path in G is just a D-valid (1, 0)-cover
of G. Moreover, G has a D-valid (σp, σc)-cover if and only if σp + σc ≥ 1 and
|D| ≥ σp + 2σc [2]. So, we can hereafter assume that the input (G,D, σp, σc)
always satisfies σp +σc ≥ 1 and |D| ≥ σp +2σc. The new objective is to compute
a D-valid (σp, σc)-cover C of G such that the total weight of edges in C is
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maximized over all D-valid (σp, σc)-covers of G. We call this generalization the
generalized scaffolding problem (GSP for short).

In the special case of GSP where the input satisfies |D| = σp +2σc, a D-valid
(σp, σc)-cover of G is simply a collection of disjoint edges and cycles with 4 edges
and hence can be found by computing a maximum-weight matching in a suitably
constructed graph [2]. Moreover, in the special case where (σp, σc) = (0, 1),
a very simple O(n3)-time approximation algorithm achieving a ratio of 1

2 can
be designed [1,2], where n is the number of vertices in the input graph. This
algorithm is also applicable to the scaffolding problem, i.e., the special case of
GSP where (σp, σc) = (1, 0). Furthermore, in the special case where the input
satisfies |D| ≥ 2(σp + 2σc), an O(n3)-time approximation algorithm achieving a
ratio of 1

3 can be designed [2]. However, the approximability of the remaining
case where σp + 2σc < |D| < 2(σp + 2σc) was left as an open question in [2].

In this paper, we improve the algorithmic results in [1,2] and answer the
above open question in [2]. More specifically, we first design a new O(n3)-time
approximation algorithm for the scaffolding problem that achieves a ratio of
5−5ε
9−8ε for any constant 0 < ε < 1. This is done by first designing a random-
ized algorithm and then derandomizing it. The randomized algorithm finds two
D-valid Hamiltonian paths and outputs the better one between the two. The
randomized algorithm is inspired by the algorithm in [3] for the maximum trav-
eling salesman problem. We also show that our analysis is almost tight. We then
design an O(n3)-time approximation algorithm for GSP that always achieves
a ratio of 1

3 . A simple crucial idea behind the algorithm is to first compute a
maximum-weight matching M in the input graph G such that M ∩ D = ∅ and
|M | = |D| − σp. With a minor modification, the algorithm achieves a ratio of 1

2
for the special case of GSP where |D| ≥ σp +3σc. With another minor modifica-
tion, the algorithm achieves a ratio of min

{
2
5 , 1+2ε

3

}
for the special case where

|D| ≥ σp + (2 + ε)σc for any constant 0 < ε < 1.
We also modify the approximation algorithm for the scaffold problem so that

it works for two special cases of GSP. For the special case of GSP where the
input satisfies |D| ≥ 9(σp + σc) (respectively, |D| ≥ 6(σp + σc)), the modified
algorithm runs in O

((
σ2

c + 1
)
n3

)
time and achieves a ratio of 5−4ε

9 (respectively,
7−6ε
13 ) for any constant 0 < ε < 1.

Weller et al. [8] define a different generalization of the scaffolding problem
as follows. The input is the same as to GSP but without the condition |D| ≥
σp+2σc, and the objective is to find a D-valid (σ′

p, σ
′
c)-cover C of G with σ′

p ≤ σp

and σ′
c ≤ σc such that the total weight of edges in C is maximized over all D-

valid (σ′′
p , σ′′

c )-covers of G with σ′′
p ≤ σp and σ′′

c ≤ σc. We call this generalization
the loosely generalized scaffolding problem (LGSP for short). The previously
best approximation algorithm for LGSP achieves a ratio of 1

2 [8] and runs in
O(n3) time. In this paper, we show that the approximation algorithm for the
scaffold problem can be modified to approximate LGSP as well without altering
the approximation ratio and the time complexity.

The remainder of this paper is organized as follows. Section 2 gives basic
definitions that will be used in the remainder of the paper. Section 3 presents
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approximation algorithms for the scaffolding problem, Sect. 4 presents approxi-
mation algorithms for LGSP, and Sect. 5 presents approximation algorithms for
GSP and its special cases. Due to lack of space, the proofs of all lemmas and
theorems are omitted here and will be given in the journal version.

2 Basic Definitions

Throughout this paper, a graph means an undirected graph without parallel
edges or self-loops. Let G be a graph. We denote the vertex set of G by V (G),
and denote the edge set of G by E(G). For a subset U of V (G), G[U ] denotes
the graph obtained from G by removing the vertices in V (G)−U (together with
the edges incident to them). For a subset F of E(G), G − F denotes the graph
obtained from G by removing the edges in F . The length of a cycle or path C is
the number of edges in C and is denoted by |C|. A k-cycle is a cycle of length k,
while a k-path is a path of length k. A path component of G is a connected
component of G that is a path.

For a matching M of G, a path or cycle C of G is M -alternating if E(C)
can be partitioned into two matchings M1 and M2 such that M1 ⊆ M and
M2 ∩ M = ∅. A 2-matching in G is a subgraph H of G with V (H) = V (G) in
which the degree of each vertex is at most 2. For two nonnegative integers σp and
σc, a (σp, σc)-cover of G is a 2-matching of G in which there are exactly σc cycles
and exactly σp path components, while a (σ−

p , σ−
c )-cover of G is a (kp, kc)-cover

of G with kp ≤ σp and kc ≤ σc. For a perfect matching D in G, a (σp, σc)- or
(σ−

p , σ−
c )-cover H of G is D-valid if D ⊆ E(H). It is easy to see that G has a

D-valid (σp, σc)-cover if and only if |D| ≥ σp + 2σc [1,2].
Suppose that each edge of G has a nonnegative weight. The weight of an

F ⊆ E(G) is the total weight of edges in F and is denoted by w(F ). The weight
of a subgraph H of G is w(E(H)) and is denoted by w(H). A maximum-weight
matching in G is a matching in G whose weight is maximized over all matchings
in G. A maximum-weight D-valid (σp, σc)-cover (respectively, (σ−

p , σ−
c )-cover) of

G is a D-valid (σp, σc)-cover (respectively, (σ−
p , σ−

c )-cover) of G whose weight is
maximized over all D-valid (σp, σc)-covers (respectively, (σ−

p , σ−
c )-cover) of G.

In the generalized scaffolding problem (GSP for short), we are given a quadru-
ple (G,D, σp, σc), where G is a complete graph whose edges have nonnegative
weights, D is a perfect matching in G with w(D) = 0, and σp and σc are two
nonnegative integers with σp + σc ≥ 1 and |D| ≥ σp + 2σc. The objective of
GSP is to compute a maximum-weight D-valid (σp, σc)-cover of G. The input
to the loosely generalized scaffolding problem (LGSP for short) is the same as to
GSP but without the condition |D| ≥ σp +2σc, and the objective is to compute
a maximum-weight D-valid (σ−

p , σ−
c )-cover of G. The scaffolding problem is the

special case of GSP and LGSP where (σp, σc) = (1, 0).
For a random variable X, E [X] denotes the expected value of X.
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3 Algorithms for the Scaffolding Problem

Throughout this section, let (G,D) be an instance of the scaffolding problem,
Opt be a maximum-weight D-valid Hamiltonian path in G, and n = |V (G)|.
Since D is a perfect matching of G, n = 2|D| vertices. We may assume that
|D| ≥ 3, because otherwise the problem is trivially solved in O(1) time.

We first design a randomized approximation algorithm achieving an expected
ratio of 5−5ε

9−8ε for any constant 0 < ε < 1. In other words, the randomized
algorithm finds a D-valid Hamiltonian path P in G such that E [w(P )] ≥ 5−5ε

9−8ε ·
w(Opt). We then derandomize the algorithm.

3.1 The Randomized Algorithm

The algorithm starts by computing a maximum-weight matching M in G − D.
It holds that w(M) ≥ w(Opt), because E(Opt) \ D is a matching in G − D.
Moreover, the graph H = (V (G),D ∪ M) is a collection of disjoint cycles and
paths. If H is a single path, then it is a maximum-weight D-valid Hamiltonian
path in G and hence we are done by outputting H. Similarly, if H is a single
cycle, then we are done by outputting the path P obtained from H by deleting
one edge in M whose weight is minimized among the edges in M . Since |M | ≥ 3,
w(P ) ≥ 2

3w(M) ≥ 2
3w(Opt). So, we hereafter assume that H is neither a single

path nor a single cycle. Then, H has at least two connected components.
Let Optint denote the set of all edges {u, v} of Opt such that some cycle C

in H contains both u and v. Let Optext denote the set of edges in Opt but not
in Optint. Let β = w(Optint)/w(Opt).

Our algorithm then computes two D-valid Hamiltonian paths P1 and P2

of G, outputs the heavier one between them, and stops. P1 is computed by
modifying H as follows. Fix a parameter 0 < ε < 1. A cycle C of H is long if
|E(C) ∩ M | > ε−1; otherwise, C is short. For each cycle C in H, if C is long,
then we delete the minimum-weight edge in E(C) ∩ M from H; otherwise, we
replace C by a maximum-weight DC-valid Hamiltonian path of G[V (C)], where
DC = D ∩ E(C). Then, H becomes a collection of disjoint paths and hence can
be transformed into a D-valid Hamiltonian path P1 of G by adding more edges.

Lemma 1. w(P1) ≥ (1 − ε) · w(Optint) = (1 − ε)β · w(Opt).

When w(Optext) is large, w(Optint) is small and w(P1) may be small, too. P2

is aimed at the case where w(Optext) is large. Its computation is given below.

3.2 Computation of P2

To compute P2, we first compute a maximum-weight matching M ′ in an auxiliary
graph K, where V (K) = V (G) and E(K) consists of those {u, v} ∈ E(G) such
that u and v belong to different connected components of H. Since D ⊆ E(H)
and Opt is D-valid, Optext is a matching in K and we have the next lemma:

Lemma 2. w(M ′) ≥ w(Optext).



22 Z.-Z. Chen et al.

In order to obtain P2, we next use M ′ to modify H as follows.

1. For each connected component C of H with |E(C) ∩ M | = 1, delete the edge
in E(C) ∩ M from H with probability 1

2 . (Comment: C is a 3-path.)
2. For each connected component C of H such that |E(C) ∩ M | ≥ 2, perform

the following substeps:
(a) Partition E(C) ∩ M into two nonempty subsets MC,1 and MC,2.
(b) For a random i ∈ {1, 2}, delete the edges in MC,i from H. (Comment:

Each connected component of H is now a D-alternating path.)
3. For each e ∈ M ′ such that both endpoints of e are of degree at most 1 in H,

add e to H. (Comment: After this step, each connected component of H is a
D-alternating path or cycle.)

4. For each cycle C in H, select one edge e ∈ E(C) ∩ M ′ uniformly at random,
and delete e from H. (Comment: After this step, each connected component
of H is a D-alternating path.)

5. Connect the connected components of H into a D-valid Hamiltonian path P2

of G by adding edges.

Lemma 3. For each e ∈ M , the probability that e remains in P2 is 1
2 . Moreover,

for each e ∈ M ′, the probability that e remains in P2 is at least 1
8 .

3.3 Analysis of the Algorithm

Our algorithm is clearly correct. As for its approximation ratio, we can use
Lemma 3 to show the next bound on E [w(P2)] and in turn the next theorem.

E [w(P2)] ≥ 1
2
w(M) +

1
8
w(Optext) ≥

(
1
2

+
1
8
(1 − β)

)
· w(Opt), (1)

Theorem 1. For any fixed 0 < ε < 1, there is a randomized approximation
algorithm for the scaffolding problem that runs in O(n3) time and achieves an
expected approximation ratio of 5−5ε

9−8ε .

We can construct a graph G to show that our above analysis is almost tight.

3.4 Derandomization

The above randomized algorithm makes random choices only in Steps 1, 2b, and
4. To derandomize Step 4, we just modify it as follows:

5. For each cycle C in H, delete one edge e ∈ E(C)∩M ′ from H such that w(e)
is minimized over all edges in E(C) ∩ M ′.

When processing each C in Step 1, we need one random bit. Similarly, when
processing each C in Step 2b, we need one random bit. So, Steps 1 and 2 need
r random bits in total, where r is the number of connected components in
(V (G),D ∪ M). In the above analysis of the randomized algorithm, only the
proof of Lemma 3 is based on the mutual independence between these random
bits. Indeed, by inspecting the proof, we can easily see that the proof is still valid
even if the random bits are only pairwise independent. So, we can derandomize
it via conventional approaches. Therefore, we have the following theorem:
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Theorem 2. There is an approximation algorithm for the scaffolding problem
that runs in O(n3) time and achieves a ratio of 5−5ε

9−8ε .

4 An Approximation Algorithm for LGSP

Throughout this section, let (G,D, σp, σc) be an instance of LGSP, Opt be a
maximum-weight D-valid (σ−

p , σ−
c )-cover of G, and n = |V (G)|. Our goal is to

modify the algorithm in Sect. 3 (without altering its approximation ratio and
time complexity) so that it becomes an approximation algorithm for LGSP.

Fix a parameter ε > 0. We proceed almost in the same way as in Sect. 3.
More specifically, we define Optint, Optext, and β as before. However, we need
to modify the construction of P1 and P2 so that they become D-valid (σ−

p , σ−
c )-

covers of G with w(P1) ≥ (1−ε)·w(Optint) and E [w(P2)] ≥ 1
2w(M)+ 1

8w(Optext).
Indeed, if σp ≥ 1, then we construct P2 as before; otherwise, we first construct P2

as before but further transform P2 into a cycle by (adding the edge of G between
the endpoints of P2). In either case, P2 is clearly a D-valid (σ−

p , σ−
c )-cover of G

with E [w(P2)] ≥ 1
2w(M) + 1

8w(Optext).
To construct P1, we start with the graph H = (V (G),D ∪ M) and then

modify it into a D-valid (σ−
p , σ−

c )-cover of G as follows.

1. Let s be the number of short cycles in H. If H has neither long cycles nor
path components, let χ = 0; otherwise, let χ = 1.

2. For each long cycle C in H, delete the minimum-weight edge in E(C) ∩ M
from H.

3. If H has two or more path components, connect them into a single path
component by adding edges.

4. If s < σc and χ = 1, then transform the unique path component of H into a
cycle (by adding the edge of G between the endpoints of the path).

5. For each short cycle C in H, compute a maximum-weight DC-valid Hamil-
tonian path PC of G[V (C)], where DC = D ∩ E(C).

Obviously, if either s < σc, or s = σc and χ ≤ σp, then after Step 4, H is a
D-valid (σ−

p , σ−
c )-cover of G with w(H) ≥ (1 − ε) · w(M) ≥ (1 − ε) · w(Opt). So,

we hereafter assume that either s > σc, or s = σc and 0 = σp < χ = 1.
Let C1, . . . , Cs be the short cycles in H. We may assume that w(Ci) −

w(PCi
) ≥ w(Cj) − w(PCj

) for all 1 ≤ i < j ≤ s. For each i ∈ {1, . . . , s}, let
Vi = V (Ci), Ei = E(G[Vi]), and Optint,i = Optint ∩ Ei. A simple crucial point is
that if the graph (Vi, Optint,i) has a (respectively, no) cycle, then Ci (respectively,
PCi

) is at least as good as Optint,i in the following sense:

– w(Ci) ≥ w(Optint,i) (respectively, w(PCi
) ≥ w(Optint,i)).

– Like the graph (Vi, Optint,i), Ci (respectively, PCi
) can be transformed into a

D-valid (σ−
p , σ−

c )-cover of G by adding edges of G (not contained in Ei).

Now, we finish constructing P1 by further modifying H as follows:

6. If σp ≥ 1, then replace Ci by PCi
for all i with σc < i ≤ s, and further connect

the path components of H into a single path by adding edges of G.
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7. If σp = 0, then replace Ci by PCi
for all i with σc ≤ i ≤ s, connect the path

components of H into a path by adding edges of G, and transform the path
into a cycle by adding the edge of G between the endpoints of the path.

Lemma 4. w(P1) ≥ (1 − ε) · w(Optint).

Theorem 3. Let ε be a constant with 0 < ε < 1. There is an approximation
algorithm for LGSP that runs in O

(
n3

)
time and achieves a ratio of 5−5ε

9−8ε .

5 Approximation Algorithms for GSP

Throughout this section, let (G,D, σp, σc) be an instance of GSP, Opt be a
maximum-weight D-valid (σp, σc)-cover of G, and n = |V (G)|. Since D is a
perfect matching of G, n = 2|D|. If σp + σc ≤ 1, then Theorem 3 shows that
we can find a D-valid (σp, σc)-cover C of G in O(n3) time such that w(C) ≥
5−5ε
9−8ε ·w(Opt) for any constant 0 < ε < 1. So, we hereafter assume that σp+σc ≥ 2.

In the sequel, we first design an O(n3)-time approximation algorithm for
GSP that achieves a ratio of 1

3 . By refining the algorithm, we then obtain O(n3)-
time approximation algorithms that achieve ratios better than 1

3 for two special
cases. Moreover, by refining the algorithm for the scaffolding problem, we further
obtain polynomial-time approximation algorithms that achieve even better ratios
for two even more special cases.

For a 2-matching H in G, we use #c(H) (respectively, #p(H)) to denote the
number of cycles (respectively, path components) in H. The number of connected
components of H equals #c(H) + #p(H).

Lemma 5. Assume that |D| ≥ σp+kσc for some integer k ≥ 2. Further suppose
that K is a 2-matching of G such that D ⊆ E(K), #c(K) + #p(K) ≥ σc + σp,
#c(K) ≤ σc, each path component P of K satisfies |E(P ) ∩ M | < k, and each
cycle C in K satisfies |E(C)∩M | ≤ k. Then, we can transform K into a D-valid
(σp, σc)-cover C of G with w(C) ≥ w(K).

5.1 A Ratio-3 Approximation Algorithm

Our algorithm starts by computing a matching M in G − D such that |M | =
|D| − σp and w(M) ≥ w(N) for all matchings N in G − D with |N | = |D| − σp.
M can be computed in O(n3) time as follows. First, we construct an auxiliary
graph G′ from G−D by adding 2σp new vertices and connecting each of them to
each original vertex by a new edge of weight w(G)+1. Note that each maximum-
weight matching in G′ must contain 2σp edges incident to the new vertices. So,
we compute a maximum-weight matching N in G′ in O(n3) time. By deleting
the edges incident to the new vertices from N , we obtain M .

Since E(Opt) \ D is a matching in G and |E(Opt) \ D| = |D| − σp, w(M) ≥
w(Opt). Moreover, H = (V (G),D∪M) is a collection of disjoint cycles and paths.
Indeed, exactly σp connected components of H are paths. If #c(H) = σc, then we
are done. Moreover, if #c(H) > σc, then we can obtain a D-valid (σp, σc)-cover
C of G with w(C) ≥ 1

2w(M) ≥ 1
2w(Opt) by modifying H as follows.
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1. Arbitrarily select #c(H) − σc + 1 cycles in H.
2. For each cycle C selected in Step 1, transform C into a path PC by removing

a minimum-weight edge in E(C) ∩ M from H.
3. Connect the paths PC obtained in Step 2 into a cycle by adding edges of G.

So, we hereafter assume that #c(H) < σc. It remains to show that we can modify
H into a 2-matching K such that w(K) ≥ 1

3w(M) and K together with k = 2
satisfies the conditions in Lemma 5. To this end, we modify H in two stages.
In the first stage, we modify each connected component C of H such that C is
either a cycle containing an even number of edges of M or a path, as follows.

1. Partition E(C) ∩ M into two (possibly empty) subsets N1 and N2 such that
for each i ∈ {1, 2}, each connected components of C − Ni is of length 1 or 3.)

2. For an i ∈ {1, 2} with w(Ni) ≤ w(N3−i), delete the edges in Ni from H.

In the second stage, we modify each cycle C in H such that |E(C) ∩ M | is
odd, as follows.

1. Partition E(C)∩M into three (possibly empty) subsets N1, N2, and N3 such
that for each i ∈ {1, 2, 3}, each connected components of C −Ni is of length 1
or 3.)

2. Choose an i ∈ {1, 2, 3} such that w(Ni) ≤ w(Nj) for all j ∈ {1, 2, 3}. Delete
the edges in Ni from H.

After the second stage, H is now a 2-matching K such that w(K) ≥ 1
3w(M)

and K together with k = 2 satisfies the conditions in Lemma 5. So, we have:

Theorem 4. There is an approximation algorithm for GSP that runs in O(n3)
time and achieves a ratio of 1

3 .

5.2 The Special Case Where |D| ≥ σp + 3σc

Throughout this subsection, we assume that |D| ≥ σp + 3σc.
We want to show that by modifying the algorithm in Sect. 5.1, we can achieve

a ratio of 1
2 . The idea is to modify the second stage by keeping all 6-cycles in H

intact and transforming each (4� + 2)-cycle C in H with � ≥ 2 into a collection
CC of paths and cycles with w(CC) ≥ �+1

2�+1w(C) as follows.

1. Select an edge e ∈ E(C) ∩ M such that w(e) ≥ w(e′) for all e′ ∈ E(C) ∩ M .
2. Partition N = E(C) \ {e} into two subsets N1 and N2 such that for each

i ∈ {1, 2}, one of the connected components of C − Ni is a 5-path and the
others are 3-paths.)

3. For an i ∈ {1, 2} with w(Ni) ≤ w(N3−i), delete the edges in Ni from H.

Let K be the graph obtained from H = (V (G),D∪M) by the above modified
algorithm. Clearly, K is a 2-matching in G, w(K) ≥ 1

2w(M), and K together
with k = 3 satisfies the conditions in Lemma 5. So, we finally have:

Theorem 5. For the special case of GSP where the input (G,D, σp, σc) satisfies
|D| ≥ σp + 3σc, there is an approximation algorithm that runs in O(n3) time
and achieves a ratio of 1

2 .
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5.3 The Special Case Where |D| ≥ σp + (2 + ε)σc

Throughout this subsection, we assume that |D| ≥ σp + (2 + ε)σc for some
constant 0 < ε < 1. Since |D| − σp − 2σc is an integer, |D| ≥ σp + 2σc + 	εσc
.
Let r = min

{
2
5 , 1+2ε

3

}
.

We want to show that by modifying the algorithm in Sect. 5.1, we can achieve
a ratio of r. Let b6 be the number of 6-cycles in H = (V (G),M), and X be the
set of the heaviest 	εb6
 6-cycles in H. The idea is to modify the second stage by
keeping the cycles in X intact and further transforming each (4�+2)-cycle C �∈ X
in H with � ≥ 1 into a collection CC of paths and cycles with w(CC) ≥ �

2�+1w(C)
as follows.

1. Select an edge e ∈ E(C) ∩ M such that w(e) ≤ w(e′) for all e′ ∈ E(C) ∩ M .
2. Partition N = E(C) \ {e} into two subsets N1 and N2 such that for each

i ∈ {1, 2}, one of the connected components of C − (Ni ∪{e}) is a 1-path and
the others are 3-paths.)

3. Let i be an integer in {1, 2} with w(Ni) ≤ w(N3−i). Delete the edges in
Ni ∪ {e} from H.

Let K be the graph obtained from H = (V (G),D∪M) by the above modified
algorithm. Clearly, K is a 2-matching in G, D ⊆ E(K), #c(K) + #p(K) ≥
σc + σp, #c(K) ≤ σc, each path component P of K satisfies |E(P ) ∩ M | ≤ 1,
exactly 	εb6
 cycles in K are 6-cycles, and the other cycles in K are 4-cycles. Since
at least a fraction 1+2ε

3 of the total weight of 6-cycles in the graph (V (G),M)
still remains in K, we have w(K) ≥ r · w(M).

We claim that K can be transformed into a D-valid (σp, σc)-cover of G by
adding edges. The proof is similar to that of Lemma 5. In more details, as
long as #c(K) < σc and K has a path component P with |E(P ) ∩ M | ≥ 1, we
repeatedly modify K by adding the edge of G between the endpoints of P so that
P is transformed into a cycle. If now #c(K) = σc, then we can add #p(K) − σp

edges to K so that #p(K) − σp + 1 path components of K are connected into
a single path. So, assume that #c(K) < σc. Then, each path component P
of K satisfies |E(P ) ∩ D| = 1, exactly 	εb6
 cycles in K are 6-cycles, and the
other cycles in K are 4-cycles. Thus, |D| = #p(K) + 3	εb6
 + 2(#c(K) − 	εb6
).
Since |D| ≥ σp + 2σc + 	εσc
 and b6 < σc, we now have #p(K) − σp ≥ 2σc +
	εσc
 − 	εb6
 − 2#c(K) ≥ 2(σc − #c(K)). So, as in the proof of Lemma 5, we
can transform K into a D-valid (σp, σc)-cover of G by adding edges of G.

Theorem 6. Let ε be a constant with 0 < ε < 1. For the special case of GSP
where the input (G,D, σp, σc) satisfies |D| ≥ σp + (2 + ε)σc, there is an approxi-
mation algorithm that runs in O(n3) time and achieves a ratio of min

{
2
5 , 1+2ε

3

}
.

5.4 The Special Case Where |D| ≥ 9(σp + σc)

Throughout this subsection, we assume that |D| ≥ 9(σp + σc). Our goal is to
modify the algorithm in Sect. 3 so that it becomes an approximation algorithm
for the special case achieving a ratio of 5−4ε

9 .
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Fix a parameter ε > 0, and let h = 	ε−1
. We first preprocess M by
performing the following steps for each connected component C of the graph
(V (G),D ∪ M) with |E(C) ∩ M | > h:

1. Partition E(C) ∩ M into h subsets MC,1, . . . , MC,h so that for each i ∈
{1, . . . , h}, C − MC,i is a collection of paths each with at most h edges of M .

2. Choose an i ∈ {1, . . . , h} such that w(MC,i) ≤ w(MC,j) for all j ∈ {1, . . . , h}.
Delete the edges in MC,i from M . (Comment: w(MC,i) ≤ εw(C).)

Now, the graph H = (V (G),D ∪ M) is a collection of disjoint cycles and paths
each containing at most h edges in M . Moreover, during the preprocessing, w(M)
is decreased by at most a fraction ε of its original value. So, after the processing,
w(M) ≥ (1 − ε) · w(Opt).

We then proceed as in Sect. 3. In more details, we define Optint, Optext,
and β as before. However, we need to modify the construction of P1 and P2

so that they become D-valid (σp, σc)-covers of G with w(P1) ≥ w(Optint) and
E [w(P2)] ≥ 1

2w(M) + 1
8w(Optext).

To modify the construction of P2 in Sect. 3.2, we first replace Steps 2a and 5
in Sect. 3.2 by Steps 2a, 5̌ and 6̌ below, respectively.

2̌a. Partition E(C) ∩ M into two nonempty subsets MC,1 and MC,2 such that
for each i ∈ {1, 2}, each connected component of C − MC,i contains at most
two edges of M .

5̌. For each path component P of H with |E(P ) ∩ M ′| ≥ 3, do the following:
(a) Partition E(P )∩M ′ into 3 nonempty subsets M ′

P,1, M ′
P,2, and M ′

P,2 such
that for each i ∈ {1, 2, 3},
each connected component of P −M ′

P,i contains at most two edges of M ′.
(b) For a random i ∈ {1, 2, 3}, delete the edges in M ′

P,i from H. (Comment:
After this step, each connected component of H is a path Q with |E(Q)∩
(M ∪ M ′)| ≤ 8. So, K = H and k = 9 satisfy the conditions in Lemma 5,
if we replace M in the lemma by M ∪ M ′.)

6̌. Transform H into a D-valid (σp, σc)-cover P2 of G as in the proof of Lemma 5.

Lemma 6. For each e ∈ M ′, the probability that e remains in P2 is at least 1
8 .

By Lemma 6, we have the following inequality:

E [w(P2)] ≥ 1
2
w(M) +

1
8
w(Optext) ≥

(
1
2
(1 − ε) +

1
8
(1 − β)

)
· w(Opt), (2)

To modify the construction of P1 in Sect. 3.2, we use dynamic programming.
The details are omitted due to lack of space. The resulting P1 is a D-valid
(σp, σc)-cover of G such that w(P1) ≥ w(Optint) = β · w(Opt).

Theorem 7. Let ε be a constant with 0 < ε < 1. For the special case of GSP
where the input (G,D, σp, σc) satisfies |D| ≥ 9(σp + σc), there is an approxima-
tion algorithm that runs in O

((
σ2

c + 1
)
n3

)
time and achieves a ratio of 5−4ε

9 .
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5.5 The Special Case Where |D| ≥ 6(σp + σc)

Throughout this subsection, we assume that |D| ≥ 6(σp + σc). Suppose that we
modify the algorithm in Sect. 5.4 by replacing Step 5̌ with the following step:

5̌. For each path component P of H with |E(P ) ∩ M ′| ≥ 2, do the following:
(a) Partition E(P )∩M ′ into two nonempty subsets M ′

P,1 and M ′
P,2 such that

for each i ∈ {1, 2}, each connected component of P − M ′
P,i contains at

most one edge of M ′.
(b) For a random i ∈ {1, 2}, delete the edges in M ′

P,i from H. (Comment:
After this step, each connected component of H is a path P with |E(P )∩
(M ∪ M ′)| ≤ 5. So, K = H and k = 6 satisfy the conditions in Lemma 5,
if we replace M in the lemma by M ∪ M ′.)

Lemma 7. For each e ∈ M ′, the probability that e remains in P2 is at least 1
12 .

By Lemma 7, we have the following inequality:

E [w(P2)] ≥ 1
2
w(M) +

1
12

w(Optext) ≥
(

1
2
(1 − ε) +

1
12

(1 − β)
)

· w(Opt), (3)

Theorem 8. Let ε be a constant with 0 < ε < 1. For the special case of GSP
where the input (G,D, σp, σc) satisfies |D| ≥ 6(σp + σc), there is an approxima-
tion algorithm that runs in O

((
σ2

c + 1
)
n3

)
time and achieves a ratio of 7−6ε

13 .
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Abstract. Endovascular coiling is a primary treatment for intra-cranial
aneurysm, which deploys a thin and detachable metal wire inside the
aneurysm so as to prevent its rupture. Emerging evidence from medical
research and clinical practice has suggested that the coil configuration
inside the aneurysm plays a vital role in properly treating aneurysm and
predicting its outcome. In this paper, we propose a novel virtual coil-
ing technique, called Ball Winding, for generating a coil configuration
with ensured blocking ability. It can be used as an automatic tool for
virtually simulating coiling before its implantation and thus optimizes
such treatments. Our approach is based on integer linear programming
and computational geometry techniques, and takes into consideration
the packing density and coil distribution as the performance measure-
ments. Experimental results on both random and real aneurysm data
suggest that our proposed method yields near optimal solution. abstract
environment.

Keywords: Endovascular coiling · Optimization · Computational
geometry

1 Introduction

Intracranial aneurysms affect up to 5% of the US population [13]. The rupture
of the intra-cranial aneurysms triggers the sub-arachnoid hemorrhage which can
lead to a high mortality rate [16]. The risk of rupture is increased by the velocities
and volume of the blood flowing into the aneurysm. In recent years, a treatment
called endovascular coiling (or simply coiling; see Fig. 1) becomes one of the
most important and common surgical methods to prevent the rupture [7,8,10].
This treatment is performed by deploying a very thin and detachable metal wire,
called coil, within the aneurysmal sac through the arteries. Once the aneurysmal
sac is occluded with coils, a blood clot is formed around the coil due to the
response of human body, thus blocking off the aneurysmal inflow and significantly
reducing the risk of rupture. In practice, the coils can be pre-structured with a
specific shape in order to achieve an optimized occlusion rate in aneurysm.
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(a) Coils in aneurysms.

(b) Simulation of coil.

Fig. 1. Aneurysm and
coil [2].

Packing density is the ratio between the volume of
the inserted coils and the volume of the aneurysm. Cur-
rently, it is the only coil deployment parameter which
has been clinically correlated with aneurysmal occlu-
sion [1]. However, many studies show that there are
recurrence at high packing density and occlusion at low
packing density [12], which suggests that there exist
other factors (e.g., coil distribution) affecting the coil
treatment.

Several techniques have previously been developed
for coil embolization inside the aneurysms [1,4,9,15].
Due to their heuristic nature, they all suffer from var-
ious types of limitations when applied in clinical prac-
tice. Roughly speaking, there are two kinds of limita-
tions. (a) Techniques in [9,15] focus only on obtaining
the desired packing density, but ignore other factors
that may influence the occlusion. (b) Existing virtual
coiling methods often neglect the physical properties of
coil. For example, the technique in [9] deploys coil in a
random-walk fashion and does not view coil as elastic-
rod-like material, making it difficult to be applied in
practice.

In this paper, we develop a new virtual method,
called Ball Winding, to provide a rapid simulation tool for coiling. Combining
with computational flow dynamics tool to simulate the blood flow, such a virtual
tool could potentially provide critical information for doctors to optimize their
coiling treatments. Our proposed method has the flexibility in controlling pack-
ing density, and can also provide accurate geometric features of the coils for its
deployment. Our method considers three major issues critical to the performance
of coiling: (a) Blocking ability, (b) Deployability, and (c) Scalability.

Our method first approximates the 3D shape of the aneurysm sac by one
(or more) convex region(s). Then we carefully place a set of 3D blocking points
inside the convex region(s). The blocking points are locations where the coil is
expected to pass through. To avoid packing overly dense coil inside the aneurysm,
our method minimizes the total number of blocking points by using an integer
linear programming technique. After that, we generates a coil curve to pass
through the neighborhood of each blocking point. To ensure that the resulting
coil curve is scalable, we partition the space into layers, starting from the center
to the boundary of the aneurysm, where each layer has a ball or ellipsoid shape.
Then we deploy a smooth coil curve, in a ball winding fashion, from inner layers
to outer layers with minimized torsion and bending energy.

2 r-blocking

In this section, we build an integer linear programming model to generate
the blocking points inside the aneurysm sac. We view the aneurysm sac as a
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Fig. 2. Select a (red) line from
the lines intersecting the same
set of grid cells. (Color figure
online)

(a) Before r-blocking. (b) After r-blocking.

Fig. 3. Selecting blocking points by r-
blocking.

polyhedron P. To ensure the desired blocking ability, the blocking points are
expected to be placed in such a way that any line l across the aneurysm inter-
sects at least r balls centered at these blocking points and with radius δ for some
constant r and δ, where line l represents a possible direction of the blood flow
(note that since the blood flow could be reflected by the wall of the aneurysm,
the direction of its velocity could be arbitrary), and the ball centered at a block-
ing point p represents the blocking region of p (which is the maximum region
that a point of the coil can affect or slow down the blood flow). Thus, we have
the following r-blocking problem.

Definition 1 (r-blocking). Let P be a polyhedron in R
3 with diameter D. A

r-blocking of P is a set of points B = {b1, b2, · · · , bm} inside P with minimum
cardinality such that for every line l intersecting with P, there are at least rDl/D
points {bl1 , bl2 , · · · , bl�rDl/D�} ⊂ B satisfying the condition of

d(bli , l) ≤ δ, 1 ≤ i ≤ �rDl/D�, (1)

where Dl is the length of intersecting segment l ∩ P, d(bli , l) is the Euclidean
distance between point bli and line l, and δ is a predefined constant (i.e., radius
of a blocking region of a coil point).

To solve the above r-blocking problem, we first investigate its hardness, and
consider the following minimum line cover problem.

Definition 2 (Minimum Line Cover (MLP)). Given a set L of lines, the
minimum line cover problem is to find a minimum-cardinality set of points P
such that there is a least one point in P on each line in L.

Theorem 1. The r-blocking problem is NP-hard.

Proof. To prove this theorem, we first notice that the MLP problem is NP-
hard [3,6]. Thus, our main idea is to reduce the MLP problem to our r-blocking
problem. For this purpose, we first consider a restricted version of the r-blocking
problem called direction-fixed r-blocking. It is obtained by first building a grid
of edge length 2δ/

√
3 inside P, and then finding a set of lines in the following
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way: for all lines passing through the same set of grid cells, randomly select one
of them (see Fig. 2). This will give us a finite number of lines. Then, we reduce
the MLP problem to this restricted version of r-blocking problem. To do this, we
construct a sufficiently large cube (as the polyhedron P) containing all possible
intersection points of the lines in L. The MLP problem then becomes a special
case of the direction-fixed r-blocking problem with r = 1. This means that the
direction-fixed r-blocking problem is NP-hard. Since direction-fixed r-blocking
problem is a restricted version of the r-blocking problem, we can easily reduce
the restricted version to the unrestricted version. Thus, the r-blocking problem
is also NP-hard. �	

After understanding the hardness of the problem, we now generate the set
of blocking points inside the aneurysm sac P. We first perform the following
pre-processing.

1. Build a grid in P with grid points G = {g1, g2, · · · , gn} (see Fig. 3a). The
distance between every neighboring pair of points is no more than 2δ.

2. Select a set of lines representing all possible directions of the blood flow in
the following way: For all lines within δ distance to the same set of points, we
pick exactly one of them as their representative (see Fig. 2). Let the resulting
set of lines be L = {l1, l2, · · · , lλ}.

Clearly, our goal is to find a set of blocking points B = {gB
1 , gB

2 , · · · , gB
m}

with minimum cardinality from G such that each line l in L is within δ distance
to at least �rDl/D� points in B.

Next, we introduce an integer linear programming model for finding the
desired set of blocking points B.

For each point gi ∈ G, we introduce an indicator variable xi. xi equals 1 if
gi ∈ B, and 0 otherwise. For the line set L, we generate a coefficient matrix
A ∈ R

λ×n in the following way. The i-th row of A corresponds to line li and
entry aij (i.e., the entry in the i-th row and j-th column) encodes the distance
information between line li and point gj ∈ G. aij equals 1 if the distance between
li and gj is smaller than (or equal to) δ, and 0 otherwise.

Integer Linear Programming

min
n∑

i=1

xi (2)

s.t. xi ∈ {0, 1},∀1 ≤ i ≤ n (3)
n∑

i=1

ajixi ≥ �rDlj/D�,∀1 ≤ j ≤ λ (4)

Theorem 2. The optimal solution of the above integer linear programming is
equivalent to the optimal solution of the r-blocking problem in aneurysm sac P.
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Since solving an integer linear program is in general NP-hard [11,14], we first
relax the above integer linear programming formulation to a Linear Program-
ming by replacing the integrality constraint (Eq. (3)) with

0 ≤ xi ≤ 1,∀1 ≤ i ≤ n. (5)

Solving the above linear programming, we obtain a non-negative vector
X = (x1, x2, · · · , xn)T . Since X is not necessarily a 0/1 vector, to yield a fea-
sible solution to the integer linear programming problem, we need to perform
a rounding procedure on X. Our rounding algorithm is motivated by the idea
that the r-blocking problem can be viewed as the union of r carefully selected 1-
blocking problem (i.e., the case of r = 1). Our approach is thus to first solve the
1-blocking problem by using a multi-level rounding technique. After log λ rounds,
we obtain an integral solution to the 1-blocking problem. To yield a solution to
the r-blocking problem, we then repeatedly solve the 1-blocking problem until
a feasible solution to the r-blocking problem is achieved. At each iteration, we
“cancel” the solution to the 1-blocking problem obtained in previous iterations
so that the number of blocking points increases for each line in L.

Below are the main steps of our rounding algorithm, where the vector multi-
plication of U = (u1, u2, · · · , un) and V = (v1, v2, · · · , vn) is defined as follows

U ⊗ V = (u1v1, u2v2, · · · , unvn). (6)

Algorithm 1. Rounding Algorithm
1: Initialize an n index set {Ind1, Ind2, · · · , Indn} with each Indi = 0. Set λ̄ = λ.
2: Solve the linear programming of 1-blocking and output solution vector X.
3: Let Ai denote the i-th (1 ≤ i ≤ n) row of A and A

′
i = Ai ⊗ XT . Select the top λ̄

2

rows based on the value of max(A
′
i). For each selected row Ai, if aijxj = max(A

′
i),

set Indj = 1. Note that if there are more than one xj satisfying aijxj = max(A
′
i)

in the i-th row, randomly set one index Indj to 1.
4: Add the following constraint to the linear programming: for1 ≤ i ≤ n, if Indi = 1,

then set xi = 1. Let λ̄ = λ̄
2
.

5: Repeat Step 2-4 until λ̄ < 1.
6: Let X be the solution vector after Step 5, and Y = (y1, y2, · · · , yn)T = AX. Take

out all such rows Ai of A satisfying yi < �rDli/D� to form a new matrix Ā.
7: Set A = Ā and let λ̄ be the number of rows of A. For all i, if Indi = 1, set entries

in i-column of A to 0.
8: Repeat Step 2-7 until every yi is no less than �rDli/D�.

The running time of the above rounding algorithm is O(T (n, λ)r log λ), where
T (n, λ) is the time needed for solving the linear programming problem. Experi-
ments in Sect. 4 show that the above algorithm yields near optimal solution.
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3 Ball Winding Approach for Blocking Points

Once obtaining the set B of blocking points, we need to compute a coil curve to
pass through these points or their neighborhoods to achieve the desired blocking
performance. In order to do this, we have to resolve two main issues, deployability
and scalability. Deployability is to determine whether a computed coil curve
configuration is able to be deployed inside the aneurysm sac, and scalability
concerns whether we can uniformly deal with aneurysms with different sizes.
For deployability, we consider two major factors: (1) whether the coil curve
will encounter any deadlock (a drawback of some exist methods [9]) during its
deployment process, and (2) whether the coil curve is stable or, in other words,
whether its energy (including both torsion and bending energy) is minimized. To
resolve these issues, we propose the following ball winding approach, motivated
from the concept of winding a yarn into a ball.

We first compute a minimum enclosing ball B(P) of P, and evenly partition
P into L layers using L-1 spheres concentric with B(P). Then, starting from a
blocking point s in the innermost layer, we compute a narrow slab Ds (i.e., a
region bounded by two parallel planes with width 2ε for some small ε ≤ δ; in
Sect. 3.1) to contain s and a maximum number of blocking points Gs inside the
current or neighboring layer (for the purpose of minimizing the coil length).

We use the algorithm in Sect. 3.3 to find a coil curve passing through all points
in Gs with minimum bending energy and almost 0 torsion energy. Therefore, the
computed coil curve for Gs is stable (i.e., major factor (2)).

After obtaining the coil curve for Gs, we then start from the last point s′′

of the coil curve and repeat the above procedure until all points are finished
(in a layer-by-layer fashion). During the winding process, the two consecutive
slabs change their orientation. To avoid causing large torsion energy, we assume
that the coil has been pre-shaped at the starting point s of each slab. Thus
the whole coil curve will have minimized energy. Also since the coil curve is
winded in a layer-by-layer fashion, it will not be blocked by existing coil curve
and thus avoids the deadlock problem (i.e., major factor (1)). This means that
the resulting coil curve is deployable. Clearly, the winding procedure can handle
aneurysms with different sizes in the same way, thus it is also scalable.

3.1 Finding a Narrow Slab

Let s be a starting point, and Bs be the set of points in the same or neighboring
layers of s which have not yet been processed. To find the aforementioned slab
Ds, we first notice that Ds has to satisfy the condition that Ds maximizes the
set Gs = {p ∈ Bs|p is inside Ds} among all possible slabs with width 2ε and
containing s on its center plane. Figure 4a gives an example of starting point s
(green point) and its slab Ds.

Denote ns as the normal vector of Ds. Since s lies in the center plane of
Ds, Ds can be uniquely determined by s and ns. Therefore, finding slab Ds can
be reduced to searching for a vector ns which maximizes the cardinality of the
following set (see Fig. 4b in which point p is in the set of (7) but q is not)
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(a) s and its slab Ds. (b) Vertical section of Ds.

(c) Strip-vector region of p. (d) Max overlapping area.

Fig. 4. Finding normal vector to determine Ds.

{p ∈ Bs : |−→ps · ns| ≤ ε}. (7)

Dividing both sides of Eq. (7) by ‖−→ps‖ and since
−→ps

‖−→ps‖ is a unit vector, our
problem of finding ns in the Euclidean Space can be converted to a problem in
sphere S2.

Definition 3 (Strip-Vector Region of p). For any p ∈ Bs, a strip-vector
region of p is defined as

Rp = {t ∈ S2 : |
−→ps

‖−→ps‖ · −→
ts | ≤ ε

‖−→ps‖}. (8)

The colored strip in Fig. 4c is Rp. Similar to vector ns, the vector
−→
ts formed by

any point t in the strip-vector region of p also satisfies inequality (7). Thus,
−→
ts

can be viewed as a candidate for ns. This implies the following lemma.

Lemma 1. Finding a vector ns that maximizes the cardinality of the set in (7)
is equivalent to finding a vector

−→
ts such that t lies in the common intersection

of a maximum number of Rp’s for all p ∈ Bs.

The colored area in Fig. 4d is the common intersection of a maximum number
of strip-vector regions. The corresponding vector

−→
st of any point t in this area

can be used as the desired slab’s normal vector ns.
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Algorithm 2. Algorithm for Finding-Slab Ds

Input: Blocking point s and all blocking points in Bs.
Output: Slab Ds.
1: Let s be the center of sphere S2.
2: For all points in Bs, generate their strip-vector regions on S2.
3: Compute the arrangement (i.e., the partition of S2 induced by the intersections of

the set of Rp’s) of the set of strip-vector regions on S2, and find the region with
the maximum number of overlappings. Let t be an arbitrary point of the region.

4: Output the Slab Ds centered at s and with normal vector
−→
st .

3.2 Relaxation for the Finding-Slab Algorithm

Step 3 in the Algorithm 2 can be implemented by computing the arrangement [5]
of the 2|Bs| curves bounding each strip-vector region Rp. However, since all the
curves are on the unit sphere S2, its computation could be complicated. To
simplify the computation, we propose the following relaxation.

First, we build a bounding box containing S2 (see Fig. 5a). Then we imagine
that there is a light source right at the center s. This will project all strip-vector
regions to the surface of the bounding box. Figure 5b shows the projection on one
side of the bounding box. This may cause a little deformation on each strip-vector
region, but the topological relationship of overlapping stays the same. Thus, our
problem of finding overlapping areas on S2 can be converted to the problem of
finding overlapping areas on surface of the bounding box. Since each side of the
bounding box is a 2D shape, the computation can be greatly simplified. Once
the region with the maximum number of overlapping is determined on the 6
sides of the bounding box, we randomly select a point t′ from the region, and
project it back to S2 to obtain the desired point t.

Algorithm 3. Algorithm for Coil Curve Generation
1: Project all the points in Gs to the center plane of Ds along the direction of the

normal vector. Let G′
s be the projection of Gs and p′ be the projection of p ∈ Gs.

2: Compute the circumcircle C of G
′
s and let c denote the center of C. Use a set of

concentric circles inside C to divide C into layers. Note that by adjusting the radius
or the number of concentric circles, we can make s either in the innermost layer or
in the outermost layer (see Fig. 6a).

3: Calculate all angles between
−→
cp′ and −→cq (∀q ∈ G

′
p). In each layer of C, sort all

points based on their angular order. If s is in the innermost layer, add points in
the arranged order from inner layers to outer layers into a queue Q; otherwise, add
points from outer layers to inner layers. Figure 6b shows an example of ordering all
points in Gs where s is in the innermost layer.

4: Use a cubic spline to connect all points in G′
s in the order of Q as the coil curve

(Fig. 6c).
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(a) Bounding box of S2. (b) Projection to one side.

Fig. 5. Projecting strip-vector regions onto the bounding box.

(a) Partition points into
layers.

(b) Sort points by their
angular order.

(c) A segment of coil curve for
points in one slab.

Fig. 6. Steps to generate coil curve for Gs.

3.3 Coil Curve Generation

Once obtaining the set Gs of blocking points inside a slab Ds for a starting
point s, we need to generate a coil curve to pass through the neighborhoods of
all points in Gs. To ensure the generated coil curve has low bending energy, we
use Algorithm 3.

4 Evaluations

To evaluate the performance of our proposed ball winding approach, we imple-
ment our algorithms on a Windows PC with a CPU i5-3570, 3.4 Ghz and 32 GB
memory. We consider two types of data, one is randomly generated data set with
ground truth and certain level of noise, and the other is in vivo aneurysm data.

4.1 Performance of the r-blocking Algorithm

We validate our r-blocking algorithm using two experiments. The first experi-
ment is for comparing the performance of our rounding algorithm with a Matlab
built-in binary integer programming function bintprog on real data set. The
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(a) Running time comparison. (b) Error rate comparison.

Fig. 7. Rounding vs bintprog. (Color figure online)

second experiment is for evaluating the performance of the r-blocking algorithm
on random data sets.

Rounding vs bintprog: To determine the performance of our rounding tech-
nique (in Sect. 2), we show its comparison with a Matlab function bintprog
which is a binary integer programming solver. We build a grid with n grid points
in a real aneurysm sac, where n varies from 8 to 8000. r is chosen to be around
half of the average number of grid points in the neighborhood of each line.

Figure 7a shows that the running time of our rounding algorithm is a growing
(slightly super-linear) function of the number (denoted as n) of grid points, which
is consistent with its time complexity. The running time is acceptable even for
large n. The running time for bintprog is short when n is small. However, when
n is larger than 800, it takes more than 20000 seconds (≥ 5 h) without generating
any result. Figure 7b shows the error rate comparison, where error rate is the
percentage of the number of redundant blocking points on each line comparing
to its optimal solution. Experiments suggest that the error rate of our rounding
algorithm is around 0.08, which is near optimal.

Random Data: We first randomly generate n points in the space as ground
truth (base points). Then randomly choose pairs of the base points to generate
lines (i.e., each line passes a pair of base points). Every base point is on at least
two lines and each line intersects with r other lines. We also add k noise points
and each noise point lies on at most one line. The expected point chosen rate
for the r-blocking problem on the above data set is n

n+k .
To show the robustness of our method, we test it on different level of noise,

where n varies from 10 to 1000 and r varies from 1 to 10. For each data size, we

Table 1. r-blocking on random data.

Noise level 10% 20 % 30 % 40% 50 %

Expect 0.8929 0.8000 0.6993 0.5988 0.5000

Output 0.8929 0.8133 0.7016 0.6168 0.5250
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Fig. 8. Generated coil configurations for three aneurysm datasets.

Table 2. Performance comparison

Methods Blocking ability Deployable Packing
density

Coil dis-
tribution

Real
time
genera-
tion

Cause
dead-
locks

Ball winding Guaranteed Yes Flexible Evenly Yes No

DPP No guarantee No Around
30 %

No
consider-
ation

Yes Yes

SLB No guarantee Yes Not
men-
tioned

No
consider-
ation

Yes Not
men-
tioned

run 6 times and take the average. Table 1 shows the results, which also suggests
that our algorithm yields near optimal solutions.

4.2 Performance of Coil Generation for Real Aneurysm Data

We also validate our ball winding approach using several in vivo aneurysm 3-D
meshed images from patients. Figure 8 shows the results.

Comparison with Previous Work: We first note that no existing method is
capable of generating coils that guarantee occlusion and ensure no recurrence.
Also, since there is no ground truth for “optimal” coil, it is difficult to deter-
mine the coil related parameters. In order to validating the performance of our
proposed approach, we compare our result with two existing results in several
aspects (Table 2). One of the previous result is a dynamic path planning (DPP)
approach [9] and the other one is based on serially-linked beams (SLB) [16].

5 Conclusion

In this paper, we propose an effective ball-winding method for generating coils
inside aneurysm. Our technique is based on a number of interesting ideas, and
has several unique advantages over existing techniques. Experimental results on
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both random and real human aneurysm data suggest that our technique yields
quality guaranteed solutions, and is computationally practical.
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Abstract. In this paper we present algorithms for computing 1-center
of a set of points for convex polyhedral distance function in �d for any
d. Given polyhedral P of size m, the running time of our algorithm for
computing 1-center of n points in �2 for convex polygonal distance func-

tion dP is O(nm log2 m). For d > 2, we present an O(33d2nm2 logd m)
algorithm to compute 1-center of n points in �d for convex polyhedral
distance function dP , |P | = m. Both the algorithms are linear time for
fixed d and fixed polyhedron P .

1 Introduction

In 1857, Sylvester [11] posed facility location problem of finding optimal location
of facility for n customers represented by points in the plane. Geometrically, this
problem is equivalent to finding the smallest circle that encloses the given set of
n points where optimal facility location is the center of this circle. This circle
is called minimum enclosing circle, minimum spanning circle or minimum P-
circle. The problem is also known as Euclidean 1-center problem or intersection
radius problem. For geometric objects other than points the facility location
problem is called minimum stabbing circle in plane and minimum stabbing ball
in �d. This problem has been studied for various types of facilities, clients as
well as various distance metrics. In 1983, Megiddo [8,9] settled the problem for
Euclidean distance metric in �d by giving an optimal O(n) algorithm.

Chew and Dyrsdale [4] introduced convex polyhedral distance function, dP .
Let C1 and C2 be two convex sets of points in �d. Let P be a convex polyhedra
of size m in �d with the origin o in its interior. The convex polyhedral distance
function dP (C1, C2) from C1 to C2 is defined as follows

dP (C1, C2) = inf{t ≥ 0 | t ∈ �, there exists p ∈ C1, q ∈ C2, such that q ∈ (tP + p)}

where tP +p is the polyhedra translated to p and scaled by a factor t ≥ 0. Chew
and Dyrsdale [4] presented an asymptotically optimal algorithm for computing
Voronoi diagrams based on dP . They solved all-nearest neighbors, minimum
spanning trees, largest empty convex shape, motion planning for a convex shape
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 41–52, 2016.
DOI: 10.1007/978-3-319-39817-4 5
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using Voronoi Diagram for dP . It seems their construction of Voronoi diagram
for dP may be used to compute farthest Voronoi diagram for dP which may then
be used implicitly to compute 1-center for convex distance functions in super-
linear time. Icking and Ma [6] showed that the size of the Voronoi diagram of a
set of n points for dP is tightly bounded by θ(n2). This bound holds for farthest
Voronoi diagram for dP too. Any method for the computation of 1-center using
farthest Voronoi diagram for dP will have Ω(n2) complexity for n points. Alonso
et al. [1,2] showed how we can compute minimum enclosing balls, circumballs
and circumcentres of simplices in normed planes.

In this paper we show how to compute the 1-center of n points for convex
polyhedral distance function in any dimension optimally in O(n) time. We believe
that this is the first attempt to solve the 1-center problem in linear time for any
non-metric distance function. Observe that dP is not symmetric and hence it is
not a metric. Conventionally, we call the “polyhedral distance function” as the
“polygonal distance function” in �2.

Sharir and Welzl [10] formulated a framework for LP-type problems to solve a
class of optimization problem using randomization techniques. Matousek et al. [7]
gave a randomized algorithm to solve a general LP-type problem in expected
O(n) time. Chazelle and Matousek [3] gave a linear deterministic algorithm to
solve LP-type problems with some additional computational constraints using
derandomization. We observe that the problem discussed here is in the frame-
work of LP-type problem, so it may be solved in expected linear time. But
proposing a deterministic linear time algorithm in n is the main challenge of
this paper. We are also able to keep the dependence of running time complexity
on m to a poly-logarithmic factor of m in �2 and m2 in �d, where m is the size
of convex polyhedra in the convex distance function.

In Sect. 2, we give some useful concepts and an algorithm to compute
bisectors of two objects for convex polyhedral distance function. In Sect. 3
we present a linear time algorithm for computing 1-center of point in �2 for
convex polygonal distance function constraint on a given line. In Sect. 4 we
present an O(nm log2 m) algorithm for computing 1-center of n points in �2

for a convex polygonal distance function dP , |P | = m. In Sect. 5 we present a
O(33d

2
nm2 logd m) to compute 1-center of n points in �d for convex polyhedral

distance function dP , |P | = m.

2 Concepts and Primitives

Note that the distance function dP is not a metric as dP is not symmetric. Let
S be a finite set of n convex sets in �d, S = {Si : 1 ≤ i ≤ n}. The 1-center
of S for convex polyhedral distance function dP is the point c ∈ �d such that
the maximum of the distances from sets Si’s to c is minimized. See Fig. 1. This
problem is equivalent to the following min-max optimization problem:

min
c∈�d

max
1≤i≤n

dP (Si, c)
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Fig. 1. 1-center c of set S for convex
polygon distance dP in �2

Fig. 2. Bisector BP (p, q) of points p
and q in �2

Due to asymmetric nature of dP , there is another similar min-max optimiza-
tion problem:

min
c∈�d

max
1≤i≤n

dP (c, Si)

This problem can be reduced to the earlier problem by replacing the convex
polyhedron P by the polyhedra −P . −P is the polyhedra {−x | x ∈ P}. The
origin o will be in the interior of −P since o is in the interior of P . −P is
also termed as the point reflection of P about o. We can show that dP (c, Si) =
d−P (Si, c). Therefore, solving one of the above problems leads to solving the
other.

The problem of 1-center for convex polyhedral distances is equivalent to the
problem of finding the minimum enclosing polyhedron with a fixed shape and
orientation if the sets Si’s are points. If the sets Si’s are convex sets, the prob-
lem is equivalent to the problem of finding the minimum intersecting/stabbing
polyhedron with a fixed shape and orientation.

Our algorithm hinges on computing bisectors of geometric objects in S effi-
ciently. The prune and search technique that we employ does not drop a fraction
of input size in every iteration. Instead we use a weighted prune and search to
drop a fraction of weight in each iteration.

The bisector of two points p and q, BP (p, q), is the set of points that are
equidistant from both of them. Set theoretically, the bisector is set of points
given by {x | dP (p, x) = dP (q, x)}.

In �2 the bisector of two points consists of piecewise non-intersecting line
segments, with non-intersecting unbounded rays or wedges at both ends. See
Fig. 2. We refer these line segments, rays and wedges as segments of the bisector.
The following lemma states the computational complexity of the bisector of two
points.

Lemma 1. The bisector of two points p and q in �2 for a convex polygonal
distance function dP can be computed in O(m) time, where |P | = m.



44 S. Das et al.

Proof. We compute the bisector of p and q by simultaneously traversing the two
polygons P + p and P + q. The procedure of computing bisector is as follows.
Without loss of generality assume that p and q are not on a vertical line and p
is left of q.

We start at points of polygons P + p and P + q that are above pq and are
at maximum perpendicular distances from pq. Let x and y initially be these two
points respectively. If x and y are on collinear edges, then we let x to be rightmost
point of the edge of P + p and y to be leftmost point of the corresponding edge
of P +q. We traverse P +p clockwise and P +q counter-clockwise, keeping x and
y both on the boundaries of P + p and P + q respectively, such that line xy is
always parallel to line pq (see Fig. 2). The bisector consists of intersection points
of rays −→px and −→qy if lines xy and pq are parallel. This follows from the Intercept
Theorem. Observe that the bisector is piecewise linear except at the wedges.
Therefore we compute the bisector as the set of points of inflection when either
x or y is at a vertex of P . We terminate the procedure when x and y reach the
maximum perpendicular distance points from pq below pq. It should be noted
if P has an edge parallel to pq, then we get wedges at the corresponding end
of the bisector, which we compute separately. This procedure implies an O(m)
algorithm. �

Observe that the bisector, by the construction of Lemma 1, is monotonic in
the direction perpendicular to pq except at wedges, that is, the bisector in non-
wedge portions, intersects every parallel line to pq at one and only one point. At
the wedges, the bisector intersects every parallel line to pq in an interval.

When p and q are points in �d, the algorithm to construct the bisector is
similar traversal algorithm, except we need to traverse the surface of polyhedra
P + p and P + q which consists of higher dimension faces. We can still compute
the bisector efficiently in linear time of the size of the bisector. We use the
bisectors in the algorithms of Sects. 3, 4 and 5.

3 Computing 1-Center Constrained on a Line
Segment for Points in �2 Under Convex Polygonal
Distance Function

Let S be set of n points in �2. Let L be a given line segment on the plane. We
show in this section how we can compute 1-center of S that is constrained to lie
on line segment L for convex polygonal distance function dP . This is equivalent
to solving the following optimization problem

min
c∈L

max
p∈S

dP (p, c).

Let cL be the solution of the min-max optimization problem which is the 1-center
constrained on the line L.

We compute cL using weighted prune and search technique as given below.
We use weights to improve the efficiency of algorithm. Instead of point removal,
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weight trimming leads to decreased number of search operations. After every
iteration we update S whenever points, that do not change 1-center, are dropped.

First we arbitrarily pair the points in S to get �n/2� point-pairs. We compute
the bisectors of every point-pair. Each bisector has at most m − 2 points of
inflection.

Let B be the set of bisectors in consideration in any iteration, and let I be
the interval inside line segment L where the constrained 1-center cL is known
to lie. Initially, B is the set of all �n/2� bisectors of above point pairs, and I
is whole line segment L. We also associate a weight to each bisector b ∈ B. In
each iteration of the algorithm we drop a fraction of total weight of bisectors of
B as well as shorten the possible interval I where an optimal 1-center cL lies.
We may also drop some of the bisectors in B and then add some other bisectors
in each iteration. However, we may not necessarily drop bisectors in each and
every iteration of the algorithm.

We assume that B contains only those bisectors that have segments crossed
by I. If a bisector does not satisfy this property, then we can drop the nearer
point of the defining points and re- pair with some other unpaired point.

We assign a weight to a bisector b in such a way that in every iteration
we drop at least a fraction of total weight. The weight is dropped due to the
reduction of weights of some bisectors, and dropping of some other bisectors.
We give higher weights to bisectors intersecting I more number of times. We
determine the weight of a bisector b by counting the number of proper crossings
of the interior of the interval I with segments of bisector b. The crossing at
any wedge, ray or line-segment of b is called proper crossing only if I crosses
the bisector fully. We fix w as 21/(�log2(m−1)�+1). We assign weights 1, w, w,
w2, w2, w2, w2, w3, . . . , w�log2 k�, . . . , wlog2(m−1) to bisectors for which I crosses
1, 2, 3, 4, 5, 6, 7, 8, . . . , k, . . . (m − 1) times respectively.

We begin every iteration of the algorithm by recomputing crossings and
weights of the bisectors b in B.

For all the bisectors b ∈ B, we compute the number of crossings of b with
interior of the interval I. Suppose there are k crossings (k ≥ 1). Let the 	k/2
-th
crossing of b with the interior of I be p(b). For a crossed wedge p(b) is any point
in the crossing. We assign p(b) same weight as the weight assigned to the bisector
b, that is, w�log2 k�. We compute the weighted median xm of all p(b), b ∈ B.

We wish to determine which side of xm in the interval I, an optimal 1-
center cL lies. To do this, we determine the points in S such that dP (p, xm)
is maximum. Equivalently, we find those points p ∈ S for which d−P (xm, p) is
maximum. We call these extreme points, and let the set of extreme points be
Smax. To find all extreme points, we compute a scaled polygon −P translated
to xm with minimum positive scale that contains all points of S. Let this scaling
factor be tmax. Naturally, tmax ≥ dP (p, cL) as cL minimizes the distance for
all points p ∈ S and specifically for the extreme points in Smax. Thus cL lies
inside the polygon P translated to an extreme point pm ∈ Smax and scaled to
touch xm, that is, polygon (pm + tmaxP ). So, xm lies in the interior of I and on
the boundary of polygon (pm + tmaxP ), that is, cL ∈ I ∩ (pm + tmaxP ) for an
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Fig. 3. 1-center in �2 constrained on a
line-interval I

Fig. 4. 1-center in �2 lies in region J

extreme point pm ∈ Smax. See Fig. 3. This not only gives us the side of xm in I
that 1-center cL lies but also a shortened interval where cL is known to lie. We
compute the intersection of all such intervals. We call this interval Inew. Two
cases arise. One, the intersection Inew is the single point xm in which case we
terminate our algorithm and return xm as an optimal 1-center cL for the convex
distance function dP constrained on L.

In the other case, the intersection Inew in not empty. For those bisectors b
that do not cross interval Inew, the whole of line segment I lies in one of the
regions partitioned by the bisector b. This means that one of the defining points
of bisector b is always nearer than other defining point for convex polygonal
distance dP . We drop the nearer point, as the farther point will always be farther
from Inew than the dropped point. We preserve the farther point for the next
step. We also remove these bisectors from B and from further computation.

We arbitrarily pair the preserved points from the previous step, compute
their bisectors and include these bisectors in B after ensuring that the bisectors
intersect Inew (otherwise we drop a point and consider next point for pairing).
There might be a single left over point for odd number of points.

If Inew is smaller than I then we repeat the iteration with I as Inew and the
new B. Otherwise, if Inew is same as I we use any straight forward algorithm to
compute cL and terminate the algorithm.

Briefly the steps of algorithm are as follows:

1. We compute the crossings of b ∈ B with I and compute its weight.
2. We compute middle most crossing p(b) of bisector b ∈ B.
3. We compute weighted median xm of the middle most crossings p(b)’s, for

b ∈ B.
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4. We identify the side of the weighted median xm w.r.t. I in which the con-
strained 1-center cL lies. I is restricted to Inew accordingly.

5. If Inew is a single point xm then we terminate the algorithm and output xm

as cL.
6. We drop the nearer points for bisectors in B, that do not cross Inew, and

preserve the farther points. We remove these bisectors from B.
7. We re- pair the preserved points of the broken pairs. We compute their bisec-

tors and include them into B.
8. We repeat from step 1 until B remains unchanged.
9. We compute cL using any straight forward algorithm.

3.1 Algorithm Analysis

Theorem 1. The 1-center of a set S of n points, constrained on a line segment
L, for a convex polygonal distance function dP , with P of size m, can be computed
in O(nm log m) time.

Proof. We can compute the initial B in O(nm) time.
Let W be weight of bisectors in any iteration. Initially we start with total

weight W ≤ n · w�log(m−1)�. At every iteration we drop at least a fraction of the
weight W .

We can compute the bisector crossing of b with I in O(m) time from Lemma 1.
The time complexity of each iteration is O(|B| · m), where |B| is the cardinality
of B. Also,
W ≥ |B| ≥ W/(w�log(m−1)�) ≥ W/2, since all weights are between 1 and 2.

At the end of every iteration, a subset of bisectors in B with at least half of
the weight have middle most segment that is earlier crossed by I in the interior,
now outside of restricted I, Inew. When any bisector in this subset do not have
any segments crossed by Inew, then a defining point is dropped and the remaining
point is paired again in next iteration. This means that two bisectors with weight
at least 1 are removed and one bisector with weight at most w�log2(m−1)� = 2/w
is added. This also leads to a weight reduction by a factor of w. Note that even
if we have a single remaining unpaired point, it does not change the analysis
much.

If any bisector in the subset above has segments crossed by Inew, and the
number of such crossed segments is k, then this bisector will have at least 2k +1
segments crossed by I at the beginning of the iteration. Thus the weight of
this bisector is reduced from at least w�log2(2k+1)� to w�log2 k�, i.e., the weight is
reduced by a factor of w.

Thus the recurrence relation for worst case time complexity F (W ) : �+ → N,
when the weight is W , is given by:
F (W ) ≤ F (W/2 + W/2w) + O(|B| · m), if W > W0

F (W ) = O(1), if W ≤ W0, for some fixed small weight W0.
This equation reduces to,
F (W ) ≤ F (W (1/2 + 1/2w)) + O(�W � · m)
⇒ F (W ) = O(�W/(1/2 − 1/2w)� · m).
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This gives us the worst cast time complexity T (n) of the algorithm.
T (n) = F (n/2 · w�log2(m−1)�)
= O(�n · w�log2(m−1)� · m/(1/2 − 1/2w)�)
= O(�n · w�log2(m−1)+1� · m · 2/(w − 1)�)
Since w = 21/(log2(m−1)+1) and 1/(e1/x − 1) = x − 1/2 + O(1/x) for x > 1, it
follows that T (n) = O(�n · m · log2(m − 1)�) �

4 Computing 1-Center for Points in �2 for a Given
Convex Polygonal Distance Function

Let S be set of n points in �2. S will be updated as we iterate through our
algorithm by dropping points such that 1-center is unchanged. We show how
we can compute 1-center of S for a given convex polygonal distance function
using the algorithm of Sect. 3 and the prune and search technique. In every
iteration we update S by dropping some points that do not change 1-center.
In this section the problem of computing 1-center is equivalent to the min-max
optimization problem minc∈�2 maxp∈S dP (p, c). Let c be the solution of the min-
max optimization problem which is 1-center.

We can use 1-center cL of S for the convex polygonal distance function dP
that is constrained on line L, to determine whether it is also the unconstrained 1-
center, and if it is not, we can determine the side of L the unconstrained 1-center
of S for the convex polygonal distance function dP lies. We compute the smallest
positively scaled polygon −P translated to cL that contains all the points of S.
Let the scaling factor be tL. Then for all points p ∈ S, d−P (cL, p) ≤ tL, and
therefore, dP (p, cL) ≤ tL. It is obvious that optimal scaling factor tmax ≤ tL,
that is, dP (p, c) ≤ tL, and therefore c ∈ (p+tLP ). We just need to check only the
extreme points of S that are on the boundary of scaled −P translated to cL. Let
the set of these extreme points be Smax. Then c lies in region ∩pm∈Smax

(pm +
tLP ). Let this region be RL. Computing RL in the immediate neighborhood of
cL enables us to determine if cL is optimal, and if it is not, then the side of L
that c lies. If cL is optimal then RL will be a point or a line segment. If cL is
not optimal then RL will be a polygon touching cL but not crossing it, which
lets us determine the side of L that c lies.

Lemma 2. Given a line L, we can determine in linear time, whether the 1-
center c for points S in �2 for a given polygonal distance function dP , lies on
line L, and if it does not, then we can determine in linear time the side of line
L that c lies.

As before, we compute c by a weighted modification of prune and search
technique. First we arbitrarily pair the points in S to get �n/2� point pairs. We
compute bisector of each of these point pairs. Each bisector has at most m − 2
points of inflection.

Initially, let B be the set of all �n/2� bisectors. In every iteration, some
bisectors of B get dropped and some new bisectors get added. Also, let J be a
vertical trapezoidal or triangular region where we determine the 1-center to lie.
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Initially J is whole plane �2. In every iteration of the algorithm the region J
gets truncated. We ensure that at the end of each iteration the region J remains
a vertical trapezoid or triangle. Set B of bisectors and region J where 1-center
is known to lie are two important entities in the algorithm.

We give weights to a bisector b depending on number of segments of the
bisector b properly crossed by the interior of J . See Fig. 4. Let this number be
k and let w = 21/(�log2(m−1)	+1). We give weight w�log2 k	 to the bisector b. In
the algorithm given below, in every iteration, any bisector b is represented by a
line not necessarily one of its segments. The representative line for any bisector
b, denoted by l(b) is given as following: (1) if k for bisector b is 1, line l(b) is
the extended line of either the relevant line segment or ray that is crossed by J
in the interior, or any one of the side of the relevant wedge which is crossed by
interior of J , (2) if k for bisector b is greater than 1, then l(b) is a line orthogonal
to direction of monotonicity of b separating �k/2�-th and (�k/2� + 1)-th crossed
segment of b by interior of J . In brief, if b is crossed by interior of J more than
once, l(b) is the partitioning line that partitions the crossed segments of b roughly
in half.

In every iteration, in a way somewhat similar to the method proposed by
Megiddo [8], we compute three lines l1, l2 and l3 and determine which side of
l1, l2 does c lie. We refer this as oracle O. However, unlike Megiddo, we do not
ensure that we drop a fraction of points in every iteration. Instead, we ensure
that a fraction of weight is dropped in each iteration, while also ensuring that
the reduced region where c is known to lie remains trapezoidal.

All the bisectors in B have segments that are crossed by interior of J . We
compute the representative lines l(b) for b ∈ B. We compute the median slope
sm of l(b)’s and pair any line of slope ≥ sm with another line of slope ≤ sm.
We also compute their intersections, and store them in a set X. We compute
a line l1 that has slope sm and partitions the weighted intersections of X in
half. We use the algorithm presented in Sect. 3 as oracle O to restrict J if above
or below l1. We compute a line l2 which is vertical and partitions the weighted
intersections of X on the other side of restricted J in half. We again use the
oracle in Sect. 3 to restrict J if l2 intersects J . The restricted J may not be a
vertical trapezoid. If J is not a vertical trapezoid or a triangle, then we select a
line l3 that partitions J into two vertical trapezoids. We restrict J with respect
to l3 using the oracle of Sect. 3 once more. The final restricted J will be a vertical
trapezoid or a triangle.

If J is not reduced from what it was in the beginning of the iteration then we
terminate the algorithm and compute c by any straight forward method. Also,
if the oracle itself gives an optimal 1-center then there too we terminate the
algorithm and output the 1-center that oracle reports.

If J is reduced from what it was before, we check the bisectors b in the
set B. If b does not intersect the new restricted J , then we drop the nearer of
the defining points of the bisector b and keep the farther defining point of the
bisector b. We also remove such bisectors b from B.
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After removing all the bisectors that have a point dropped in the previous
step, we re- pair the kept points ensuring that the new bisectors have segments
that are crossed by the interior of restricted J . Then we repeat the iteration.

Briefly the steps of algorithm are as follows:

1. For each b ∈ B, we compute the segments of b that are crossed by J . Let
number of crossed segments be k.

2. We give weight w�log2 k	 to the representative line l(b) of bisectors in B.
3. We compute lines l1, l2 and optionally l3, for the set of l(b)’s, and run the

oracle O on them. Each succeeding line depending on the output of oracle on
preceding line. We restrict J accordingly. If any run of oracle outputs c then
we exit the algorithm.

4. We drop the nearer point for bisectors, whose segments are not crossed by J ,
and preserve the farther point. We remove these bisectors from B.

5. We re- pair the kept points of the broken pairs. We compute their bisectors
and include them into B.

6. We repeat from step 1 until B remains unchanged.
7. We compute c using any straight forward algorithm.

4.1 Algorithm Analysis

Theorem 2. The 1-center of a set of n points for convex polyhedral function
dP can be computed in O(nm log2 m) time using the algorithm in Sect. 4.

Proof. We compute the initial set of bisectors B in O(nm) time. Let W be the
total weight of all bisectors in B in any iteration. Initially we start with weight
W ≤ n·w�log2(m−1)	 which is reduced in every iteration as B gets modified. At the
end of every iteration bisectors corresponding to W/4 have their representative
line l(p) not intersecting the reduced J .

If for the corresponding bisector b, no segment of b is crossed by reduced
J then we drop the bisector b and introduce a new bisector for every two
dropped bisectors. Then a weight of at least 2 is dropped and a weight of at
most w�log2(m−1)	 is added. There is weight reduction by a factor of w for the
bisectors not intersecting the reduced J .

If for the corresponding bisector b, some segment of b is crossed by reduced
new J , and number of such intersections and crossings with reduced new J is
k then b would have at least 2k − 1 of segments crossed by the interior of non-
reduced old J . Then the weight of corresponding bisector is reduced from at
least w�log2(2k−1)	 to w�log2 k	, that is, weight is reduced by at least a factor w.

The recurrence relation for worst case time complexity F (W ), when the
weight is W is given by:
F (W ) ≤ F (3W/4 + W/4w) + O(|B| · m log2 m),W > W0

F (W ) = O(1),W ≤ W0.
This recurrence implies that the time complexity of the algorithm is
O(�nm log22(m − 1)�). Here |B| is the cardinality of B, which is atmost n

2 . �
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5 Computing 1-Center for Points in �d for Convex
Polyhedral Distance

Let S be a set of n points in �d. Let P be a fixed polyhedra of size m that
contains origin o in the interior. We call a k-dimensional face as a k-face, a k-
dimensional affine space as a k-space, a (k − 1)-space, say Ak−1, in a k-space,
say Ak, as a k-hyperplane of Ak, for any dimension k.

In this section we present the algorithm for computing in linear time the 1-
center of S with respect to convex polyhedral distance function dP . The method
that we propose is a search method in spirit of recursive multidimensional search
method proposed by Dyer in [5]. We observe that the bisector of two points can
be computed in O(m2) time. To simplify the structure of bisector and also the
presentation of algorithm we remove wedges in bisector by redefining bisector
BP (p, q) of two points p and q as boundary between closed sets {x | dP (p, x) ≤
dP (q, x)} and closure of open set {x | dP (q, x) < dP (p, x)}. The complexity and
correctness of the algorithm does not change by this modification. Points p and
q can be arbitrarily interchanged in the presentation of the algorithm.

First we note that the bisector BP (p, q) of two points p and q in �d for
convex polyhedral distance function dP is of size O(m2) and can be constructed
in time O(m2d3) where |P | = m. Also, the bisector BP (p, q) intersects any line
parallel to pq only at an equidistant single point to p and q and each subface of
the bisector BP (p, q) is convex. If the number of k-subfaces of polyhedra P is
mk and the number of k-subfaces of the bisector BP (p, q) of p and q is bk, then
bk ≤ mkmd−1 + mk+1md−2 + · · · + m�(d+k−1)/2�m�(d+k−1)/2	, 0 ≤ k ≤ d − 1
⇒ b0 + b1 + · · · + bd−1 ≤ m2.

We call the (d − 1)-faces of a bisector b as segments of the bisector b. The
computation and storage of a bisector, say b, of two points in S, say p and q,
that is b = BP (p, q), requires O(m2) time and space respectively. We can extend
(d−2)-subfaces parallel to pq to get O(m2) (d−1)-hyperplanes for each (d−2)-
subface of b. These hyperplanes will create a subdivision of �d. We can prove
this by using the fact that b is monotonic in hyperplane parallel to line pq. We
shall call this subdivision Sdiv(b) henceforth.

We construct an oracle Ok for 1-center of points in �d for convex polyhedral
distance function dP constrained on any given k-space recursively for 0 ≤ k ≤ d.
Note that the points are in �d but 1-center is constrained on a k-space. O0 is
straight forward. Let us assume that an oracle, Ok−1, for 1-center for convex
polyhedral distance function dP for set of points in �d constrained in (k − 1)-
space is available. Then this oracle can be used to compute 1-center for convex
polyhedral distance function dP for set of points in �d constrained in any k-space.
With each bisector b we keep a set of some of the (k−1)-spaces corresponding to
(k−1)-faces of subdivision Sk

div(b) of Ak. We denote this set by H(b). Initially it
consists of all the (k−1)-spaces corresponding to (k−1)-faces of the subdivision
Sk
div(b) of Ak. Also let the initial size of H(b) be M(b).

The steps of algorithm for oracle Ok:
Step 1: Let initial B be the �n/2� bisectors, for each b ∈ B we compute Sdiv(b),
Sk
div(b), H(b), K(b) and representative h(b), and assign it weight w(b)K(b) where
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K(b) = �log2 M(b)�9k−1 + c, 1 ≤ M(b) ≤ m2.
Step 2: Solve 9k−1 queries Ok−1 for representatives h(b)’s for b ∈ B. We also
determine which side of Ak with respect to the query space c lies. If any oracle
computes c then output c and terminate the algorithm.
Step 3: Bisector representatives corresponding to at least half of the weight, will
have new representatives or will be dropped which corresponds to a dropped
point.
Step 4: Remove the bisectors with dropped points from B.
Step 5: Re-pair the dropped points and introduce new bisectors for these pairs
in B along with computing Sdiv(b), Sk

div(b), H(b), K(b), representative h(b), and
weight w(b)K(b).
Step 6: If no points are dropped and no representative of bisector is replaced
then terminate the algorithm and compute c by any straight forward method.
Otherwise repeat from step 2.

Hence, the 1-center for a set of n points in �d can be computed in
O(33d

2
nm2 logd2 m) for convex polyhedral distance function dP for polyhedra

P of size m.
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Abstract. Zero forcing parameters, associated with graphs, have been
studied for over a decade, and have gained popularity as the number
of related applications grows. In this paper, we investigate positive zero
forcing within the context of certain edge clique coverings. A key object
considered here is the compressed cliques graph. We study a number
of properties associated with the compressed cliques graph, including:
uniqueness, forbidden subgraphs, connections to Johnson graphs, and
positive zero forcing.

1 Introduction

Suppose that G is a simple finite graph with vertex set V = V (G) and edge set
E = E(G). We use {u, v} to denote an edge with endpoints u and v. Further,
for a graph G = (V,E) and v ∈ V , the vertex set {u : {u, v} ∈ E} is the
neighbourhood of v, denoted as NG(v), and the size of the neighbourhood of v
is called the degree of v. For V ′ ⊆ V , the vertex set {x : {x, y} ∈ E, x ∈ V \ V ′

and y ∈ V ′} is the neighbourhood of V ′, denoted as NG(V ′). Also, we let the set
NG[v] = {v} ∪ NG(v) denote the closed neighbourhood of the vertex v. We use
G[V ′] to denote the subgraph induced by V ′, which consists of all vertices of V ′

and all of the edges in G that contain only vertices from V ′. We let Kn denote
the complete graph on n vertices. We will also refer to a complete graph on n
vertices as a clique on n vertices.

Our interest in this work is to consider how positive zero forcing sets are
related to cliques in a graph and, further, clique intersection, and edge clique
coverings. Zero forcing on a graph was originally designed to be used as a tool to
bound the maximum nullity associated with collections of symmetric matrices
derived from a graph G [1,2]. Independently, this parameter has been studied
in conjunction with control of quantum systems [4,14], and it has also been
studied within the context of fast-mixed searching [15]. Positive zero forcing was
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an adaptation of conventional zero forcing to play a similar role for positive
semidefinite matrices [3,7–9,16].

Zero forcing in general is a graph colouring problem in which an initial set
of vertices are coloured black, while the remaining vertices are coloured white.
Using a designated colour rule, the objective is to change the colour of as many
white vertices to black as possible. There are two common rules, which are known
as zero forcing and positive zero forcing. The process of a black vertex u changing
the colour of a white vertex v to black is usually referred to as “u forces v”. The
size of the smallest initial set of black vertices that will “force” all vertices black
is called either the zero forcing number or the positive zero forcing number of G
depending on which rule is used.

Here we are more interested in the behaviour of the positive zero forcing num-
ber in connection with cliques and edge clique coverings in a graph. In particular,
we consider the positive zero forcing number of G, when maximal cliques of G
satisfy certain intersection properties. Consequently, we now carefully review
some basic terminology associated with positive zero forcing in a graph.

The positive zero forcing rule is based on a colour change rule similar to the
zero forcing colour change rule [3,7,8]. Suppose G is a graph and B a subset
of vertices; we initially colour all of the vertices in B black, while all remaining
vertices are designated white. Let W1, . . . ,Wk be the sets of vertices in each
of the connected components of G − B (removing the vertices of B from G).
If u is a vertex in B and w is the only white neighbour of u in the induced
subgraph G[Wi ∪B], then u can force the colour of w to black. This rule is called
the positive colour change rule. If all vertices of G are black after repeatedly
applying the positive colour change rule, then the set of initial black vertices is
called a positive zero forcing set. The size of the smallest positive zero forcing set
of a graph G is called the positive zero forcing number of G, denoted by Z+(G).
If a subset S of V (G) is a positive zero forcing set with |S| = Z+(G), then we
refer to S as an optimal positive zero forcing set for G.

It is known that by following the sequence of forces throughout the con-
ventional zero forcing process, a path covering of the vertices is derived (see
[3, Proposition 2.10] for more details). When the positive colour change rule is
applied, two or more vertices can perform forces at the same time, and a vertex
can force multiple vertices from different components at the same time. This
implies that the positive colour change rule produces a partitioning of the ver-
tices into sets of vertex disjoint induced rooted trees, which we will refer to as
forcing trees, in the graph.

Cliques in a graph play an important role in determining both zero forcing
and positive zero forcing sets. We explore this correspondence further in this
paper. As an example, consider chordal graphs. For chordal graphs it is known
that the positive zero forcing number is equal to the number of vertices minus
the fewest number of cliques that contain all of the edges (see, for example, [9]).
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2 Simply Intersecting Edge Clique Coverings

Recall that a clique in a graph is a subset of vertices which induces a complete
subgraph. A clique in a graph is maximal if no vertex in the graph can be added
to it to produce a larger clique. An edge clique covering of a graph is a set of
cliques with the property that every edge is contained in at least one of the
subgraphs induced by one of the cliques in the set. (Note that unless the graph
has isolated points, an edge clique covering that contains every edge also contains
every vertex.) The size of an edge clique covering is the number of cliques in the
covering. For a graph G, we denote the size of a smallest edge clique covering
by cc(G). Further, we call a given edge clique covering minimal if the number
of cliques in this covering is equal to cc(G). An edge clique covering for a graph
G is called a min-max clique covering if its size is cc(G) and every clique in it is
maximal.

Observation. For any graph G, there exists an edge clique covering with size
cc(G) in which every clique is maximal, that is, there is always a min-max clique
covering of G.

Let C = {C1, . . . , C�} be an edge clique covering for G. If for any set of
distinct triples i, j, k ∈ {1, . . . , �} it is the case that Ci ∩ Cj ∩ Ck = ∅, we say the
clique covering has simple intersection. If the edge clique covering has simple
intersection, then a vertex that is in Ci ∩ Cj (where i �= j) does not belong to
any other clique in C. There are many examples of graphs with an edge clique
covering with simple intersection. Throughout this paper, we will only consider
the property of simple intersection for min-max clique coverings.

3 Non-unique Edge Clique Coverings

Let G be a graph with n vertices, which are labeled 0, 1, . . . , n − 1, and let
S = {k1, k2, . . . , k�} be a set of positive integers such that k1 < k2 < · · · <
k� < (n + 1)/2. The circulant graph, denoted by circ(n, S), has each vertex
i in {0, . . . , n − 1} adjacent to i ± k1, i ± k2, . . . , i ± k� (mod n). The graph
circ(6, {1, 2}) plays a key role in identifying graphs that possess a unique min-
max clique covering satisfying simple intersection.

This graph is isomorphic to the left graph in Fig. 1. This graph has one vertex
for each subset of {1, 2, 3, 4} of size two, and two vertices are adjacent if the sets
intersect. This graph is also known as the Johnson graph J(4, 2) [6].

The graph circ(6, {1, 2}) has two min-max clique coverings. One edge clique
covering of this graph is {C1, C2, C3, C4} where Ci is the set of all vertices with a
label that contains an i. A second edge clique covering is formed by the following
sets of vertices of circ(6, {1, 2}):

{{1, 2}, {1, 3}, {2, 3}}, {{1, 2}, {1, 4}, {2, 4}},
{{1, 3}, {1, 4}, {3, 4}}, {{2, 3}, {2, 4}, {3, 4}}.

The next fact is a key to characterizing the graphs that possess more than
one min-max clique covering.
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{3, 4}

{2, 4}
{2, 3}

{1, 2}

{1, 4} {1, 3}

{3, 4}

{2, 4} {2, 3}

{1, 2}

{1, 4} {1, 3}

{4}

Fig. 1. The graph circ(6, {1, 2}) (left), and a graph that contains circ(6, {1, 2}) (right).

Theorem 1. If a graph G has two distinct min-max clique covers that both
satisfy simple intersection, then G contains circ(6, {1, 2}) as an induced subgraph.

Unfortunately, the converse to Theorem 1 is false in general. A simple exam-
ple can be derived from the graph circ(6, {1, 2}) by adding an additional vertex
(see the right graph in Fig. 1). It is easy to verify that this graph has a unique
min-max clique covering that satisfies simple intersection, but certainly contains
circ(6, {1, 2}) as an induced subgraph.

4 Compressed Cliques Graphs

If a graph has a min-max clique covering that satisfies simple intersection, then
the graph can be simplified in a way that allows us to determine both the edge
clique covering number and the positive zero forcing number of the original graph
from the simplified graph.

Let G be a graph and S = {v1, v2, . . . , vk} a set of vertices in G. The con-
traction of S in G is the graph formed by replacing the vertices in S by a single
vertex vS , where vS is adjacent to any vertex in V (G)\S that is adjacent to a
vertex in S.

Let G be a graph with a min-max clique covering C = {C1, C2, . . . , C�} that
has simple intersection. We can construct a new graph that is related to G called
a compressed cliques graph. For distinct i, j ∈ {1, . . . , �} define the sets

Ci,j = Ci ∩ Cj , Ci,i = Ci\
⋃

j∈{1,...,�}
j �=i

Cj ,

(these sets may be empty). First, for each pair of distinct i, j ∈ {1, . . . , �}, if
Ci,j is non-empty, then contract all the vertices in Ci,j to a single vertex labeled
vi,j . Second, if Ci,i is non-empty, then contract all the vertices in Ci,i to a single
vertex; label this vertex vi,i. In this graph the vertices vi,j and vi′,j′ are adjacent
if and only if the sets {i, j} and {i′, j′} have non-empty intersection.
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We have seen that a graph may have multiple min-max clique covers that
satisfy simple intersection, for example, the graph circ(6, {1, 2}). However, for
this graph, the compressed cliques graphs, for either clique cover are isomor-
phic. In fact, both are isomorphic to circ(6, {1, 2}). Thus, an obvious question
is to verify that the associated compressed cliques graphs are isomorphic in the
presence of distinct min-max cliques covers satisfying simple intersection (see
the next section). Assuming this fact, we denote the compressed cliques graph
of G by C(G) and give some simple examples. For any integer n, C(Kn) = K1,
C(Kn\{e}) = P3(n ≥ 3), C(Cn) = Cn, and C(Pn) = Pn (where Pn is the path
with n vertices).

Theorem 2. Let G be a graph with n vertices and C = {C1, C2, . . . , Ck} be
a min-max clique covering of G. If C satisfies simple intersection, then C(G)
isomorphic to G if and only if all of the sets Ci,i and Ci,j for i, j ∈ {1, . . . , k}
contain no more than one vertex.

Corollary 1. Suppose G is a graph that possesses a min-max clique covering
having simple intersection. Then C(C(G)) = C(G).

We will make use of the following map φ : V (G) −→ V (C(G)) defined as

φ(v) =
{

vi,j if v ∈ Ci ∩ Cj ,
vi,i if v ∈ Ci and no other cliques. (1)

We will need the following fact in Theorem4.

Lemma 1. If there is a path from u to v in G, then either φ(u) = φ(v) or there
is a path from φ(u) to φ(v) in C(G).

5 Uniqueness of Compressed Cliques Graphs

We have seen that the circulant graph circ(6, {1, 2}) has two distinct min-max
clique covers that both satisfy simple intersection. Furthermore, if we expand
each vertex of circ(6, {1, 2}) to a clique of any positive size and expand edges
correspondingly (join the vertices of these cliques if the corresponding vertices
were adjacent in circ(6, {1, 2})), all of the resulting graphs have two distinct
min-max clique covers that both satisfy simple intersection. In order to ensure
the concept of a compressed cliques graph well-defined, we need to consider the
uniqueness of the compressed cliques graph up to isomorphism. We will show that
if a graph has multiple min-max clique covers that satisfy simple intersection,
the corresponding compressed cliques graphs are unique, up to isomorphism.

Lemma 2. For a graph G, let C be a min-max clique cover of G that satisfies
simple intersection. For a vertex v ∈ V (G) and two distinct cliques C1, C2 ∈ C,
we have v ∈ C1 ∩ C2 if and only if NG[v] = C1 ∪ C2.
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Lemma 3. For a graph G, let A and B be two distinct min-max clique covers
of G that both satisfy simple intersection. Then for any vertex v ∈ V (G), exactly
one of the following two possibilities occurs. (1) If only one clique A in A contains
the vertex v, then there is a clique B ∈ B such that A = B. (2) If two distinct
cliques A,A′ ∈ A contain the vertex v, then there are two distinct cliques B,B′ ∈
B such that v ∈ B ∩ B′.

Lemma 4. For a graph G, let A and B be two distinct min-max clique covers
of G that both satisfy simple intersection. If there are two distinct cliques A and
A′ in A and two distinct cliques B and B′ in B such that A ∩ A′ ∩ B ∩ B′ �= ∅,
then A ∩ A′ = B ∩ B′.

Now we can verify that the compressed cliques graph for a graph with a
min-max clique covering with simple intersection is well-defined.

Theorem 3. If a graph G has a min-max clique cover that satisfies simple inter-
section, then the compressed cliques graph of G is unique.

Corollary 2. Suppose G has two distinct min-max clique covers that both satisfy
simple intersection. Then C(G) = circ(6, {1, 2}).

Let G be the set of all graphs that have a min-max clique cover satisfying
simple intersection. Let R be a binary relation on G. We say two graphs G1, G2 ∈
G have the relation R if C(G1) = C(G2). It is easy to see that R is an equivalence
relation, and hence induces a partition of the set G. For any equivalence class
that contains a graph H, it is easy to see that the graph C(H) is the minimum
element in the class. Thus, the compressed cliques graph of C(H) is C(H) itself.

6 Min-Max Clique Coverings of Compressed Cliques
Graphs

Before we begin our analysis on positive zero forcing in compressed cliques
graphs, we consider min-max clique coverings of compressed cliques graphs. We
begin with the following useful lemma. Let φ : V (G) → V (C(G)) be the map
defined in (1).

Lemma 5. Let G be a graph with a min-max clique covering C that has simple
intersection. If C is a clique in C(G), then the preimage of C under φ is a clique
in G.

Theorem 4. Let G be a graph in which there is a min-max clique covering with
simple intersection. Let C(G) be the compressed cliques graph of G. Then

cc(G) = cc(C(G)).

We now have the following interesting consequence.

Corollary 3. Assume that G is a graph with a min-max clique covering with
simple intersection. Let {D1, . . . , D�} be the set of cliques in C(G) such that Di is
the set of vertices in C(G) that are labeled vi,j from some j ∈ {1, 2, . . . , �}. Then
the following statements hold: (1) The set {D1,D2, . . . , D�} forms a min-max
clique cover of C(G); and (2) this clique cover of C(G) has simple intersection.
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7 Positive Zero Forcing Sets in Compressed Cliques
Graphs

Using the strong connections to edge clique coverings, we now explore positive
zero forcing sets and the positive zero forcing number of compressed cliques
graphs. This is one of our main motivations for developing this derived graph.
Our results in this section are related to the following simple observation about
positive zero forcing sets.

Lemma 6. Let G be a graph and u and v be distinct vertices in G. If NG[u] =
NG[v], then any positive zero forcing set for G will contain at least one of u
and v.

This can be generalized to a subset of vertices as in the following fact.

Corollary 4. Let G be a graph and {u1, u2, . . . , uk} be a subset of k vertices
from G. If NG[u1] = NG[u2] = · · · = NG[uk], then any positive zero forcing set
for G will contain at least k − 1 of the vertices {u1, u2, . . . , uk}.

We can apply the previous result to cliques in a min-max clique covering
with simple intersection.

Lemma 7. Assume that G is a graph and {C1, C2, . . . , C�} is a min-max clique
covering with simple intersection. If S is a positive zero forcing set, then the
sets (V (G)\S) ∩ Ci,j and (V (G)\S) ∩ Ci,i for any i, j ∈ {1, . . . , n} have size at
most one.

Theorem 5. Let G be a graph (that is connected, but not a clique) in which the
maximal cliques have simple intersection and let C(G) be the compressed cliques
graph of G. Then

|V (G)| − Z+(G) = |V (C(G))| − Z+(C(G))

and there exist forcing trees for G and C(G) that differ only in that these forcing
trees for G are isolated vertices.

8 Connections with Johnson Graphs

The compressed cliques graph is related to the Johnson graph J(m, 2) [6]. The
graph J(m, 2) has the set of pairs from {1, 2, . . . ,m} as its vertex set and two
vertices are adjacent if and only if they have non-empty intersection. This graph
is the line graph of the complete graph.

We will use a generalization of this graph that we denote by J ′(m, 2). The
vertices of J ′(m, 2) are the set {i, j} and {i} where i, j ∈ {1, 2, . . . ,m} and two
sets are adjacent if and only if they have non-empty intersection. These graphs
play a major role in the theory of compressed cliques graphs.
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Lemma 8. If G is a graph with cc(G) > 1 and G has a min-max clique covering
that satisfies simple intersection, then the compressed cliques graph of G is an
induced subgraph of J ′(cc(G), 2).

There is a simple clique covering for this generalization of the Johnson graph.
Define Ci to be the set of all vertices in J ′(m, 2) that contain i. Then Ci is a
maximal clique and C = {C1, . . . , Cm} is a min-max clique covering that has
simple intersection.

Lemma 9. For any m > 3, J ′(m, 2) has the following properties:
(1) |V (J ′(m, 2))| =

(
m
2

)
+ m, (2) cc(J ′(m, 2)) = m, (3) Z+(J ′(m, 2)) =

(
m
2

)
,

and (4) Z+(J ′(m, 2)) = |V (J ′(m, 2))| − cc(J ′(m, 2)).

For the graph J ′(m, 2), in an optimal positive zero forcing process there is
initially one white vertex for each clique in the min-max clique covering. In fact,
we can assign each vertex {i} to be white, then within each maximal clique there
is exactly one white vertex.

Similarly, the Johnson graph J(m, 2) also has a min-max clique covering with
simple intersection.

Lemma 10. For any m > 3, J(m, 2) has the following properties:
(1) V (J(m, 2)) =

(
m
2

)
, (2) cc(J(m, 2)) = m, (3) Z+(J(m, 2)) =

(
m
2

) − m + 2,
and (4) Z+(J(m, 2)) = |V (J(m, 2))| − cc(J(m, 2)) + 2.

In this case we need that m > 3 since the vertices of graph J(3, 2) are
{1, 2}, {1, 3}, {2, 3} and these form a complete graph on three vertices. This is an
exceptional maximal clique in J(m, 2); every other maximal clique consists of all
sets that contain a fixed element. In fact, any maximal clique in the compressed
cliques graph with more than three vertices will be the set of all vertices whose
corresponding sets all contain a common element.

9 Forbidden Subgraphs of Compressed Cliques Graphs

In this section we illustrate some forbidden subgraphs of the compressed cliques
graph. A claw is a graph with four vertices and three edges in which one vertex
is adjacent to the other three. A graph is called claw-free if no set of four vertices
induce a subgraph that is a claw. Claw-free graphs have been widely studied [10].

Lemma 11. If G is a graph that has a min-max clique covering with simple
intersection, then both G and the compressed cliques graph C(G) are claw-free.

Note the graph on the left in Fig. 2 is special in the sense that it alone
cannot be a compressed cliques graph, but rather if a compressed cliques graph
contains the subgraph on the left as an induced subgraph, then it must contain
other vertices and edges. For example, consider the graph T3 on the right in
Fig. 2. Observe that the graph T3 has edge clique cover number three, and this
min-max clique cover has simple intersection. Furthermore, C(T3) is itself T3,
and includes the graph on the left in Fig. 2 as an induced subgraph.
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Fig. 2. A non-compressed cliques graph (left), and a self-compressed graph T3 (right).

Before we come to our next claim regarding compressed cliques graphs, we
define some particular subgraphs. We call a cycle u1u2 · · · utu1 suspended when
exactly one of u1, u2, . . . , ut has degree larger than two in G, and all of the
remaining vertices from this set have degree two in G.

Lemma 12. If G is a graph with a min-max clique cover satisfying simple inter-
section, then C(G) does not contain a suspended cycle.

10 Vertex-Clique Graphs

For any graph G with vertex set V and edge set E, we construct a new graph H,
obtained from G, that has a min-max covering with simple intersection. For each
vertex v ∈ V , we construct a clique Kd(v) where d(v) is the degree of v in G. For
each edge {u, v} ∈ E, we add an edge between a vertex in Kd(u) and a vertex
in Kd(v) such that each vertex in Kd(u) (or Kd(v)) has at most one neighbour
outside of Kd(u) (or Kd(v)). This new graph is called the vertex-clique graph of
G. By definition a vertex-clique graph cannot be a complete graph. The next
lemma provides some interesting properties of a vertex-clique graph. Recall that
a line graph of a given graph X, denoted by L(X), is obtained by associating a
vertex with each edge of X and connecting two vertices with an edge if and only
if the corresponding edges of X have a vertex in common.

Lemma 13. Let H be a vertex-clique graph of G. Then (1) H is a line graph;
(2) H has a min-max clique covering that satisfies simple intersection; and (3)
C(H) = H.

For a graph G, we can form a simplified graph called the reduced graph of
G that has the same positive zero forcing number as the original graph. First
we define an induced path u1u2 · · · ut in a graph to be a suspended path if the
vertices u2, u3, . . . , ut−1 all have degree two. To form the reduced graph of G,
first recursively delete all vertices with degree one. Once all the vertices of degree
one have been removed, contract any induced suspended paths of length at least
two to an edge. The graph that remains after performing both of these operations
is called the reduced graph of G, and is denoted by R(G). It is clear that these
two operations do not effect the size of a positive zero forcing set.

Lemma 14. Let G be a graph, then Z+(G) = Z+(R(G)).



62 S. Fallat et al.

Applying this reduction to a vertex-clique graph produces a new graph for
which we can determine bounds on the positive zero forcing number.

Theorem 6. Let G be a connected vertex-clique graph and R(G) be the reduced
graph of G. R(G) has the following properties: (1) If R(G) has only one vertex,
then Z+(G) = 1; (2) If R(G) is a 3-cycle, then Z+(G) = 2; and (3) If R(G) has
more than three vertices, let k be the number of edges in R(G) that are themselves
maximal cliques in R(G), then Z+(G) ≤ k. Further, this upper bound can be tight
for some graphs G.

Finally, we give an example that shows the upper bound in the theorem above
cannot be improved in general. Let H be the vertex-clique graph of complete
bipartite graph K2,3. Then R(H) = K2�K3, where � denotes the Cartesian
product of graphs. Note that the number of edges in K2�K3 that are themselves
maximal cliques is three, and Z+(H) = 3. In general, if H is the vertex clique
graph of K2,n, then R(H) = K2�Kn. In this case, Z+(R(H)) = n and the
number of edges in R(H) that form maximal cliques is precisely n.

11 Relations Between Z+(G) and cc(G)

Lemma 15. [3] For any graph G, |V (G)| − cc(G) ≤ Z+(G).

Our first result gives a large family of graphs for which the positive zero
forcing number is equal to the difference between the number of vertices and the
edge clique covering number.

Theorem 7. If G has a min-max clique cover with simple intersection and the
compressed cliques graph has no induced cycles, other than K3, then Z+(G) =
|V (G)| − cc(G).

If G consists of a series of cliques C1, . . . , Ck in which only consecutive cliques
intersect, then we call G a path of cliques. In this case we have equality in the
inequality of Lemma 15.

Corollary 5. Let G be a graph that is a path of cliques, then |V (G)| − cc(G) =
Z+(G).

The next family of graphs that we consider are a generalization of the musical
graph Mn defined in [12]. For n ≥ 3, the graph Mn has 2n vertices, 5n edges,
and is isomorphic to the Cayley graph Cay(Z2n, {±1,±(n − 1), n}).

The graph Mn has a min-max clique covering with n cliques that satisfies
simple intersection. The positive zero forcing number for Mn can then be easily
calculated.

Lemma 16. If n ≥ 3, then Z+(Mn) = n + 2.
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The musical graph is an example of a graph for which Z+(G) ≤ |V (G)| −
| cc(G)|+2. We can generalize this to a family of related graphs. Let G be a graph
for which {C1, C2, . . . , C�} is a min-max clique covering. If each of Ci ∩ Ci+1 for
i = 1, . . . , � − 1, as well as C1 ∩ C�, are non-empty, while all other intersections
of these cliques are empty, then G is called a cycle of cliques. These graphs are
a generalization of the graphs defined as Ct(Kn) [13].

Theorem 8. If G is a cycle of cliques, then Z+(G) ≤ |V (G)| − cc(G) + 2.

There is a subfamily of the cycles of cliques for which the positive zero forcing
number is equal to the number of vertices minus the edge clique covering number
of the graph.

Theorem 9. Let G be a cycle of cliques labeled {C1, C2, . . . , C�}. If there are two
cliques Ci and Cj with Ci,i and Cj,j non-empty, then Z+(G) = |V (G)| − cc(G).

Our next example is a family of graphs for which there is a large gap between
the positive zero forcing number and the number of vertices minus the edge clique
covering number of the graph.

Define a graph X(n; �1, . . . , �k) that has vertices x1, . . . , xn which induce a
clique. In addition, this graph also contains disjoint cycles C1, . . . , Ck, in which
Ci has length �i, and each cycle contains exactly two vertices from the set
{x1 . . . , xn}. In this case, the number of vertices in this graph is n+

∑k
i=1(�i −2)

and cc(X) = 1+
∑k

i=1(�i −1). Moreover, the only such clique cover is a min-max
clique cover that has simple intersection.

Theorem 10. The graph X = X(n; �1, . . . , �k) defined above has a min-max
clique covering with simple intersection such that

Z+(X(n; �1, . . . , �k)) = n − 1 = |V (X)| − cc(X) + k.

12 Concluding Remarks

In this paper, we defined a simple intersecting clique covering of a graph. This
means that any vertex of the graph is contained in at most two cliques in the
covering. Clearly, this can be generalized. We will say a clique covering of a
graph has s-wise intersection if any vertex is contains in at most s cliques in
the clique covering. Then we could generalize the Johnson graph J(n, s), to
the graph J ′(n, s). The vertices of this graph will be subsets of size at most
s from {1, . . . , n} and two vertices will be adjacent if and only if their sets
are intersecting. Then every graph will have a clique covering that has s-wise
intersection for s sufficiently large. Then for any graph G, the compressed cliques
graph of G is an induced subgraph of J ′(n, s). Moreover, if we can determine
the positive zero forcing number for the compressed cliques graph, then we can
determine the positive zero forcing number for the original graph G.

Recenly, Yang [16] proved that computing the positive zero forcing number of
a graph is NP-complete. From Theorem 5, we know that for graphs that have an
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edge clique covering satisfying simple intersection, we can determine the positive
zero forcing number of the graph from the positive zero forcing number of the
compressed cliques graph. From [5,11], we know that finding cc(G) is fixed-
paramerter tractable. Using this result and Theorem 5, we could show that if G
has an edge clique covering satisfying simple intersection, then the problem of
computing Z+(G) is fixed-paramerter tractable, parametered by the edge clique
cover number of G. This could be extended to more general graphs.
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Abstract. In this paper, we apply random methods to solve several
NP-hard problems. For the Weighted P3-Packing problem, by randomly
partitioning the vertices in given graph, a randomized parameterized
algorithm of running time O∗(32k) is given. For the Weighted Load
Coloring problem, a randomized parameterized algorithm of running
time O∗(11.32k) is presented. For the Claw-free Edge Deletion prob-
lem on diamond-free graphs, a parameterized algorithm of running time
O∗(2.895k) is given.

1 Introduction

Random methods have been used to solve many NP-hard problems in the field of
parameterized computation [6,7,17,18]. For a given set U and an integer k, many
problems are to find a subset S of size k in U with certain properties. Generally,
the random partition on U is to divide the elements in U into two subsets U1

and U2 such that with certain probability, for any subsets S1 and S2 of S, where
|S1|+ |S2| = k, S1 and S2 are contained in U1 and U2, respectively. It is possible
that U can be partitioned into more than two parts. This method is called
random-partition method. For many other problems, especially for the problems
that can be solved using branching methods, assume that in each branching step
of a given instance, r elements should be chosen from d candidate elements to
be contained in objective solution. By applying branching method, a branching
recurrence T (k) ≤ (

d
r

)
T (k − r) can be obtained, where k is the size of objective

solution, and T (k) is the running time of the algorithm solving the problem. It

is easy to see that the running time of the algorithm is bounded by O∗(
(
d
r

)k/r
).

However, for the problem with r elements chosen from d candidate elements in
each step, if choose an element randomly from the given d elements and put the
chosen element into objective solution, then with probability r/d, the element
can be correctly handled. Therefore, the given problem can be solved randomly
in time O∗((d/r)k) with certain probability. It is easy to see that (d/r)k ≤ (

d
r

)k/r
.
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This method is called random-choosing method. In this paper, we apply random-
partition and random-choosing methods to several parameterized problems and
get corresponding randomized algorithms respectively.

Parameterized Weighted P3-Packing Problem. Packing problems are important
class of NP-hard problems, which have lots of applications in scheduling [2] and
code optimization [13]. Given a graph G and a subgraph H of G, the subgraph
packing problem is to find the maximum number of vertex disjoint subgraphs
such that each subgraph is isomorphic to H. If H is a K2, the subgraph packing
problem becomes the famous maximum matching problem, which can be solved
in polynomial time [10]. The subgraph packing problem is NP-hard when the
number of vertices in H is not less than three [16].

Many results were presented for the subgraph packing problem from approx-
imation algorithm perspective [12,14]. For a given subgraph H, a parameterized
algorithm of running time O∗(2O(|H|klogk+k|H|log|H|)) for the H-packing problem
was given in [9]. In this paper, we study a special subgraph packing problem,
called Weighted P3-Packing, where a P3 is a simple path with four vertices and
three edges. For a given graph G = (V,E), a P3-Packing P of G is a collection
of vertex-disjoint P3s. The definition of the problem is as follows.

Parameterized Weighted P3-Packing problem: Given a graph G = (V,E)
and an integer k, where each edge is associated with a positive weight, find
a P3-Packing of size k in G with maximum weight, or report that no such
packing exists.

For the unweighted P3-Packing problem, a parameterized algorithm of run-
ning time O∗(4.184k) is given in [3]. Since the Weighted P3-Packing problem
can be reduced to the Weighted 4-Set Packing problem, all the algorithms for
the Weighted 4-Set Packing problem can be applied to solve the Weighted P3-
Packing problem. The Weighted d-Set Packing problem (d ≥ 4) has been exten-
sively studied in the literature (see, for example [5,19]). In particular, Zehavi
[19] presented a parameterized algorithm for Weighted d-Set Packing problem
with running time O∗((0.563 ·2.851d)k), implying that the Weighted P3-Packing
problem can be solved in time O∗(37.2k), which is the current best result for the
problem. For the unweighted 4-Set Packing, Björklund [4] presented a random-
ized parameterized algorithm of running time O∗(1.6424k) based on algebraic
technique. However, it is unknown whether the methods in [4] can be applied to
the weighted case.

In this paper, we apply random-partition method to solve the Weighted P3-
Packing problem. We give that the Weighted P3-Packing problem on tripartite
graphs can be solved in polynomial time, and a parameterized algorithm of
running time O∗(32k) for the Weighted P3-Packing problem is given.

Parameterized Weighted Load Coloring Problem. The other problem applied
random-partition method is Load Coloring problem, which has applications in
computer networks. For a given graph G = (V,E), a coloring on vertex set V
is a mapping function f from the vertices in V to color set, i.e., f : V → C.
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We assume that the color set C just contains red and blue colors. In a colored
graph G = (V,E), for an edge [u, v], if both u and v are colored red, then [u, v] is
called a red edge. Similarly, if both u and v are colored blue, then [u, v] is called
a blue edge. The Parameterized Load Coloring problem is defined as follows.

Parameterized Load Coloring: Given a graph G = (V,E) and an integer k,
find a coloring of G such that at least k edges in G are colored red and at
least k edges in G are colored blue, or report that no such coloring exists.

The Load Coloring problem is proved to be NP-hard in [11]. Gutin and Jones
[11] gave a parameterized algorithm of running time O∗(4k). In this paper, we
consider a generalized version of the Parameterized Load Coloring problem, the
Parameterized Weighted Load Coloring problem. Based on the random-partition
method, the vertices in the given instance can be partitioned into two parts,
which results in a parameterized algorithm of running time O∗(11.32k).

Parameterized Claw-Free Edge Deletion Problem on Diamond-Free Graphs.
Given a graph G and an integer k, the Parameterized Claw-free Edge Dele-
tion problem is to delete at most k edges such that the remaining graph has no
induced claw (K1,3). A trivial algorithm of running time O∗(3k) can be obtained
for the Parameterized Claw-free Edge Deletion problem. Whether this trivial
result can be improved is still open. Diamond structure plays important role
in the study of claw-free problems. Cygan et al. [8] proved that the claw and
diamond free edge deletion problem admits polynomial kernel. In this paper, we
focus on parameterized algorithm of the Parameterized Claw-free Edge Dele-
tion problem on diamond-free graphs. By applying random-choosing technique,
a parameterized algorithm of running time O∗(2.895k) is given.

2 Algorithms for the Parameterized Weighted P3-Packing
Problem

For a given P3 l = (a, b, c, d), a, d are called the end-points of l, and b, c are called
the internal-points of l. For P3-Packing P , let V (P ) denote the set of vertices
contained in the P3s of P . For a graph G, a matching M of G is a set of edges
in G such that no two edges in M have common endpoint. For a subset E′ ⊆ E,
let V (E′) denote the set of vertices contained in the edges of E′. For an edge
[u, v] in G, let wt[u, v] denote the weight of edge [u, v].

2.1 Weighted P3-Packing on Tripartite Graphs

We first study a constrained Weighted P3-Packing problem on tripartite graphs.
Given a tripartite graph H = (X ∪ Y ∪ Z,EH), and a P3-Packing P in H, for
each P3 l of P , if the end-points of l are from X, one internal-point of l is from
Y , and the other one is from Z, then P is called a special P3-Packing of H.
We first give the definition of the Weighted P3-Packing problem on tripartite
graphs.
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Constrained Weighted P3-Packing on Tripartite Graphs: Given a tripar-
tite graph H = (X ∪ Y ∪ Z,EH) and an integer k, where each edge is
associated with a positive weight, find a special P3-Packing of size k in H
with maximum weight, or report that no such packing exists.

For any instance (H = (X ∪Y ∪Z,EH), k) of the Constrained Weighted P3-
Packing on Tripartite Graphs problem, if any vertex u in Y ∪Z has no neighbor
in X, then u can be deleted. Thus, in the following, we assume that each vertex
in Y ∪ Z must have at least one neighbor in X. Based on tripartite graph H, a
weighted auxiliary graph H ′ can be constructed in the following way.

For a tripartite graph H = (X ∪ Y ∪ Z,EH), let |X|, |Y | and |Z| denote the
number of vertices in X,Y and Z, respectively. The auxiliary graph H ′ contains
the vertex set X ∪ Y ∪Z ∪ Y ′ ∪Z ′, where Y ′ and Z ′ are the copies of Y and Z,
respectively. All the edges in H are put into H ′. For each vertex u′ in Y ′, let u be
the corresponding vertex in Y . If [u, v] (v ∈ X) is an edge in H, then add edge
[u′, v] intoH ′ with same weight as [u, v], and delete [u, v] fromH ′. For each vertex
w′ in Z ′, let w be the corresponding vertex in Z. If [w, v] (v ∈ X) is an edge in
H, then add edge [w′, v] into H ′ with same weight as [w, v], and delete edge [w, v]
from H ′. Let a be the sum weights of the edges in {[u, v]|u ∈ Y ′ ∪Z ′, v ∈ X, [u, v]
is an edge in H ′}. Moreover, for each edge [u, v] with u ∈ Y, v ∈ Z, assign weight
2a+ 1 +wt[u, v]. Let b be the sum weights of edges in {[u, v]|u ∈ Y, v ∈ Z, [u, v]
is an edge in H ′}. For each vertex u in Y and its corresponding vertex u′ in Y ′,
add edge [u, u′] into H ′ with weight 2b+1. Similarly, for each vertex v in Z and
its corresponding vertex v′ in Z ′, add edge [v, v′] into H ′ with weight 2b+1. Let
Ē = {[u, u′]|u ∈ Y, u′ ∈ Y ′, [u, u′] is an edge in H ′}∪{[v, v′]|v ∈ Z, v′ ∈ Z ′, [v, v′]
is an edge in H ′}, and Ẽ = {[v, w]|v ∈ Y,w ∈ Z, [v, w] is an edge in H ′}.
Lemma 1. For a tripartite graph H = (X ∪ Y ∪Z,EH), an integer k, and any
real number d ≥ 0, the tripartite graph H has a special P3-Packing of size k
with weight d if and only if the auxiliary graph H ′ has a matching M of size
|Y |+ |Z|+ k with weight (|Y |+ |Z| − 2k)(2b+1)+ k(2a+1)+ d. Moreover, the
special P3-Packing of H can be constructed from M in polynomial time.

Based on Lemma 1, we can get the following result for the Constrained
Weighted P3-Packing on Tripartite Graphs problem.

Theorem 1. The Constrained Weighted P3-Packing on Tripartite Graphs prob-
lem can be solved in time O(nm + n2logn), where n and m are the number of
vertices and edges in the input graph, respectively.

2.2 Randomized Algorithm for Parameterized Weighted P3-Packing

Given an instance (G = (V,E), k) of the Parameterized Weighted P3-Packing
problem, assume that P = {l1, l2, · · · , lk} is a P3-Packing of size k with max-
imum weight in G. It is easy to see that V (P ) contains 4k vertices, consisting
of 2k end-points and 2k internal-points. In order to solve the Parameterized
Weighted P3-Packing problem by the algorithm solving Constrained Weighted
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P3-Packing on Tripartite Graphs problem, we need to partition the vertices in
G into three parts V1, V2 and V3 such that for each li (1 ≤ i ≤ k), the two
end-points of li is in V1, one internal-point of li is V2, and the other one is in
V3. For any vertex v in G, we do the following random process: v is put into V1

with probability 1/2; v is put into V2 with probability 1/4; v is put into V3 with
probability 1/4. The probability that the 2k end-points of V (P ) are put into
V1, k internal-points of V (P ) are in V2, and the other k internal-points are in
V3, is (1/2)2k(1/4)k(1/4)k2k = (1/32)k (Note that for a P3 (u, v, w, r) in P, in a
successful partition, any vertex from v and w can be in V2, and the other in V3).
A tripartite graph H can be constructed in the following way. Let V1 ∪ V2 ∪ V3

be the vertex set of H. First delete all the edges in G whose two endpoints are
both in V1, V2, or V3, and for any vertex u in V2 ∪ V3, if u has no neighbor in
V1, then delete u from V2 or V3. Let H = (V1 ∪ V2 ∪ V3, EH) be the tripartite
graph constructed by the above process. Then, an instance (H, k) of the Con-
strained Weighted P3-Packing on Tripartite Graphs problem can be obtained.
The specific process solving the Parameterized Weighted P3-Packing problem is
given in Fig. 1.

Algorithm R-P3P(G, k)
Input: a weighted graph G, and parameter k
Output: a P3-Packing of size k with maximum weight in G, or report no such
packing exists.
1. Q = ∅;
2. loop c·32k times
2.1 randomly partition the vertices of G into three sets V1, V2 and V3;
2.2 construct a weighted tripartite graph H = (V1 ∪V2 ∪V3, EH) from G by

removing the edges with both endpoints contained in V1, V2, or V3, and
deleting the vertices in V2 ∪ V3 with no neighbor in V1;

2.3 construct a special P3-Packing P of size k with maximum weight in H;
2.4 if P �= ∅ and the weight of P3-Packing in Q is less than the weight of P

then replace the P3-Packing in Q with P ;
3. if Q �= ∅ then return Q;
4. return(“no such packing exists.”).

Fig. 1. Randomized algorithm for Parameterized Weighted P3-Packing problem

Theorem 2. The Parameterized Weighted P3-Packing problem can be solved
randomly in time O∗(32k).

3 Randomized Algorithm for Weighted Load Coloring

In this section, we consider the Parameterized Weighted Load-Coloring problem,
where each edge in the given graph has a positive weight. For a given weighted
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graph G = (V,E) and a coloring f in G, let Efr and Efb be the set of red edges
and blue edges under coloring f , respectively. Assume that the number of edges
in Efr and Efb are at least k. The k edges in Efr with maximum sum weight
can be found, whose sum weight is denoted by Wr. Similarly, the k edges in Efb

with maximum sum weight can also be found, whose sum weight is denoted by
Wb. For coloring f , let Wf denote the weight of f , and define Wf to be the value
Wr +Wb. The Parameterized Weighted Load Coloring problem can be defined
as follows.

Parameterized Weighted Load Coloring: Given a weighted graph G =
(V,E) and an integer k, find a maximum weighted coloring f of G such
that at least k edges in G are colored red, at least k edges in G are colored
blue, or report that no such coloring exists.

The general idea solving the Parameterized Weighted Load Coloring problem
is as follows: randomly partition the vertices of G into two parts V1 and V2; color
all the vertices in V1 red, and color all the vertices in V2 blue. The specific process
solving the Parameterized Weighted Load Coloring problem is given in Fig. 2.

Theorem 3. For an instance (G, k) of the Parameterized Weighted Load Col-
oring problem, if G can be colored with k red edges and k blue edges, then with
probability larger than 1 − (1/e)c, a maximum weighted coloring of G can be
returned by Algorithm R-WLC in time O∗(11.32k) such that at least k edges are
colored red and at least k edges are colored blue, where c is a constant.

Proof. If (G, k) is a no-instance, then no matter how the vertices in G are par-
titioned in step 2.1, the conditions in step 2.4 are not satisfied, which can be
handled correctly by step 3, i.e., “no such coloring exists.” is returned.

Assume that f is the maximum weighted coloring of G, i.e., k red edges with
maximum sum weight Wr and k blue edges with maximum sum weight Wb are
contained in the colored graph. Let E1 be the set of k edges to get weight Wr,
and let E2 be the set of k edges to get weight Wb. Let Vr be the set of vertices
contained in E1, and let Vb be the set of vertices contained in E2. If the vertices
in Vr and Vb are partitioned correctly in step 2.1 (Without loss of generality,
assume that Vr is partitioned into V1, and Vb is partitioned into V2.), by coloring
the vertices in V1 and V2 by red and blue, respectively, at least k red edges can
be found in G[V1], and at least k blue edges can be found in G[V2]. Thus, a
maximum weighted coloring can be returned in step 2.4.

We now discuss the probability that Algorithm R-WLC fails to find the
maximum weighted coloring. Assume that there does not exist isolated ver-
tex in G[Vr] and G[Vb]. Assume that in subgraph G[Vr], the number of con-
nected components containing i vertices is ri, where 2 ≤ i ≤ k, and in
subgraph G[Vb], the number of connected components containing j vertices
is tj , where 2 ≤ j ≤ k. For a connected component X in G[Vr] or G[Vb],
if X contains i vertices, then the number of edges in X is at least i − 1.
It is easy to get that

∑k
i=2(i − 1)ri ≤ k,

∑k
j=2(j − 1)tj ≤ k. The num-

ber of vertices in G[Vr] and G[Vb] are
∑k

i=2 iri and
∑k

j=2 jtj , respectively.
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Algorithm R-WLC(G, k)
Input: a weighted graph G, and parameter k
Output: a maximum weighted coloring in G with at least k red edges and k
blue edges, or report no such coloring exists.
1. F = ∅;
2. loop c·11.32k times
2.1 randomly partition the vertices of G into two disjoint sets V1, V2;
2.2 delete all the edges with one endpoint in V1 and the other one in V2;
2.3 color the vertices in V1 and V2 with red and blue, respectively, denoted

the coloring by f ;
2.4 if there are k red edges in G[V1] and k blue edges in G[V2] then

if F is empty then
add f into F ;

else if the weight of the coloring in F is smaller than the weight of f
then replace the coloring in F with f ;

3. if F is not empty then return the coloring in F ; else return (“no such
coloring exists.”).

Fig. 2. Randomized algorithm for Parameterized Weighted Load Coloring

Without loss of generality, assume that r2 ≤ t2. In step 2.1, each vertex is
put into V1 or V2 with probability 1/2. Thus, the probability that the ver-
tices in Vr and Vb are correctly partitioned is 2r2(1/2)

∑k
i=2 iri(1/2)

∑k
j=2 jtj =

(1/2)r2+
∑k

i=3 iri+
∑k

j=2 jtj ≤ (1/2)
∑k

i=2(i−1)ri+
∑k

j=2(j−1)tj+
∑k

i=3 ri+
∑k

j=2 tj . Based
on the inequalities,

∑k
i=2(i − 1)ri ≤ k,

∑k
j=2(j − 1)tj ≤ k, we can get that the

maximum value of
∑k

i=3 ri is k/2 and the maximum value of
∑k

j=2 tj is k. There-

fore, (1/2)
∑k

i=2(i−1)ri+
∑k

j=2(j−1)tj+
∑k

i=3 ri+
∑k

j=2 tj ≤ (1/2)2k+k/2+k = (1/2)3.5k.
Consequently, in each loop of step 2, the probability that the vertices in Vr

and Vb are not correctly partitioned is 1 − (1/2)3.5k. Then, the probability that
none of the c · 11.32k loops can correctly divide the vertices in Vr and Vb is
(1− (1/2)3.5k)c·11.32

k ≤ (1/e)c. Therefore, Algorithm R-WLC can correctly par-
tition the vertices in Vr and Vb with probability larger than 1 − (1/e)c.

For the running time, step 2.1 can be done in O(n) time, where n is the
number of vertices in G. Steps 2.3, 2.4 run in time O(n + m), where m is
the number of edges in G. Therefore, the running time of algorithm R-WLC
is O(11.32kk(m+ n)) = O∗(11.32k). �	

3.1 Algorithm for the Parameterized Claw-Free Edge Deletion
Problem on Diamond-Free Graphs

For a given graph G = (V,E), a subgraph C with four vertices {v, u1, u2, u3} and
three edges {[v, u1], [v, u2], [v, u3]} is called a claw of G, and a subgraph D with
four vertices {u, v, w1, w2} and five edges {[u, v], [u,w1], [u,w2], [v, w1], [v, w2]}
is called a diamond of G. For claw C, v is called central-vertex, and u1, u2, u3
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are called fringe-vertices. A graph G = (V,E) is a Claw-free Graph if G has no
induced subgraph that is isomorphic to claw. For a subset E′ ⊆ E of edges, let
G[E′] denote the subgraph induced by the vertices contained in V (E′).

For the Parameterized Claw-free Edge Deletion problem, diamond structure
is one of the major obstacle to get algorithm better than O∗(3k). In this paper,
we apply random-choosing method to deal with the Parameterized Claw-free
Edge Deletion problem on diamond-free graphs.

For any vertex v with degree larger than two in G and for any vertex u in
N(v), if there is no edge from u to any vertex in N(v), then it is called that v
has a dangled-edge [v, u]. Assume that there exists a vertex w in N(v)\{u}
with [u,w] in G. Since G is diamond-free graph, w is the unique vertex in
N(v)\{u} connected to u. It is called that v has a dangled-triangle (v, u, w).
For a given instance (G, k) of the Parameterized Claw-free Edge Deletion prob-
lem on diamond-free graphs, assume that D ⊆ E is of size k and graph G[E\D]
is a claw-free graph. In the following, we give the strategy to deal with the claws
in G based on the number of dangled-edges and dangled-triangles of claws.

(1) for any vertex v with r (r ≥ 4) dangled-edges, let Hv be the set of dangled-
edges of v. Randomly choose one edge e from Hv, and put it into D.
Since v has r (r ≥ 4) dangled-edges, at least r/2 edges from H(v) must be in
D. Therefore, by randomly choosing one edge to put intoD, with probability
at least 1/2, this case can be rightly handled.

(2) for any vertex v with r (r ≥ 3) dangled-triangles, let Tv be the set of dangled-
triangles of v. Randomly choose one triangle (v, u, w) from Tv, and put edges
[v, u], [v, w] into D.
Since v has r (r ≥ 3) dangled-triangles, at least 
r/2� triangles from Tv must
be deleted. Therefore, by randomly choosing one triangle from Tv to delete,
with probability at least 1/3, this case can be rightly handled. Since at least
two edges are put into D each time, the number of executions of this case is
bounded by k/2.

(3) for any vertex v with two dangled-triangles and one dangled-edge, assume
that the two dangled-triangles are (v, u1, w1), (v, u2, w2), and the dangled-
edge is [v, x].
Instead of solving this case randomly, we deal with it using branching
method. In order to destroy the claw structure, we have the following three
cases. (1) edges [v, u1], [v, w1] are deleted; (2) edges [v, u2], [v, w2] are deleted;
(3) edge [v, x] is deleted. The branching factor is (2, 2, 1).

(4) for any vertex v with one dangled-triangle and two dangled-edges, assume
that the dangled-triangle is (v, u1, w1), and the dangled-edges are [v, x], [v, y].
We still deal with this case using branching method. In order to destroy the
claw structure, we have the following three cases. (1) edges [v, u1], [v, w1] are
deleted; (2) edge [v, x] is deleted; (3) edge [v, y] is deleted. The branching
factor is (2, 1, 1).
For any claw C with v as central vertex, and a dangled edge [v, u] of v,
if there is no other claw except C containing [v, u], then [v, u] is called a
unique-claw edge, otherwise, [v, u] is called a multiple-claw edge.
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(5) for any claw C with v as central vertex and [v, u], [v, x], [v, y] as unique-claw
edges, arbitrarily choose any edge from {[v, u], [v, x], [v, y]} and delete.
Under this case, any edge from {[v, u], [v, x], [v, y]} can be deleted to destroy
claw C.

(6) for any claw C with v as central vertex, [v, u], [v, x] as unique-claw edges,
and [v, y] as a multiple-claw edge, edge [v, y] can be deleted directly.
Under this case, since [v, u], [v, x] are unique-claw edges, edge [v, y] can be
deleted to destroy claw C.

(7) for any claw C with v as central vertex, [v, u] as unique-claw edge,
and [v, x], [v, y] as multiple-claw edges, randomly choose one edge from
{[v, x], [v, y]} and delete.
Under this case, at least one of {[v, x], [v, y]} must be deleted to destroy claw
C. By randomly choosing one edge from {[v, x], [v, y]}, with probability 1/2,
this case can be rightly handled.

(8) for any claw C with v as central vertex, and [v, u], [v, x], [v, y] as multiple-
claw edges, randomly choose one edge from {[v, u], [v, x], [v, y]} and delete.
Under this case, at least one edge from {[v, u], [v, x], [v, y]} can be deleted to
destroy claw C. By randomly choosing one edge from {[v, u], [v, x], [v, y]},
with probability 1/3, this case can be rightly handled. Without loss of gen-
erality, assume that edge [v, u] is deleted. Then, at least two edges will
become unique-claw edges. Therefore, the number of executions of this case
is bounded by k/3.

The algorithm solving the Parameterized Claw-free Edge Deletion problem
on diamond-free graphs is based on the above cases. When case (2) is executed
k/2 times, case (4) is executed k/6 times, and case (8) is executed k/3 times, we
can get the worst running time, i.e., the running time of the algorithm solving
the Parameterized Claw-free Edge Deletion problem on diamond-free graphs is
bounded by 3k/33k/22.42k/6 = 2.895k. Summarizing the above discussion, we
can get the following result.

Theorem 4. The Parameterized Claw-free Edge Deletion problem on diamond-
free graphs can be solved randomly in time O∗(2.895k).
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Abstract. Maximum Edge Biclique and related problems have wide
applications in management science, bioinformatics, etc. In this paper,
we study the parameterized algorithms for the Parameterized Edge
Biclique problem, the Parameterized Edge Biclique Packing problem,
and the Parameterized Biclique Edge Deletion problem. For the Para-
meterized Edge Biclique problem, the current best result is of running
time O∗(2k), and we give a parameterized algorithm of running time

O∗(k�√
k�). For the Parameterized Edge Biclique Packing problem, based

on randomized divide-and-conquer technique, a parameterized algorithm

of running time O∗(4(2k−1)t)k�√
k�) is given. We study the Parameterized

Biclique Edge Deletion problem on bipartite graphs and general graphs,
and give parameterized algorithms of running time O∗(2k) and O∗(3k),
respectively.

1 Introduction

Maximum edge biclique problem is to find a biclique subgraph with maximum
number of edges for a given bipartite graph G, which has wide applications in
management science [11], machine learning [9], and bioinformatics [2,4,5,13–15].

The weighted and unweighted maximum edge biclique problems are both NP-
hard [6,10]. Tan [12] studied the inapproximability of the maximum weighted
edge biclique problem. Feige and Kogan [7] proved that the unweighted maxi-
mum edge biclique problem is hard to approximate in time O(nε) where ε > 0.
Dawande et al. [6] gave an approximation algorithm with expected ratio 2 for suf-
ficiently dense random bipartite graphs. Tanay et al. [14] gave an exact algorithm
for the weighted maximum edge biclique problem with running time O(n2d),
where n is number of vertices in the graph, and d is the maximum degree in the
graph. In this paper, we study the following parameterized problem.

Parameterized Edge Biclique: Given a bipartite graph G = (L∪R,E) and
an integer k, find a biclique subgraph of at least k edges of G, or report
that no such subgraph exists.
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The algorithm in [14] implies a parameterized algorithm of running time
O∗(2k) for the Parameterized Edge Biclique problem. In this paper, we give new
structure properties for the problem, which result in a parameterized algorithm
of running time O∗(k�√

k�).
Acuña et al. [1] studied a related model of the maximum edge biclique prob-

lem, called edge biclique packing problem, where for a given bipartite graph G
and a positive integer k, find a set of t vertex-disjoint bicliques such that the
number of edges inside the bicliques is maximized. As pointed out in [1], the prob-
lem has backgrounds in bioinformatics and consumer products bundling. For the
data analysis in bioinformatics, the relationship between individuals and condi-
tions can be modeled by a bipartite graph. Let one side be set of genes, the other
side be set of conditions, and the edge between a gene and a condition means
that the gene satisfies the condition. The objective is to find a set of clusters
of genes with common conditions. The edge biclique packing problem was also
applied in metabolic networks. For the consumer product bundling problem, the
relationship between products and clients can also be modeled by a bipartite
graph G = (L ∪ R,E), where vertices in L represent products and vertices in R
represent clients and the edge between a client and a product means that the
client consumes the product. The objective is to find t product bundlings that
maximize the supplied demand. In this paper, we study the following parame-
terized problem.

Parameterized Edge Biclique Packing: Given a bipartite graph G = (L ∪
R,E) and two integers t, k, find t vertex-disjoint bicliques of G, each of
which contains at least k edges of G, or report that no such packing exists.

Based on randomized divide-and-conquer technique, a parameterized algo-
rithm of running time O∗(4(2k−1)t)k�√

k�) is given.
The biclique deletion problem is to delete some elements of a given graph

to make remaining graph a biclique. Hochbaum [8] studied several weighted
biclique deletion problems, based on edges or vertices are deleted, the given
graph is bipartite graph or general graph, and the two parts of the remaining
graph is independent set or not. Hochbaum [8] proved the vertex deletion version
on bipartite graphs and general graphs without the independent set requirement
can be solved in polynomial time. The author also proved that other versions
of the problem are NP-hard and gave a 2-approximation algorithm for the edge
deletion on bipartite graph. In this paper, we study the following problems.

Parameterized Bipartite Biclique Edge Deletion: Given a bipartite graph
G = (L ∪ R,E) and an integer k, delete a subset E′ ⊆ E of at most k
edges of G such that the remaining graph is a biclique, or report that no
such subset exists.

Parameterized General Biclique Edge Deletion: Given a graph G = (V,E)
and an integer k, delete a subset E′ ⊆ E of at most k edges of G such that
the remaining graph is a biclique, or report that no such subset exists.
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For the Parameterized Bipartite Biclique Edge Deletion problem, a parame-
terized algorithm of running time O∗(2k) is given. We also study the Parame-
terized General Biclique Edge Deletion problem under the constraint that the
left and right parts of the objective biclique form independent set respectively,
a detailed structure analysis of the problem is presented, which results in a
parameterized algorithm of running time O∗(3k).

2 Algorithm for Parameterized Edge Biclique Problem

A biclique is a complete bipartite graph that each pair of vertices in different
side has an edge. For a given bipartite graph G = (L ∪ R,E) and a biclique
B = (L′ ∪R′, E′) of G, there are |L′|+ |R′| vertices and |L′|∗ |R′| edges in B. For
two vertices u, v in G, let [u, v] denote the edge between u and v. For a vertex
v, let N(v) denote the set of neighbors of v, i.e., N(v) = {u|[u, v] ∈ E}. For a
vertex v in G, let deg(v) denote the degree of v.

Lemma 1. Given a biclique B = (L′∪R′, E′) and two subsets L1 ⊆ L′, R1 ⊆ R′,
where L1 and R1 are not empty, the subgraph induced by L1∪R1 is also a biclique.

Lemma 2. Given an instance (G, k) of the Parameterized Edge Biclique prob-
lem, if there exists a vertex v in G with degree at least k, then (G, k) is a yes-
instance.

For Lemma 2, if v has degree at least k, then the subgraph induced by
{v} ∪ N(v) is a biclique with at least k edges.

Lemma 3. If a given instance (G, k) of the Parameterized Edge Biclique prob-
lem is a yes-instance, then there exists a biclique B of at least k edges with
left part L′ and right part R′ such that one of {L′, R′} contains at most �√k�
vertices.

It is easy to see that if both L′ and R′ contain more than �√k� vertices,
then by choosing one part with at most �√k� vertices, a biclique with at least k
edges can be obtained. The algorithm solving the Parameterized Edge Biclique
problem is given in Fig. 1.

Theorem 1. The Parameterized Edge Biclique problem can be solved in time
O∗(k�√

k�).

Proof. Given an instance (G, k) of the Parameterized Edge Biclique problem, if
(G, k) is a no-instance, then no matter how the vertices in G and their neighbors
are enumerated, no biclique with at least k edges can be returned, which will be
handled correctly in step 3.

Now assume that (G, k) is a yes-instance of the Parameterized Edge Biclique
problem. If there exists a vertex v of degree at least k, then by Lemma 2, a
biclique with at least k edges can be found based on v and its neighbors, which
is rightly handled by steps 1-1.2. By Lemma 3, we can find a biclique C with
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“

Fig. 1. Algorithm for the Parameterized Edge Biclique problem

at least k edges of G with left part L′ and right part R′, such that at least
one of L′ and R′ contains at most �√k� vertices. Without loss of generality,
assume that L′ contains at most �√k� vertices. For any vertex v in R′, L′ must
be a subset of N(v). Therefore, when v is chosen in step 2, all the subsets of
N(v) are enumerated, which contains L′. Then, C can be constructed by L′ and⋂

w∈L′ N(w), which will be returned in step 2.4.
Steps 1-1.2 can be done in O(n2) time, and all the enumerations in step 2 can

be done in O(nk2.5k�√
k�). Therefore, the Parameterized Edge Biclique problem

can be solved in time O∗(k�√
k�). 	


Based on “and-composition” method in [3], it is easy to get the following
result.

Lemma 4. The Parameterized Edge Biclique problem does not admit a polyno-
mial kernel unless the polynomial hierarchy collapses to the third level.

3 Algorithm for Parameterized Edge Biclique Packing
Problem

Assume that (G, t, k) is an instance of the Parameterized Edge Biclique Packing
problem.

Lemma 5. If B is a biclique of k edges in G, then B contains at most k + 1
vertices.

Proof. Let L′ and R′ be the left and right parts of B respectively. Then, |L′| ·
|R′| = k. The number of vertices in B is |L′| + |R′|, which can get maximum
value k + 1. 	
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Given a biclique B with left part L′ and right part R′, for a non-empty subset
L′′ ⊂ L′ and a non-empty subset R′′ ⊂ R′, the biclique induced by the vertices in
L′′ ∪R′′ is called a sub-biclique of B. For a set of bicliques Q = {C1, C2, · · · , Ct},
if no two bicliques in Q have common vertex, then Q is called a t-packing ; if
each biclique in Q has at least k edges, then Q is called a proper t-packing.

Lemma 6. For a biclique B of G, if each sub-biclique of B contains at most
k − 1 edges, then the number of edges in B is less than 2k.

Proof. Assume that B = (L′ ∪ R′, E′). For each sub-biclique C of B, the max-
imum number of edges in C is bounded by max{(|L′| − 1)|R′|, |L′|(|R′| − 1)},
and we can get that

max{(|L′| − 1) ∗ |R′|, |L′| ∗ (|R′| − 1)} ≤ k − 1
{

(|L′| − 1) ∗ |R′| ≤ k − 1
|L′| ∗ (|R′| − 1) ≤ k − 1

2(|L′| ∗ |R′|) − (|L′| + |R′|) ≤ 2k − 2
2(|L′| ∗ |R′|) − (|L′| ∗ |R′| + 1) ≤ 2k − 2

|L′| ∗ |R′| ≤ 2k − 1

	

Lemma 7. For a biclique B with at least 2k edges of G, there must exist a sub-
biclique C of B such that the number of vertices in C is at most 2k, and the
number of edges in C is at least k and less than 2k.

Proof. Let C be a minimal sub-biclique with at least k edges of B such that the
number of edges contained in any sub-biclique of C is less than k. By Lemma 6,
the number of edges in C is less than 2k. By Lemma 5, the number of vertices
in C is bounded by 2k. 	


The algorithm solving the Parameterized Edge Biclique Packing problem is
given in Fig. 2.

Theorem 2. For an instance (G, t, k) of the Parameterized Edge Biclique
Packing problem, if G contains proper t-packing, then with probability larger
than 1 − (1/e)c, Algorithm PEBP can return a proper t-packing in time
O∗(4(2k−1)tk�√

k�), where c is a constant.

Proof. If the given instance (G, t, k) is a no-instance, no proper t-packing can be
found in step 3.7, and an empty set will be returned in step 4.

Assume that (G, t, k) is a yes-instance of the Parameterized Edge Biclique
Packing problem. If t = 1, then it is the Parameterized Edge Biclique problem,
which can be solved in O∗(k�√

k�) time. Now suppose t > 1. By Lemma 7, there
exists a proper t-packing Qt with at most 2kt vertices. With probability at least(

t
t/2

)
/22tk, in step 3.1, at most kt vertices of t/2 bicliques are partitioned into

V1, and the remaining vertices of the other t/2 bicliques are in V2. Clearly, G1
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Fig. 2. Algorithm for the Parameterized Edge Biclique Packing problem

and G2 both contain a proper t/2-packing, and they are vertex-disjoint. Thus,
by the inductive hypothesis, step 3.4 returns a proper t/2-packing and step 3.5
also returns a proper t/2-packing. Therefore, a proper t-packing can be obtained
in step 3.7.

As explained earlier, the vertices in Qt can be correctly partitioned into V1, V2

with probability at least
(

t
t/2

)
/22tk. Thus, the probability that step 3.1 does not

partition the vertices in Qt correctly is 1− (
t

t/2

)
/22tk. Therefore, the probability

that none of the c ·2(2k−1)t executions of loops in step 3 correctly partitions
the vertices in Qt is (1 − (

t
t/2

)
/22tk)c·2(2k−1)t

< (1/e)c. Consequently, Algorithm
PEBP can correctly construct a proper t-packing with probability larger than
1 − (1/e)c.

We now analyze the running time of the Algorithm PEBP. Let T (t) be the
running time of algorithm PEBP(G, t, k). Then, T (1) = O(nk2.5k�√

k�). When
t > 1, we can get the following recurrence relation: T (t) = c·2(2k−1)t(nk2.5k�√

k�+
T (�t/2�) + T (t − �t/2�), where c is a constant. It is easy to get that T (t) ≤
O(nk2.54(2k−1)t)k�√

k�). 	


4 Algorithm for Parameterized Bipartite Biclique Edge
Deletion Problem

Assume that (G, k) is an instance of the Parameterized Bipartite Biclique Edge
Deletion problem. We first deal with the vertices with degree at most k.
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Lemma 8. For a vertex v of G with degree at most k, a biclique containing v
with maximum number of edges can be found in time O(n2k2k), where n is the
number of vertices in G.

Since v has degree at most k, by enumerating all the possible vertices in N(v),
the biclique containing v with maximum number of edges can be obtained. The
algorithm solving the Parameterized Bipartite Biclique Edge Deletion problem
is given in Fig. 3.

Fig. 3. Algorithm for the Parameterized Bipartite Biclique Edge Deletion problem

Theorem 3. For an instance (G, k) of the Parameterized Biclique Edge Dele-
tion problem, by calling algorithm PBED(G, k, ∅), the Parameterized Bipartite
Biclique Edge Deletion problem can be solved in time O∗(2k).

Proof. If (G, k) is a no-instance of the problem, then no Q can be returned in
step 2, which is handled by step 1.

Assume that (G, k) is a yes-instance of the Parameterized Biclique Edge
Deletion problem. For a vertex u of G, if the degree of u is at least k +1, then u
must be contained in the final biclique. Therefore, for any vertex v with degree
at most k, it has two cases: either v is the final biclique, or the edges incident
to v are deleted. If v is contained in final biclique, then by Lemma 8, a biclique
B containing v with maximum number of edges can be found. If the number of
edges in E − B is less than k − |Q|, then Q ∪ (E − B) can be returned as a valid
solution. If v is not contained in the final biclique, then all the edges incident to
v must be deleted, which is handled by step 3.3.

By Lemma 8, step 3.1 can be done in O(n2k2k). Since at most k edges can
be deleted, step 3.3 can be executed k times. Therefore, the total running time
of algorithm is bounded by O∗(2k). 	
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5 Algorithm for Parameterized General Biclique Edge
Deletion Problem

In this section, we focus on the Parameterized General Biclique Edge Deletion
problem under the constraint that the left and right parts of the biclique form
independent set respectively. Assume that a biclique B with left part L′ and right
part R′ can be obtained by deleting at most k edges of G. Let GIBD(G, k,Q) be
the algorithm solving the Parameterized General Biclique Edge Deletion prob-
lem, where G is a general graph, Q is the set of edges to be deleted. We first
deal with the vertices with degree at most k.

For a vertex v with degree at most k, we deal with vertex v by the following
cases.

(1) vertex v is contained in the final biclique.
Partition the vertices in N(v) into two parts N1(v), N2(v) such that the
vertices in N1(v) is in the final biclique with v, and the vertices in N2(v)
is not in the final biclique with v. Then, a biclique B = (L′ ∪ R′, E′) with
maximum number of edges can be found in time O(n2k2k) such that the
vertices in N1(v) are contained in R′. If the number of edges in E − B is
less than k − |Q|, then Q ∪ (E − B) can be returned as a valid solution.

(2) vertex v is not contained in the final biclique.
Under this case, we can get that GIBD(G\{v}, k − deg(v), Q ∪ {[v, u]|u ∈
N(v)}).
We now assume that graph G contains no vertex with degree at most k.
For a vertex v of G, if the degree of v is at least k + 1, then v must be
contained in the final biclique. For three vertices x, y, z in G, if there exist
edges [x, y], [x, z], [z, y], then x, y, z form a triangle, denoted by (x, y, z).

Lemma 9. For any triangle (x, y, z) of G, in order to transform G into a
biclique, at least one edge from {[x, y], [x, z], [z, y]} is deleted.

Proof. Assume that B is a biclique obtained from G by deleting edges such
that the left and right parts of the biclique form independent set respectively.
Let L′ and R′ be the left and right parts of B. Assume that no edge from
{[x, y], [x, z], [z, y]} is deleted. For vertices x, y, z, two vertices of {x, y, z} are in
one part of B, and one vertex is in the other part of B. Without loss of generality,
assume that x, y are in L′, and z is in R′. Since no edge from {[x, y], [x, z], [z, y]}
is deleted, edge [x, y] is in G[L′], contradicting the fact that B is a biclique with
each part being an independent set. 	


Since all the vertices in G have degree at least k + 1 and all the vertices in
G must be contained in final biclique, triangle is the only obstruction for the
getting the final biclique. By Lemma 9, in order to get a biclique from G, we
have to destroy all the triangles in G. For each triangle in G, we have three
branchings to delete the edges in triangle.

Summarizing above discussion, we can get the following result for the General
Biclique Edge Deletion problem.
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Theorem 4. The Parameterized General Biclique Edge Deletion problem can
be solved in time O∗(3k).
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Abstract. In stage of Infrastructures Providers (IP) provides cloud service for
Service Providers (SP), in order to maximize the profits of IP, saving energy and
reducing consumption is taken into consideration. As a new application mode of
virtualization technology, virtual machine migration is of great practical
meaning. We present a forecast model based on gray and credibility ant colony
scheduling algorithm for virtual machine migration scheduling policy. The
model can estimate the future utilization of a period of virtual machine CPU
node. In determining whether the virtual machine should be moved out, the
dual-threshold mechanism is set up to avoid frequent migration shocks caused
by the transient oscillation of CPU resource utilization. Positioning probability
is defined to improve the convergence speed when target node is selected. The
experiments show that the algorithm can effectively avoid the frequent migration
of virtual machine, which is a result of the shock caused by the change in CPU
utilization, reduce energy consumption, and improve IP gains.

Keywords: Virtual machine � Online migration � Gray forecasting model �
Dual-threshold � Positioning probability

1 Introduction

As a new computing model, the cloud computing can provide a flexible and on-demand
storage and computing resources to users via computer network. Virtualization tech-
nology as enabler and important technical support of Cloud computing, is a way to be
able to represent abstract methods of computer resources [1]. The simulation, gather-
ing, sharing and isolation of resources can be achieved with the aids of virtualization
technology. Furthermore, virtualization technology can also take advantage of the
virtual machine to provide the necessary environment [2] for the reliable operation of a
variety of applications and rapid deployment. Core feature of cloud computing is
on-demand service, which makes cloud computing task allocation and resource
scheduling to become technical problems. Because of the interest conflicts between the
ordinary User, Infrastructures Providers and Service Providers, current studies only
focus on one of them and how to make one of them benefit. In other words, this is
actually the three communities of interest. Thus to make cloud computing resource
management, you must put the interests of the three as a whole, not only maximize
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cloud service providers and infrastructure providers profits, but also improve the
general user satisfaction.

In the stage of service provider (SP) provides cloud services for ordinary users, the
user satisfaction and enhance revenue are taken into consideration. In the stage of SP
purchase virtual resources from the infrastructure provider (IP), a virtual machine
providing model is created. And the dynamic double subpopulation particle swarm
optimization is introduced, the particle velocity and position of algorithm are redefined
based on virtual machine providing model. In order to improve the convergence speed
of double subpopulation particle swarm optimization, the particle velocity update
weights is dynamically adjusted based on the fitness value of particles in an iterative
process changes. PSO algorithm is easy to fall into local optimum, the immune
algorithm is introduced to enhance the diversity of particles, making the algorithm can
adjust the global factor dynamically. The improved PSO algorithm can not only find
more solution at the beginning of search, but also capable of rapid convergence in the
latter so as to achieve the optimal solution. The fusion of ant colony algorithm and
genetic algorithm scheduling policy is introduced when SP provide cloud services to
ordinary users. First, genetic operators is used in globally quick search, the initial value
of ant colony algorithm’s pheromone is the result of global genetic algorithm, then the
exact solution of task scheduling is achieved by using ACO operator, full use the dual
advantages of the ant colony algorithm and genetic algorithms on solving NP prob-
lems. Experiments show that, while in two stages of purchase virtual resources and
provide cloud resources to the general users, the two algorithms can not only improve
SP profits, but also improve customer satisfaction.

In stage of IP provides cloud service for SP, in order to maximize the profits of IP,
the energy consumption is taken into consideration. This paper presents a predictive
model based on gray and credible ant colony scheduling algorithm for virtual machine
migration scheduling policy. CPU resource utilization is an important index for live
migration of virtual machines, and when there is a mutation in the arrival of CPU
utilization, if there is no effective scheduling policy, the virtual machine migration
occurs unnecessary, thus wasting system overhead. Gray prediction model in the
second part can estimate the future utilization of a period of virtual machine CPU node.
If a load on the host at the current time the CPU utilization is greater than the larger
threshold (CPU utilization is less than a small threshold value), and the next three
consecutive load prediction values are greater than the threshold (smaller than the
threshold), the virtual machine will perform the migration. Experiments show that the
algorithm can effectively avoid the frequent migration of virtual machine as a result of
the shock caused by the change in CPU utilization, reduce energy consumption, and
improve IP gains.

2 Gray Forecasting Model

We forecast future load values by the gray forecasting model before migrating virtual
machines to target nodes. The gray forecast model is established by light and
incompletability information. It is used to make predictions. The gray system theory
research and solve the problem of how to analyze, modeling, forecast, make policy and
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control the gray system. Gray forecasting is the forecasting of a gray system. Some
forecasting methods commonly used at present (such as regression analysis) need a
larger sample. A smaller sample will cause greater error and make the target failure.
The model given here needs less modeling information. It is of high precision and
convenient operation. So it has a wide range of application in various forecasting fields
being an effective tool to deal with the small sample forecasting problem.

In the following, the methods of building a gray forecast based on model are
described with a time series of data by data analyzing and processing.

2.1 Data Preprocessing

For example, may wish to set up the original data sequence

x 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ; . . .; x 0ð Þ Nð Þ
n o

¼ 6; 3; 8; 10; 7f g

Accumulation of raw data:

x 1ð Þ 1ð Þ ¼ x 0ð Þ 1ð Þ ¼ 6;
x 1ð Þ 2ð Þ ¼ x 0ð Þ 1ð Þþ x 0ð Þ 2ð Þ ¼ 6þ 3 ¼ 9;
x 1ð Þ 3ð Þ ¼ x 0ð Þ 1ð Þþ x 0ð Þ 2ð Þþ x 0ð Þ 3ð Þ ¼ 6þ 3þ 8 ¼ 17;
. . .

A new data series gotten is that xð1Þ ¼ 6; 9; 17; 27; 34f g.

The formula above can be summarized as x 1ð Þ ið Þ ¼ Pi
j¼1

x 0ð Þ jð Þji ¼ 1; 2; . . .;N

( )
:

We call the data series represented by this formula a primary accumulation gen-
eration of raw data column (a primary accumulation generation in short).

Following we define: Dx 1ð Þ ið Þ ¼ x 1ð Þ ið Þ � x 1ð Þ i� 1ð Þ ¼ x 0ð Þ ið Þ, in which
i ¼ 1; 2; . . .;N; x 0ð Þ 0ð Þ ¼ 0.

2.2 The Principle of Modeling

Given observation data series xð0Þ ¼ xð0Þ 1ð Þ; xð0Þ 2ð Þ; . . .; xð0Þ Nð Þ� �
, after a primary

accumulation generation we got: xð1Þ ¼ xð1Þ 1ð Þ; xð1Þ 2ð Þ; . . .; xð1Þ Nð Þ� �
. Suppose that

xð1Þ satisfy the first order ordinary differential equation: dxð1Þ
dt þ axð1Þ ¼ u, where u is a

constant, and a is called the development gray number. This equation satisfied the
following initial condition:

When t ¼ t0; x
ð1Þ ¼ x 1ð Þðt0Þ ð1Þ

Then the solution of this equation is:
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x 1ð Þ tð Þ ¼ x 1ð Þ t0ð Þ � u
a

h i
e�aðt�t0Þ þ u

a
ð2Þ

For discrete values of equal interval sampling (take note of t0 ¼ 1), the solution is

x 1ð Þ kþ 1ð Þ ¼ x 1ð Þ 1ð Þ � u
a

h i
e�ak þ u

a
ð3Þ

Because x 1ð Þð1Þ is used as an initial value, x 1ð Þ 2ð Þ; x 1ð Þ 3ð Þ; . . .; x 1ð Þ Nð Þ are brought
into the Eq. (1). Suppose difference is used to replace differential coefficient, because of

the equal interval sampling Dt ¼ tþ 1ð Þ � t ¼ 1, therefore we get Dx 1ð Þ 2ð Þ
Dt ¼ x 0ð Þ 2ð Þ.

Similarly Dx 1ð Þ 3ð Þ
Dt ¼ x 0ð Þ 3ð Þ; . . .; Dx 1ð Þ Nð Þ

Dt ¼ x 0ð Þ Nð Þ.
By the formula (1), we get the following:

x 0ð Þð2Þ
x 0ð Þð3Þ

..

.

x 0ð ÞðNÞ

2
6664

3
7775 ¼

� 1
2 ½x 1ð Þð2Þþ x 1ð Þð1Þ� 1

� 1
2 ½x 1ð Þð3Þþ x 1ð Þð2Þ� 1

..

. ..
.

� 1
2 ½x 1ð ÞðNÞþ x 1ð ÞðN � 1Þ� 1

2
6664

3
7775

a
u

� �
ð4Þ

By matrix (4), the estimate values of a and u can be got. They are a
0
and b

0
.

Bringing a
0
and b

0
into formula (3), the forecast value can be obtained. By recording a

sequence value of the load: kð1Þ; kð2Þ; . . .; kðtÞ, the gray forecasting model can find out
load forecasting values at tþ 1, tþ 2 and tþ 3. If all of these three load forecasting
values are greater than the upper limit threshold value or all of them are less than the
lower threshold value, the virtual machine migration will be triggered.

3 The Selection and Positioning Strategy of Virtual Machine
to Be Migrated

When the virtual machine to be migrated is selected, it is considered that the virtual
machine to be moved out will release most of resources. At the same time, migration
costs are small. Generally, memory resources and CPU resources are synthetically
considered at first, then it is decided which virtual machine will be moved out.

In a virtual machine, Let w = utilization ratio of CPU/utilization ratio of memory.
The w is greater, the utilization ratio of memory is lower and utilization ratio of CPU is
higher in the virtual machine. So it will release more resources after the migration.
Moreover the amount of data to be transmitted is small [3]. Let x = utilization ratio of
CPU * utilization ratio of memory. The x is greater, the utilization ratio of CPU and
memory are higher. Though the amount of data to be transmitted is greater when
migrating the virtual machine being of maximum x, the most resources will be released.

Suppose Htþ 1 indicates the set of continuous three forecasting values of the uti-
lization ratio of CPU after the moment t, Hmax shows the upper limit threshold value of
the utilization ratio of CPU when the host is triggered to start a migration, and Hmin
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shows the lower limit threshold value. Mthre indicates the threshold value of utilization
ratio of memory. The current memory occupancy of the physical node is M.

The dynamic migration strategy of a virtual machine can be described as follows:
While Htþ 1\Hmin, all virtual machines on the physical node are moved out and

close the physical node to save energy;
While Hmin\Htþ 1\Hmax, no migration because of load balancing on the physical

node;
While Htþ 1 [Hmax and M\Mthre, the virtual machine being of the biggest w

will be moved out;
While Htþ 1 [Hmax and M[Mthre, the virtual machine being of the biggest x will

be moved out.
When a virtual machine is moved out, the CPU utilization may become too high

and the memory utilization is deficiency in the target physical node, or the CPU
utilization is deficiency and the memory utilization may become too high [4]. We have
defined w and x. When the target physical node is selection, the virtual machine being
of a bigger w should be moved into a target node which has a smaller w value.
Otherwise, if w value is smaller, the virtual machine should be moved into a target node
which being of a bigger w value. After the values match of w, m optimum values are
selected. Let p ¼ x=

P
x, in it x is current available resources on someone target node

among these m optimum solutions, and
P

x shows total available resources of these m

optimum solutions, so that
Pm
i¼1

pi ¼ 1. In case of there are five optimum solutions:

S ¼ S1; S2; S3; S4; S5f g, by computing, their proportion available resources are 0.1, 0.3,
0.2, 0.2, 0.2, then S1; . . .; S5 can be intercalated into five interval S1 : 0; 0:1ð �,
S2 : 0:1; 0:4ð �, S3 : 0:4; 0:6ð �, S4 : 0:6; 0:8ð �, S5 : ð0:8; 1�.

When the migration target node is to be selected, first, the random function is used
to generate a random number between (0, 1], then select an appropriate interval in
S1; . . .; S5 according to the value of the random number. The target node represented by
the selected interval is the ultimate goal of the virtual machine migration. Based on the
positioning probability management, target nodes with more available resources are
being of greater probability of receiving a virtual machine, the probability of being
selected as a target node where the physical nodes with high resource utilization will
become low. Thus load balancing for each physical node is realized in the data center.

4 Experiment and Analysis

CloudSim simulation software is used in the experiment to verify the efficiency of the
algorithm. CloudSim Toolkit supports the system components in a virtualized envi-
ronment, such as data center, hosts, virtual machines, scheduling and resources allo-
cation strategies [5]. The CloudSim-3.0, Windows XP SP3, jdk6.5, MyEclipse ver8.5
and Ant1.8.1 are also used in the experiment. The hardware environment is Pentium
Dual Core Processor with main frequency 2.6 GHz. With the CloudSim-3.0, we deploy
the same 1000 physical nodes and meanwhile provide 3000 virtual machines of the
same performance. The number of virtual machines migration and degree of system
load balance are calculated every 10 s. After 20 times of sampling, find the average
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values as the migration times and the degree of system load balance under a certain
threshold value. In the experiments, different threshold values are used in order that we
can observe the number of virtual machines migration, shown in Fig. 1.

The number of migration caused by scheduling strategy based on the gray fore-
casting model is obviously smaller than those caused by Double Threshold (DT) al-
gorithm. This shows that the scheduling strategy based on the gray forecasting model
can make the migration more efficient. With the increase of the threshold setting, the
number of migration caused by both the scheduling strategy based on the gray fore-
casting model and DT algorithm showed a clear upward trend, but the number of
migration caused by the Simple Threshold (ST) algorithm showed a clear downward
trend. This is because that when the dual-threshold is set up, threshold enhancement,
low threshold is also to become high. Many virtual machines of low CPU and memory
utilization rate in the physical machine will be moved out so that the number of
migration will increase. When the threshold is 0.7, the numbers of migration caused by
the three scheduling algorithms are most similar, shown in Fig. 2.

Figure 2 shows three load balance curves of the three algorithms while the
threshold value is 0.7. It is found that there is a rise in the load balance in the early
stage, but with the passage of the time, the load balance of the three scheduling
strategies is gradually becoming smaller. The load balance of ST algorithm with a
single limit threshold is greater than that of DT algorithm with dual-threshold and the
dynamic migrating strategy based on gray forecasting model. But the scheduling
strategy based on gray forecasting model has better load balancing effect. It can
improve utilization ratio of the system resources.

Fig. 1. The number of migration of the three algorithms under different thresholds
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5 Conclusions

A kind of scheduling strategy of virtual machine migration based on the gray fore-
casting model is proposed in this paper. The model is of high precision and high
efficiency. In addition, the dual-threshold value is applied in the virtual machine
migration strategy. It effectively eliminates the frequent migration caused by the CPU
utilization ratio shocks. The idea of positioning probability is introduced while the
target node is being selected, to solve the clustering effect and greatly enhance the
migration success rate. In order to realize the goal of saving energy, [6] the scheduling
strategy will be gradually improved in the following research.
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Abstract. This paper studies the Maximum Internal Spanning Tree
problem which is to find a spanning tree with the maximum number of
internal vertices on a graph. We prove that the problem can be solved in
polynomial time on interval graphs. The idea is based on the observation
that the number of internal vertices in a maximum internal spanning tree
is at most one less than the number of edges in a maximum path cover
on any graph. On an interval graph, we present an O(n2)-algorithm to
find a spanning tree in which the number of internal vertices is exactly
one less than the number of edges in a maximum path cover of the graph,
where n is the number of vertices in the interval graph.

Keywords: Polynomial · Algorithm · Maximum internal spanning
tree · Interval graph

1 Introduction

The Maximum Internal Spanning Tree problem, MIST briefly, is motivated by
the design of cost-efficient communication networks [14]. It asks to find a span-
ning tree of a graph such that the number of its internal vertices is maximized.
Since a Hamilton path (if exists) of a graph is also a spanning tree of that graph
with its internal vertices maximized in number, and finding a Hamilton path
in a graph is NP-Hard classically [7], MIST is NP-hard trivially. The comple-
ment problem of MIST is the so called Minimum Leaves Spanning Tree problem,
MLST briefly. MLST asks to find a spanning tree of a graph such that the number
of its leaves is minimized. One application of MLST appears in water resources
engineering [2].

MLST is NP-hard and cannot be approximated to within any constant per-
formance ratio [10], if P �= NP . As algorithmic approaches, Flandrin et al. in
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[4] and Kyaw in [9] have respectively studied the conditions of whether a graph
has a spanning tree with a bounded number of leaves.

Unlike MLST, MIST admits approximation algorithms with a constant per-
formance ratio. Prieto et al. [11] first presented a 2-approximation using local
search in 2003. Later, by a slight modification of depth-first search, Salamon
et al. [14] improved Prieto’s 2-approximation algorithm to running in linear-time.
Besides, they proposed a 3

2 -approximation algorithm on claw-free graphs and a
6
5 -approximation algorithm on cubic graphs [14]. Salamon even showed that his
2-approximation algorithm in [14] can achieve a performance ratio r+1

3 on r-
regular graphs [16]. Furthermore, by local optimization, Salamon [15] devised an
O(n4)-time and 7

4 -approximation algorithm on graphs without leaves. Through
a different analysis, Knauer et al. [8] showed that Salamon’s algorithm in [15]
can actually take O(n3) time to achieve a performance ratio 5

3 even on general
undirected simple graphs. In 2014, Li, Wang and Chen [21] presented a 1.5-
approximation algorithm by a local search method for the maximum internal
spanning tree problem on general graphs. Meanwhile, Li and Zhu [22] gave a
1.5-approximation algorithm using a greedy method for the maximum internal
spanning tree problem on general graphs.

Salamon et al. [15] also studied the vertex-weighted cases of MIST which asks
for a maximum weighted spanning tree of a vertex weighted graph. They gave an
O(n4)-time and (2Δ−3)-approximation algorithm for weighted MIST on graphs
without leaves, where Δ is the maximum degree of the graph. They also gave
an O(n4)-time and 2-approximation algorithm for weighted MIST on claw-free
graphs without leaves. Later, Knauer et al. [8] presented a (3+ε)-approximation
algorithm for weighted MIST on undirected simple graphs.

Fixed parameter algorithms of MIST have also been extensively studied in
the recent years. Prieto and Sloper [11] designed the first FPT-algorithm with
running time O∗(24klogk) in 2003. Coben et al. [3] improved this algorithm to
achieve a time complexity O∗(49.4k). Then an FPT-algorithm for MIST with
time complexity O∗(8k) was proposed by Fomin et al. [6], who also gave an
FPT-algorithm for its directed version with time complexity O∗(16k+o(k)) [5].
For directed graphs, a randomized FPT algorithm proposed by M. Zehavi is by
now the fastest one which runs in O∗(2(2− Δ+1

Δ(Δ−1) )k) time [18], where Δ is the
vertex degree bound of a graph. On cubic graphs in which each vertex has degree
three, Binkele-Raible et al. [2] proposed an O∗(2.1364k) time algorithm.

For the kernalization of MIST, Prieto and Sloper first presented an O(k3)-
vertex kernel [11,12]. Later, they improved it to O(k2) [13]. Recently, Fomin
et al. [6] gave a 3k-vertex kernel for this problem, which is the best by now.

As for the exact exponential algorithms to solve MIST, Binkele-Raible et al.
[2] proposed a dynamic programming algorithm with time complexity O∗(2n).
On graphs with maximum vertex degree bounded by 3 especially, they devised
a branching algorithm of O(1.8612n) time and polynomial space.

In this paper, we pay attention to the maximum internal spanning tree prob-
lem on interval graphs. Interval graphs have received a lot of attention due
to their applicability to DNA physical mapping problems [23], and find many
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applications in several fields and disciplines such as genetics, molecular biology,
scheduling, VLSI circuit design, archaeology and psychology [24]. We prove that
there is a polynomial algorithm to find a maximum internal spanning tree on
interval graphs. We present an algorithm with time complexity O(n2), where n
is the number of vertices in an interval graph.

This paper is organized as follows. Section 2 presents basic notations and
properties of interval graphs. In Sect. 3, we present our polynomial algorithm and
its analysis. Section 4 concludes this paper by looking forward to some future
work on the maximum internal spanning tree problem.

2 Preliminaries

In this paper, all graphs in which we are going to find spanning trees are undi-
rected, simple and connected. Each path or cycle in a graph is always simple.
The first and the last vertices of a path are the endpoints of that path, while the
others except the endpoints of a path are the inner vertices of that path. The
length of a path or cycle is the number of edges in it. A connected component
of a graph is a subgraph in which any two vertices are connected to each other
by paths, and which is connected to no additional vertices in the supergraph. A
connected component of a graph is referred to as a path (cycle) component if it
is a path (cycle) of that graph. A vertex in a graph is a leaf if its degree is 1,
and internal otherwise.

A spanning subgraph of G is a path cover if every connected component of it
is a path. A path cover of G is maximum if its edges are maximized in number
over all path covers of G.

A maximum internal spanning tree of G is a spanning tree of G whose internal
vertices are maximized in number over all spanning trees of G. The Maximum
Internal Spanning Tree problem, MIST namely, is given by an undirected simple
graph, and asks to find a maximum internal spanning tree for that graph.

A graph G is called an interval graph if its vertices can be put in a one-to-
one correspondence with a family F of intervals on the real line such that two
vertices are adjacent in G if and only if the corresponding intervals intersect. F is
called an intersection model for G. A right-end ordering of an interval graph G
can be obtained by sorting the intervals of the intersection model of G on their
right ends in time O(|V (G)|+ |E(G)|) [20]. An ordering of the vertices according
to this numbering is found to be quite useful in solving some graph-theoretic
problems on interval graphs [20]. Throughout this paper, an interval graph is
represented by its right-end ordering graph. Figure 1 shows an interval graph
and its corresponding right-end ordering graph.

Lemma 1 (Ramadingam and Rangan [20]). In a right-end ordering graph
of an interval graph, for every three indices i, j, k, if i < j < k and there is an
edge between vi and vk, then there must be an edge between vj and vk.

Let G be an interval graph. Let π be a right-end ordering of G. The path
P = vπ0 , vπ1 ...vπs

is typical if for every 1 ≤ i ≤ s, π0 < πi. Arikati and Rangan
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Fig. 1. (a) An interval graph G; (b) An intersection model F of G; (c) The right-end
ordering of G

[19] proved that, in any interval graph, every path can be transformed into a
typical one with its vertices unchanged. That is,

Lemma 2 (Arikati and Rangan [19]). Let p be a path of an interval graph
G, then there is a typical path q of G such that V (p) = V (q).

By Lemma 2, throughout this paper, every path is typical whenever it is
mentioned.

Let G1 be a subgraph of an interval graph G. Note that the interval
graph G is represented by its right-end ordering. The left-most vertex of G1

is vleftMost(G1) = {vj |j = minvi∈V (G1)(i)}, and the right-most vertex of G1 is
vrightMost(G1) = {vj |j = maxvi∈V (G1)(i)}. Particularly, the left-most vertex of a
path is the left endpoint of the path, since the path is typical.

Two subgraphs G1 and G2 of an interval graph are said to be intersect-
ing if there is a vertex vi of G1(or G2) such that leftMost(G2) < i <
rightMost(G2)(or leftMost(G1) < i < rightMost(G1)).

Every graph considered in this paper is connected, so every path in a right-
end ordering graph must intersect with another path. Otherwise, the path must
be isolated with the other parts of the right-end ordering graph, then the graph
is not connected. So we have

Property 1. For every path p on a right-end ordering graph, there must be
another path q �= p such that p and q are intersecting.

For every two intersecting subgraphs, we have the following property.

Property 2. Let G1 and G2 be two intersecting subgraphs of an interval graph.
If leftMost(G1) < leftMost(G2), then leftMost(G2) < rightMost(G1).

Proof. Assume that leftMost(G2) > rightMost(G1), then G1 and G2 would
not be intersecting. This comes to a contradiction. ��
Lemma 3. Let G1, G2 be two connected subgraphs of an interval graph G, If
G1 and G2 are intersecting and leftMost(G1) < leftMost(G2), then there exist
another vertex w ∈ V (G1), such that w and vleftMost(G2) are connected by an
edge of G.

Proof. We partition the vertex set of G1 into two sets V1 and V2, where
V1 = {vs|vs is in V (G1) and s < leftMost(G2)} and V2 = {vs|vs is in V (G1)
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and s > leftMost(G2)}. Since G1 and G2 are intersecting and leftMost(G1) <
leftMost(G2), by Property 2, leftMost(G2) < rightMost(G1). So there must
be one vertex u in V1 and another vertex w in V2 such that (u,w) is an edge
of G1, otherwise, G1 is not connected. By Lemma 1, there is an edge between w
and the vertex vleftMost(G2). ��

3 The Polynomial Algorithm

In this section, we will present a polynomial algorithm for the maximum internal
spanning tree problem on interval graphs. Given an interval graph G, the scheme
of our algorithm is first to find a maximum path cover of G using the algorithm
from [19] and finally connect every path together to form a spanning tree of G.
Due to Arikati and Rangan [19], a maximum path cover of an interval graph
can be found in linear time. The key point of our algorithm is to decide how
to connect these paths together in polynomial time so that we can obtain a
maximum internal spanning tree of an interval graph.

In the following, we fist prove an upper bound of the number of internal
vertices of a spanning tree. Then, we give a method to connect the paths together
to form a spanning tree so that the number of internal vertices of the spanning
tree is just equal to the proven upper bound. Based on these, we can show that
our algorithm can find a maximum internal spanning tree on an interval graph
in polynomial time.

3.1 The Upper Bound of Internal Vertices in a Spanning Tree

Lemma 4. Let T ∗ be a maximum internal spanning tree of a graph. If T ∗ has at
least two vertices, then there is a path cover of T ∗ which has less path components
than the number of leaves of T ∗.

Proof. Let x be the number of leaves in T ∗. The proof is by induction on x.
If x = 2, T ∗ is a path component, the lemma holds true trivially. Then the
inductive assumption is, if a tree has at most x − 1 leaves, it must have a path
cover with less path components than the leaves in that tree. Later, we show
that if T ∗ has x (> 2) leaves, it must have a path cover with at most x − 1 path
components.

Since x > 2, a path, say P with at least one edge, can be identified in T ∗

with both of its endpoints as leaves of T ∗. We then delete those edges incident
to the vertices of P except those in P . This gives rise to a spanning forest of T ∗.
Let T1, ..., Tj , Tj+1, ..., Tk be all the trees in the forest except P , where Ti for
1 ≤ i ≤ j has only one vertex while the others do not. Note that the vertex in
Ti for 1 ≤ i ≤ j is also a leaf of T ∗. Namely, one path can cover Ti for 1 ≤ i ≤ j.
Moreover, Ti for j + 1 ≤ i ≤ k has at most x − 1 leaves because it has at most
one leaf which does not act as a leaf in T ∗. Let Tj+1, Tj+2, ..., Tk have xj+1,
xj+2, ..., xk leaves respectively. By the inductive assumption, Ti for j+1 ≤ i ≤ k
must have a path cover with at most xi − 1 path components. Hence T ∗ has a
path cover with at most 1 + j +

∑
j+1≤i≤k(xi − 1) ≤ 1 + j +

∑
j+1≤i≤k(xi) −

(k − j) ≤ 1 + j + (x − (2 + j) + (k − j)) − (k − j) = x − 1 path components. ��
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Lemma 5. The number of internal vertices of a maximum internal spanning
tree is less than the number of edges of a maximum path cover in a graph.

Proof. Let T ∗ be a maximum internal spanning tree of a graph G. Let P ∗ be
a maximum path cover of G. By Lemma 4, the number of leaves in T ∗ is larger
than the number of path components in P ∗. So the number of internal vertices
in T ∗ is less than the number of edges in P ∗. ��

3.2 Algorithm

Our algorithm starts with a maximum path cover P ∗ of an interval graph G,
which can be done in linear time [19]. Now we are going to connect all path
components of P ∗ together to form a spanning tree of G so that the internal
vertices of the spanning tree is exactly one less than the number of edges of P ∗,
just meeting with the upper bound stated in Lemma5.

The idea to connect the path components is as following. Every time we
maintain a currently-optimal tree Tc and a set of paths Pc. Initially, we arbitrarily
choose a path component, say p0, from P ∗ and let Tc ← p0, Pc ← P ∗ \ {p0}.
We want to connect all path components in Pc to Tc so as to get a spanning
tree. Tc grows by connecting path components chosen from Pc one by one. Every
time the path component chosen from Pc should be intersecting with Tc. The
connection rules are as follows.

Let p be a path component which is in Pc and intersecting with Tc. Now we
are going to connect p to Tc. There are two cases.

Case 1: leftMost(p) < leftMost(Tc). By Lemma 3, there exists a vertex
w ∈ V (p) such that (w, vleftMost(Tc)) is an edge of G. We connect p with Tc by
adding the edge between w and vleftMost(Tc).

Case 2: leftMost(p) > leftMost(Tc). By Lemma 3, there exists a vertex
w ∈ V (Tc) such that (w, vleftMost(p)) is an edge of G. We connect p with Tc by
adding the edge between w and vleftMost(p).

We summarize the polynomial algorithm as Algorithm1.

3.3 Analysis

In this section, we prove that the Algorithm1 can find a maximum internal
spanning tree for an interval graph in polynomial time.

By Property 1, every path component in P ∗ can be connected to Tc to form
a spanning tree when the algorithm finishes, otherwise, the interval graph would
not be connected. In the following, we will count the number of internal vertices
in the output tree of the algorithm.

Lemma 6. At any time, the degree of the left-most vertex of Tc which is
vleftMost(Tc) is always one.

Proof. We proof this lemma by induction. Initially, Tc is a simple path. So the
left-most vertex of Tc is naturally a leaf of Tc. That is, the degree of the left-
most vertex is one. Assume that the degree of the left-most vertex of Tc is one
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Algorithm 1. Finding a maximum internal spanning tree on an interval graph
Input:

An interval graph G which has already been right-end ordered.
Output:

A maximum internal spanning tree of G
1: Find a maximum path-cover P ∗ of G, which can be done in linear time [19].
2: Tc ← {p| p is a path component of P ∗}, Pc ← P ∗ \ {p}
3: while Pc is not empty do
4: Choose a path component q from Pc, where q is intersecting with Tc.
5: if leftMost(q) < leftMost(Tc) then
6: By Case 1, choose a vertex w ∈ V (q) which is adjacent to vleftMost(Tc). Let

Tc be the resultant new tree by adding the edge between w and vleftMost(Tc).
7: end if
8: if leftMost(q) > leftMost(Tc) then
9: By Case 2, choose a vertex w ∈ V (Tc) which is adjacent to vleftMost(q). Let

Tc be the resultant new tree by adding the edge between w and vleftMost(q).
10: end if
11: Pc ← Pc \ {q}
12: end while
13: return Tc.

before connecting some path component p ∈ Pc. Now we will prove that after
connecting the path p to Tc, the degree of the left-most vertex in the resultant
newly tree T

′
c is still one. If leftMost(p) < leftMost(Tc), then by Case 1, after

connecting p to Tc, the left-most vertex in the resultant newly tree T
′
c turns to

be the left-most vertex of the path p. So the degree of the left-most vertex in
the resultant newly tree T

′
c is still one. If leftMost(p) > leftMost(Tc), then by

Case 2, after connecting p to Tc, the left-most vertex in the resultant newly
tree T

′
c remains to be the left-most vertex of the tree Tc. By the induction, the

degree of the left-most vertex of Tc is one. So the lemma holds. ��
Lemma 7. After a path component p ∈ Pc is connected to the currently-optimal
tree Tc, the internal vertices of the currently-optimal tree increase exactly by
|E(p)|.
Proof. If leftMost(p) < leftMost(Tc), then by Case 1, we use the left-most
vertex of Tc to connect p and Tc. By Lemma 6, the left-most vertex of Tc has
degree one. So after this connection, the left-most vertex of Tc will become an
internal vertex. Moreover, the internal vertices of p will turn to be internal in
the newly resultant tree, and the number of internal vertices of p is |E(p)| − 1.
So after connecting p to Tc, the internal vertices of the currently-optimal tree
increase exactly by |E(p)|.

If leftMost(p) > leftMost(Tc), then by Case 2, we use the left-most vertex
of p to accomplish this connection. So the endpoint of p turns to be an internal
vertex of the resultant tree. Moreover, the internal vertices of p are still be
internal in the newly resultant tree, where the number of internal vertices of p
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is |E(p)| − 1. So after connecting p to Tc, The internal vertices of the currently-
optimal tree increases exactly by |E(p)|. ��
Lemma 8. Let P ∗ be a maximum path cover of an interval graph G. Then the
Algorithm1 returns a spanning tree with the number of internal vertices equal to
|E(P ∗)| − 1.

Proof. Consider the change of the number of internal vertices in Tc. Initially, Tc

is a simple path of P ∗. Let p0 be such a chosen path. So before the while loop
in the Algorithm 1, the number of internal vertices in Tc is equal to |E(p0)| − 1.
By Lemma 7, after each connection, the increment of the number of internal
vertices in Tc is equal to the number of edges of the path component which is
connected to Tc. So when the algorithm finishes, we can obtain a spanning tree
with |E(P ∗)| − 1 internal vertices. ��
Theorem 1. The Algorithm1 can find a maximum internal spanning tree for
an interval graph with time complexity O(n2), where n is the number of vertices
in the interval graph.

Proof. By Lemmas 5 and 8, the Algorithm 1 returns a spanning tree with the
number of internal vertices equal to the upper bound of the number of internal
vertices in a spanning tree. So the Algorithm1 can find a maximum internal
spanning tree on an interval graph.

Let G be an interval graph. The time complexity to find a maximum path
cover in G is O(|V (G)| + |E(G)|) [19]. So the step 1 in the Algorithm1 takes
O(|V (G)|+|E(G)|) time. Now we will calculate the time complexity of the while-
loop in the Algorithm 1. It takes O(|V (G)|) time to find the left-most vertex and
the right-most vertex of a subgraph. Once we know the left-most vertex and
the right-most vertex of a subgraph, we just spend O(1) time to decide whether
two subgraphs are intersecting. Let q be a path component which is intersecting
with a currently-optimal tree Tc. If leftMost(q) < leftMost(Tc), then we will
spend O(|V (q)|) ≤ O(|V (G)|) time to find a vertex w ∈ V (q) such that w and
vleftMost(Tc) are connected by an edge in G. If leftMost(q) > leftMost(Tc), then
we will spend O(|V (Tc)|) ≤ O(|V (G)|) time to find a vertex w ∈ V (Tc) such that
w and vleftMost(q) are connected by an edge in G. So the time complexity of the
while-loop in the Algorithm 1 is O(|P ∗| ∗ |(3|V (G)|)) ≤ O(|V (G)|2), where P ∗ is
a maximum path cover of G. So the time complexity of the Algorithm1 is O(n2)
where n is the number of vertices of an interval graph. ��

4 Conclusions and Discussions

We have present a polynomial algorithm for the maximum internal spanning tree
problem on interval graphs. We claim that the maximum internal spanning tree
problem on circular-arc graphs can also be solved in polynomial time, since these
two graph classes are very similar. Moreover, the maximum internal spanning
tree problem on other special graph classes can also be studied, including their
algorithms and complexity.
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Abstract. Model RB is a random constraint satisfaction problem with
a growing domain size, which exhibits exact phase transition phenom-
ena. Many hard instances with planted solutions can be generated via
Model RB, to be used as benchmarks for algorithmic competitions and
researches. In the past, some structural parameters of constraint hyper-
graphs are analyzed to show hardness of Model RB, such as hinge
width, decycling number, treewidth, and hypertree width. In this paper,
one more structural parameter of constraint hypergraphs of Model RB,
namely the fractional edge cover number, is analyzed. We show upper
and lower bounds on the fractional edge cover number of Model RB.
In particular, the fractional edge cover number of Model RB is shown
to be asymptotically linear in the number of variables, like hinge width,
decycling number, treewidth and hypertree width. These results together
provide further evidences on the hardness of Model RB.

Keywords: Model RB · Fractional edge cover · Hardness

1 Introduction

Constraint satisfaction problems (CSPs) can model many real world problems,
such as n-queens, Latin squares, etc. A CSP instance is consist of a constraint
hypergraph on a set of variables and many constraints on the hyperedges. Each
constraint gives the compatible assignments of values to the variables in a hyper-
edge. The task is to decide if the instance is satisfiable, that is, if there is an
assignment of values to all the variables, such that it is compatible with all the
constraints. The Boolean satisfaction problem 3-SAT is a special case of CSPs,
where each variable only takes two different values and each constraint is a con-
junction of three variables or their negations.

Since 3-SAT is already an NP-complete problem, CSPs are hard to solve in
general. Many structural decomposition methods are developed to find tractable
classes of CSPs, such as tree decomposition [13], hypertree decomposition [1],
and fractional edge cover [11]. For constraint hypergraphs with a structural
parameter w and input size ||I||, usually we can solve these instances in time
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O
(||I||f(w)

)
, where f(w) is a function of w, such as a low degree polynomial

of w, or linear in w. When the structural parameter w is constantly bounded,
we get a tractable class of CSPs. At the moment, the most powerful structural
decomposition method is fractional hypertree decomposition [17].

On the other hand, random instances of CSPs can be generated by ran-
domly setting constraint hypergraphs, and then randomly setting compatible
assignments for each constraint. A parameter called density, which is the ratio
between the number of constraints and the number of variables, can be used to
control the number of constraints. With a small density and thus a small number
of constraints, the instances are likely to be satisfiable. With a large density and
thus a large number of constraints, the instances are unlikely to be satisfiable.
When the number of variables goes to infinity, such a change of satisfiability
may happen suddenly around a critical value of density. Such phenomena are
called the satisfiability phase transition of random CSPs. Moreover, the hardest
instances of CSPs are located around the satisfiability thresholds [2,3,5,6,19,20].
However, a rigorous link between the hardness of random instances and the sat-
isfiability phase transition is still unknown.

The most common random CSPs are random 3-SAT in theoretical computer
science and Model A,B,C,D in artificial intelligence. For random 3-SAT, the
exact satisfiability threshold is still unknown, although some upper and lower
bounds are shown in the past [4,18]. Moreover, if planted solutions are used
to generated satisfiable random instances with known solutions, the instances
usually become much easier to solve. For Model A,B,C,D, when the number
of variables goes to infinity, the satisfiability thresholds will go to zero, thus
they are useless in generating large hard instances [10]. A random CSP model,
called Model RB, is defined by Xu and Li [23], which has an increasing domain
size and exhibits exact phase transition phenomena. Many hard instances with
planted solutions can be generated via Model RB [24,26], to be successfully
used as benchmarks in various algorithmic competitions and in many research
papers, such as the annual CSP solver competitions, the annual Pseudo-Boolean
(0-1 Integer Programming) solver competitions, the annual MAX-SAT solver
competitions, and the annual SAT solver competitions, etc. [24].

In the past, the hardness of model RB is theoretically shown by exponential
lower bounds on the length of resolution [25], and some analysis on the evolu-
tion of its solution space [27,28], besides many experimental results [26]. Some
structural parameters of constraint hypergraphs are also analyzed to show hard-
ness of Model RB with respective to the structural decomposition methods, such
as hinge width [15], decycling number [12], treewidth [22], and hypertree width
[16]. In this paper, one more structural parameter of constraint hypergraphs of
Model RB, namely the fractional edge cover number [11], is analyzed. We show
upper and lower bounds on the fractional edge cover number of Model RB. In
particular, the fractional edge cover number of Model RB is shown to be asymp-
totically linear in the number of variables, like hinge width, decycling number,
treewidth and hypertree width. These results together provide further evidences
on the hardness of Model RB.
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This paper is structured as follows. After introducing definitions and some
facts on Model RB and fractional edge cover respectively, as well as a version
of Chernoff bound in Sect. 2, lower and upper bounds on fractional edge cover
number of Model RB are shown in Sect. 3. In Sect. 4, we conclude the paper with
remarks on our results and open problems.

2 Preliminaries

In this section, we give definitions and facts on Model RB and fractional edge
cover respectively, as well as a version of the Chernoff bound.

2.1 Model RB

An instance I of constraint satisfaction problem (CSP) is a triple (V,D,C). V
is a finite set of variables. D is a finite set of values, called domain. C is a set of
constraints. For each constraint, there is a subset of variables, called the scope of
this constraint. For a constraint scope with k variables, a subset of Dk is given
as compatible assignment of values to the variables in this scope. A solution of I
is an assignment of values to all variables which is compatible to all constraint.
If there is at least one solution, I is called satisfiable, otherwise unsatisfiable.
Given an instance, we are asked to decide if it is satisfiable, and in some cases
to find a solution if it exists.

A hypergraph is just a set system, which is consist of some subsets (called
hyperedges) of a finite set (called vertex set). A hypergraph H with vertex set
V and hyperedge set E is denoted by H = (V,E). The constraint hypergraph of
a CSP is consist of the scopes of the constraints in this CSP.

Model RB is a random CSP defined as follows [23].

1. Given n variables, each variable takes values in {1, 2, ..., d}, where d = nα

and α > 0 is a constant;
2. Select with repetition m = rn ln n random constraints, where r is a constant.

For each constraint, select without repetition k of n variables, where k ≥ 2 is
an integer constant;

3. Select uniformly at random without repetition (1 − p)dk compatible assign-
ments for each constraint, where 0 < p < 1 is a constant.

For an instance I of Model RB, the input size ||I|| is about
O

(
m(k log n + Dk)

)
, that is, for each of the m constraints, we list the k variables

involved and at most Dk compatible assignments.
It is known that in Model RB there exists satisfiability thresholds rcr =

− α
ln(1−p) [23].
Let HRB

n,r,k denote a random constraint hypergraph in Model RB.
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2.2 Fractional Edge Cover

Given a hypergraph H = (V,E), if there is a mapping

ψ : E → [0,∞),

such that ∑

e∈E,v∈e

ψ(e) ≥ 1, for every v ∈ V,

then ψ is called a fractional edge cover of H [11].
For a fractional edge cover ψ, The weight of hyperedge e under ψ is ψ(e).

The weight of ψ is
∑

e∈E ψ(e). The optimal fractional edge cover ψ∗ of H is a
fractional edge cover with the minimum weight over all possible fractional edge
covers of H. The fractional edge cover number of H, denoted by ρ∗(H), is the
weight of an optimal fractional edge cover ψ∗ of H [11], that is,

ρ∗(H) = min
ψ

∑

e∈E

ψ(e) =
∑

e∈E

ψ∗(e).

It is known that for a CSP instance I, the number of solutions of I is at most
||I||ρ∗(HI), where ||I|| is the size of I and HI is the constraint hypergraph of I. It
is known that the solutions of I can be enumerated in time ||I||ρ∗(HI)+O(1) [11].

2.3 Chernoff Bound

We say that a random event Q happens with high probability if the probability
of this event Pr(Q) goes to 1 asymptotically. We will use the following version
of Chernoff Bound [21].

Lemma 1 (Chernoff Bound). Given a random variable X, X follows a bino-
mial distribution, i.e., X∼ B(n, μ

n ). If 0 < ε < 1, then

Pr(X ≤ (1 − ε)μ) ≤ e−με2/2.

3 Fractional Edge Cover Number of Model RB

In this section, we will give lower and upper bounds on fractional edge cover
number of Model RB.

Suppose that ρ∗(HRB
n,r,k) is the fractional edge cover number of Model RB,

where n is the total number of vertices in the constraint hypergraph, k is the
number of vertices contained in each hyperedge, and rn ln n is the maximum
number of hyperedges. We can first give a lower bounds on HRB

n,r,k as follows.

Theorem 1. ρ∗(HRB
n,r,k) ≥ n

k .
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Proof. Let ψ be an arbitrary fractional edge cover of HRB
n,r,k. Then by definition

of fractional edge cover,
∑

e∈E,v∈e

ψ(e) ≥ 1, for all v ∈ V.

Now we summarize all these n inequalities over all vertices v ∈ V ,

∑

v∈V

⎛

⎝
∑

e∈E,v∈e

ψ(e)

⎞

⎠ ≥ n.

Since every hyperedge contains exactly k vertices, the weight ψ(e) of every
hyperedge e will appear exactly k times in the left hand side. Thus,

∑

v∈V

⎛

⎝
∑

e∈E,v∈e

ψ(e)

⎞

⎠ = k ·
∑

e∈E

ψ(e).

From the above two inequalities, we have

k ·
∑

e∈E

ψ(e) ≥ n,

or equivalently, ∑

e∈E

ψ(e) ≥ n

k
.

Since ψ is an arbitrary fractional edge cover, the last inequality also holds
for the optimal fractional edge cover ψ∗. Therefore,

ρ∗(HRB
n,r,k) =

∑

e∈E

ψ∗(e) ≥ n

k
.

We have finished the proof of this theorem. �	
After we get a lower bound on ρ∗(HRB

n,r,k) by a counting argument as above,
we will give a matching upper bound on ρ∗(HRB

n,r,k), by an explicit construction
of a fractional edge cover for HRB

n,r,k. To this end, we need a lower bound on the
minimum degree of vertices in HRB

n,r,k by Chernoff bound as follows.
Suppose that the degree of a vertex v is denoted by deg(v), and the minimum

degree of HRB
n,r,k is denoted by δ(HRB

n,r,k).

Lemma 2. δ(HRB
n,r,k) ≥ (1 − 2√

kr
) · kr ln n with high probability.

Proof. Let v be an arbitrary vertex in HRB
n,r,k. By definition of HRB

n,r,k, we repeat
for rn ln n times to randomly select hyperedges, and each time independently
select k different vertices from all n vertices to form an hyperedge. For an arbi-
trary hyperedge e, the vertex v is contained in e with probability k

n .
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For i = 1, ..., rn ln n, let Xi be a random variable with probability k
n to be 1,

and with probability 1 − k
n to be 0, respectively. All these Xi’s are independent

and identically distributed 0–1 variables. Then,

deg(v) =
rn lnn∑

i=1

Xi.

The random variable deg(v) has a binomial distribution B
(
rn ln n, k

n

)
. The

expectation μ of deg(v) is

μ = (rn ln n)
k

n
= kr ln n.

By the Chernoff bound, for any 0 < δ < 1,

Pr (deg(v) ≤ (1 − δ) · kr ln n) ≤ e−(kr lnn)δ2/2.

Let δ = 2√
kr

. If kr ≤ 4, (1 − δ) · kr ln n ≤ 0, this will lead to a trivial case.
Otherwise for kr > 4, we have 0 < δ < 1. Then

Pr
(

deg(v) ≤
(

1 − 2√
kr

)
· kr ln n

)
≤ e−2 lnn =

1
n2

.

By the Union bound,

Pr
(

∃v, deg(v) ≤
(

1 − 2√
kr

)
· kr ln n

)
≤ n · 1

n2
=

1
n

.

Thus,

lim
n→∞ Pr

(
δ(HRB

n,r,k) ≤
(

1 − 2√
kr

)
· kr lnn

)
= 0.

We have finished the proof of this lemma. �	
Once we have a lower bound δL on the minimum degree of variables in Model

RB, we can construct a fractional edge cover of Model RB by putting weight 1
δL

on each hyperedge. Since each variable is contained in at least δL hyperedges, the
sum of weight of hyperedges containing this variable is at least 1, which makes
sure that it is a fractional edge cover. In this way, we can get a matching upper
bound of ρ∗(HRB

n,r,k) as follows.

Theorem 2. ρ∗(HRB
n,r,k) ≤ n

k ·
(
1 − 2√

kr

)−1

, with high probability.

Proof. For a random constraint hypergrah HRB
n,r,k = (V,E) of Model RB, we

define a mapping ψ0 : E → [0,∞) as follows.

ψ0(e) =
(

1 − 2√
kr

)−1

· 1
kr lnn

, for all e ∈ E.
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Recall that with high probability,

δ(HRB
n,r,k) ≤

(
1 − 2√

kr

)
· kr ln n.

Thus with high probability, for each variable v,

∑

e∈E,v∈e

ψ0(e) = deg(v) ·
(

1 − 2√
kr

)−1

· 1
kr ln n

≥ 1.

Therefore, ψ0 is a fractional edge cover of HRB
n,r,k with high probability.

The weight of ψ0 is

∑

e∈E

ψ0(e) ≤ (rn ln n) ·
(

1 − 2√
kr

)−1

· 1
kr ln n

=
n

k
·
(

1 − 2√
kr

)−1

.

Thus fractional edge cover number of HRB
n,r,k is no larger than n

k ·
(
1 − 2√

kr

)−1

with high probability. We have finished the proof. �	

Note that the upper bound is only within a constant ratio
(
1 − 2√

kr

)−1

to
the lower bound. For fixed r, the more larger k is, the more tighter upper bounds
we get.

4 Conclusions

In this paper, we show linear lower and upper bounds on fractional edge cover
number of Model RB. Since the structural decomposition method based on frac-
tional edge cover runs in time exponential in fractional edge cover number, these
results provide evidence for hardness of Model RB.

The fractional edge cover number and hypertree width are incomparable
in the sense that, there are hypergraphs with bounded hypertree width and
unbounded fractional edge cover number, and vice versa [11]. The most pow-
erful structural parameter is fractional hypertree width, which supersedes both
fractional edge cover number and hypertree width [17]. To show lower and upper
bounds on fractional hypertree width for Model RB is an open problem.

Among these structural parameters, perhaps tree width is the best under-
stood on the classical random graphs. It is known that there is a threshold where
the tree width suddenly jumps from constant to linear in the number of vertices
[7–9,12–14]. Whether there are similar phenomena for the fractional edge cover
number and the fractional hypertree width on classical random graphs is also
unknown.

Acknowledgments. We thank Ms. Yu Song for drafting an earlier version of this
paper.
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Abstract. Many practical optimization problems can be translated to
Max-SAT and solved using a Branch-and-Bound (BnB) Max-SAT solver.
The performance of a BnB Max-SAT solver heavily depends on the qual-
ity of the lower bound. Lower bounds in state-of-the-art BnB Max-SAT
solvers are based on detecting inconsistent subsets of clauses and then
on applying Max-SAT resolution to transform each inconsistent subset of
clauses into an equivalent set containing an empty clause and a number
of compensation clauses. In this paper, we focus on the transformation
of the inconsistent subsets of clauses containing one unit clause and a
number of binary clauses. We show that Max-SAT resolution generates
a lot of ternary compensation clauses when transforming such an incon-
sistent set, deteriorating the quality of the lower bound, and propose a
new inference rule, called cycle breaking rule, to transform the incon-
sistent set. We prove the correctness of the rule and implement it in a
new BnB Max-SAT solver called Brmaxsat. Experimental results showed
that cycle breaking rule is very effective, especially on Max-2SAT.

Keywords: NP-complete · Max-SAT · Branch and bound · Lower
bound

1 Introduction

The Maximum Satisfiability Problem (Max-SAT) on a conjunctive formula is
to find an assignment of variables such that the number of unsatisfied clauses
is minimized. The decision version of Max-SAT is NP-complete [1], even for
Max-2SAT problem where each clause has at most two literals.

Given a propositional variables set V = {x1, x2, x3, . . . , xn}, xi may take
values 0 (false) or 1 (true). A literal li is a variable xi or its negation x̄i. A clause
c = l1∨l2∨. . .∨lk is a disjunction of literals. If a clause has one literal, it is called
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unit clause. A conjunctive normal form (CNF) is a conjunction of clauses denoted
as F , which is usually represented as a clauses set F = {c1, c2, c3, . . . , cm}. The
literal xi is satisfied when propositional variable xi takes true, and the literal x̄i

is satisfied when variable xi takes false. A clause c is satisfied if at least one literal
of the clause is satisfied. The empty clause, also called conflict clause, is the case
that all its literals are unsatisfied, denoted as �. An assignment is a mapping
from V ′ to {0, 1}, V ′ ⊆ V . The assignment is complete if V ′ = V ; otherwise it is
partial. The space of all possible assignments of a CNF can be represented as a
2n (n is the number of propositional variables) size of binary search tree, where
internal nodes represent partial assignments and leaf nodes represent complete
assignments. Max-SAT is called Max-kSAT when all the clauses have k literals
per clause. The subtraction of two clause sets, denoted as F2 − F1, is the set
containing those clauses that are in F2 but not in F1.

In recent years, we have seen considerable progress on exact Max-SAT solvers.
Some exact Max-SAT solvers based on SAT algorithm are more efficient on
some crafted instances and most industrial instances. These Max-SAT solvers
use learning clauses [2], blocking variable [3], mixed integer programming [4]
which are successful in SAT solvers. some researchers proposed new reductions
to transform Max-SAT problem to Max-CSP [5] and worked well. Max-SAT
algorithms based branch and bound (BnB) have shown their efficiency, espe-
cially on random and crafted instances. The most competitive exact BnB Max-
SAT solvers are based on the Davis-Putnam-Loveland procedure(DPLL) [6],
including akmaxsat [7], wmaxsatz+ [8], maxsatz2013f [9], ahmaxsat-ls-1.55 [10],
ISAC+2014 [11]. Main research work for BnB Max-SAT algorithms is to reduce
upper bound (UB) and improve lower bound (LB). At present, lots of algorithms
utilize a local search algorithm to optimize the initial UB [7,9,10,12].

More work focuses on how to improve LB. LB includes two parts: the num-
ber of empty clauses derived by current partial assignment and the number of
non-empty clauses (underestimation of LB) which will become unsatisfied when
partial assignment is extend to complete assignment. The former is fixed at
each node of the search tree, so the latter has a big impact on the efficiency
of BnB solvers. Many computation methods [13–18] for the underestimation
of LB are based on Max-SAT resolution [19]. These methods can be divided
into two classes: The first class is inference rules for some special inconsistent
sets which have at least one unsatisfied clause under arbitrary assignment. For
example: IC Rule [13] is suited for inconsistent set{l, l̄}; Star Rule [14] is for
{l1, . . . , lk, l̄1, l̄2, . . . , l̄k}. These inference rules improve LB faster but they can’t
be applied on all inconsistent sets. The second class is general Max-SAT reso-
lution which is applied on each inconsistent set instead of some special cases.
However, Max-SAT resolution creates much more compensation clauses.

At each node of search tree, there are enormous cycle structures where only
two paths lead to the empty clause in implication graph. If directly applying
Max-SAT resolution or inference rules on this case, lots of new ternary clauses
or k-ary (k � 3) clauses containing at least three literals occur and lead to
more complicated problem. Different from the traditional reasoning methods,
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cycle breaking rule breaks the cycle structure by adding a unit clause which
has the same literal with the first joint clause of cycle structure. New binary
clauses created by cycle breaking rule have a big effect on unit propagation.
Experimental results show it improves LB efficiently.

2 A Basic Max-SAT Solver

We first introduce a basic BnB Max-SAT solver, maxSat in Algorithm1. maxSat
explores the binary search tree in a depth-first manner. In the pseudo-code of
maxSat, F is the input Max-SAT instance. UB is an upper bound of the number
of unsatisfied clauses found by the best complete assignment so far. The initial
UB is set by a local search solver such as ubcsat [12] or CCLS [20], and it will
be updated when the algorithm reaches the leaf node of search tree. simplify-
Formula(F ) is a procedure that simplifies F by applying some sound inference
rules, such as Rule 1 [21] and Rule 2 [22]. Rules 1 ∼ 2 simplify F and promise the
same number of unsatisfied clauses under any assignment of variables.

Rule 1. If F1 = {l1 ∨ l2 . . .∨ lk, l̄1 ∨ l2 . . .∨ lk}∪F ′, then F2 = {l2 ∨ . . .∨ lk}∪F ′

is equivalent to F1.

Rule 2. If F1 = {l, l̄} ∪ F ′, then F2 = {�} ∪ F ′ is equivalent to F1.

Algorithm 1. maxSat (F,UB)
Input: a CNF formula F and an upper bound UB
Output: minimal number of unsatisfied clauses, i.e. the final UB and the correspond-

ing assignment
1. F ← simplifyFormula(F );
2. if F = ∅ or F only contains empty clauses then
3. return #emptyClauses(F );
4. end if
5. LB ← #emptyClauses(F ) + underestimation(F,UB);
6. if LB � UB then
7. return UB ;
8. end if
9. x ← selectV ariable(F );

10. UB ← min(UB , maxSat(Fx,UB));
11. return UB ← min(UB , maxSat(Fx̄,UB));

#emptyClauses(F ) is a function that returns the number of unsatisfied
clauses in formula F under the current assignment. underestimation(F ,UB) is a
function that returns the minimum number of non-empty clauses in F that will
become unsatisfied if the current partial assignment is extended to a complete
assignment. In practice, the underestimated LB is the number of disjoint incon-
sistent sets with unit propagation. That will be explained in detail in Sects. 3.1
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and 3.2. selectV ariable(F ) returns a chosen branch variable by heuristics. Gen-
erally, the algorithm chooses a variable which affects the size of search tree
greatly. Fx(Fx̄) is a procedure of applying one-literal rule on F when branch
literal is satisfied. Specifically, when branch literal xi(x̄i) is satisfied, one-literal
rule is to delete all the satisfied clauses containing the literal xi(x̄i) and remove
all the occurrences of the literal x̄i(xi) from those clauses which form is defined
as x̄i ∨ xm . . . ∨ xr(xi ∨ xm . . . ∨ xr).

At every node, maxSat compares UB and LB. Obviously, if LB � UB , a
better solution can’t be found from this sub-tree. Algorithm maxSat prunes the
sub-tree below the current node and backtracks to the parent node. If LB < UB ,
the algorithm tries to find a possible better solution by picking one unassigned
variable as new branch node. The final UB obtained after maxSat has searched
the entire search tree space is the optimal solution.

2.1 Underestimation of Lower Bound

Good quality underestimation of lower bound is very crucial for BnB Max-SAT
solvers. The main methods for underestimated LB include unit propagation,
inference rules and failed literal detecting [17,18]. All of them are to find the
disjoint inconsistent sets.

Definition 1 (Inconsistent Set and Disjoint Inconsistent Set). A clause
set ϕ is called an inconsistent set if ϕ contains at least one unsatisfied clause
under any complete assignment. Two inconsistent sets ϕi and ϕj are disjoint if
ϕi ∩ ϕj = ∅.
Example 1. ϕ = {x1, x̄1∨x2, x̄2}, there exists at least one unsatisfied clause
under any assignment of x1, x2:(0,0)(0,1)(1,0)(1,1). So ϕ is an inconsistent set.

Definition 2 (Minimal Inconsistent Set). An inconsistent set ϕ is minimal
if it becomes satisfiable after removing any one clause from ϕ.

The number of disjoint inconsistent sets is small than or equal to the mini-
mum number of clauses which will become unsatisfied if the current assignment
is extended to a complete assignment. So the number of disjoint inconsistent
sets is used as the underestimated LB. Unit propagation is the main way for effi-
ciently detecting an inconsistent set. Unit propagation is to repeatedly apply the
one-literal rule until reaching an empty clause or a saturation state where no any
unit clause can be propagated. Example 2 illustrates the resolution process of an
inconsistent set. Each inconsistent set matches a directed implication graph. A
directed implication graph G = (K,E) where K is a node set and E is an edge
set. Node kr (kr ∈ K) is the satisfied literal xi in clause; there is a directed edge
e from node kr to node km if literal xi = 1 causes that xj = 1.

Example 2. Let F = {x1, x̄1∨x2, x̄1∨x3, x̄1∨x7, x̄2∨x̄3∨x4, x̄4∨x5, x̄5∨x6, x̄6}.
Figure 1 shows the propagating process for unit clause x1. If x1 = 1, x2 must be
true in order to satisfy clause x̄1 ∨x2; repeatedly apply one-literal rule until unit
clause x̄6 becomes empty. Obviously, F −{x̄1∨x7} is a minimal inconsistent set.
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x1

x2

x3

x6x5x4

x7

Fig. 1. Finding an inconsistent set by unit propagation

2.2 Inference Rules

Inference rules based on Max-SAT resolution [19] are proposed to transform an
inconsistent set of clauses with special structure into an empty clause and a
number of compensation clauses. The transformation should preserve the num-
ber of unsatisfied clauses. In fact, the equivalence of two Max-SAT instances is
defined as follows:

Definition 3 (Max-SAT Problem Equivalence). Two conjunctive formulas
F1 and F2 are equivalent for Max-SAT if and only if F1 and F2 have the same
number of unsatisfied clauses under any complete assignment.

Li et al. [16,17] proposed new inference rules Rules 3 and 4 for two inconsis-
tent sets with special structures in 2007.

Definition 4 (Chain Structure). An implication graph contains only one
path where all nodes link one by one, is called chain structure.

Figure 2 shows the chain structure. From the view of inconsistent set, a chain
structure as a minimal inconsistent set contains two unit clauses and a number
of binary clauses, and each variable in binary clauses occurs exactly negatively
one time and positively one time, except the two variables in unit clauses which
occurs one time in binary clauses with the sign opposite to the unit clauses.

l1 l3l2 lk

Fig. 2. Implication graph of chain structure

Rule 3 (Chain Rule). If F1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄k−1 ∨ lk, l̄k} ∪ F ′, then
F2 = {�, l1 ∨ l̄2, l2 ∨ l̄3, . . . , lk−1 ∨ l̄k} ∪ F ′ is equivalent to F1.

Figure 3 is for a special structure containing a cycle. In Fig. 3, unit propaga-
tion starts with clause l1 and deduced conflict clause l̄k ∨ l̄k+1.

Rule 4 (Cycle Rule). If F1 = {l1, l̄1∨l2, . . . , l̄k−1∨lk, l̄k−1∨lk+1, l̄k∨l̄k+1}∪F ′,
then F2 = {�, l1∨ l̄2, l2∨ l̄3, . . . , lk−1∨ l̄k ∨ l̄k+1, l̄k−1∨ lk ∨ lk+1}∪F ′ is equivalent
to F1.
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l1 l3l2 lk-1

lk

lk+1

Fig. 3. Implication graph containing a cycle

It has been proved that F1 is equivalent to F2 for Max-SAT problem [16].
When chain inconsistent sets or inconsistent sets containing a cycle are detected,
algorithm replaces F1 with F2. Inference rules are more efficient than unit prop-
agation for computing LB because new clauses in F2 can make up more inconsis-
tent sets. Example 3 shows how inference rules improve the underestimated LB.

Example 3. Let ϕ = {x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3, x4, x̄4 ∨ x1, x̄2 ∨ x̄4, x̄3 ∨ x̄4}.
According to the occurrence order of unit clause, unit propagation detects one
inconsistent set ϕ1 = {x1, x̄1 ∨ x2, x̄1 ∨ x3, x̄2 ∨ x̄3}. The remaining clauses are
satisfied once ϕ1 is removed, so LB is 1. However cycle inference rule is applied on
ϕ1, new clauses x̄1∨x2∨x3 and x1∨ x̄2∨ x̄3 are added to ϕ. Another inconsistent
set ϕ2 = {x4, x̄4 ∨ x1, x̄2 ∨ x̄4, x̄3 ∨ x̄4, x̄1 ∨ x2 ∨ x3} is found. So LB is 2.

3 Breaking Cycle Structure

Inference rules are good for improving LB, but they can’t be directly applied on
arbitrary structure, especially complicated structure. There are lots of general
cycle structures during the computing underestimation of LB, so we wish to find
general cycle rule to improve the LB.

3.1 Generalized Cycle Structure

Definition 5 (Simple Cycle Structure). A directed implication graph con-
taining only two paths of length greater than zero that begins at the same node
A and ends at another same node B, is called a simple cycle structure.

Figure 4 shows the simplest cycle implication graph. Figure 5 shows a general
cycle implication graph(i � 2, 2i > k � i + 1).

A simple cycle structure as a minimal inconsistent set containing one unit
clause and a number of binary clauses, in which each variable exactly occurs one

l1

l2

l3

Fig. 4. The simplest cycle

l1

l2 l3

li+1

li

li+2 lk

Fig. 5. The length k of a cycle
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time negatively and one time positively in binary clauses, except the variable in
the unit clause which occurs two times in binary clauses with the sign opposite
to the unit clause.

Definition 6 (Length of a Cycle). In a directed cycle implication graph, the
number of all nodes in two paths of the cycle except the starting node is the length
of the cycle.

By definition of length of a cycle, the length of the simplest cycle in Fig. 4 is
3. The length of the cycle in Fig. 5 is k. Actually, the length of a simple cycle is
the number of the binary clauses in a cycle inconsistent set.

We adopt the integer programming to prove the equivalence of two for-
mulas. Assume F = {c1, c2, c3, . . . , cm} is a formula over a variable set
{x1, x2, x3, . . . , xn} and ci = xi1 ∨ . . .∨xik ∨ x̄ik+1 ∨ . . .∨ x̄ik+r

(1 � i � m). Note
that all positive literals in ci are stored in the front of the negative ones. Each
propositional variable maps an integer variable taking values 0 or 1. A positive
literal xi in clause is transformed to 1−xi of integer expression and a negative
literal x̄i in clause is transformed to integer expression xi. The disjunction oper-
ation maps the multiplication of integers. So, define the integer transformation
of clause ci as

εi = (1 − xi1) . . . (1 − xik)xik+1 . . . xik+r

εi is a integer variable taking 0 or 1. Obviously, εi is 0 iff at least one of xij

(1 � j � k) is 1 or at least one of xis (k + 1 � s � k + m) is 0. So, when εi = 0,
clause ci is satisfied. Otherwise εi = 1 iff ci isn’t satisfied. For formula F , the
number of unsatisfied clauses can be defined as

ξ(F ) =
m∑

i=1

εi

Lemma 1. F1 = {l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3}, then F2 = {l̄1, l̄1 ∨ l2 ∨ l3, l1 ∨ l̄2 ∨ l̄3}
is equivalent to F1.

Proof.
ξ(F2) = l1 + l1(1 − l2)(1 − l3) + (1 − l1)l2l3

= l1 + l1 − l1l2 − l1l3 + l1l2l3 + l2l3 − l1l2l3

= l1 − l1l2 + l1 − l1l3 + l2l3 = ξ(F1)

Lemma 2. F1 = {l̄1 ∨ l2, l̄2 ∨ l3}, then F2 = {l̄1 ∨ l3, l̄2 ∨ l1 ∨ l3, l2 ∨ l̄1 ∨ l̄3} is
equivalent to F1.

Proof.
ξ(F2) = l1(1 − l3) + l2(1 − l1)(1 − l3) + (1 − l2)l1l3

= l1 − l1l3 + l2 − l1l2 − l2l3 + l1l2l3 + l1l3 − l1l2l3

= l1 − l1l2 + l2 − l2l3 = ξ(F1)
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Lemma 2 is that Max-SAT resolution is limited to two binary clauses. Theo-
rem 1 means that inference rule is difficult to deal with cycle structure because
new lots of ternary clauses will deteriorate the quality of the lower bound.

Theorem 1. If an inconsistent set ϕ1 is a simple cycle structure and the length
of the cycle is n (n � 3), ϕ2 is equivalent to ϕ1 and there are 2 (n − 2) ternary
clauses and one empty clause in ϕ2.

Proof. (a) If n = 3, ϕ1 = {l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3}, as showed in Fig. 4. Apply
Lemma 1, get {l1, l̄1, l̄1 ∨ l2 ∨ l3, l1 ∨ l̄2 ∨ l̄3} = {�, l̄1 ∨ l2 ∨ l3, l1 ∨ l̄2 ∨ l̄3} = ϕ2.
The length of cycle in Fig. 4 is 3, so Theorem 1 is sound.
(b) If n = k − 1, Theorem 1 is sound. When n = k as showed in Fig. 5.
ϕ1 = {l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄i−1 ∨ li, l̄1 ∨ li+1, l̄i+1 ∨ li+2, . . . , l̄k−1 ∨ lk, l̄i ∨ l̄k}
Repeatedly apply Lemma 2 on path from node l2 to li,
ϕ1 ⇔ {l1, l̄2 ∨ l1 ∨ l3, l2 ∨ l̄1 ∨ l̄3, l̄1 ∨ l3, l̄3 ∨ l4, . . . , l̄i−1 ∨ li, l̄1 ∨ li+1, . . . , l̄i ∨ l̄k}
⇔ {l1, l̄2 ∨ l1 ∨ l3, . . . , l̄i−1 ∨ l1 ∨ li, li−1 ∨ l̄1 ∨ l̄i, l̄1 ∨ li, l̄1 ∨ li+1, . . . , l̄i ∨ l̄k+1}
Repeatedly apply Lemma 2 on path from node li+1 to lk,
ϕ1 ⇔ {l1, l̄2 ∨ l1 ∨ l3, l2 ∨ l̄1 ∨ l̄3, . . . , l̄i−1 ∨ l1 ∨ li, li−1 ∨ l̄1 ∨ l̄i, l̄1 ∨ li, l̄i+1 ∨ l1 ∨
li+2, li+1 ∨ l̄1 ∨ l̄i+2, . . . , l̄k−1 ∨ l1 ∨ lk, lk−1 ∨ l̄1 ∨ l̄k, l̄1 ∨ lk, l̄i ∨ l̄k}
Apply the Lemma 1 on the {l̄1 ∨ li, l̄1 ∨ lk, l̄i ∨ l̄k}
we get {l̄1, l̄1 ∨ li ∨ lk, l1 ∨ l̄i ∨ l̄k}
ϕ2 = {�, l̄2 ∨ l1 ∨ l3, l2 ∨ l̄1 ∨ l̄3, . . . , l̄i−1 ∨ l1 ∨ li, li−1 ∨ l̄1 ∨ l̄i, l̄i+1 ∨ l1 ∨ li+2, li+1 ∨
l̄1 ∨ l̄i+2, . . . , l̄k−1 ∨ l1 ∨ lk, lk−1 ∨ l̄1 ∨ l̄k, l̄1 ∨ li ∨ lk, l1 ∨ l̄i ∨ l̄k}
So, the Theorem 1 is sound for the length of k cycle structure.

A more common structure of inconsistent set is generalized cycle structure
that can be regarded as a simple cycle structure by adding a chain. As Fig. 6
(0 � i < j, k � 2) shown, the generalized cycle structure can be equivalently
transformed into a chain and a simple cycle structure by Lemma3.

l1 l3l2 lk-1

lk

lk+i+1

lk+1

lk+i+2

lk+i

lk+j

Fig. 6. Implication graph of generalized cycle structure

Lemma 3. If F1 = {l1, l̄1 ∨ l2}, then F2 = {l1 ∨ l̄2, l2} is equivalent to F1.

Proof. ξ(F1) = (1 − l1) + l1(1 − l2) = 1 − l1l2 = (1 − l1)l2 + (1 − l2) = ξ(F2).

Definition 7 (First Joint Node). In a directed implication graph containing
a cycle structure, node A is the first joint node (FJD) of node � iff each reverse
path from � needs to pass through A firstly.
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The node lk−1 is the FJD of � in Fig. 6. We add one unit clause to the
inconsistent set in order to break the cycle structure to chain structure. This
method creates binary clauses instead of ternary clauses by inference rules.

Rule 5 (Cycle Breaking Rule). If F1 = {l1, l̄1 ∨ l2, . . . , l̄k−1 ∨ lk, l̄k ∨
lk+1, . . . , l̄k+i−1∨ lk+i, lk−1, l̄k−1∨ lk+i+1, l̄k+i+1∨ lk+i+2, . . . , l̄k+j−1∨ lk+j , l̄k+i∨
l̄k+j} ∪ F ′, then F2 = {�, l1 ∨ l̄2, . . . , lk−1 ∨ l̄k, . . . , lk+i−1 ∨ l̄k+i, lk−1 ∨
l̄k+i+1, . . . , lk+j−1 ∨ l̄k+j , lk+i ∨ lk+j}∪F ′ is equivalent to F1. (0 � i < j, k � 2).

l1 l3l2 lk-1 lk

lk+i+1

lk+1

lk+i+2

lk+i

lk+jlk-1

Fig. 7. Implication graph of F1 − F ′

Proof. (a) Repeatedly apply Lemma 3 on the clauses from node l1 to lk+i in
Fig. 7. Get the equivalent set{l1 ∨ l̄2, l2 ∨ l̄3, . . . , lk−2 ∨ l̄k−1, lk−1 ∨ l̄k, . . . , lk+i−1 ∨
l̄k+i, lk+i}
(b) Similarly, apply the Lemma3 on the clauses from node lk−1 to lk+j in Fig. 7.
Get the equivalent set {lk−1 ∨ l̄k+i+1, lk+i+1 ∨ l̄k+i+2, . . . , lk+j−1 ∨ l̄k+j , lk+j}
(c) Prove ϕ1 = {lk+i, lk+j , l̄k+i ∨ l̄k+j} is equivalent to ϕ2 = {�, lk+i ∨ lk+j}
ξ(ϕ1) = (1 − lk+i) + (1 − lk+j) + lk+ilk+j = 1 + (1 − lk+i) + (1 − lk+j) = ξ(ϕ2).
So, F2 is equivalent to F1.

Cycle breaking rule breaks cycle structure to chain structure by adding a
clause cr to the inconsistent set. Clause cr should be a unit clause having the
same literal with the first joint node in implication graph. Cycle breaking rule
is suitable for any length of cycle structure even if the lengths of two paths in
the cycle are not equal. It is easy to prove that the length n of cycle creates n
binary clauses in Rule 5 by breaking the cycle structure.

3.2 A New Lower Bound with Cycle Breaking Rule

Algorithm upUnderestimation describes a new lower bound method which
adopts chain rule and cycle breaking rule to improve LB. In Algorithm2, UB
is an upper bound for the number of unsatisfied clauses by the best complete
assignment found so far; F − ϕ is to remove the inconsistent set ϕ from the for-
mula F in order to get disjoint inconsistent sets. UQ is a queue containing these
unit clauses obtained from input instance or the simplified clauses by branch
literals. Note that existUnCl(F − ϕ,FJD) returns true if it find the unit clause
needed by cycle breaking rule. Otherwise, return false.

When computing the underestimated LB (nConflicts) with unit propaga-
tion, Algorithm 2 propagates each unit clause in queue UQ until one empty
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Algorithm 2. upUnderestimation(F ,UB)
Input: a CNF formula F and an upper bound UB
Output: the number of disjoint inconsistent set nConflicts
1. nConflicts = 0;
2. Fc ← F ;
3. while unit clause queue UQ �= ∅ do
4. get unit clause ci from UQ ;
5. if unitPropagation(ci, Fc) == � then
6. nConflicts + +;
7. if #emptyClauses(F ) + nConflicts � UB then
8. return backTracking;
9. end if

10. Let ϕ be the set of clauses involved in the conflict;
11. if chainStructure(ϕ) == true then
12. apply chain rule;
13. else if cycleStructure(ϕ)== true and existUnCl(F −ϕ,FJD) == true then
14. apply cycle breaking rule;
15. end if
16. Fc ← F − ϕ;
17. else
18. Fc ← the simplified formula Fc returned by unitPropagation(ci, Fc);
19. end if
20. end while
21. return nConflicts;

clause is derived or UQ becomes empty. Once empty clause appears, estimated
value of LB increases by 1. If LB � UB, Algorithm 2 prunes the sub-tree. After
getting the inconsistent set ϕ, algorithm will analyze its structure and choose
the suitable inference rule to apply.

4 Evaluation of New Lower Bound

We compared three solvers: ahms-ls-1.55, maxsatz2013f, Brmaxsat. For all these
algorithms, either the source code or the executable was provided by the respec-
tive author. All the solvers work on the same machine with Centos operation
system, Intel E5 2.00 GHz CPU and memory 62.7 GB.

• ahmaxsat-ls-1.55 is a BnB Max-SAT solver which applies Max-SAT resolution
on inconsistent sets. It did outstanding performance on random and crafted
Max-SAT instances in tenth Max-SAT Evaluation in 2015 [23].

• maxsatz2013f is a BnB Max-SAT solver. It is one of the best solvers on random
and crafted instances in eighth Max-SAT Evaluation in 2013.

• Brmaxsat is implemented on top of maxsatz2013f by replacing its lower bound-
ing function by the upUnderestimation function. Brmaxsat is implemented in
C programming language and compiled with GCC.
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Experiments evaluated the breaking cycle rule on various types of Max-2SAT
(see Table 1) and Max-3SAT (see Table 3) instances. All instances come from the
2015 Max-SAT Evaluation website [23]. All the solvers work on the limited CPU
time of 1800 s for each instance. Once the solver can’t solve this instance in
limited time, the process will be killed. The better solver is the one which solves
maximum instances or has the shorter time if the solvers solve the same number
of instances.

The #inst in Table 1 is the number of instances in the instance class. The
data format of other columns in Table 1 is A(B). B is the number of instances
which find the best solution successfully in limited time and A is the sum of
CPU time (in second). Brmaxsat can solve 95% random instances in Table 1 in
1800 s and reduces 30%–70% in running time than ahmaxsat-ls-1.55 for weighted
partial instances classes.

Table 1. Experimental results of Max-2SAT

Instance class(#inst) ahmaxsat-ls-1.55 maxsatz2013f Brmaxsat

Unweighted random

Max2SAT/120v(50) 1245.3(50) 3134(50) 723(50)

Max2SAT/140v(50) 3727.5(50) 13640(50) 2865(50)

Min2SAT/160v(48) 23.9(48) 74(48) 4(48)

Min2SAT/200v(48) 153.3(48) 633(48) 70(48)

Abrame-habet/120v(45) 8865.3(42) 12224(37) 9165(45)

Abrame-habet/140v(45) 12148.8(35) 12615(27) 14970(44)

Abrame-habet/160v(45) 7979.5(22) 6356 (14) 16924(30)

Total solved(331) 295 274 315

Solved radio 89 % 82 % 95%

Unweighted crafted

maxcut-140-630-0.7(50) 4307.9(50) 19572(50) 4560(50)

maxcut-140-630-0.8(50) 3203.7(50) 17675(50) 3462(50)

Maxcut/dimacs-mod(62) 1838.1(52) 4768(52) 1364(52)

Maxcut/spinglass(5) 205.3(3) 53(3) 39(3)

Average time 61.64 271.40 60.80

Weighted partial

Wmax2sat/100v(40) 669.7(40) 976(40) 740(40)

Wmax2sat/120v(40) 686.19(40) 1037(40) 445(40)

Wmax2sat/140v(40) 1532.9(40) 2864(40) 1248(40)

WPmax2sat/hi(30) 182.1(30) 156(30) 70(30)

WPmax2sat/lo(30) 20.69(30) 11(30) 1(30)

WPmax2sat/me(30) 90.6(30) 46(30) 28(30)

Average time 12.48 19.96 9.89
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Table 2. Experimental results of some Max-2SAT instance

Instance name ahmaxsat-ls-1.55 maxsatz2013f Brmaxsat

s2v140c1200 2.cnf 120(76521) 269(660145) 43(94649)

s2v160c2000 3.cnf 716.1(251201) unsolved 439(518123)

s2v160c2500 1.cnf unsolved unsolved 1493(1457241)

V150 C3500 H150 9.wcnf 3.4(189) 3(427) 1(155)

maxcut 140 630 0.8 6.wcnf 326.9(126718) 1576(2718631) 223(374789)

s2v140c1600 8.wcnf 45.6(3698) 37(6245) 21(4779)

Table 3. Experimental results of Max-3SAT instances

Instance class(#inst) ahmaxsat-ls-1.55 maxsatz2013f Brmaxsat

Unweighted

Max3SAT/70v(50) 9851.9(50) 16675(50) 13815(50)

Max3SAT/80v(50) 7744.8(50) 10781(50) 9092(50)

Abrame-habet/70v (45) 15117.2(42) 16274(39) 18105(41)

Total solved(145) 142 139 141

Weighted

Abrame-habet/w70v(45) 18430.3(40) 14936 (34) 17488(38)

Abrame-habet/w90v(49) 11938.3(28) 7953 (23) 9907(25)

Abrame-habet/w110v(50) 16266.1(33) 5928 (26) 6307(29)

Wmax2sat/hi(40) 2607.5(40) 4765(40) 3069(40)

Total solved (184) 141 123 132

In Table 2, the first column is the instance name. The data format of other
columns is A(B) and A is the running time, B is the number of branch nodes for
each instance. unsolved means that algorithm can’t solve this instance in limited
time.

The number of branch nodes in Brmaxsat is more than in ahmaxsat-ls-1.55
but the running time is less. This case is sound because Max-SAT resolution
applied on each inconsistent set in ahmaxsat-ls-1.55 costs much time because of
the lots of temporary clause.

Table 3 is the experimental results of Max-3SAT instances. The data A(B)
from second column to fourth column means that A is the sum of running time
and B is the number of instances which find the best solution successfully in
limited time. Table 3 showed that cycle breaking rule also has a positive effect
on Max-3SAT instances, although the improvement is not as well as on Max-
2SAT instances. In fact, Brmaxsat is maxsatz2013f reinforced with cycle break-
ing rule, and solves significantly more Max-3SAT instances than maxsatz2013f.



Breaking Cycle Structure to Improve Lower Bound for Max-SAT 123

Sometimes, there are not enough unit clauses for cycle breaking rule. If the unit
clause required by cycle breaking rule didn’t exist, algorithm didn’t apply infer-
ence rule on these inconsistent set. So, cycle breaking rule has a greater effect on
the LB in Max-3SAT instances when algorithm reaches closely to the leaf nodes.

5 Conclusions

Applying Max-SAT resolution on inconsistent sets costs much time because lots
of temporary k-ary clauses (k � 2) are created and difficult to deal with. Infer-
ence rules can’t also be directly applied on those inconsistent sets containing a
length n of cycle (n > 3) because new 2(n − 2) ternary clauses have a bad effect
on unit propagation. Cycle breaking rule creates n binary clauses by adding a
unit clause to the inconsistent set. These binary clauses not only help to consti-
tute more disjoint inconsistent sets but also help to create new unit clauses by
Rule 1. Experiment result shows that cycle breaking rule improves LB efficiently,
especially for Max-2SAT.
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Abstract. In this paper, we first show that the complexity of parameter-
ized m-set packing (resp. m-d matching) counting is �W[1]-hard by
a reduction from parameterized graph (resp. bipartite graph) match-
ing counting (m ≥ 3). Subsequently, based on the algorithm for 3-d
matching counting, we develop fixed-parameter tractable randomized
approximation schemes (FPTRAS) for m-set packing counting, m-
d matching counting, and bipartite graph matching counting,
respectively. Our results indicate that parameterized m-set packing
counting and m-d matching counting are typical examples that are
�W[1]-hard but admit FPTRAS. Furthermore, we show that edge dis-
joint subgraph packing counting, i.e., a special subgraph counting
problem parameterized by the size of the packing, admits FPTRAS even
if some of the counted subgraphs don’t have bounded treewidth.

1 Introduction

Counting the number of solutions is one fundamental computation in theoretical
computer science. With the development of the parameterized complexity the-
ory, many intractable problems on counting have been studied by parameterized
computation approach in recent years [6,7,12,15]. Especially, for the problems
that may be not fixed-parameter tractable, it is an important direction to deter-
mine their parameterized complexity and/or present fixed-parameter tractable
approximation algorithms.

Matching and packing problems form a basic class of NP-hard problems in
computational complexity theory. They have also broad application background
in resource allocation, code optimization, and computational biology. In this
paper, we focus on the counting versions of three parameterized problems: m-
set packing, m-d matching, and m-edge disjoint subgraph packing (m
is a constant and m ≥ 3). We first give some related definitions about them.
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Let S be a collection of n sets and P ⊆ S. P is a packing in S if any two
sets in P don’t intersect each other. The size of P is the number of sets in P . A
packing is a k-packing if it consists of exactly k sets.

Definition 1. Parameterized m-set packing counting(p-�m-set packing):
Given a pair (S,k), where S is a collection of n sets and in each set there are
m elements from a universe U , k is the parameter, count the number of distinct
k-packings in S.

Let T1, T2, . . . , Tm be m pairwise disjoint symbol sets. A tuple (t1, t2, . . . , tm)
is called an ordered tuple in T1×T2× . . .×Tm if ti ∈ Ti (1 ≤ i ≤ m). A collection
M of ordered tuples is a matching if any two tuples in M don’t intersect each
other. A matching is a k-matching if it consists of exactly k tuples.

Definition 2. Parameterized m-d matching counting (p-�m-d matching):
Given a pair (S,k), where S is a collection of n ordered tuples and k is the
parameter, count the number of distinct k-matchings in S.

The edge disjoint subgraph packing problem is an extension of the edge
disjoint triangle packing problem in [11].

Let G = (V,E) be a simple undirected graph and Y be a connected subgraph
of G having m edges. A subgraph packing based on Y is a k-Y subgraph packing
in G if it is composed of k edge disjoint copies Y1, Y2, . . . , Yk of Y in G. Obviously,
a k-Y subgraph packing in G is also a special subgraph having mk edges.

Definition 3. Parameterized m-edge disjoint subgraph packing count-
ing (p-�m-edge disjoint subgraph packing): Given a triple (G,Y ,k), where
G is a simple undirected graph, Y is a connected subgraph with m edges, and k
is the parameter, count the number of distinct k-Y subgraph packings in G.

The p-�m-set packing problem has attracted a lot of attention in recent
years. A series of algorithms with running time O∗(

( |U |
mk/2

)
), O∗(|U |�mk/2�), and

O∗(n
( |U |
�mk/2�

)
), respectively, have been developed [2,9,14]. However, its parame-

terized complexity was not mentioned in these papers. The p-�m-d matching
problem is the generalization of p-�3-d matching. Although an FPTRAS for
p-�3-d matching was presented by Liu et al. [10], its computational complex-
ity was also unknown in [10]. Recently, the complexity of one variant on p-�m-d
matching, where the parameter is m+k, was also discussed by some researchers
on the site of Theoretical Computer Science Stack Exchange.

Studies on counting graph matchings have been made with breakthrough
progress in recent years. Specifically, the complexity of counting k-matchings
on bipartite graphs was proved to be �W[1]-hard by Curticapean and Marx [5]
in 2014. Meanwhile, counting k-matchings on general graphs was showed to
be �W[1]-hard by Curticapean [4] in 2013. Besides their own interesting, these
results may become the sources for studying other problems.
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In this paper, we first generalize the complexity results on counting graph
matchings to some problems above1. More specifically, we show that the complex-
ity of p-�m-set packing (resp. p-�m-d matching) is �W[1]-hard by a reduction
from graph (resp.bipartite graph) matching counting.

Fixed-parameter tractable approximation algorithm is commonly considered
to be a practically efficient approach to deal with �W[1]-hard problems. Actually,
there have been only a few classes of �W[1]-hard problems which admit FPTRAS
up to now. In this paper, based on the algorithm for p-�3-d matching in [10],
we develop FPTRAS for p-�m-set packing, p-�m-d matching, and bipartite
graph matching counting, respectively.

Subgraph counting problems form an important topic studied in the the-
ory of parameterized counting. In particular, exploring FPTRAS has been one
main line of research in this area, where the number of vertices in the counted
subgraph is usually considered as the parameter. Arvind and Raman [1] firstly
introduced FPTRAS to count the number of copies of a k-vertex subgraph with
bounded treewidth. Recently, Jerrum and Meeks [7] extended the FPTRAS to
count induced subgraphs with property Φ as long as Φ is monotone and every
minimal graph with property Φ has bounded treewith. However, for counting
subgraphs with unbounded treewidth, many challenges have been faced and
some negative results have been obtained recently [13].

In this paper, we show that p-�m-edge disjoint subgraph packing, in
which the size of the packing is considered as the parameter, admits FPTRAS
even if some of the counted subgraphs (i.e., the subgraph packings) don’t have
bounded treewidth. This example will help to develop new methods on studying
FPTRAS for counting subgraphs with some complicated property.

2 Preliminaries

We introduce some definitions and lemmas employed in this paper.

Definition 4 ([6]). A parameterized counting problem F :
∑∗ ×N → N is

fixed-parameter tractable if there is an algorithm computing F (x, k) in time
f(k)|x|c for some computable function f : N → N and some constant c ∈ N .

Definition 5 ([1]). A parameterized counting problem Q admits a fixed parame-
ter tractable randomized approximation scheme (FPTRAS) if there is an algo-
rithm A such that for any instance (x, k) of Q, and any positive real number
ε > 0, 0 < δ < 1, the algorithm A runs in time f(k)g(|x|, ε, δ), where f is a
recursive function, g is a polynomial of |x|, 1/ε, and ln(1/δ), and produces a
number h such that Prob[(1-ε)h0 ≤ h ≤(1+ε)h0] ≥1-δ, where h0 is the solution
to the instance (x, k).

Definition 6 ([4]). Parameterized graph matching counting (p-�
matching): Given a simple undirected graph G, a parameter k, count the num-
ber of distinct k-matchings in G, where a k-matching is a set of k pairwise
disjoint edges.
1 Note that in these problems, m is a constant rather than a parameter.



128 Y. Liu and J. Wang

Lemma 1 ([4]). The complexity of p-�matching is �W[1]-hard.

Definition 7 ([5]). Parameterized bipartite graph matching counting
(p-�2-B matching): Given a simple undirected bipartite graph G, a parameter
k, count the number of distinct k-matchings in G.

Lemma 2 ([5]). The complexity of p-�2-B matching is �W[1]-hard.

Let S be a finite set. A k-coloring f of S is a function mapping S to the
set {1, 2, . . . , k}. A subset S′ of S is colored properly by the k-coloring f if any
two elements in S′ arenot colored with the same color under f . A family F of
k-colorings of S is a k-color coding scheme if for every subset S′ of k elements
in S, there is a k-coloring in F that colors S′ properly. The size of the k-color
coding scheme F is the number of k-colorings in F [3].

Lemma 3 ([3]). For any finite set U of n elements and any positive integer
k (k ≤ n), there exists a k-color coding scheme F of size O(6.4kn) for the set
U . Moreover F can be constructed in time O(6.4kn).

3 The Complexity of p-�m-Set Packing

To show the computational complexity of p-�m-set packing, we employ the
parameterized parsimonious reduction introduced by Flum and Grohe in [6] and
the recent result on p-�matching in [4].

Definition 8 ([6]). Let F :
∑∗ ×N → N and G :

∑∗ ×N → N be parameter-
ized counting problems. A parameterized parsimonious reduction from F to G
is an algorithm that computes for every instance (x, k) of F an instance (y, l)
of G in time f(k)|x|c such that l ≤ g(k) and F (x, k) = G(y, l) for computable
function f, g : N → N and a constant c ∈ N .

Theorem 1. The complexity of p-�m-set packing is �W[1]-hard.

Proof. Firstly, we give a description of the reduction from p-�matching to
p-�m-set packing as follows.

Let (G = (V,E), k) be an instance of p-�matching. And assume that |E| = h.
Now we construct a corresponding instance (S,l) of p-�m-set packing. For the
initial case, we assume that S=∅. In subsequent steps, we add some sets to S step
by step according to the structure of G. Specifically, for every edge ei = (ui, vi) ∈
E (1 ≤ i ≤ h), we construct a set si = {ui, vi, wi,1, wi,2, . . . , wi,m−2} and add it
to S, where wi,1, wi,2, . . . , wi,m−2 are some new elements added. Finally we set
l = k. In the constructed instance (S,l), there are in total h sets. Obviously, this
process can be done in polynomial time. Let Wi =

⋃j=m−2
j=1 {wi,j}, and let V ′ =

⋃i=h
i=1 Wi. Obviously, V ′ ∩ V = ∅ and Wi ∩ Wj = ∅ for any i 	= j (1 ≤ i, j ≤ h).

Next, we argue that the number of k-matchings in (G, k) is exactly equal
to the number of k-packings in (S,l). Let Q1 be the collection of k-matchings
in (G, k), and let Q2 be the collection of k-packings in (S,l). We show that
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|Q1| = |Q2|. Obviously, if Q1 = ∅ and Q2 = ∅, then |Q1| = |Q2|. Without loss of
generality, we may assume that Q1 	= ∅ or Q2 	= ∅ in the following.

On one direction, we assume that Q1 	= ∅. Without loss of generality, we
assume that the edge set E′ = {e1, e2, . . . , ek} is a k-matching in G, and
s1, s2, . . . , sk are the corresponding k sets in S. By the definition of match-
ing, V al(ei) ∩ V al(ej) = ∅ for any i 	= j (1 ≤ i, j ≤ k), where V al(e)
denotes the set of endpoints on the edge e. As shown above, si = V al(ei) ∪ Wi

and sj = V al(ej) ∪ Wj . Moreover, Wi ∩ Wj = ∅, Wi ∩ V al(ej) = ∅, and
Wj ∩ V al(ei) = ∅. Thus, si ∩ sj = ∅ for any i 	= j (1 ≤ i, j ≤ k), which
means that s1, s2, . . . , sk form a k-packing in S. This shows that Q2 	= ∅.

Furthermore, we assume that the edge sets M = {e1, e2, . . . , ek} and M ′ =
{e′

1, e
′
2, . . . , e

′
k} are two distinct k-matchings in G. According to the proof above,

there must exist two corresponding k-packings P = {s1, s2, . . ., sk} and P ′ =
{s′

1, s
′
2, . . . , s

′
k} in S. Next, we show that P 	= P ′ if M 	= M ′. Suppose that

M 	= M ′. There must exist one index i ∈ [1, k] such that V al(ei) 	= V al(e′
i).

Since si = V al(ei) ∪ Wi and s′
i = V al(e′

i) ∪ W ′
i , we conclude that si 	= s′

i, which
means that P 	= P ′. This process shows that |Q1| ≤ |Q2|.

On the other direction, we assume that Q2 	= ∅. Without loss of generality,
we assume that S′ = {s1, s2, . . . , sk} is a k-packing in S. In the following, we
show that there must exist k corresponding edges in G such that these edges
constitute a matching. Firstly, we show that for any set si in S′ (i ∈ [1, k]),
there must be one corresponding edge ei in the graph G. (1) Suppose that there
exist no edge that corresponds to si. Then, the elements ui and vi in si are not
adjacent, which is contradicted with the fact that ui and vi are the endpoints
of one edge in G. (2) Suppose that there are at least two distinct edges that
correspond to one set si. Since there are at least three endpoints on two edges
in any simple graph, there are at least 3 vertices in si that belong to V , which
is contradicted with the fact that si contains only 2 vertices in V . Thus, there
must exist a collection E′′ containing exactly k edges e1, e2, . . . , ek in G such
that E′′ corresponds to the k-packing {s1, s2, . . . , sk} in S. Moreover, by the
definition of packing, si ∩ sj = ∅ for any i 	= j (1 ≤ i, j ≤ k). As shown above,
V al(ei) = si−Wi and V al(ej) = sj−Wj . Therefore, V al(ei)∩V al(ej) = ∅ for any
i 	= j (1 ≤ i, j ≤ k), which means that the edge set {e1, e2, . . . , ek} constitutes a
k-matching in G. This conclusion shows that Q1 	= ∅ and |Q2| ≤ |Q1|.

In short, there exists one parameterized parsimonious reduction from p-�
matching to p-�m-set packing. The p-�matching is �W[1]-hard by Lemma1,
therefore, the p-�m-set packing is �W[1]-hard. ��

4 The Complexity of p-�m-D Matching

To show the complexity of p-�m-d matching, we also employ the complexity
result on p-�2-B matching in [5].

Theorem 2. The complexity of p-�m-d matching is �W[1]-hard.
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This theorem can be proved exactly on the same lines as Theorem 1. We
omit its detailed proof and only describe the construction on the reduction from
p-�2-B matching to p-�m-d matching.

Let (G, k) be an instance of p-�2-b matching, in which G = (V1 ∪ V2, E)
is a simple bipartite graph. Assume that |E| = h. Now we construct a corre-
sponding instance (S,l) of p-�m-d matching. For the initial case, assume that
S=∅. In subsequent steps, for every edge ei = (t1,i, t2,i) ∈ E, in which t1,i ∈ V1

and t2,i ∈ V2, we construct an ordered tuple ρi = (t1,i, t2,i, t3,i, . . . , tm,i) and
add it to S (1 ≤ i ≤ h). Note that the symbols t3,i, . . . , tm,i in ρi are some
new symbols added. Finally, we set l = k. In the constructed instance (S,l),
there are in total h ordered tuples (t1,1, t2,1, . . . , tm,1), (t1,2, t2,2, . . . , tm,2), . . . ,
(t1,h, t2,h, . . . , tm,h). Moreover, T1 = V1, T2 = V2, and Tj = {tj,1, tj,2, . . . , tj,h}
(3 ≤ j ≤ m). Obviously, this process can be done in polynomial time.

The p-�2-b matching is �W[1]-hard by Lemma2, therefore, the p-�m-d
matching is �W[1]-hard.

5 The FPTRAS for Considered Problems

For parameterized counting problems, Arvind and Raman [1] first introduced the
parameterized version of the Karp-Luby result [8] on this subject. By applying
the technique of color-coding, they developed the first fixed-parameter tractable
randomized approximation scheme (FPTRAS) for counting k-vertex subgraph
with bounded treewidth in a given graph. Along this line, some FPTRAS for
solving other problems were also presented in [7,10].

The algorithms we describe in this section are the extensions of FPTRAS for
p-�3-d matching in [10]. We first sketch its basic idea as follows.

Let (S,k) be an instance of p-�3-d matching and H be the set of all
k-matchings in S, where S is a set of n tripes. Firstly, we apply the tech-
nique of color coding improved in [3] to construct a (2k)-color coding scheme
F={f1, · · · , fd}, where d = O(6.42kn). For 1 ≤ i ≤ d, let Hi be the subset of H
such that Hi consists of all k-matchings in S that are colored properly by the
(2k)-coloring fi. By the definition of color coding scheme, H =

⋃i=d
i=1 Hi. The

main works in the subsequent steps include three parts.

(1) counting the number |Hi| of k-matchings in S, for each i;
(2) random picking, with a uniform probability, a k-matching from the set Hi,

for each i;
(3) determining if a given k-matching M is in the set Hi, for each i.

Part (1) and part (2) can be done by the corresponding procedures, respec-
tively.

Lemma 4 ([10], Theorem 3). There exists a procedure (named local count-
ing procedure) that runs in time O(22kkn) and returns exactly the number of
k-matchings in Hi.

Lemma 5 ([10], Theorem 5). There exists a procedure (named random sam-
pling procedure) that runs in time O(22kkn), and returns ∅ if Hi=∅, and returns
a k-matching properly colored by fi with a probability 1/|Hi|, if Hi 	= ∅.
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Moreover, part (3) can be done by a trivial procedure in time O(n).
These procedures combined with the Karp-Luby result give an FPTRAS for

p-�3-d matching [10].
By extending the algorithm for p-�3-d matching, we develop FPTRAS for

p-�m-set packing, p-�m-edge disjoint subgraph packing, p-�m-d match-
ing, and p-�2-b matching, respectively.

5.1 The FPTRAS for p-�m-Set Packing

By Theorem 1, it is unlikely that p-�m-set packing admits fixed-parameter
tractable algorithm, which makes the FPTRAS meaningful for it. Besides this,
the FPTRAS for p-�m-set packing is the base of that for other problems.

Considering the FPTRAS for p-�m-set packing is an extension of that for
p-�3-D matching, we only describe its extension points and draw the conclusions
directly.

Let (S,k) be an instance of p-�m-set packing and U be the union of all
sets in S, where S is a collection of n sets. First of all, we use mk colors to
color the elements in U . By Lemma 3, we obtain a (mk)-color coding scheme
F= {f1, f2, . . . , fq}, where q = O(6.4mkn).

The extensions on the local counting procedure and the random sampling
procedure are described as follows. (1) We don’t need to preprocess the ele-
ments in the first column since each element is colored by one color. (2) The
dynamic programming subroutine can be implemented by double loops. In the
outer loop, we deal with the sets in S; in the inner loop, we deal with the triples
of the form (C, h, b) in the storage space Q. (3) The running time of the dynamic
programming subroutine is bounded by O(2mkkn), which can be roughly ana-
lyzed as follows. For each color set C with mj distinct colors, there exists only
one specific triple (C, h, j) in Q. Since the number of combination on choosing
mj colors from mk colors is

(
mk
mj

)
, the total number of triples in Q is not greater

than
∑j=k

j=0

(
mk
mj

)
, which can be bounded by 2mk.

These extensions combined with Lemmas 4 and 5 give the following lemmas.

Lemma 6. Let Hi be the set of all k-packings in S that are properly colored by
the (mk)-coloring fi. The local counting procedure runs in time O(2mkkn) and
returns |Hi| correctly.
Lemma 7. Let Hi be the set of all k-packings in S that are properly colored by
fi. The sampling procedure runs in time O(2mkkn), and returns ∅ if Hi = ∅,
and returns a k-packing in Hi with a probability 1/|Hi|, if Hi 	= ∅.

By using Lemmas 6 and 7, we obtain the following conclusion.

Theorem 3. p-�m-set packing admits a fixed-parameter tractable randomized
approximation scheme. More precisely, for a given instance (S,k), and two pos-
itive real number ε > 0, 0 < δ < 1, the scheme returns a non-negative number R
in time O(12.8mkn2k3ln(2/δ)/ε2) such that Prob[(1-ε)R0 ≤ R ≤(1+ε)R0] ≥1-δ,
where R0 denotes the exact number of k-packings in S.
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5.2 The FPTRAS for p-�m-Edge Disjoint Subgraph Packing

p-�m-edge disjoint subgraph packing is also a special subgraph counting
problem, where the subgraph pakings counted have different shapes. Some of the
subgraph packings have bounded treewidth, however, others don’t have bounded
treewidth. We take the edge disjoint triangle packing problem [11] as an example
for the latter. We consider the case that the k triangles are pairwise jointed by
one vertex and the jointed vertices induce a k-cycle, i.e., a cycle with k vertices.
This case is denoted by PΔ. Obviously, the treewidth of PΔ is (k − 1), which
cannot be bounded by a constant. Nevertheless, an FPTRAS for p-�m-edge
disjoint subgraph packing can be obtained when the size of the packing is
considered as the parameter.

Let (G,Y, k) be an instance of p-�m-edge disjoint subgraph packing,
where Y is a connected subgraph with m edges. We solve it by two steps. In the
first step, we translate (G,Y, k) into an instance (S,k) of p-�m-set packing.
To be specific, for each subgraph Z isomorphic to Y in G, we construct a cor-
responding set in which each element corresponds one edge in Z. By this way,
we enumerate all of the subgraphs isomorphic to Y and obtain the collection S
containing all of the constructed sets. In the second step, we directly apply the
algorithm for p-�m-set packing to the instance (S,k).

Its running time can be analyzed as follows. The number of combination on
choosing m edges from the given graph G = (V,E) is

(|E|
m

)
, which can be bounded

by |E|m. For each choice, determining if it is isomorphic to the subgraph Y can
be done in time O((2m)!m). Thus, the time in the first step can be bounded by
O(|E|m(2m)!m). Moreover, the size of the (mk)-color coding scheme is bounded
by O(6.4mk|E|) and the size of S is bounded by |E|m. By Theorem 3, the second
step can be done in time O(12.8mk|E|m+1k3ln(2/δ)/ε2). Thus, the total time
can be bounded by O(12.8mk|E|m+1k3ln(2/δ)/ε2).

Therefore, we draw the following conclusion.

Theorem 4. p-�m-edgedisjoint subgraphpacking admits a fixed-parameter
tractable randomized approximation scheme. More precisely, for a given instance
(G = (V,E), Y, k), and two positive real number ε > 0, 0 < δ < 1, the scheme
returns a non-negative number R in time O(12.8mk|E|m+1k3ln(2/δ)/ε2) such that
Prob[(1-ε)R0 ≤ R ≤(1+ε)R0] ≥1-δ, where R0 denotes the exact number of k-Y
subgraph packings in G.

5.3 The FPTRAS for p-�m-D Matching and p-�2-B Matching

p-�m-d matching is the generalization of p-�3-d matching. So, we can obtain
an FPTRAS for p-�m-d matching by generalizing that for p-�3-d matching.

Based on the algorithm for p-�3-d matching, the algorithm for p-�m-d
matching includes the following generalized aspects. (1) We use (m−1)k colors
to color the symbols in the 2nd to the m-th dimensions of S and the size of the
((m−1)k)-color coding scheme is bounded by O(6.4(m−1)kn). (2) In the dynamic
programming subroutine, the condition of adding a tuple ρ to an existed match-
ing M is that C(M)∩{cl(V al2(ρ)), . . ., cl(V alm(ρ))} = ∅, where C(M) denotes
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the color set colored on M and cl(V ali(ρ)) denotes the color colored on the i-th
symbol in ρ (2 ≤ i ≤ m). (3) The running time of the dynamic programming
subroutine is bounded by O(2(m−1)kkn), which can be roughly analyzed as fol-
lows. For each color set C with (m−1)j distinct colors, there is only one specific
triple (C, h, j) in Q. Therefore, the total number of triples in Q is not greater
than

∑j=k
j=0

(
(m−1)k
(m−1)j

)
, which can be bounded by 2(m−1)k.

These generalizations combined with the FPTRAS for p-�3-d matching give
an FPTRAS for p-�m-d matching.

Theorem 5. p-�m-d matching admits a fixed-parameter tractable randomized
approximation scheme. More precisely, for a given instance (S,k), and two pos-
itive real number ε > 0, 0 < δ < 1, the scheme returns a non-negative num-
ber R in time O(12.8(m−1)kn2k3ln(2/δ)/ε2) such that Prob[(1-ε)R0 ≤ R ≤
(1+ε)R0] ≥1-δ, where R0 denotes the exact number of k-matchings in S.

The complexity of p-�2-b matching is �W[1]-hard. Although the approxi-
mation algorithm for p-�matching in [1] can be applied to p-�2-b matching,
we also present a new algorithm for p-�2-b matching, applying the techniques
in the algorithm for p-�m-d matching.

Let (G = ((V1 ∪V2), E), k) be an instance of p-�2-b matching. Based on the
properties on bipartite graphs, we can take each edge in E as a tuple, in which
the two elements correspond to the endpoints of one edge. The main strategy
used in p-�m-d matching can be also applied to p-�2-b matching. Thus, we
directly color the vertices in V2 by using only k colors, and keep the vertices in
V1 uncolored. By Lemma 3, the size of the k-color coding scheme is bounded by
O(6.4k|V2|).

Moreover, we can simplify some steps in the algorithm for p-�m-d matching.
Thus, the local counting procedure and the random sampling procedure can
be done in time O(2kk|E|), respectively. Therefore, the total running time is
bounded by O(6.4k|V2|× 2kk|E|× k2ln(2/δ)/ε2)=O(3.582k|V2||E|k3ln(2/δ)/ε2).

Based on the analysis above, we draw the following conclusion.

Theorem 6. p-�2-b matching admits a fixed-parameter tractable randomized
approximation scheme. More precisely, for a given instance (G = (V,E), k), and
two positive real number ε > 0, 0 < δ < 1, the scheme returns a non-negative
number R in time O(3.582k|V ||E|k3ln(2/δ)/ε2) such that Prob[(1-ε) R0 ≤ R ≤
(1+ ε) R0] ≥1-δ, where R0 denotes the exact number of k-matchings in G.

6 Conclusions

In this paper, we show that the complexity of p-�m-set packing (resp. p-�m-d
matching) is �W[1]-hard by employing the complexity result on p-�matching
(resp. p-�2-b matching). Based on the FPTRAS for �3-d matching, we also
develop FPTRAS for p-�m-set packing, p-�m-d matching, and p-�2-b match-
ing, respectively. Moreover, we show that the p-�m-edge disjoint subgraph
packing problem, which is parameterized by the size of the packing, admits
FPTRAS even if some of the counted subgraphs don’t have bounded treewidth.
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Abstract. This paper studies an online scheduling problem with
increasing subsequence serving constraint. Customers requests are
released over-list, and the operator has to decide whether or not to accept
current request and arrange it to a server immediately. Each server has to
process an increasing subsequence requests. There are two online schedul-
ing problems in this paper. The first problem is to find a schedule which
occupies the minimal servers if the operator accepts all requests. The
second problem is to find a schedule which accepts the maximal requests
if the operator has just one server. In this paper, we propose two optimal
algorithms, Double-Greedy Algorithm and Partition Algorithm, for the
above two problems, respectively.

Keywords: Online scheduling · Increasing subsequence · Online strat-
egy · Competitive ratio

1 Introduction

Instant delivery is a rising industry which has been developed rapidly in this
century [1] because we have to satisfy people’s substantial demand as soon as
possible. For example, online ordering take-out has been attracting increasingly
wide attention in the Internet business [2]. However, take-out service is a tough
problem. The restaurant owner not only needs to consider take-out as soon
as possible, but also considers hiring the less courier for reducing cost. The
restaurant owner has to balance the above concerns. Another instant delivery
example is taxi booking, such as Uber, Didi, and so on. It is easy to know
the possible request locations, however, we do not know whether these requests
occur, or when they occur. Thus it is hard to allocate servers (couriers, drivers,
etc.) by following a fixed strategy. In many practical problems, requests do not
reveal themselves until they come, and the requests come via an online fasion.
On observing a request, the decision maker needs to make an irrevocable decision
on whether to accept or reject the current request and arrange this request to a
server, with the overall objective which satisfies some constraints.

As we known, whether a request could be accepted by a server depends on
the server’s current location. For example, a taxi driver has taken a passenger
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 135–144, 2016.
DOI: 10.1007/978-3-319-39817-4 14
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to a supermarket 15 miles away from a downtown, meanwhile, another passenger
requests to go to the cinema which is only 5 miles away from the downtown. The
driver may reject the trip to cinema because he has to drive 10 miles without any
revenue. Thus, he is likely to accept the ride near the supermarket. Motivated
by the instance, we may label all the request locations from 1 to n based on their
increasing subsequence serving constraints. The increasing subsequence serving
constraint can express various factors, such as the serving time and the distance
between two request locations.

In the online scheduling with increasing subsequence serving constraint prob-
lem, there are N requests and M servers. Based on the location constraint,
every request has been given a label, so there are n labels (i.e., 1 through n).
The request on some locations may be released more than once, so we do not
know the actual requests sequence length in advance. A schedule for the requests
is feasible if each server processes an increasing subsequence requests. In other
words, if request ri occurs, we could arrange this request to an active(allocated)
server whose label of last request is not more than ri; otherwise, we will reject
this request or allocate a new server for this request. All research comes from
two sources.

The first one is online scheduling problem. In practice, requests are released
from the customer to the operator one by one. Due to the uncertainty of future
requests, the operator has no information about a request until he receives it.
There are various algorithms for online scheduling problem with serving dealine
constraints [3,4]. These results mainly focused on serving cost but ignored the
constraint of customers in make-to-order environment. Most researchers studied
scheduling problem with minimizing makespan or minimizing total completion
time. Kaminsky and Lee [5] showed an online model to minimize the sum (or
average) of serving time, and demonstrated that heuristics are effective. To the
best of our knowledge, few researchers consider scheduling with an increasing
subsequence constraint.

The second one is the longest increasing subsequence problem. The sta-
tic longest increasing subsequence problem has been studied for many years.
Fredman et al. [6] and Albert et al. [7] investigated this problem on a line.
Deorowicz [8] studied this problem in a circle. Then, some researchers studied
the longest increasing subsequence problem from a dynamic view. After observ-
ing a sequence of independent non-negative random variables, the decision maker
has to decide whether to accept the current variable immediately for selecting
a longest increasing subsequence in the sequence. Many researchers [9–11] paid
attention to the mean and standard deviation analysis. Recently, Arlotto et al.
[12] solved this problem with a continuous distribution and obtained a cen-
tral limit theorem. However, few researchers connected this problem with online
scheduling problem. Nagarajan and Sviridenko [13] firstly combined the permu-
tion flow shop scheduling problem with the increasing subsequence constraint,
and assumed that there are m machines and n jobs. They came up with a
randomized algorithm with O(min{√m,

√
n}) approximation. In this paper, we
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apply the competitive analysis to the online scheduling problem with increasing
subsequence serving constraint.

There are two different objectives, both of which are useful for take-out and
taxi allocation. The first objective is to minimize the active(allocated) servers
for arranging all requests; if we only have one server, the second objective is
to maximize the requests that we accept to serve. The requests are released
over-list. We should arrange all these request immediately after it released. Our
contributions are as follows:

– we study an online problem with increasing subsequence serving constraint
and analyze it from a more proper perspective, i.e., the competitive analysis;

– we propose algorithms that achieve good performance for solving two different
online scheduling problems, respectively.

The rest of this paper is organized as follows. Section 2 introduces two online
increasing subsequence scheduling problems and some preliminaries. In Sect. 3,
we present an optimal algorithm for the first problem in Sect. 3.1; and also
present an optimal algorithm for the second problem with competitive analysis
in Sect. 3.2. Final conclusions and remarks are given in Sect. 4.

2 Preliminaries

Consider an online scheduling problem with increasing subsequence serving con-
straint. Suppose time is divided into discrete time slots T = {1, 2, 3, · · · }. A
set of requests R = {r1, r2, r3, · · · } are released over-list. We also abuse ri to
denote its label when there is no ambiguity. A set of servers S = {s1, s2, s3, · · · }
are allocated in the process. Let Si = {s1i , s

2
i , · · · } and S∗,i = {s1∗,i, s

2
∗,i, · · · }

be the active servers allocated by an online algorithm and by optimal offline
adversary(OPT) after ri occurred, respectively. Let sji denote the last request
arranged to server sj by an online algorithm after request ri is released. and let
sj∗,i denote the last request arranged to server sj∗,i by OPT after request ri is
released.

Definition 1 ((Strict) Increasing Subsequence). For a sequence R =
{r1, r2, · · · , rm}, R is called an increasing subsequence if ∀k ∈ [1,m], rk ≥ rk−1;
R is called a strict increasing subsequence if ∀k ∈ [1,m], rk > rk−1.

Definition 2 (Mapping). Saying, S∗,i is a mapping of Si means that ∀sj1i ∈ Si,
we can find a one-to-one mapping item sj2∗,i ∈ S∗,i, which satisfies sj1i ≤ sj2∗,i. For
example, Si = {5, 4, 3} and S∗,i = {4, 5, 5, 1}. Then we say S∗,i is a mapping of
Si because 5 ≤ 5, 4 ≤ 4 and 3 ≤ 5.

Min-OIS Problem. Notice that some companies state that they do not reject
any requests [14], although sometimes they need many servers. These companies
need to minimize the number of servers when they arrange requests. We denote
this problem as a Minimum Online Scheduling with Increasing Subsequence
(Min-OIS) problem.
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Max-OIS Problem. Considering the limited resources of a company in this
paper, such as servers, drivers, and etc., we assume there is only one server
available, so companies could reject some requests. Those companies need to
maximize the accepted requests in the process. We denote this problem as a
Maximum Online Scheduling with Increasing Subsequence (Max-OIS) problem.

2.1 Competitive Ratio

We use the competitive analysis (see [15]) to measure the performance of online
scheduling for the problem under consideration. Translated into our problem
terminology, for an arbitrary order sequence R, A(R) be the objective value of
schedule produced by an online algorithm A, and OPT (R) be that obtained
by an optimal offline scheduler OPT who has the information of all requests in
advance.

We say that the online algorithm for a Min objective problem is ρA-
competitive if A(R) ≤ ρAOPT (R) + ε holds for any R where ρA ≥ 1 is some
constant and ε is an arbitrary positive number. ρA is also called the competitive
ratio of the online algorithm. The online algorithm for a Max objective prob-
lem is ρA-competitive if ρAA(R) + ε ≥ OPT (R) holds for any R where ρA ≥ 1
is some constant and ε is an arbitrary positive number. ρA is also called the
competitive ratio of the online algorithm. Clearly, ρA ≥ 1.

Let ON be the complete set of online strategies for the problem. The lower
bound w of competitive ratio is defined as w = infA∈ONρA. We say A is an
optimal online strategy if ρA = w.

3 Min-OIS Problem and Max-OIS Problem

In this section, we propose online algorithms for two online scheduling problems,
Min-OIS problem and Max-OIS problem, and conduct the competitive analysis.

3.1 Min-OIS Problem

Considering the special increasing subsequence constraint of Min-OIS problem,
we use Double-Greedy Algorithm(DGA) to arrange requests to optimize schedule
with minimized servers. Once a request is released, we consider giving priority
to the nearest server, if there exists. Otherwise, we will allocate a new server.

Lemma 1. For a schedule obtained by Double-Greedy Algorithm, the last request
of each server is different.

It is a straightforward lemma. If a new request’s label is equal to the last
request of an active server, we will schedule this new request to that active server,
because we arrange all requests following the rule: scheduling the next request
to the active server whose last request’s label is positive nearest to this request’s
label.
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Algorithm 1. Double-Greedy Algorithm
Step 0 : Initialize. Set i = 1, j = 1, sji = ri.
Step 1 : Repeat for i = i + 1, i + 2, · · ·
Step 2 : If ri ≥ min{s1i−1, s

2
i−1, s

3
i−1, · · · , sji−1}, go to Step 3;

otherwise, go to Step 4.
Step 3 : Arrange ri to server sk (k ≤ j) which is positive nearest to ri, let ski = ri,

and let the other servers s1i = s1i−1, s
2
i = s2i−1, · · · , sji = sji−1, go to Step 5.

Step 4 : Arrange ri to a new server sj+1, sj+1
i = ri, and let s1i = s1i−1, s

2
i = s2i−1, · · · ,

sji = sji−1. Let j = j + 1, go to Step 5.
Step 5 : If all the requests have already been arranged, the game terminates;

otherwise, go to Step 1.

Note: sk is positive nearest to ri means that: min | ski−1 − ri | (ski−1 − ri ≥ 0).

Theorem 1. The Double-Greedy Algorithm for Min-OIS problem is 1-
competitive, which is optimal.

Proof. Consider an arbitrary input sequence R = {r1, r2, · · · }. Let |Si| and |S∗,i|
denote the number of servers, which are allocated to serve requests. We use
mathematical induction to prove this theorem.

Basic Step: For i = 1, the schedule produced by OPT is the same as that
produced by DGA. We know |Si| = |S∗,i| = 1, s1i = s1∗,i = r1. So |Si| � |S∗,i|,
and S∗,i is a mapping of Si.

Inductive Step: Now we assume when i = k(for some k ∈ Z+), |Si| � |S∗,i|,
and S∗,i is a mapping of Si are true. We assume that for i = k + 1, |Si| � |S∗,i|,
and S∗,i is a mapping of Si.

For i = k + 1, there are three different cases as following.

Case 1. if ri < min{s1i−1, s
2
i−1, s

3
i−1, · · · , sji−1}, and the schedule produced by

OPT is the same as that produced by DGA. We have |Si| = |Si−1|+1 = |S∗,i| =
|S∗,i−1| + 1, and S∗,i is still a mapping of Si.

Case 2. if ri ≥ min{s1i−1, s
2
i−1, s

3
i−1, · · · , sji−1}, and the schedule produced by

OPT is the same as that produced by DGA, they both arrange this request to
the server whose last request’s label is positive nearest to ri. We have |Si| =
|Si−1| = |S∗,i| = |S∗,i−1|, and S∗,i is still a mapping of Si.

Case 3. if ri ≥ min{s1i−1, s
2
i−1, s

3
i−1, · · · , sji−1}, and the schedule produced by

OPT is different with that produced by DGA. There are two different cases.

Case 3.1 The OPT allocates a new server to this request, so we have |Si| =
|Si−1| < |S∗,i| = |S∗,i−1| + 1, and S∗,i is still a mapping of Si.

Case 3.2 The OPT arranges this request to a server (eg.sk) whose last request’s
label is not positive nearest to ri and sk∗,i−1 ≤ ri, so we have |Si| = |Si−1| ≤
|S∗,i| = |S∗,i−1|, and S∗,i is still a mapping of Si.

According to Case 1, 2, 3, we still have |Si| � |S∗,i|, and S∗,i is a mapping of
Si. Hence, for each k ∈ Z+), it follows that |Sk| � |S∗,k| =⇒ |Sk+1| � |S∗,k+1|.
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In conclusion, for all input sequences, we have |Si| � |S∗,i|, and S∗,i is a
mapping of Si. Thus, the servers used by DGA is not more than the servers by
offline adversary’s schedule for serving any request sequence,

C/COPT = 1.

From above all, the Double-Greedy Algorithm for Min-OIS problem is 1-
competitive, i.e., it is an optimal algorithm. �	

3.2 Max-OIS Problem

In this subsection, we prove that there is no constant competitive ratio can
be obtained for Max-OIS problem by constructing a special instance. Then we
studied this problem with strict increasing subsequence constraint and proposed
an optimal algorithm for this problem.

Lemma 2. For Max-OIS problem, there is no deterministic on-line algorithm
that can achieve a constant competitive ratio.

Proof. Given an arbitrary order sequence R, let σ and σ∗ be the schedules pro-
duced by Partition Algorithm and by OPT, respectively. Let |σ| and |σ∗| denote
the number of the accepted requests. There are two different cases as following.

Case 1. If an online algorithm rejects all the requests except for ri = 1, the offline
adversary will release infinite requests greater than k,∀k ∈ Z+ requests, i.e., the
offline adversary released requests {ri+1 = 2, ri+2 = 2, · · · , ri+k = 2, · · · }.

COPT /C ≥ k,∀k ∈ Z+.

Case 2. If an online algorithm accepts a request ri 
= 1, the offline adversary
will release infinite requests greater than k,∀k ∈ Z+ requests, i.e., the offline
adversary released requests {ri+1 = ri − 1, ri+2 = ri − 1, · · · , ri+k = ri − 1, · · · }.

COPT /C ≥ k,∀k ∈ Z+.

From the two cases above, it can be concluded that there is no deterministic
on-line algorithm that can achieve a constant competitive ratio for Max-OIS
problem. �	

Since we proved that the lower bound of Max-OIS problem is infinite, we will
restrict this problem to be a new online scheduling problem with strict increasing
subsequence constraint. We denote this problem as a Maximum Online Schedul-
ing with Strict Increasing Subsequence (Max-OSIS) problem. We will propose
an online Partition Algorithm(PA) to obtain a preferable serving schedule for
this problem. Before a request is released, we divide the whole requests into two
parts, acceptable part and rejectable part, based on the previous schedule.
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Algorithm 2. Partition Algorithm
Step 0 : Initialize. Set i = 0, s1i = 0.
Step 1 : Repeat for i = i + 1, i + 2, · · ·
Step 2 : If ri > s1i , go to Step 3;

otherwise, reject ith request, s1i ≤ s1i−1, go to Step 4.

Step 3 : If ri ≤ max{�n+s1i−1
2

�, �n+ri
2

�}, accept ith request, s1i = ri, go to Step 4;
otherwise, reject ith request, s1i = s1i−1, go to Step 4.

Step 4 : If all the requests have already been arranged, go to Step 5;
otherwise, go to Step 1.

Step 5 : If s1i > 0, the game terminates;
otherwise, let the server accept the final request, the game terminates.

Note: n represents the total request labels.

Theorem 2. The Partition Algorithm(PA) for Max-OSIS problem is �n
2 �-

competitive.

Proof. Considering an arbitrary order input sequence R, let σ and σ∗ be the
schedules produced by Partition Algorithm and by OPT, respectively. Let |σ|
and |σ∗| denote the number of the accepted requests. There are two different
cases as following.
Case 1. If PA accepts no request before the final request arrived, it means that
the released request is at least labeled �n

2 �. PA only accepts the final request.
The offline adversary at most accepts |σ∗| = �n

2 � requests, and σ∗ = {r1 =
�n
2 �, r2 = �n

2 � + 1, · · · , r� n
2 � = n}.

COPT /C ≤ �n

2
�.

Case 2. If PA could accept at least one request before the final request arrived,
we denote the first request arranged by PA as rk. We know that 0 < rk ≤ n

2 .
Then,

Case 2.1 if PA could not accept one more request, it means that the offline
adversary could not release a request which is labeled greater than rk.

Thus, PA will reject all the rest of the requests. The schedule produced by
PA is σ = {rk}. In the optimal schedule, there are not more than �n

2 � requests
that are arranged, σ∗ = {1, 2, · · · , rk}. Due to rk ≤ �n

2 �,

COPT /C ≤ �n

2
�.

Case 2.2 if PA could accept one more request, it means that the offline adversary
will release a request rj (j > k), rj > rk.

Thus, the schedule produced by PA is σ = {rk, rj}. PA will serve 2 requests.
The offline adversary at most accept |σ∗| = rk+n− n+rk

2 = n+rk
2 ≤ 3

4n requests,



142 K. Luo et al.

and σ∗ = {rk+1 = 1, rk+2 = 2, · · · , rrk = rk; rrk+1 = �n+rk
2 �, rrk+2 = �n+rk

2 � +
1, · · · , rj = n}.

COPT /C ≤ 3
8
n.

According to Case 1, 2, we obtain ρPA = max{�n
2 �, 3

8n} = �n
2 �. Thus, the

Partition Algorithm for Max-OSIS problem is �n
2 �-competitive. �	

Theorem 3. The Partition Algorithm is the optimal algorithm for Max-OSIS
problem.

Proof. Considering an arbitrary order input sequence R, there are three different
cases as following.

Case 1. If an online algorithm accepts the first request r1 = k, the offline
adversary will release a set of requests which are labeled {r2 = 1, r3 = 2, r4 =
3, · · · , rk+1 = k}. The schedule produced by the online algorithm is σ = {r1}.
In the optimal schedule, σ∗ = {r2, r3, r4, · · · , rk+1} are arranged.

COPT /C = k.

Case 2. If the online algorithm rejects the first request, the offline adversary
will release a request which is labeled r2 = k + 1.

Case 2.1. If the online algorithm accepts this requests, the offline adversary will
release a set of requests which are labeled {r3 = 1, r4 = 2, r5 = 3, · · · , rk+3 =
k+1}. The schedule produced by the online algorithm is σ = {r2}. In the optimal
schedule, σ∗ = {r3, r4, r5, · · · , rk+3} are arranged.

COPT /C = k + 1.

Case 2.2. If the online algorithm rejects all the previous requests before rj ,
j ≥ 2, the offline adversary will release a request which is labeled {rj+1|rj <
rj+1 < n, rj+1 ∈ Z+}.

If the online algorithm accepts request rj+1, the offline adversary will release
a set of requests which are labeled {rj+2 = 1, rj+3 = 2, rj+4 = 3, · · · , rk+2j =
k + j − 1}. The schedule produced by the online algorithm is σ = {rj+1}. In the
optimal schedule, σ∗ = {rj+2, rj+3, rj+4, · · · , rk+2j} are arranged.

COPT /C = k + j − 1.

Case 3. If the online algorithm rejects all requests until the last request is labeled
as {rj = n|rj ∈ Z+}, the online algorithm will be strictly required to arrange
the last request. The schedule produced by the online algorithm is σ = {rj}. In
the optimal schedule, σ∗ = {r1 = k, r2 = k + 1, · · · , rj = n} are arranged.

COPT /C = n − k + 1.

From the three cases above, it can be conclued that there is no online algo-
rithm which can achieve a competitive ratio less than Min{k, k + 1, · · · , n −
1, n − k + 1}. For 0 < k < n, k ∈ Z+, Max Min{k, n − k + 1} = �n

2 �. Thus, the
Partition Algorithm is the optimal algorithm for Max-OSIS problem. �	
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4 Conclusions

We investigate the following two online scheduling problems with increasing
subsequence serving constraint. The conditions we use are independent of the
optimal objective value, the length of request sequence, and the distribution of
input sequence. As for the first problem Min-OIS, we assume that the servers
are infinite and we should not reject any requests. We come up with the Double-
Greedy Algorithm and prove it is optimal. In the other problem Max-OIS, we
prove that its lower bound is infinite. For Max-OSIS problem, we prove a lower
bound of Max-OSIS problem is �n

2 � and propose the Partition Algorithm, whose
competitive ratio is equal to the lower bound.

A straightforward application of the algorithms is to be injected into the
software of request assignment system, such as taxi booking system and food
delivery system, because the requests appear uncertainly.

There are many questions for further research. One important question is
whether there is a scheduling algorithm which is the most efficient for specific
server company. In addition, as we show in this paper, we do not consider the
balance between the size of requests and the size of servers, which is left to
be explored in the future. Also, if some companies allow the number of servers
to fluctuate over time, online scheduling problem with increasing subsequence
constraint will also be an interesting direction for further research.
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Abstract. We focus on designing algorithm for One-sided Scaffold
Filling. Jiang et al. proposed a non-oblivious local search algorithm for
this problem recently. We can give an example to show that this algo-
rithm cannot approximate One-sided Scaffold Filling to 6

5
. In this paper,

we propose a new objective function based local search algorithm for
One-sided Scaffold Filling, and give the accurate proof to show that its
approximation ratio is 6

5
.

1 Introduction

With the development of biological sequencing technology, there has been an
increasing trend that genomes are being published in scaffold form [9]. A scaffold
has usually been viewed as a draft genome with some gene fragments missed.
The draft genomes are often used to make analysis and interpretations, which is
tentative and prone to error and leads to particular problems in genomic analysis.
Thus the scaffold filling problem is motivated by extracting whole genomes from
scaffolds via computation [12].

Muñoz et al. pioneered to propose the one-sided scaffold filling problem, and
devised a polynomial time algorithm to fill a signed permutation by minimizing
some rearrangement distance [12]. Jiang et al. showed that it could be solved in
polynomial time to fill a permutation by minimizing the breakpoint distance as
its objective [8], no matter whether the permutation is signed or not. On the
other hand, there exist trivial reductions which can show it NP-Hard to fill an
unsigned permutation by minimizing a distance of rearrangement like reversal
or translocation [17,18].

Whichever a genome similarity measure can be used as an optimization objec-
tive in filling a scaffold with duplicated genes. Since those genome similarity mea-
sures such as exemplar distance [13], minimum common string partition (MCSP)
distance [3] and maximum common string number [1,10,11] are themselves com-
putationally difficult, NP-Hard namely [2–7], it must be computationally diffi-
cult to use one of them as an optimization objective in filling a scaffold with
duplicated genes. Although the breakpoint distance or the adjacency number
is computationally easy for genomes with duplicated genes, it has been shown
that One-Sided Scaffold Filling is NP-Hard under breakpoint distance [8], which
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-39817-4 15
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means also NP-Hard under adjacency number. Two-Sided Scaffold Filling under
breakpoint distance or adjacency number is NP-Hard consequently, because One-
Sided Scaffold Filling is a special case of it.

Scaffold filling for genomes with duplicated genes has been demonstrated
to admit approximation algorithms with constant performance ratios, if adja-
cency number is used as the maximization objective. For One-Sided Scaffold
Filling, Jiang et al. designed a greedy 4

3 -approximation algorithm [10,11]. Liu
et al. then improved the performance ratio to 5

4 by the so called local improve-
ment following behind greedy method [14]. One can look up in [15] for how
to approximate Two-Sided Scaffold Filling to a constant performance ratio.
Recently, Jiang et al. proposed a 6

5 -approximation algorithm by a non-obvious
local search, but there are some errors in it [16]. We can give an example of
instance (A = xaymbnam1cd23e4bc35e6f5, B = xymn123456m3aeb5c, B′ =
xyman123cb45e6fm3aeb5cd, B∗ = xaymbn1cd23e45f6m3aeb5c,B′ is obtained
by algorithm, and B∗ is the optimal), which shows the algorithm cannot approx-
imate the problem to 6

5 , but 11
9 .

In this paper, we present a new algorithm for One-Sided Scaffold Filling,
which can achieve a performance ratio 6

5 accurately. This will be done by non-
obvious local search technique, which benefits from a new objective function
expressed by a weighted number summation of those missed gene strings with
one, two, three and four genes, other than the intuitional adjacency numbers. By
a bipartite conflict graph, we prove that the obtained scaffold comes true with as
many increased adjacencies as needed to approximate One-Sided Scaffold Filling
to 6

5 .

2 Preliminaries

Let Σ be an alphabet in which each element represents a gene family. A scaffold
on Σ is a gene sequence whose genes each is an occurrence of a gene family in
Σ. Let S = s1 s2 · · · sn be a scaffold on Σ, then all genes in S form a multi-set
which will be denoted as c(S) = {s1, ..., sn}. A substring in S with k genes is
referred to as an k-string. A 2-string in S is particularized as a pair. Let P [S]
be the pair set of S. Then P [S] = {s1s2, s2s3, . . ., sn−1sn}. A pair is in S, if
and only if it is in P [S].

Let A = a1a2 · · · an and B = b1 b2 · · · bm be two scaffolds on Σ, P [A] and
P [B] the pair sets of A and B respectively. To identify a pair in A (resp. B) as
an adjacency or breakpoint, we have to set a maximum matching between P [A]
and P [B].

A pair aiai+1 ∈ P [A] and a pair bjbj+1 ∈ P [B] form a match (aiai+1, bjbj+1)
between P [A] and P [B], if aiai+1 = bjbj+1 or aiai+1 = bj+1bj . Let R be the
set of all matches between P [A] and P [B]. Then a subset R ⊆ R is a maximum
matching between P [A] and P [B] if, (1) any pair in A or B does not occur in
two or more matches in R; (2) the cardinality of R is maximized over all subsets
of R which subjects to (1). The adjacency and breakpoint can be formalized as,
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Definition 1. Let R be a maximum matching between P [A] and P [B]. Then a
pair in A (resp. B) is an adjacency relative to B with respect to R, if it forms
a match in R with a pair in B (resp. A), otherwise, a breakpoint.

As a simple consequence of Definition 1, A must have as many adjacencies as
B has with respect to whichever maximum matching between P [A] and P [B].
Since so, we usually address a pair in A or B as an adjacency or a breakpoint
without mentioning the maximum matching with respect to which the pair serves
as an adjacency or a breakpoint. For convenience, we denote by a(A,B) the set
of adjacencies in A (or B), bA(A,B) and bB(A,B) the set of breakpoints in A
and B respectively. For example, let A = a c d a b c d, B = a b d c a c d.
Then P [A] = {ac, cd, da, ab, bc, cd}, P [B] = {ab, bd, dc, ca, ac, cd}. If setting a
maximum matching between P [A] and P [B] as R = {(ac, ca), (cd, dc), (ab, ab),
(cd, cd)}, then with respect to R,

a(A,B) = {ac, cd, ab, cd}
bA(A,B) = {da, bc}
bB(A,B) = {bd, ac}

An insertion of a gene into a scaffold refers to the operation to insert the gene
between two genes of a pair, onto the left side of the first gene or the right side
of the last gene in the scaffold. Let S = s1 ...si si+1 ...sn be a scaffold on Σ and
x a gene of a symbol in Σ. Then inserting x between si and si+1 transforms S
into S′ = s1 ...si x si+1 ... sn, 1 ≤ i ≤ n − 1, inserting x onto the left (resp.
right) side of s1 (resp. sn) transforms S into S′ = x s1 ... sn (resp. S′ = s1 ... sn
x). We denote by S + x the set of scaffolds produced by inserting x into S. For
a gene set X, we denote by S + X the set of scaffolds produced by inserting all
genes in X into S.

A scaffold has usually been considered with some genes missed. Muñoz
et al. pioneered the scaffold filling problem which suggested to get a seemingly
no-gene-missed scaffold by filling a scaffold with those genes in an already existed
scaffold but it, where the adjacency number has been most commonly used to
measure how good a resulting scaffold is. Thus the one-sided scaffold filling prob-
lem (abbr. OSSF) uses a scaffold for reference, asks to find a scaffold by filling a
given scaffold with those genes in the reference scaffold but the given one, such
that the number of adjacencies in the scaffold relative to the reference one is
maximized. It can be formalized as,

Instance: Two scaffolds A, B on Σ with c(B) − c(A) = ∅.

Objective: Find a scaffold B′ ∈ B + (c(A) − c(B)), such that |a(B′, A)| is
maximized over all scaffolds in B + (c(A) − c(B)).

Let X = c(A) − c(B). A scaffold in B + X is optimal, if its adjacencies
relative to A is number maximized over all scaffolds in B + X. Moreover, a gene
is missed if it is in X = c(A) − c(B).

To avoid inserting a missed gene onto the leftmost or rightmost side of a
scaffold, we add a special gene # to both ends of A and B, and accept that any
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gene other than the first and the last in A or B is not #. Thus, we will treat the
instance of OSSF as A = a0 a1 ... an an+1, B = b0 b1 ... bm bm+1, where a0 =
an+1 = b0 = bm+1 = #.

3 How to Approximate the Scaffold Filling

Let Y ⊆ X, B′ ∈ B +Y . Then those genes in Y must occur in B′ in the form of
gene strings. A gene string in B′ ∈ B + Y is missed, if each gene in it is missed,
whereas neither of that one on the left side of the string’s first gene and that
one on the right side of the string’s last gene is missed. A missed string in B′

can always be thought of formed by inserting the string into B once as a whole.
In [14], it has been shown that one can always fill B with genes to increase at
least as many adjacencies as those genes which have been inserted into B. We
formally state it as,

Theorem 1. Let Y ⊆ X, B′ ∈ B + Y . Then in polynomial time, a group of
string insertions can be found to insert all genes in X − Y into B′, such that
each of them can insert a string to increase at least as many adjacencies as those
genes the string has.

3.1 A Sufficient Condition for 6
5
-Approximation

Let Y ⊆ X, B′ ∈ B + Y . A missed k-string in B′ is good, if removing (all genes
of) the string from B′ transforms B′ into B+, such that |a(B′, A)| − |a(B+, A)|
= k + 1. Else if |a(B′, A)| − |a(B+, A)| = k, the missed k-string is not good.
inserting a good i-string, say I, into B′ refers to that the insertion of the missed
i-string I into B′ transforms B′ into B+, such that the string turns into good in
B+. A string is missed by default, if it is mentioned for inserting into or removing
from a scaffold.

Let B∗ ∈ B + X be optimal. Let in B∗, b∗
i be the number of good i-strings,

c∗
i the number of missed i-strings which are not good. Then,

Lemma 1.

|a(B∗, A)| = |a(B,A)| +
∑

i≥1

(i + 1)b∗
i +

∑

i≥1

ic∗
i

= |a(B,A)| + |X| +
∑

i≥1

b∗
i . (1)

Proof. Inserting a good k-string increases just k + 1 adjacencies in B∗. By The-
orem 1 moreover, inserting an i-string into a scaffold increases either i + 1 (if
good) or i adjacencies for the scaffold (otherwise). This leads to the first equa-
tion of (1). The second equation follows from that all the missed strings in B∗

together have |X| genes.
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Let B′′ ∈ B + X. By Theorem 1 again, each of those string insertions to
transform B into B′′ can be assumed to have increased at least as many adja-
cencies as the genes the string has. Since so, we can present on what a scaffold
in B + X can play the role of what we cry. Let in B′′, bi be the number of good
i-strings, ci the number of missed strings which are not good, then a sufficient
condition to approximate OSSF to what we cry can be stated as,

Lemma 2. If 6
∑

i≥1 bi ≥ 4b∗
1 + 3b∗

2 + 2b∗
3 + b∗

4, then |a(B∗,A)|−|a(B,A)|
|a(B′′,A)|−|a(B,A)| ≤ 6

5 .

Proof. By Lemma 1, the adjacencies in B∗ can be bounded by,

|a(B∗, A)| = |a(B,A)| + |X| +
∑

i≥1

b∗
i

= |a(B,A)| + |X| + b∗
1 + b∗

2 + b∗
3 + b∗

4 +
∑

i≥5

b∗
i

≤ |a(B,A)| + |X| + b∗
1 + b∗

2 + b∗
3 + b∗

4 +
1
5
(|X| − b∗

1 − 2b∗
2 − 3b∗

3 − 4b∗
4)

≤ |a(B,A)| +
6
5
(|X| +

4
6
b∗
1 +

3
6
b∗
2 +

2
6
b∗
3 +

1
6
b∗
4)

The adjacencies in B′′ can also be bounded by |a(B′′, A)| ≥ |a(B,A)| + |X| +∑
i≥1 bi. Thus if 6

∑
i≥1 bi ≥ 4b∗

1 + 3b∗
2 + 2b∗

3 + b∗
4, then

|a(B∗, A)| − |a(B,A)|
|a(B′′, A)| − |a(B,A)| ≤

6
5 (|X| + 4

6b∗
1 + 3

6b∗
2 + 2

6b∗
3 + 1

6b∗
4)

|X| +
∑

i≥1 bi
≤ 6

5
. (2)

Then the remainder effort is to find a scaffold in B + X to meet what Lemma
2 asks.

3.2 The Objective Function of Local Search

To approximate OSSF to 6
5 , it suffices to find a scaffold in B + X with as

many good strings as Lemma 2 asks. Local search always asks for an objective
function to quantify how optimal its solutions are. Thus it is not unusual to
set the local search objective function with a weighted summation of the good
i-string numbers for i = 1, 2, 3, 4. Let B′ ∈ B + Y with Y ⊆ X be the scaffold
the local search algorithm should maintain during it runs, bi the number of good
i-strings in B′. Then the objective function can be generalized as,

D(B′) = w1b1 + w2b2 + w3b3 + w4b4. (3)

Strategically, our algorithm always repeats to find and substitute some missed
strings in B′ with new ones, so that the object function value can be increased,
until no string substitution we allow holds for B′. A string substitution for B′

refers to a series of operations which remove some strings from B′ to transform B′

into B+, then insert some other strings into B+, where if those strings removed
from B′ are I1, ..., Ik, then a gene should be in c(I1)

⋃
...

⋃
c(Ik)

⋃
(X − Y ),
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if it is in a string inserted into B+. Actually, a removed string as well as an
inserted string must be good, whenever it happens in a substitution. For the
sake of enough good strings of length one, two, three and four, we technically
set w1 = 1, w2 = 1

3 , w3 = 1
10 , w4 = 1

41 .

3.3 What Good String Substitutions Are Allowed

A string substitution for B′ is adoptable, if it transforms B′ into B+, such that
D(B+) − D(B′) > 0. In regard to improving a scaffold to get a larger objective
function value, we are interested in just four kinds of adoptable string substitu-
tions. Note again that a string must be good, and has at most 4 genes, whenever
it is removed from or inserted into a scaffold.

(1) Insert a good string
An string insertion is what we must accept, if it inserts a string with all
genes in X − Y into B′ to increase D(B′) by a positive amount. In what
follows, good-insertion(B, B′, X, I) will be used as a subroutine to find a
string I with c(I) ⊆ X − Y , whose insertion into B′ can increase D(B′).
Later, no string can be inserted into B′ to increase D(B′).

(2) Add a good string
If removing a good string from B′ transforms B′ into B+, then the insertions
into B+ of two or more strings can transform B+ into B++ with D(B++) >
D(B′). This suggests a kind of substitutions of one string with two or more
ones, where we just accept those adoptable substitutions of two substituting
one. Thus in what follows, the subroutine named as good-string(B, B′, X,
T , I) will be used to find a good string I in B′, and a set T of two strings
with genes in c(I) ∪ (X − Y ) whose insertions into B′ with I removed can
increase D(B′). In the situation good-string(B, B′, X, T , I) returns true,
I and T will be found such that each member in T turns into good in the
scaffold with the strings in T inserted into that B′ with I removed. Later,
no two strings can substitute a good string in B′ to increase D(B′).

(3) Add a shorter good string
If removing some good strings from B′ transforms B′ into B+, then the
insertion into B+ of another string, if shorter than each of those removed
from B′, can transform B+ into B++ with D(B++) > D(B′). This suggests a
kind of substitutions of at least one string with one, where we accept those
adoptable substitutions of one substituting 1, 2, 3 or 4 strings. In what
follows, the subroutine named as shorter-string(B, B′, X, I, T ) will be used
to find a good string set T in B′, and a string I with c(I) ⊆ ⋃

J∈T c(J)
⋃

(X − Y ), whose insertion into that B′ with all strings in T removed can
increase D(B′). In the situation shorter-string(B, B′, X, I, T ) returns true,
T and I can be found such that I will turn into good in the scaffold with it
inserted into that B′ with all strings in T removed. Later, no one string can
substitute one, two, three or four good strings in B′ to increase D(B′).

(4) More efforts to add a shorter good string
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A string can substitute a good string of the same length as it to transform
B′ into a scaffold with equal objective function value to D(B′). If fortunate,
another string substitution so as mentioned in (3) may come true for that
B′ with the former substitution done. Based on this observation, we just
accept those adoptable string substitutions each of which includes two sub
substitutions, where the first must happen to two good strings of the same
length, and the second must be so as mentioned in (3). Specifically, the
subroutine named as more-shorter(B, B′, X, T , T ′) will be used to find in
B′ a good string set T ′ = {I ′} ∪ T+ with T+ �= ∅, and a string set T = {I,
I+} with c(I) ⊆ (X −Y ) ∪ c(I ′), |c(I)| = |c(I ′)|, c(I+) ⊆ (X − ((Y − c(I ′))
∪ c(I))) ∪ (

⋃
J∈T+ c(J)), such that I can substitute I ′ without decreasing

D(B′), if this substitution transforms B′ into B+, then I+ can substitute
all strings in T+ to increase D(B+). As previously stated, in the situation
more-shorter(B, B′, X, T , T ′) returns true, T and T ′ can be found such
that the strings in T will turn into good in that scaffold with the strings in
T inserted into B′ with all strings in T ′ removed.

The algorithm always repeats to find and implement a string substitution so
as mentioned in (1), (2), (3), (4) to improve B′. The string substitutions will
come into effects in the order as they have been presented before. Only when no
substitution mentioned in (i) can be found, can those substitutions mentioned in
(i+1) be used to improve B′, i ≤ 3. If for B′, no string substitution as mentioned
in (1), (2), (3), (4) can be found, those genes in X − Y will be inserted into
B′ by the algorithm proposed in [14] without decreasing the number of good
strings. In summation, the algorithm is given as Scaffold-Filling(A,B) formally.

Algorithm 1. Scaffold-Filling(A,B)
Input: two scaffolds A, B, c(B) ⊆ c(A)
Output: B′ ∈ B + c(A) − c(B)
1: X ← c(A) − c(B); B′ ← B; D ← −1; D′ ← 0.
2: while ( D′ �= D) do
3: D ← D′;
4: If (good-insertion(B,B′, X, I) = true), insert I into B′.
5: Else if (good-string(B, B′, X, I, T ) = true), substitute I with the strings in T

for B′.
6: Else if (shorter-string(B, B′, X, I, T ) = true), substitute the strings in T with

I for B′.
7: Else if (more-shorter(B, B′, X, T , T ′) = true), substitute the strings in T ′ with

the strings in T for B′.
8: D′ ← D(B′).
9: end while

10: return (B′′ ← inserting all genes in c(A) − c(B′) into B′ by the the algorithm
in [15]).
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4 Why Is the Performance Ratio 6
5

Let B∗ be an optimal scaffold in B + X, B′′ a scaffold returned by Scaffold-
Filling(A,B). We show |a(B∗,A)|−|a(B,A)|

|a(B′′,A)|−|a(B,A)| ≤ 6
5 for B′′ in this section.

Let B′ be the scaffold Scaffold-Filling(A, B) maintains when it runs into the
while loop end at Line 9. Then B′ subjects to that, there are no four kinds of
string substitution what we allowed holds adoptable for B′, and there are at
least as many good strings in B′′ as in B′. So we can arrive at |a(B∗,A)|−|a(B,A)|

|a(B′′,A)|−|a(B,A)|
≤ 6

5 , if B′ has at least 1
6 (4b∗

1 + 3b∗
2 + 2b∗

3 + b∗
4) good strings. Actually, B′ can

be shown to have at least 1
6 (4b∗

1 + 3b∗
2 + 2b∗

3 + b∗
4) good strings each with at

most 4 genes.
A good string, say I in B′, destroys a good string, say I∗ in B∗, if I shares

a gene with I∗ or occurs between the same two genes in B as those I∗ occurs
between. A given good string in B′ can make no other good strings than those
in B∗ it destroys fail to occur in B′.

Lemma 3. Let Y ⊆ X, B′ ∈ B + Y . Then a good i-string in B′ can destroy at
most i + 1 good strings in B∗; a good i-string in B∗ can be destroyed by at most
i + 1 good strings in B′.

Proof. Let bjbj+1 be a breakpoint in B, I a good i-string in B′ which occurs
between bj and bj+1. Since I has i genes, it can share genes with at most i good
strings in B∗. Moreover, at most one good string in B∗ can occur between bj
and bj+1. Totally, at most i + 1 good strings in B∗ could be destroyed by I. For
the same reason, a good i-string in B∗ can be destroyed by at most i + 1 good
strings in B′. 	


To help compare the good string number of B′ with that of B∗, we set a
bipartite graph G = (L, R, E), where a vertex in L (resp. R) corresponds to a
good i-string in B′ (resp. B∗) with i ≤ 4, an edge is set between a vertex u in L
and a vertex v in R, if the good string u corresponds to destroys the good string
v corresponds to. Thus let Si (resp. S∗

i ) be the set of vertices corresponding to
those good i-strings in B′ (resp. B∗), then L =

⋃4
iSi, R =

⋃4
iS

∗
i , E = {(u, v) |

u (resp. v) corresponds to a good string s (resp. s∗) in B′ (resp. B∗), s destroys
s∗}. For example, let A and B as two scaffolds. Given an optimal scaffold B∗

and an arbitrary scaffold B′ in B + X as follows,

A = �x1ay112x234y2567x3cdefy3aabbx4x11y1x25ay2y3246dx437cx5m�.

B = �x1y1x2y2x3y3x4x5x15y16x2dy21a23y345x4mc�.

X = {1, 2, 3, 4, 5, 6, 7, a, a, a, b, b, c, d, e, f}.

B′ = �x11y1x25ay2x3bbaay3246dx437cx5x15y16x2dy21a23efy345x4mc�.

B∗ = �x1ay112x234y2567x3cdefy3aabbx4x5x15y16x2dy21a23y345x4mc�.

Then the good string set in B′ and B∗ respectively is L = {1,5a, 246d, 37c},
R = {a, 12, 34, 567, cdef , aabb}, which will be used as the vertices of the graph.
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Fig. 1. An example for bipartite graph

We present the bipartite graph as follows in Fig. 1 to show how the good strings
in B′ destroy those in B∗.

By Lemma 2 and the fact that |Si| = bi, |S∗
i | = b∗

i , it suffices to show

6|S1| + 6|S2| + 6|S3| + 6|S4| ≥ 4|S∗
1 | + 3|S∗

2 | + 2|S∗
3 | + |S∗

4 |, (4)

for arriving at |a(B∗,A)|−|a(B,A)|
|a(B′′,A)|−|a(B,A)| ≤ 6

5 .
Since a good string is always of length at most four, a vertex of G is incident

with at most five edges by Lemma 3. To simplify the proof of Inequality (4),
we try to delete some edges of G to reduce it into one with each vertex in R
incident with at most 2 edges. Concretely, those edges of G will be considered
for deletion one by one in such a principle as: an edge between u(∈ L) and v(∈
R) should be deleted, if d(v) > 2, and the length of good string u corresponds
to is the maximal among all the good strings corresponded by all the vertices in
L connected by v.

A graph reduced from G is simplified, if none of its edges could be deleted
by this principle. Later, let G′ = (L,R,E′) be a simplified graph reduced from
G with L =

⋃4
iSi, R =

⋃4
iS

∗
i , E′ ⊆ E. A vertex of G′ turns to have at most 2◦,

if it is in R.
Since G′ is a subgraph of G, both a vertex and an edge of G′ are treated to

be of G. In what follows, we concentrate on G′ to show Inequality (4). Although
a vertex in R has at most 2◦ for G′, no isolated vertex can occur in R. That is,

Lemma 4. For G′, a vertex in R is incident with at least one edge.

Proof. If a vertex r in R is incident with no edge, it must be incident with no
edge of G. Thus the good string in B∗ r corresponds to has not been destroyed by
any good strings in B′. An string insertion so as mentioned in (1) in Subsect. 3.3
holds true for B′. The condition for the algorithm to end is contradicted. 	


Some edges with ends in L can be excluded from G′. That is,

Lemma 5. If two edges have two respective 1 degree ends in S∗
i and S∗

j , where
i ≤ j, they cannot share one end in Si.

Proof. Let (v, u), (v, u′) be two edges with v ∈ Si, u ∈ S∗
i , u′ ∈ S∗

j , where i ≤
j. If u and u′ both have one degree, then the substitution of removing the good



154 J. Ma and H. Jiang

i-string v corresponds to, and inserting two new good i-strings u, u′ correspond
to holds adoptable for B′, which is so as mentioned in (2) in Subsect. 3.3. The
condition for the algorithm to end is contradicted. 	


Moreover, some edges with ends in R must occur in G′.

Lemma 6. Over those edges with an end in S∗
j , at least one has an end in Si

with i ≤ j.

Proof. A vertex in R is incident with at least one edge by Lemma 4. Let v ∈
S∗
j . If it happens contrary, each edge with v as an end has an end in Si with i

> j, then by the expression of D(B′), a substitution of removing at least one
good string then inserting the j-string v corresponds to must hold adoptable for
B′, which suggests a substitution so as mentioned in (3) in Subsect. 3.3. The
condition for the algorithm to end is contradicted. 	


Let (l,r) be an edge with l ∈ Si, r ∈ S∗
j , i ≤ j. Then an edge sharing the end

l with (l, r) can be excluded conditionally. That is,

Lemma 7. If an edge with end r has an end in Sk with k > j, then no edge
with end l can have a 1 degree end in S∗

i .

Proof. If G′ has an edge (l, r′), where r′ ∈ S∗
i has one degree, then r′ must have

1 degree in G, which means the string r′ corresponds to can substitute the string
l corresponds to for B′ with D(B′) unchanged. Since k > j, each edge of G with
end r has an end in Sl with l ≥ k > j, even if it does not occur in G′. Thus if the
substitution of removing the string l corresponds to and inserting the string r′

corresponds to transforms B′ into B+, those good strings the vertices incident
with the edges which share the end r correspond to, can be substituted with
the string r corresponds to for B+ to increase D(B+). The condition for the
algorithm to end is contradicted because this has suggested a string substitution
so as mentioned in (4) in Subsect. 3.3. 	


We turn to bound the number of vertices in S∗
j for j with 1 ≤ j ≤ 4. Since

a vertex in S∗
j has either one or two degrees, let Xk

j = {v | v ∈ S∗
j , d(v) = k ≤

2}. It follows Lemma 4 that |S∗
j | = |X1

j | + |X2
j |, 1 ≤ j ≤ 4. Since the end of

an edge, if in S∗
j , is in either X1

j , or X2
j , we divide those edges with ends in S∗

j

into two sets, which are respectively formalized as, Ki,j = {(u, v) | u ∈ Si, v ∈
S∗
j , d(v) = 1} and Mi,j = {(u, v) | u ∈ Si, v ∈ S∗

j , d(v) = 2}. An edge in Mi,j

should be specialized, if given an integer d, it shares an end in S∗
j with an edge

with another end in Sd. Thus let Md
i,j = {(u, v) | u ∈ Si, w ∈ Sd, v ∈ S∗

j , (w, v)
∈ E′, u �= w}. By Lemma 6, we have |Mi,j | =

∑j
d=1 |Md

i,j |, if i > j. Those 1
degree vertices in S∗

1 can be number bounded by the in-S1 vertex number minus
a numerical value made of those edges with ends in S1. That is,

Lemma 8.

|X1
1 | ≤ |S1| − 1

2
(|K1,2| + |K1,3| + |K1,4| + |M2,1| + |M3,1|

+|M4,1| + |M1
3,2| + |M1

4,2| + |M1
4,3|). (5)
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Proof. It follows Lemma 6 that |X1
1 | = |K1,1|.

An edge in K1,1 must have an end in S1. On the other hand, a vertex in S1

is incident with at most one edge in K1,1 by Lemma 5. By Lemma 5 again, a
vertex in S1 cannot be incident with any edge in K1,1, if it happens incident
with an edge in K1,2, K1,3 or K1,4.

By Lemma 7 moreover, a vertex in S1 cannot be incident with any edge in
K1,1, if it happens incident with an edge in M1,1 ∪ M1,2 ∪ M1,3, which shares an
end with someone in M2,1 ∪ M3,1 ∪ M4,1 ∪ M1

3,2 ∪ M1
4,2 ∪ M1

4,3. Thus we have
|K1,2| + |K1,3| + |K1,4| + |M2,1| + |M3,1| + |M4,1| + |M1

3,2| + |M1
4,2| + |M1

4,3|
edges whose ends in S1 all fail to be incident with any edges in K1,1. Finally,
the lemma follows from that a vertex in S1 has at most 2◦. 	

Those ends-in-S∗

1 edges can also help provide a numerical value bound on those
in-S∗

1 vertices. That is,

Lemma 9.

|X1
1 | + 2|X2

1 | ≤ 2|S1| + |M2,1| + |M3,1| + |M4,1| − (|K1,2| + |K1,3| + |K1,4|
+|M1,2| + |M1,3| + |M1,4|). (6)

Proof. Let E+ be the edge set in which each member has an end in S∗
1 . Then

by Lemma 4, |E+| = |X1
1 | + 2|X2

1 |. By Lemma 6, |X1
1 | = |K1,1|, 2|X2

1 |= |M1,1|
+ |M2,1| + |M3,1| + |M4,1|. An edge in K1,1 and M1,1 must have an end in S1.
By Lemma 3, a vertex in S1 has at most two degrees. Those edges in K1,2, K1,3,
K1,4, M1,2, M1,3, M1,4 all fall outside E+, although each of them has an end in
S1. Thus |K1,1| + |M1,1| ≤ 2|S1| − (|K1,2| + |K1,3| + |K1,4| + |M1,2| + |M1,3|
+ |M1,4|). This leads to the lemma inequality. 	


In the same way as for Lemmas 8 and 9, we further bound the vertex numbers
in S∗

2 , S∗
3 , S∗

4 respectively by the following six lemmas.

Lemma 10.

|X1
2 | ≤ |S2| + |K1,2| − 1

3
(|K2,3| + |K2,4| + |M2

3,2| + |M2
4,2| + |M2

4,3|). (7)

Lemma 11.

|X1
2 | + 2|X2

2 | ≤ 3|S2| + |K1,2| + |M1,2| + |M3,2| + |M4,2|
−(|K2,3| + |K2,4| + |M2,1| + |M2,3| + |M2,4|) (8)

Lemma 12.

|X1
3 | ≤ |S3| + |K1,3| + |K2,3| − 1

4
(|K3,4| + |M3

4,3|) (9)

Lemma 13.

|X1
3 | + 2|X2

3 | ≤ 4|S3| + |K1,3| + |K2,3| + |M1,3| + |M2,3| + |M4,3| − (|K3,4|
+|M3,4| + |M3,1| + |M3,2|) (10)



156 J. Ma and H. Jiang

Lemma 14.

|X1
4 | ≤ |S4| + |K1,4| + |K2,4| + |K3,4| (11)

Lemma 15.

|X1
4 | + 2|X2

4 | ≤ 5|S4| + |K1,4| + |K2,4| + |K3,4| + |M1,4| + |M2,4| + |M3,4|
−(|M4,1| + |M4,2| + |M4,3|) (12)

Theorem 2. 6|S1| + 6|S2| + 6|S3| + 6|S4| ≥ 4|S∗
1 | + 3|S∗

2 | + 2|S∗
3 | + |S∗

4 |.
Proof. The lemma inequality will come out of adding those inequalities of
Lemma from 8 to 15 with technical weights, then by ((5) + (6))× 2 +((7)
+ (8))× 3

2 + ((9) + (10)) + ((11) + (12))× 1
2 , we have

4|S∗
1 | + 3|S∗

2 | + 2|S∗
3 | + |S∗

4 | ≤ 6|S1| + 6|S2| + 5|S3| + 3|S4|
+

1
2
|M41| +

1
2
|M2

42| +
1
4
|M3

43|
Finally, the lemma inequality follows from |M4,1| + |M2

4,2| + |M3
4,3| ≤ 5|S4|. 	


Looking from Theorem 2 back to Lemma 1, we come true to show that Scaffold-
Filling(A,B) can always output a scaffold B′′ ∈ B + (c(A) − c(B)) with approx-
imation ratio no more than 6

5 .

5 Conclusion

We have presented a local search algorithm which can approximate One-sided
Scaffold Filling to 6

5 . It is interesting and open that if this problem can be
approximated to a smaller performance ratio. On the other hand, although the
problem is proved Max-SNP-Hard, it awaits a real value found to reject any
polynomial time algorithm to approximate the problem within it, which seems
also interesting.
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Abstract. We propose a neighbourhood-preserving method called LMB
for generating a low-dimensional representation of the data points scat-
tered on a nonlinear manifold embedded in high-dimensional Euclidean
space. Starting from an exemplary data point, LMB locally applies the
classical Multidimensional Scaling (MDS) algorithm on small patches of
the manifold and iteratively spreads the dimension reduction process.
Differs to most dimension reduction methods, LMB does not require
an input for the reduced dimension, as LMB could determine a well-fit
dimension for reduction in terms of the pairwise distances of the data
points. We thoroughly compare the performance of LMB with state-
of-the-art linear and nonlinear dimension reduction algorithms on both
synthetic data and real-world data. Numerical experiments show that
LMB efficiently and effectively preserves the neighbourhood and uncov-
ers the latent embedded structure of the manifold. LMB also has a low
complexity of O(n2) for n data points.

Keywords: Dimension reduction · Nonlinear manifold ·
Neighbourhood-preserving · Local multidimensional scaling

1 Introduction

Many high-dimensional data in real-world applications can be modeled as points
distributed on a low-dimensional manifold. Dimension reduction is widely used
to obtain a compact representation of the high-dimensional data to reduce the
redundancy and preserve the principal properties of the neighbourhood structure
or the global structure. In the last decades, various linear and nonlinear meth-
ods have been proposed for the dimension reduction [1–3]. Due to the curvature
and distortion of the manifold, however, traditional linear dimension reduction
methods often fail to yield a neighbourhood-preserving representation of the
data points in a low-dimensional space, and they are unable to uncover the
global structure of the manifold. Researchers then shift their attention to nonlin-
ear methods to construct the low-dimensional manifolds from high-dimensional
space [4–6]. We propose a new dimension reduction algorithm and demonstrate
its efficiency on both synthetic and real-world data. We will first highlight several
linear and nonlinear popular methods and show the difference of our algorithm.
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 158–171, 2016.
DOI: 10.1007/978-3-319-39817-4 16
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Linear methods require the representation to be a linear combination of
the original variables. There are two lines of works. One line projects the data
points onto the most significant subspaces, such as Principal Component Analy-
sis (PCA) [7] and Multidimensional Scaling (MDS) [8]. The linear projection
may cause the data points far from each other in high-dimensional space be
close in the subspace and fail to preserve the neighbourhood. Another line seeks
to extract the principal variables underlying the original data by using the statis-
tical analysis, including Factor Analysis (FA) [9], Linear Discriminant Analysis
[10], Canonical Correlation Analysis [11], and Independent Component Analysis
(ICA) [12].

Kernel PCA [13] and Isomap [6,14] are two classical nonlinear methods. Ker-
nel PCA maps the original data onto an inner-product feature space so that the
data in the feature space can be separated linearly. The nonlinear mapping may
distort the data structure and not well preserve the neighbourhood as measured
by the distances in the original space. Isomap is an extension of MDS, which
approximates the geodesic distance by the length of the shortest path confined
to the embedded manifold and then utilizes MDS to obtain a compact repre-
sentation. Isomap could preserve the geodesic distance globally but it does not
efficiently preserve the neighbourhood.

In order to well preserve the neighbourhood, several nonlinear local meth-
ods have been proposed. As a typical local nonlinear method, Locally Linear
Embedding (LLE) [5] constructs a local geometric structure of the data points
and reduces the data points into a low-dimensional space that could best pre-
serve the local geometries [15]. LLE maps the data into a single global coordi-
nate system and enforces the representation variables to have identity variance-
covariance matrix. LLE is extended to Hessian-based Locally Linear Embedding
(HLLE) [16], which works with the Hessian matrix of the graph and is able to
handle a wider range of the data set. Other nonlinear local methods include
Local Tangent Space Alignment (LTSA) [17] and principal curves [18].

As small patches on a manifold could be approximately regarded as local
hyperplanes, applying linear methods on small patches could well preserve the
local structure of the neighbourhood. Following this observation, and based on
the efficient linear method MDS [8], we propose a local nonlinear method called
Local Multidimensional scaling with Breath-first search (LMB). LMB iteratively
applies MDS on small patches of the manifold and spreads the local reduction
process via Breath-First Search (BFS). To better understand LMB, we briefly
discuss MDS in the appendix.

Compared with the global nonlinear methods, LMB works on the local
patches of the manifold and better preserves the neighbourhood. By spread-
ing the local reduction process via BFS, LMB could also reveal the manifold
structure like Isomap [6] does. Compared with the local method LLE [5], LMB
better preserves the neighbourhood and tries not to change the Euclidean dis-
tances of the data points. Another strength of LMB is that it automatically
determines the dimension of the manifold in terms of the pairwise distances
of the data points, so it does not need a priori parameter for the reduced
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dimension. Also, LMB is very fast in dealing with ten thousands of data points
within several minutes, as LMB does not require the decomposition of a large
matrix which indicates the pairwise distances of the data points. Numerical
experiments and comparisons with other state-of-the-art methods show that
LMB is more efficient in preserving the neighbourhood on both synthetic and
real-world data.

2 The Proposed LMB Algorithm

2.1 Determine the Dimension of the Embedded Manifold

A d-dimensional manifold possesses the property that a local region on the mani-
fold is approximately a d-dimensional hyperplane. The local observation of small
regions on the manifold provides insight for the dimension of the embedded man-
ifold. This intuitive perceptive can be demonstrated if the embedded structure is
smooth and the data is well-sampled. For simplicity, we show cases for dimension
d ≤ 2. It is similar for higher-dimensional manifolds. A one-dimensional mani-
fold embedded in an m-dimensional space is a curve, which can be represented
by a vector-valued function:

f (s) = (f1(s), f2(s), ..., fm(s)).

Suppose we choose a point v0 = f (s0), and a neighbouring point of v0 is f (s0 +
δs) :

vnei = f (s0 + δs) = (f1(s0 + δs), f2(s0 + δs), ..., fm(s0 + δs)).

If the curve is differentiable at the point v0 , vnei can be approximated by:

vnei ≈ (f1(s0) + f
′
1(s0)δs, f2(s0) + f

′
2(s0)δs, ..., fm(s0) + f

′
m(s0)δs). (1)

All neighbouring points of v0 can be approximated by Eq. (1), only δs varies for
these points. Locate v0 at the origin, the local observation near the point v0 is
derived by measuring the relative location of its neighbouring points:

vr = vnei − v0 ≈ (f
′
1(s0), f

′
2(s0), ..., f

′
m(s0))δs.

The vectors are almost along the same direction (f
′
1(s0), f

′
2(s0), ..., f

′
m(s0)),

which indicates that the neighbouring points are approximately in a one-
dimensional space. If d = 2, the vector-valued function is f (s) =
(f1(x, y), f2(x, y), ..., fm(x, y)) and the neighbouring points are almost in the
plane spanned by (∂f1

∂x , ∂f2
∂x , ..., ∂fm

∂x ) and (∂f1
∂y , ∂f2

∂y , ..., ∂fm

∂y ).
For each point i, find its k-nearest points, and define i to be the father point

of this neighbourhood. We execute MDS on the pairwise distances of these k +1
points to obtain their coordinates Xi. The column vectors of Xi are approxi-
mately in a d-dimensional hyperplane, and the first d eigenvalues of XT

i Xi are
significant. Therefore we define the local dimension of point i as d if the first
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d eigenvalues satisfy Eq. (2), where r is a constant close to 1 (such as 0.95) and
S is the summation of all the eigenvalues.

λ1 + λ2 + ... + λd > rS (2)

The dimension d of the embedded manifold is determined by the integer closest
to the average local dimension of all the data points. Table 1 illustrates the
response of d against different values of r.

2.2 Dimension Reduction by LMB

Based on the determined dimension of the embedded manifold d, and the Euclid-
ean pairwise distances of the data points, LMB generates a compact represen-
tation of the original data in a d-dimensional space.

By performing BFS from the starting point to get its k-nearest neighbors
and executing MDS on this neighbourhood, we place the first patch in a d-
dimensional space with its center at the origin, and do translation to move
the starting point to the origin. For the second neighbourhood, its father point
belongs to the neighbourhood of the starting point. Local MDS on the second
neighbourhood generates the second patch with its center at the origin. We trans-
late the second patch such that its father point coincides with the same point
in the first patch, and then do rotation or reflection (orthogonal transforma-
tion) on the second patch by fixing its father point as the pivot, such that other
intersected points of these two patches coincide as much as possible. Continue
the process for other patches and finally merge all the patches together in the
d-dimensional space. A point is called reduced if we already obtain its coordi-
nates in d-dimensional space, and a point is called explored if all its k-nearest
neighbors are reduced.

2.3 Orthogonal Transformation

In Fig. 1, P1 and P2 are the father points of the two patches, and C1 and C2

are the patch centers. Points in patch 1© are reduced. P2 belongs to patch 1©
and therefore is also reduced. By executing local MDS on patch 2©, we obtain
the coordinates for patch 2©, as shown in 3©. Do translation to fix P2 at the
origin, as shown in 4©. Then rotate or reflect patch 2© by fixing P2 as the pivot.
After the orthogonal transformation, patch 2© is rotated to the right direction
and could be merged with patch 1© correctly.

The orthogonal transformation is determined according to the distance con-
straint between sq(q = 1, 2, 3, ..., l) and the neighbouring points of i. The d-
dimensional representation of points 1, 2, 3, ..., k are as shown in Eq. (3), where
U is the orthogonal matrix needs to be determined and xi is the d-dimensional
representation of i.

xj = Uxij + xi, j = 1, 2, ..., k, k ≥ d. (3)
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Fig. 1. Merge the patches
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Fig. 2. Points 1, 2, 3, ..., k are the near-
est neighbors of i. Point p is the father
point of i and sq(q = 1, 2, 3, ..., l) are
l(l ≥ d) reduced points close to i. xij

is the coordinates of point j with i at
the origin and cqi is the vector from sq
to i.

The vector from sq to j is Uxij + cqi. The length of this vector should equal the
distance between sq and j.

‖ Uxij + cqi ‖= dsqj , j = 1, 2, ..., k. (4)

Expanding the left hand side of Eq. (4) leads to

(Uxij + c)T (Uxij + c) = d2sqj .

cT
qiUxij + cT

qicqi + xT
ijU

T Uxij + xT
ijU

T cqi = d2sqj .

The matrix U to be determined is orthogonal and cT
qiUxij = xT

ijU
T cqi, and we

have

cT
qiUxij =

d2sqj − cT
qicqi − xT

ijxij

2
= Lqj(1 ≤ q ≤ l, 1 ≤ j ≤ k). (5)

Let C be (c1i, c2i, ..., cli), Xi be (xi1, xi2, ..., xik), and L be an l × k matrix
obtained from the right hand side of Eq. (5). We have

CT UXi = L. (6)

Patches on the manifold are not strictly d-dimensional hyperplanes and there is
actually a small angle between adjacent patches, thus Eq. (6) has no strict solu-
tion. However, with the pseudo-inverse, we can obtain a very accurate solution,
as shown in Eq. (7).

U = (CT )†L(Xi)†. (7)
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The U calculated by Eq. (7) satisfies the distance constraint between patches
very well, but it is not strictly orthogonal and thus it may distort the inner
structure of patches. To protect the inner structure of the patches, we adjust U
to the nearest orthogonal matrix U ′ by Eq. (8) [19]. As U better preserves the
distances between patches while U ′ better preserves the inner structure of the
patches, we need to maintain a trade-off between U and U ′. When U is far from
an orthogonal matrix, that is, when ||UT U − I||F > 0.05, adjust U to U ′ and
use U ′ for Eq. (3), otherwise, use U for Eq. (3).

U ′ = U(UT U)− 1
2 . (8)

2.4 Algorithm Description

LMB first determines the dimension d of the embedded manifold, and yields
the local dimension for each data point Ld1×n. Ld1×n is used to select the
starting point for the BFS, which will be discussed in Sect. 4.1. The main body of
LMB implements the dimension reduction based on d and the pairwise distances
of the data points to generate a compact d-dimensional representation for the
original data.

Algorithm 1. Dimension reduction by LMB
Input:

Dimension d of the embedded manifold, and pairwise distances Dn×n of the data
points;

Output:
A compact d-dimensional representation Xd×n with the starting point v1 at the
origin;

1: Let Dc = D. Find the k-nearest neighbors of the starting point v1 according to
Dc. Extract the pairwise distances of these k+1 points from D, and locally apply
MDS to obtain the coordinates. Subtract all these coordinates by the coordinates
of v1 to fix v1 at the origin.

2: For each reduced but unexplored point vi, find its k-nearest neighbors and apply
MDS to obtain the coordinates of its neighbors. Subtract the coordinates of the
neighbors by the coordinates of vi to fix vi at the origin.

3: Select l reduced point close to vi and determine the orthogonal transformation U .
4: If ||UTU − I||F > 0.05, adjust U by Eq. (8).
5: Calculate the d-dimensional representation of the neighbouring points of vi by

Eq. (3).
6: Update the distances between reduced points and the neighbouring points of vi in

Dc by the distances in d-dimensional space.
7: Recursively do steps 2 to 6 until the BFS process ends.
8: return X

The pairwise distances between the reduced points are updated in Dc and
it takes O(n2) time. We choose the neighbouring points according to Dc, not



164 Y. Ma et al.

D, as some manifolds (such as the cylinder) are closed. In the experiment, the
cylinder is split by LMB along the side and then unrolled into a rectangle, as
illustrated in Fig. 4(h). To achieve the result, we enforce the neighbourhoods on
one side of the split contain no points on the other side. However, points on
opposite sides of the split are close in high-dimensional space, and if we select
the neighbouring points according to D, the neighbourhood on one side of the
split will contain points on the other side. To avoid this problem, we update the
distances between reduced points in Dc by the distances in d-dimensional space,
and choose neighbouring points according to Dc. Though neighbourhoods across
the split can not be preserved well, there are only a small portion of points across
the split and such cases only happen when the manifold is closed. The local MDS
searches for the k-nearest neighbouring points, which costs O(logn) time. Local
MDS is performed at most n times and thus LMB costs O(n2 + nlogn) time.

3 Experiments

We do experiments on three synthetic data set, a cone, a cylinder, a Swiss roll,
and two real data set, a half earth data and a sculpture face data. Table 1 gives
the dimension of the embedded manifold determined by LMB. Based on the
Local Continuity Meta Criteria (LCMC) [20], Table 2 lists the top four algo-
rithms for different data set.

Table 1. Dimension of the
embedded manifold

R Cone Cylinder Swiss

roll

Half

earth

Sculpture

face

0.95 2 2 2 2 7

0.96 2 2 2 2 7

0.97 2 2 2 2 8

0.98 2 2 2 2 8

0.99 2 2 2 2 10

Table 2. The top 4 methods

Rank Cone Cylinder Swiss

roll

Half

earth

Sculpture

face

1 LMB LMB LMB LTSA LMB

2 Isomap LTSA Isomap Isomap LTSA

3 MDS HLLE HLLE LMB Isomap

4 LTSA MDS MDS MDS HLLE

In Fig. 3, MDS reduces the cone into a triangle as it just projects the cone onto
the plane. LLE, HLLE, and LTSA also yield a triangle but with some distortion.
LMB spreads the cone into a circular sector, which preserves the neighbourhood
much better than other algorithms. For the cylinder, LMB unrolls it into a
rectangle with length of 6π and width of 10. The size corresponds with the
initial cylinder. MDS, HLLE, and LTSA also yield a rectangle but not exactly
the rectangle unrolled from the initial cylinder. In Fig. 5, LMB and Isomap yield
the same rectangle for the Swiss roll data, but when measured by the LCMC
criteria, LMB performs better (Table 3(c)).

Figure 6(a) shows a half earth data containing about 7500 points, and some of
the data points are cities distributed in America. In the result of MDS, Isomap,
LTSA, and LMB, countries could be easily recognized and North America and
South America are described well in a 2D plane.
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(a) a Cone:
radius of the side

sphere=3, angle= π
6

(b) MDS (c) Isomap:
radius=4

(d) LLE

(e) HLLE (f) Kernel PCA (g) LTSA (h) LMB:
fan radius=6, sector

angle=π

Fig. 3. An 8000-point cone and the reduction of different algorithms
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Fig. 4. A 10000-point cylinder and the reduction of different algorithms
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(a) A half earth (b) MDS (c) Isomap (d) LLE

(e) HLLE (f) Kernel PCA (g) LTSA (h) LMB

Fig. 6. A half earth data and the reduction of different algorithms

Fig. 7. The 2D representation of the sculpture face data

Figure 7 illustrates
the performance of
LMB on a sculp-
ture face data, which
are 64 × 64 pixel
images. According to
Table 1, the sculpture
face data is at least
a 7D manifold. How-
ever, to show the
performance of LMB
intuitively, we let d = 2
for the experiments
and comparisons with
other algorithms. In
Fig. 7, faces sharing
similar poses or with similar lighting angles gather together, which indicates that
the neighbourhood of the high-dimensional face data is well preserved by LMB.
Most of the images on the left, face right while images on the right, face left.

In Tables 3 and 4, we compare the performance of different algorithms by
the LCMC criteria, which counts the number of points that remain inside the
neighbourhood after reduction. Result shows that LMB performs better than
most of the other algorithms. LMB ranks the toppest on cone, cylinder, Swiss
roll and the sculpture face data, and top three for the half earth data.



Nonlinear Dimension Reduction by Local Multidimensional Scaling 167

Table 3. Comparison on the synthetic data and the sculpture face data

Table 4. Comparison on the half earth data. The left table takes all the data points
into account, while the right table only considers the city points.

4 Parameter Study of LMB

4.1 The Starting Point

According to Table 1, the cone, cylinder, and Swiss roll are 2-dimensional man-
ifolds embedded in a 3-dimensional space, and the neighbourhoods on these
manifolds are locally 2-dimensional. However, the neighbourhoods on the cone
are not consistently 2-dimensional. For the points near the apex, the local dimen-
sion is three. We call those points singular points as the local dimension does
not conform with the dimension of the embedded manifold. Figure 8 shows two
different results of LMB on the cone data with different starting points (in red
bold).

The cone should be spread as a circular sector with angle of π, but the second
result is different from what we would expect. The reason lies in the selection
of the starting point. Although most of the points on the cone are locally two-
dimensional, there are some singular points near the apex of the cone which
are locally three-dimensional. The neighbourhood near the apex could not be
preserved well in the plane by local MDS. If LMB starts from a point near
the apex, the neighbourhood of the starting point would contain those singular
points. We expect all the singular points to be distributed in a circular sector of
angle π. However, local MDS would spread the singular points in a sphere and
generates the unexpected result.
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Fig. 8. The LMB reduction result for different starting points (Color figure online)

In order to avoid this problem, the starting point should be far from the
singular points, which could be achieved by analysing the local dimension of the
data points Ld1×n. If a very large neighbourhood (such as n

3 ) of a point i has no
singular points, i could be chosen as the starting point. When BFS starts from
any point far from the apex, LMB yields the expected circular sector.

4.2 The Size of the Neighbourhood

The neighbourhood size k should not be too large so that the neighbourhood
is not far from a local hyperplane, and MDS could reduce the neighbourhood
accurately. We do experiments on the synthetic and real-world data with different
k, and we use the 10-nearest neighbourhood to obtain the LCMC value. We also
use the 12, 15, and 20-nearest neighbourhoods to obtain the LCMC value, and
the results are almost the same.
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Fig. 9. The LCMC value against different neighbourhood size

According to Fig. 9(a), the size of the neighbourhood has little influence on
the performance of LMB for the synthetic data. The real data, however, is a
little more influenced by the size of the neighbourhood. It is probably because
the local structure of the real data deviates from a hyperplane to some degree
or the data points are not dense enough. We let k = 12 for the final experiments
in this paper.
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5 Conclusions and Future Work

We propose a new nonlinear dimension reduction algorithm called Local Multi-
dimensional Scaling with BFS (LMB) for generating a compact representation
of a d-dimensional manifold embedded in a high-dimensional space. We locally
employ the classical linear algorithm MDS on the k-nearest neighbourhoods and
spread the local reduction process via BFS. Differs to most dimension reduction
methods, LMB determines the dimension of the embedded manifold such that
the reduction process bases only on the Euclidean pairwise distances.

LMB reveals three advantages when comparing with other state-of-the-art
dimension reduction algorithms. First, LMB better preserves the neighbour-
hood as measured by the LCMC criteria. Second, LMB also uncovers the global
structure of the manifold as Isomap does. Besides, LMB does not involve the
decomposition of large matrix and it has a lower computational complexity of
O(n2) for n data points scattered on the manifold. LMB could be used for the
pre-processing of the image data or other real-world data and it well serves the
information retrieval since it well preserves the neighbourhood. Besides, LMB
could also be used for uncovering the embedded manifold or for reconstructing
the data points in its original space.

We make a thorough parameter study on LMB. We discuss the selection of the
starting point for the spreading process, and a point with a comparatively large
smooth neighbourhood is selected to avoid some singular points on the manifold.
We then test the impact of different neighbourhood size on the performance of
LMB. Experiments show that the neighbourhood size has little influence on
synthetic data and a little more influence on real data. We address the following
issues for future research.

• The neighbourhood size affects a little on the performance of LMB on real
data. It is probably because the neighbourhoods of real data deviates from a
hyperplane or the points are not dense enough. We will investigate further on
the causes and develop possible solutions, such as adjusting the local structure
of the real data.

• The closed manifold is split by LMB and the neighbourhoods across the split
can not be preserved well. A possible solution is to duplicate points along the
split. Take the cylinder as an example, we may copy the points on the left
edge to the right of the right edge such that the neighbourhoods of the points
on the right edge can also be preserved.

• We do not need to split the unclosed manifolds and the intermediate parameter
Dc can be omitted. We will see if we could determine whether a manifold is
closed in O(nlogn) time, in this way the time complexity of LMB will be
reduced to O(nlogn).

Acknowledgments. This work is supported by National Natural Science Foundation
(61472147) and National Science Foundation of Hubei Province (2015CFB566).
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Appendix: A Brief Introduction of the MDS Algorithm

Let n be the size of the data and D be the matrix of Euclidean pairwise distances.
MDS generates the coordinates X for all the data points with their center at
the origin. Each column of X represents a data point. MDS first calculates the
matrix XT X by Eq. (9). The diagonal entries of H are 1 − 1

n and the rests are
− 1

n .

XT X = −1
2
HD2H. (9)

XT X is positive semi-definite, and can decomposed as Eq. (10), which leads to
Eq. (11).

XT X = V σ2V T = V σT σV T = (σV T )T σV T . (10)

X = σV T . (11)

If the data points are distributed in an m-dimensional space, the first m
diagonal entries of σ are non-zero. Extracting the first d entries of σ and the
corresponding eigenvectors generates an approximation of the original data in
a lower d-dimensional space. The approximation is very accurate if the first d
entries are the most significant ones and the rests are close to zero. If MDS is
applied on the k-nearest neighbourhoods on a d-dimensional manifold, σ is a
k+1 by k+1 matrix and the first d entries are significant while the rests are
almost zero. However, If MDS is applied on all the data points of a manifold, σ
is a n by n matrix, and due to the global geometry of the manifold, the first m
(m > d) entries of σn×n are significant. Therefore, only the first d dimensions are
not enough to well represent the data points, and MDS on the whole nonlinear
manifold may result in an inaccurate approximation in the d-dimensional space.
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Abstract. In classic obnoxious facility games [5,6,12], each agent i has
a private location xi on a closed interval [0, 1] and one facility y is planned
to build on the interval according to the bids of all the agents. In this
paper we consider obnoxious effects among the game by introducing two
thresholds d1 and d2 into utility functions, where 0 ≤ d1 ≤ d2 ≤ 1. Let
d(y, xi) = |y − xi| be the distance between agent i and facility y. The
utility function of agent i is 0 if d(y, xi) is at most d1; 1 if d(y, xi) is at
least d2; otherwise a linear increasing function between 0 and 1. Each
agent aims to get a largest possible utility while the social welfare is to
maximize the sum of all the agents’ utilities.

The classic obnoxious facility game is a special case of our problem
when d1 = 0 and d2 = 1. We show that if d1 = d2, a mechanism that
outputs the leftmost optimal facility location is strategy-proof. If d1 ≥ 1

2
,

we show the problem cannot have any bounded deterministic strategy-
proof mechanism. By further detailed analysis, if the thresholds d1, d2
are restricted to some ranges, we design strategy-proof mechanisms and
provide the approximation ratios with respect to d1 and d2.

1 Introduction

Approximate mechanism design without money for facility location problem was
first advocated by Procaccia and Tennenholtz [15]. A set of strategic agents
have different locations, and a mechanism is a function that outputs the facility
location based on the locations reported by the agents. Each agent prefers to
be as close to the facility as possible. Recently mechanism design on obnoxious
facility game was proposed by Cheng et al. [5], where each agent prefers to stay
far away from the facility. In the obnoxious facility game, agent i’s utility is
simply the distance to the facility. The social welfare is to maximize sum of all
the agents’ utilities.

Anyway, in previous studies, the facilities may be classified to be either purely
desirable where they should be close to the users, or purely undesirable which
means they should be as far away as possible. This classification is not always

Research was partially supported by the Nature Science Foundation of Zhejiang
Province (NO. LQ15A010001).
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true in some practical scenario, as being pointed out by Brimberg and Juel [3]
that some type of facilities have undesirable effects in the real life. For example,
a government plans to build a garbage dump, a chemical plant, or a nuclear
reactor on a street. When the facility is close to a resident within a fixed range,
it is totally unacceptable for her. Similarly, if it is already far away enough, small
increases in the distance cannot change the obnoxious effects.

In this work, taking the obnoxious effects into account, we consider mech-
anism design on obnoxious facility game with two thresholds d1 and d2 which
are two constants in [0, 1] and d1 ≤ d2. And agent i’s utility function ui(y, xi)
is defined as follows. To state conveniently, we let d(y, xi) denote the distance
between agent i and facility y. The function ui(y, xi) is 0 if d(y, xi) is at most
d1; 1 if d(y, xi) is at least d2; otherwise a linear increasing function between 0
and 1. The social welfare is to maximize the sum of all the agents’ utilities. We
wish to design mechanisms that are strategy-proof, i.e., preventing any agent
from lying to benefit. At the same time, the proposed mechanisms are expected
to have small approximation ratios with respect to the optimal social welfare.

1.1 Our Results

We show that the optimization version of this problem can be solved in poly-
nomial time. It is easy to verify that the leftmost optimal facility location is
strategy-proof when d1 = d2. Our main work is to deal with the approximate
mechanisms for different kinds of two thresholds d1 and d2, where 0 ≤ d1 <
d2 ≤ 1. First of all, we show that any deterministic strategy-proof mechanisms
are unbounded when d1 ≥ 1/2. That motivated us to design 2-approximated
randomized strategy-proof mechanisms. Moreover, we show that no randomized
mechanism can achieve an approximation ratio less than 4/3 for this case.

To address the case when d1 < 1/2, we propose a majority mechanism that
motivated by Cheng et al. [5] and show its approximation ratio with respect to
d1 and d2. Furthermore, we show that the mechanism is the best possible for
some d1 and d2. We also provide a family of improved deterministic mechanisms
for d1 < d2 ≤ 1/2 with (1 + 1

k )-approximation ratios, where k is an integer such
that 1

2(k+1) < d2 ≤ 1
2k .

1.2 Related Works

Mechanism design for facility location games has a considerable amount of work
in the literature. Procaccia and Tennenholtz [15] first studied mechanism design
for facility location games. In the setting, the utility of each agent is the distance
from the facility to agent’s location and each agent attempts to minimize the
utility. They considered two objective functions, minimizing the sum of all the
agents utilities (minSum) and the maximum utility (minMax). They gave some
lower bounds and upper bounds for 1-facility and 2-facility. They also considered
an extended model – multiple locations per agent. Subsequently, Alon et al. [1,2]
extended the randomized and deterministic mechanisms for 1-facility on other
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networks. Lu et al. [13,14] successively improved some results for 2-facility on
general metric networks under the minSum objective function. Feldman and
Wilf [9] then considered the deterministic and randomized mechanisms for the
objective function of minimizing the sum of squares of all the agents utilities
(minSOS). The number of facilities which is more than three was considered
by Fotakis et al. [11] and Escoffier et al. [7]. Recently, Filos-Ratsikas et al. [10]
considered a facility game that each agent prefers two locations which they
named double-peaked preferences.

Mechanism design for the obnoxious facility games was first studied by Cheng
et al. [5]. They considered deterministic and randomized strategy-proof mech-
anisms for maxSum objective function on the line. Cheng et al. extended the
results on the other networks in [6]. Ibara and Nagamochi [12] gave the char-
acterization of strategy-proof mechanisms for the obnoxious facility game for
the maxSum objective function. Subsequently, Cheng et al. [4] investigated the
obnoxious facilities with a bounded service range. Recently, Ye et al. [17] gave
some results for the objectives of maxSum and maxSOS. They also considered
the extended model of multiple locations per agent for maxSum and maxSOS
objectives.

Zhang and Li [18] studied the weighted version for both facility games and
obnoxious facility games. Moreover, they considered the facility location game
with one threshold with respect to the utility function, an optimal determin-
istic mechanism was provided. Zou and Li [19] considered the problem where
two preferences of agents, staying close to and staying away from the facility,
exist. They called this problem the facility location game with dual preference.
They gave a deterministic mechanism. They also considered the two-opposite-
facility location game with limited distance. Here, two-opposite-facility location
means one facility is that each agent want to stay close to; the other one is
opposite. Feigenbaum and Sethuraman [8] considered randomized mechanisms
for the facility location game with dual preference.

On the optimization aspect, our work is related to approximation algorithm
for semi-desirable k-facility location problem [3,16].

2 Preliminaries

Let N = {1, 2, . . . , n} be a set of agents. All agents are located on a closed
interval I = [0, 1]. Each agent i has a location xi ∈ I. We refer to the set
x = (x1, x2, . . . , xn) ∈ In as the location profile. Let d1 and d2 be the given two
thresholds, which are constants in [0, 1] and 0 ≤ d1 ≤ d2 ≤ 1.

A deterministic mechanism is a function f : In → I that maps a given
location profile x to a facility location f(x). If the facility is located at y, the
distance between xi and y is denoted by d(y, xi) = |y − xi|. We define agent i’s
utility function ui(y, xi) as below,

ui(y, xi) =

⎧
⎨

⎩

0 if d(y, xi) ≤ d1,
d(y,xi)−d1

d2−d1
if d1 < d(y, xi) ≤ d2,

1 otherwise.
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A randomized mechanism is a function f : In → ΔI that maps a given
location profile to probability distributions over I. If f(x) = P , where P is
a probability distribution, the utility of agent i is the expected utility, i.e.,
ui(P, xi) = Ey∼P [ui(y, xi)].

A mechanism f is strategy-proof (SP) in this setting if no agent can benefit
from misreporting a location deliberately, regardless of the strategies of the other
agents, i.e., for all x ∈ In, for all i ∈ N , and for all x′

i ∈ I, we have ui(f(x), xi) ≥
ui(f(x′

i,x−i), xi), where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) is the location profile
without agent i.

Given a location profile x ∈ In, the social welfare of a deterministic mech-
anism f is denoted by sw(f(x),x). Given a profile x and the facility location
y, the social welfare is given by sw(y,x) =

∑
i∈N ui(y, xi). Moreover, the social

welfare of a distribution P is sw(P,x) = Ey∼P [sw(y,x)].
To evaluate a mechanism’s performance, we use the standard worst-case

approximation notion. We say that a mechanism f is ρ-approximate, if for any
profile x,

sw(OPT (x),x) ≤ ρ · sw(f(x),x),

where OPT (x) is an optimal facility placement for profile x, i.e., OPT (x) ∈
argmaxy∈Isw(y,x)).

3 Hardness of Two Thresholds

Before jumping into the detailed study on strategy-proof mechanisms, we first
consider an optimal location for any location profile. The following lemma shows
that the optimal location can be found on the boundaries of agents that is related
to the threshold d2.

Lemma 1. Given a location profile x, there exists an optimal location y∗ such
that y∗ ∈ O = {0, 1, xi ± d2 ∈ I|i ∈ N} for maximizing the social welfare. (Due
to the space limitation, the proof can be found in the full version of the paper.)

By Lemma 1, we can establish an optimal algorithm.

Algorithm 1. Given a location profile x, the facility location is argmaxy∈O
sw(y,x). If there is a tie, choose the leftmost y.

Remark. Using the similar analysis as Theorem 12 in [18], we can get that
Algorithm 1 is a strategy-proof mechanism when d1 = d2.

We presently turn to consider the utility function with two thresholds. We
first show that for d1 ≥ 1

2 , no deterministic strategy-proof mechanism has a
bounded approximation ratio.

3.1 Lower Bounds for d1 ≥ 1
2

Theorem 1. Let N = {1, 2, · · · , n}, where n ≥ 2. If 1
2 ≤ d1 < d2 ≤ 1, any

deterministic strategy-proof mechanisms do not have a bounded approximation
ratio.
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Proof. We first deal with the case where N = {1, 2}, and then extend the proof
to an arbitrary n agents.

Consider the location profile x where x1 = 1−d2 and x2 = d2. Since 1
2 < d2 ≤

1, we can get that 0 ≤ d(0, x1) = x1 = 1 − d2 < 1
2 < d1. Hence, the first agent at

x1 can only get positive utility in (1−d2 +d1, 1]. By the symmetry of agent 1 and
2, the second agent at x2 can only get positive utility in [0, d2 − d1). Since d1 ≥ 1

2
and d2 ≤ 1, we can get that d2 −d1 ≤ 1

2 , which implies that d2 −d1 ≤ 1−d2 +d1.
The utility functions of two agents are illustrated by Fig. 1.

From Fig. 1, we can easily see that the optimal facility is at 0 or 1 and the
social welfare is 1. Let f be a strategy-proof mechanism, and let f(x) = fy ∈
[0, 1]. If fy ∈ [d2 − d1, 1 − d2 + d1], sw(fy,x) = 0 and the approximation ratio
is already unbounded. Hence, we can assume that fy ∈ I\[d2 − d1, 1 − d2 + d1].
Since the symmetry of two agents, without loss of generality, we can assume that
fy ∈ (1 − d2 + d1, 1].

Consider another location profile x′ = (x′
1 = fy − d1 − ε, x2 = d2), where

0 < ε � d(fy, 1 − d2 + d1). Due to fy ≤ 1 and 0 < ε � d(fy, 1 − d2 + d1),
we can have that 1 − d2 < x′

1 ≤ 1 − d1. Moreover, By d1 ≥ 1
2 , then we can

get x1 = 1 − d2 < x′
1 < d1, i.e., x′

1 is in the right of x1 and only has positive
utility in (fy − ε, 1]. See Fig. 1 for an illustration of the utility functions of x′

1

in the whole interval. Let y∗ be the optimal facility location of the profile x′.
From Fig. 1, we can easily see that y∗ = 0 and sw(y∗,x′) = 1. We consider the
facility location of mechanism f . Let f(x′) = fy′ . We claim that fy′ = fy. By
strategyproofness, fy′ cannot be in [0, fy), otherwise agent 1 in x′ can misreport
to x1 and benefit; Similarly, fy′ cannot be in (fy, 1], otherwise agent 1 in x
can misreport to x′

1 and benefit. Hence, fy′ = fy. From Fig. 1, we can see that
sw(fy,x′) = u1(fy, x′

i) = ε
d2−d1

. It follows that the approximation ratio is at
least d2−d1

ε , which is unbounded when ε trends to 0.
In order to extend this result to n agents, we locate all the agents N\{1, 2}

at 1
2 in each one of the profiles described above. ��

y

ui

0 1y2y1

1

fy

u1(y, x1)
u2(y, x2)
u1(y, x′

1)

y3

Fig. 1. The utility functions of x1, x2 and x′
1. Here y denotes the facility location.

y1 = d2 − d1, y2 = 1 − d2 + d1 and y3 = x′
1 + d1. To display clearly, we separate the

lines on the horizontal axis (The following figures are the same.).
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4 Approximation Strategy-Proof Mechanisms

In this section, we first show that the mechanism given by Cheng [5] that was
designed for d1 = 0, d2 = 1 is also strategy-proof in our setting. We call that
mechanism Majority Mechanism. We show the approximation ratio of Majority
Mechanism in our setting.

4.1 Majority Mechanism

Mechanism 1. Given a location profile x ∈ In, let nl denote the number of
agents in [0, 1/2] and nr be the number of the rest agents. The mechanism
selects the position 0 as the facility if nl ≤ nr and otherwise the position 1 will
be the facility.

In Majority Mechanism, only two points 1 and 0 are regarded as the candidate
facilities. The intuition why we do not use the other optimal locations xi ± d2
as candidates is that all other positions depend on the bids of the agents, which
might be manipulated by agents.

Theorem 2. Majority Mechanism is strategy-proof. If d1 < 1
2 and d2 > 1

2 , the
approximation ratio is 1+ 2(d2−d1)

1−2d1
; if d1 < d2 ≤ 1/2, the approximation ratio is 2.

Since the utility function is nondecreasing with respect to the distance, it is easy
to show the strategyproofness. Due to the space limitation, we only prove the
approximation ratio for the case d1 < 1

2 and d2 > 1
2 .

Proof. Without loss of generality, we assume Majority Mechanism locates the
facility at 0 which indicates that nl ≤ nr. It is obvious that if the optimal
facility is also located at 0. Note that the social welfare of Majority Mechanism
is at least

1
2+ε−d1

d2−d1
nr, which can be gotten with the profile that all the agents

in [0, 1/2] are at 0 and the rest agents are at 1
2 + ε, where 0 < ε � d2 − 1

2
is a small number. In the rest of the proof, to avoid many notations, we abuse
ε to denote a small number between 0 and d2 − 1

2 . Let y∗ denote the optimal
facility location. To state conveniently, we let sw(y,xL) =

∑
xi∈[0,1/2] ui(y, xi)

and sw(y,xR) =
∑

xi∈(1/2,1] ui(y, xi). According to Lemma 1, case studies on
the optimal facility locations are given as below.

Case 1: y∗ = 1. In this case, one can check that the worst case instance is that
all the agents in [0, 1/2] are at 0 and all the agents in (1/2, 1] are at 1/2 + ε.
And we denote the worst case instance as Iw. Hence, the approximation ratio is

sw(1, Iw)
sw(0, Iw)

=
nl + 1/2−ε−d1

d2−d1
nr

1/2+ε−d1
d2−d1

nr

< 1 +
2(d2 − d1)
1 − 2d1

nl

nr
≤ 1 +

2(d2 − d1)
1 − 2d1

. (1)

Case 2: The optimal facility is at xl + d2, where xl is agent l’s location. By
d2 > 1/2, we can easily get that the optimal facility is in (1/2, 1]. Then we
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consider the worst case instance x. We first claim that all the agents in [0, 1/2]
are at 0. Otherwise, we move agents in (0, 1/2] to 0 and the approximation
ratio cannot be better after the movements. Similarly, we move all the agents
in (1/2, xl + d2] to 1

2 + ε. For the agents in (xl + d2, 1], they all get the utility
1 at 0 since d(0, xl + d2) ≥ d2. It implies that move all these agents to 1 do not
increase the utilities. Analogously, we construct the worst case instance for all
the agents in (1/2, 1], and the approximation ratio does not decrease. We still
use x to denote the profile after modifications. Then,

sw(y∗,xR) ≤
1
2 − ε − d1

d2 − d1
nr. (2)

The Inequality holds since for any agent i in (1/2, 1], d(y∗, xi) ≤ 1
2 − ε. The

approximation ratio for the profile x is at most

sw(y∗,x)
sw(0,x)

≤ nl + sw(y∗,xR)
1
2+ε−d1

d2−d1
nr

≤ 1 +
2(d2 − d1)
1 − 2d1

. (3)

Case 3: The optimal facility is at xl − d2 for some l ∈ N . The optimal facility
location is in [0, 1/2). For agents in (1/2, 1], The social welfare sw(y∗,xR) ≤ nr,
since the maximum value of the utility of each agent in this interval is 1. Mean-
while, we get that sw(y∗,xL) ≤ 1

2−d1

d2−d1
nl since d(y∗, xi) ≤ 1

2 . The approximation
ratio is at most

sw(y∗,x)
sw(0,x)

≤ nr +
1
2−d1

d2−d1
nl

1
2+ε−d1

d2−d1
nr

< 1 +
2(d2 − d1)
1 − 2d1

nl

nr
≤ 1 +

2(d2 − d1)
1 − 2d1

.

The approximation ratio is tight. Given a location profile x = (x1 = 0, x2 =
1
2 + ε), the optimal facility is at 1 and social welfare is 1 +

1
2−ε−d1

d2−d1
. Majority

Mechanism locates the facility at 0 and the social welfare is
1
2+ε−d1

d2−d1
, and then

the approximation ratio is at least 1 + 2(d2−d1)
1−2d1

when ε → 0. ��

4.2 Lower Bounds for d1 < 1
2
and d2 > 1

2

For this case, the approximation ratio of Majority Mechanism is 1+ 2(d2−d1)
1−2d1

. In
the following theorem, we show that the mechanism is best possible if d1 + d2 ≥
1, d2 − d1 ≤ 1

2 and d1 < 1
2 . It is interesting to consider the lower bounds for the

rest scenarios.

Theorem 3. Let N = {1, 2, · · · , n}, where n ≥ 2. If d1 + d2 ≥ 1, d2 − d1 ≤
1
2 and d1 < 1

2 , any deterministic strategy-proof mechanisms cannot have an
approximation ratio less than 1 + 2(d2−d1)

1−2d1
for maximizing the social welfare.

(Due to the space limitation, the proof can be found in the full version of the
paper.)
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4.3 A Family of Strategy-Proof Mechanisms for d2 ≤ 1/2

For the case d2 ≤ 1/2, we present a family of mechanisms for 1
2(k+1) < d2 ≤ 1

2k ,
where k is a positive integer.

We try to divide the interval into several sub-intervals. In each sub-interval,
we can find a facility location that all the agents in the rest sub-intervals have
utility of 1. We establish the following mechanism.

To describe the mechanism, we define the following notations. Let k be an
integer such that 1

2(k+1) < d2 ≤ 1
2k . We divide I = [0, 1] into k +1 sub-intervals.

The length of the 1st and the last one are both 1
2k . The length of the rest sub-

intervals are all 1
k . We denote the ith sub-interval by Ii, for all i = 1, · · · , k + 1.

Formally, I1 = [0, 1
2k ]; Ii = (2i−3

2k , 2i−1
2k ], i = 2, · · · , k; Ik+1 = (2k−1

2k , 1]. Let ni

denote the number of agents in sub-interval Ii, for all i = 1, · · · , k + 1.

Mechanism 2. Given any location profile x, compute l = argmin

i=1,··· ,k+1{ni}. If there is a tie, take the one with minimum index. Return l−1
k .

Theorem 4. When 0 ≤ d1 < d2 ≤ 1
2 , Mechanism 2 is a strategy-proof (1 + 1

k )-
approximated mechanism for the social welfare, where k is an integer such that

1
2(k+1) < d2 ≤ 1

2k . (Due to the space limitation, the proof can be found in the
full version of the paper.)

4.4 Randomized Mechanisms for d1 ≥ 1/2

In Sect. 3.1 we have shown no deterministic strategy-proof mechanism can
achieve a bounded approximation ratio. One question arises whether randomized
mechanisms can help to reduce the approximation ratio. In the case d1 ≥ 1/2,
we found a nice property of optimal facility locations other than those results in
Lemma 1.

Proposition 1. Given a location profile x, if 1
2 ≤ d1 < d2 ≤ 1, there exists an

optimal solution located at either 0 or 1 for maximizing the social welfare. (Due
to the space limitation, the proof can be found in the full version of the paper.)

Due to Proposition 1, we propose a randomized mechanism which outputs 0
and 1 with probability 1

2 , respectively. It is easy to show that the mechanism is
strategy-proof and 2-approximate. Moreover, we show the following theorem.

Theorem 5. Let N = {1, 2, · · · , n}, where n ≥ 2. If 1
2 ≤ d1 < d2 ≤ 1, any ran-

domized strategy-proof mechanism which only take 0 and 1 be candidates cannot
achieve an approximation ratio less than 2 for maximizing the social welfare.
(Due to the space limitation, the proof can be found in the full version of the
paper.)

We now turn to consider the lower bounds of any randomized strategy-proof
mechanisms.
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Theorem 6. Let N = {1, 2, · · · , n}, where n ≥ 2. If 1
2 ≤ d1 < d2 ≤ 1, any

randomized strategy-proof mechanism cannot attain an approximation ratio less
than 4

3 .

Proof. With the same reason as in the proof of Theorem 1, we only need to deal
with the case where N = {1, 2}.

Consider the location profile x where x1 = 1 − d1+d2
2 and x2 = d1+d2

2 . When
1
2 ≤ d1 < d2 ≤ 1, we can have that 1 < d1 +d2 < 2, which immediately gets that
0 < x1 < 1/2 ≤ d1. Hence x1 only has positive utility in (1 − d2−d1

2 , 1]. Since
agent 1 and 2 are symmetric, agent 2 can only have positive utility in [0, d2−d1

2 ).
Meanwhile, we have that d2 − d1 < 1, which implies d2−d1

2 < 1 − d2−d1
2 . See

Fig. 2 for an illustration of the utility functions of x1 and x2. From Fig. 2, we
can know that the optimal facility is at 0 or 1 and the social welfare is frac12.

Let f be a strategy-proof randomized mechanism and f(x) = P . Note that
sw(P,x) = u1(P, x1) + u(P, x2) ≤ 1

2 . Without loss of generality, we can assume
that u2(P, x2) ≤ 1

4 .
Consider another location profile x′ where x1 = 1 − d1+d2

2 and x′
2 = d2. It

is easy to see that x′
2 can only have positive utility in [0, d2 − d1). The utility

functions of x1 and x′
2 are illustrated in Fig. 2. Let y∗ denote the optimal facility

location of x′. From Fig. 2, we can see that y∗ = 0 and sw(y∗,x′) = 1.

f

ui

0 1y2y1

1

1
2

u1(y, x1)
u2(y, x2)

y3

u2(y, x′
2)

Fig. 2. The utility functions of x1, x2 and x′
2. Here y denotes the facility location;.

y1 = d2−d1
2

, y2 = 1 − d2−d1
2

and y3 = d2 − d1.

Let f(x′) = P ′ be the probability distribution of profile x′. Formally, we let
y denote the randomized variable of the facility location for the profile x′ and
let p(y) be the probability density function. Now we turn to consider the social
welfare of P ′ for profile x′. We denote p =

∫ 1
d2−d1

2
p(y)dy. The social welfare for

mechanism f of the profile x′ is

sw(P ′,x′) =
∫ d2−d1

2

0

u2(y, x′
2)p(y)dy +

∫ 1

d2−d1
2

sw(y,x′)p(y)dy

≤
∫ d2−d1

2

0

u2(y, x′
2)p(y)dy + p max

d2−d1
2 ≤y≤1

{sw(y,x′)}
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=
∫ d2−d1

2

0

u2(y, x′
2)p(y)dy +

p

2

The last equation holds since max d2−d1
2 ≤y≤1

{sw(y,x′)} is the larger one of

u2(d2−d1
2 , x′

2) and u1(1, x1) and u2(d2−d1
2 , x′

2) = u1(1, x1) = 1
2 . Moreover, if

y ≤ d2−d1
2 , u2(y, x′

2) = 1 − y
d2−d1

and u2(y, x2) = 1 − y
d2−d1

. Then we can get
that u2(y, x′

2) = u2(y, x2) + 1
2 . Using this equality, we get that

sw(P ′,x′) ≤
∫ d2−d1

2

0

u2(y, x′
2)p(y)dy +

p

2
=

∫ d2−d1
2

0

u2(y, x2)p(y)dy +
1
2

= u2(P ′, x2) +
1
2

≤ u2(P, x2) +
1
2

≤ 3
4
.

The last but one inequality holds by the strategyproofness. The last inequlity
holds since x2 only has positive utility in [0, d2−d1

2 ). We subsequently get the
lower bound is at least sw(y∗,x′)

sw(P ′,x′) ≥ 4
3 , which completes our proof. ��

5 Conclusion

In this work, we introduce obnoxious effect into obnoxious facility game problem
by giving two thresholds. The problem with two thresholds is much harder than
one threshold, because it is unbounded if d1 ≥ 1/2, while the optimal solution
is strategy-proof for one threshold. We show Majority Mechanism is the best
possible deterministic strategy-proof mechanism for almost all cases. Next we
propose an improved mechanism, or give a randomized mechanism to reduce
the approximation ratio. There remains many open questions. It is interesting
to attain some lower bounds which we do not get in this paper or consider
randomized mechanisms other than d1 ≥ 1

2 . It is also interesting to extend our
model to another network instead of a line.
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Abstract. Existing works on TV recommendation mostly focus on
determining users preferences of TV shows. A realistic system should
also consider the dynamics of the shows information. In this paper, we
consider the profit maximization problem for real-time channel recom-
mendation: given a specified user and a time window, a recommender
algorithm is required to decide when and how to switch among n chan-
nels, each of which contains at most k live shows. The objective is to
maximize the users overall profit, i.e., the total score via watching shows
minus the total cost by switching among channels. For the offline ver-
sion, an exact algorithm with the time complexity O(kn2) is proposed,
a lower bound Ω(n log n) of the time complexity is given for any exact
algorithm. The online version is also studied. For both the non-restricted
and the restricted variants, algorithms with running time O(n log n) and
constant competitive ratios are presented respectively.

Keywords: Channel recommendation · Profit maximization · Online
algorithms

1 Introduction

Recommender systems have been widely studied for many business environments
[9], such as online bookstores, video web-services, and personalized advertising.
TV shows, for which the users’ preferences vary a lot, are also good sources
for building recommender systems. In particular, as set-top-boxes become more
and more popular, users of digital TV service can interactive with their TV
sets in a much more convenient way. At the same time, modern TV services
provide the users with much many choices of the channels and the shows. In
many countries, a basic package for digital TV service contains tens of channels,
which consequently causes users’ additional efforts locating an interesting one.
All these conveniences and challenges lead to a strong motivation for the research
of TV recommender systems.
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 183–193, 2016.
DOI: 10.1007/978-3-319-39817-4 18
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However, as summarized in [7], the study of TV recommendation is not so
active, partly due to fact that distinct shows, which are the items to recommend,
are usually available in specified time windows. This requires the study of TV
recommendation to involve the dynamics of shows information in the model.
Otherwise, the study can focus on how to derive users’ preferences on those
considered items.

Hence, it should be emphasized that the TV recommendation problem stud-
ied in this paper have the following characters which make it much different from
the video recommendation problem and worth study.

– Live Shows Coming in Channels. The recommendation problem we con-
sidered is about live TV shows, which as mentioned are available in specified
time windows. In particular, our algorithm recommends a series of channels
(which host the live shows) given a user and a time window, and the “strat-
egy” to switch among them. Note that in general, a channel presents exactly
one show at each time. Hence, at a time point, recommending a channel is
equivalent to recommend an according show. Furthermore, the goal of chan-
nel recommendation algorithms is to optimize users’ overall experience while
watching and switching among the channels.

– Partial Evaluation of the Score on Watching Shows. We assume for
each pair of user and show is associated with a score (real number), which
reflects the user’s happiness on watching this show. Furthermore, when the
user switches before a show ends, only part of the score, which is proportional
to the watching time, is counted. It should be mentioned that the determi-
nation of the watching scores is not covered in this work. The most existing
researches on the TV recommendation focus on this kind of determination
methods, and any reasonable approaches among them can be harnessed as a
pre-processing step to our work.

– Switch Cost. Besides the reduction of the watching scores, we also penal-
ize the recommender system with a cost for switching among channels. This
setting is harnessed due to the following reason: A switch among channels
usually requires users’ efforts. For example, to accept a recommended chan-
nel, it may need the user to do some operations (like pressing remote control
buttons), or to break one’s mind which is highly related to the show under
watching. Hence, one may feel annoyed if there are too many switches. With
such switch costs, the recommender algorithm should balance between recom-
mending high-scored channels and making annoying switches to improve the
user’s overall experience.

– Differences from Scheduling. At the first glance at our model (formally
introduced in Sect. 2), one may found it similar to the job-shop scheduling
problem. However, there is a big difference between them. Even though we
count the watching scores according to individual shows, the cost are charged
only when there is a switch among the channels containing sequences of live
shows. In the works about job-shop scheduling, the costs (if considered) are
charged as long as there is a migration between different jobs. In particular, we
have also considered the annoying cost, whose value is dynamically determined
according to the remaining time when a switch happens before a show ends.
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Related Works. In contrast to the active studies on recommender systems for
movies, music, and books, there are much fewer works focusing on recommending
TV shows. In this part, we briefly introduce some representative researches.

Even for those works on recommending TV shows, they put most of efforts
on determining the attractiveness of a show to a user. For example, in 2003, Lee
et al. [6] considered a multi-agent framework for recommending shows, in which a
decision-tree-based approach was proposed to derive users’ preferences about the
shows. In [3], the authors proposed ahybridmethodwhich combined content-based
approach and item-based collaborative filtering approach. They also involved sin-
gular value decomposition to improve the prediction accuracy. In 2013, a frame-
work to derive users’ preferences on the shows has been proposed in [4].

In TV show recommendation problem, a “user” usually denotes a shared
user account of a digital set-top-box. This situation causes more diverse user
behaviors. By considering this situation, Goren-Bar et al. [5] studied the problem
on recommending TV shows for multiple members.

In [2], Arias et al. have considered the problem to construct a news channel
which fits the specified individual’s interests, in mobile devices. Their model is
based on the assumption that users watch the mobile TV programs in very short
intervals, and hence the considered shows should be short accordingly.

In a recent paper [7], the authors considered the problem similar to the one
we are considering in this paper. They aimed to find the “proper” time and the
“good” shows to recommend, with the consideration of users’ cost. Different from
our settings, their cost model is designed with some assumption of “human mem-
ory”, and the complicated modeling architecture makes the theoretical analysis
even harder. Hence, in [7] the efficiency of the algorithm is measured by its
performance on some real world data sets.

Although the problem considered in this paper has significant differences from
the job-shop scheduling problem, we still get some heuristics from the scheduling
strategies. By defining switches as preemptives, the job-shop scheduling problem
is well studied in [1]. For more details on job-shop scheduling problems, one can
refer to [8].

Our Contributions. In this paper, we study the problem of channel recom-
mendation, in which the shows are live. When a user is watching TV at some
time point, the available shows are on the air at the same time in the consid-
ered channels. For the (basic, offline) profit maximization problem (Sect. 3), we
formally defined the rules of counting the watching score for a series of recom-
mended channels, and the profit measurement of switch strategies. Considering
n channels with live shows for recommendation, we proved that any algorithm
that solves the profit maximization requires Ω(n log n) time. On the other hand,
we proposed an exact algorithm (Algorithm 2) of time complexity O(n2).

We also considered the problem of online profit maximization (Sect. 4), in
which the information of coming shows are released as time goes on, and the
switch cost is no longer a constant but proportional to the remaining time when
a switch happens before a show ends. This setting is motivated by the fact
that switching in the middle of the show may be much more annoying than
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switching close to the end. For both of these two online problems, we proved
that in general, there is no algorithm with bounded competitive ratio, while
under mild conditions, our proposed algorithms (respectively for two problems)
run in O(n log n) time and achieve constant competitiveness.

2 Preliminaries

In this paper, we consider the channels as the items for recommendation. For-
mally speaking, a show is associated with a time period. In particular, for a show
with index i, let si ∈ R and fi ∈ R denote the beginning and the finishing time
of showi respectively. For each showi, there is an evaluation score scorei ∈ R.
A channel is a sequence of shows, in which there is no overlap between the
associated time periods, and for any two consecutive shows, their time periods
are adjacent. For example, let showi and showi+1 are consecutively placed, then
si+1 = fi. A window is a time period indicated by a beginning time, and a
finishing time.

Definition 1 (Show Benefit with Respect to a Window). Given a win-
dow w with beginning time begin(w) ∈ R and finishing time end(w) ∈ R, the
benefit of showi with respect to w, denoted by pw(showi), is defined to be 0 if
the time interval (si, fi) has no overlap with window w (i.e. si > end(w) or
fi < begin(w)); otherwise, pw(showi) has the value

scorei · min{end(w), fi} − max{begin(w), si}
fi − si

.

Intuitively, for showi, its profit w.r.t. a time window w, is in proportion to
the overlapping part of time periods (si, fi) and (begin(w), end(w). (See Fig. 1.)

Fig. 1. The profit is score · (h − s)/(f − s).

Definition 2 (Channel Profit with Respect to a Window). Consider a
channel c consisting of shows show0, show1, . . . showk−1. The profit pw(c) of
channel c w.r.t. a time window w is defined by the sum of the profit of all shows
w.r.t. w:

pw(c) :=
k−1∑

i=0

pw(showi)
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Profit Maximization Problem. Consider a set C of n channels. A time window
w = (begin, end) is given, it is required to chop w into several time windows
w0, w1, . . . , and associate each time window with a channel. Denote the channel
associated with wi by c(wi), and the profit of c(wi) w.r.t. wi by pi. For a chopping
(and associating) strategy involving m time windows w0, w1, . . . , the net profit
is defined by

m−1∑

i=0

pi − m · α

where α ≥ 0 is a constant parameter indicating the cost of a switch among
channels.

The target of the profit maximization problem is to find the best chopping
strategy that leads to the maximum total net profit. Note that once the chopping
strategy is given, it is direct to associate the channel with maximum profit for
each time window.

3 Offline Profit Maximization and Its Complexity

Given a set C of n channels, let S denotes the set of all starting time points si

and finishing time points fi. Without loss of generality, assume that all points
in S are sorted in increasing order. That is, for S := {t0, t1, . . .}, it holds that
ti < tj iff i < j.

Lemma 1. Consider profit maximization during a time interval [t1, t2], in which
there is no show begins or ends. Assume there is a switch from channel c1 to c2
at time t ∈ (t1, t2). Then the total score will not be decreased by changing the
switch time to either t1 or t2.

Proof. Let μ1 and μ2 denotes the unit scores of channel c1 and channel c2 over
time [t1, t2] (precisely speaking, the unit scores of the shows accordingly), respec-
tively. the score gained over time [t1, t2] is μ1 · (t − t1) + μ2 · (t2 − t) − α, which
is monotone as a function of t. This concludes the lemma. ��

Based on Lemma 1, we get Algorithm 1 in dynamic programming that solves
the profit maximization problem in polynomial time. Recalling that S is sorted
in increasing order, in Algorithm 1, define pi(c) to be the maximum profit over
the time period starting from ti and with the “first” channel selected to be c ∈ C,
i.e. [ti, ti+1] has been associated with channel c. We calculate pi(c) in a backward
fashion. That is, conditioned on the fact that pj(c) are already known with j > i,
the value of pi(c) can be calculated by considering the following two cases,

– the case where switch at ti+1: the according optimal profit is p[ti,ti+1](c)−
α + maxc′ �=c pi+1(c′);

– the case where don’t switch at ti+1: the according optimal profit is
p[ti,ti+1](c) + pi+1(c).
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Algorithm 1. Backward dynamic programming.
1: set p|S|−1(c) = 1 for all c ∈ C;
2: for s = |S| − 2 → 0 do
3: for c ∈ C do
4: ps(c) := p[ts,ts+1](c) + max{ps+1(c), maxc′ �=c ps+1(c′) − α};
5: end for
6: end for
7: print maxc p0(c);

Running Time of Algorithm 1. Considering there are n channels and k is
the maximum number of shows contained in any chnnel from C, all p[ts,ts+1](c)
can be calculated in O(kn2) time. In order to quick access to maxc′ pt(c′) for
each time point s, we can build a maximum heap that supports O(1) time query
and single update in O(log m) time. Recall that there are at most kn shows,
and hence there are at most kn heap updates in all. Consequently, we know
Algorithm 1 runs in time of O(kn2 + kn log(kn)) = O(kn2), which is O(n2)
when k is constant. Formally, we conclude Theorem 1.

Theorem 1. (Off-PM is Solvable in Polynomial Time). Given n channels,
where the maximum number of shows contained by a channel is constant, the
chopping strategy which leads to the maximum total net profit can be found in
O(n2) time.

Lower Bound. One should not be surprised about the fact that the time needed
for solving the profit maximization problem is at least linear in the number of
channels.

Lemma 2. There is an instance, for which in order to get the maximum total
net profit, it needs Ω(n) to find the according chopping strategy.

Proof. Consider n channels, each of which covers the time period from 0 to k ·n,
by 2k shows. For the i-th channel (with i ∈ {1, . . . , n}, its shows form k groups,
each of which consists of two shows. In the j-th group with j ∈ {1, . . . , k}, the
first show starts at (j − 1) · (n+1) and ends at (j − 1) · (n+1)+ i, and has score
0; the second show starts at (j − 1) · (n + 1) + i and ends at j · (n + 1), and has
score (j − 1) · n + i. (See Fig. 2 for an example.)

For any constant α (e.g. α = 1), it is easy to check in order to achieve the
maximum total net profit, we need at least (k−1)·n time windows, which implies
it needs Ω(n) time to find (and construct) the corresponding chopping strategy.

��
Theorem 2. (Number of Steps is Necessarily at the Logarithmic
Order). In the worst case, Ω(n log n) steps is needed to solve an instance of
the profit maximization problem with n channels.
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Fig. 2. An instance with n = 4 channels and α = 1. To achieve the maximum total
net profit, it needs 2n + n − 1 = 11 time windows.

Proof. In the proof, we show that for an arbitrary instance of sorting n integers,
with additional time of O(n), it can be reduced to an instance of the profit
maximization problem, and O(n) is needed to “interpret” the answer.

Assume that we are given n integers x0, x1, . . ., xn−1 (without loss of gener-
ality, assume they are all positive, and the minimum is 1). Then for each integer
xi, we construct an channel ci with two shows, where

1. the first show of ci starts at 0 and ends at xi, with evaluation score 0;
2. the second show of ci starts at xi and ends at max{xi} + 1, with evaluation

score xi.

For this instance, the cost of switching to another channel is 0, i.e., α = 0.
Now we get a profit maximization problem with n channels c0, c1, . . ., cn−1,
within the time interval (0,max{xi} + 1) with no switching cost.

Solving this profit maximization problem gives a series of windows wi =
(si, fi) with i = 0, . . . , n − 1, and the associated channel c(wi)s. Let x′

i denotes
the integer corresponding to the channel associated with the i-th window wi.
Then it is clear that the sequence {x′

0, x
′
1, . . . , x

′
n−1} is a sorting sequence of the

given n integers x0, x1, . . ., xn−1, in ascending order. ��

4 Online Profit Maximization

In the online profit maximization, shows are released as time goes. Therefore,
the backward dynamic programming does not work.

We introduce another algorithm that solves the offline profit maximization
problem in greedy strategy when the switch is free (i.e. α = 0). In Algorithm 2,
the offline profit maximization problem can be solved in time of optimal order.

Algorithm 2. Greedy switch.
1: for i = 0, 1, . . . do
2: set S(ti,ti+1) := {shows that overlaps with (ti, ti+1)};
3: associate the channel containing the show with maximum unit score among

S(ti,ti+1);
4: end for
5: print every time windows with the associated channels.
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Running Time of Algorithm 2. At time ti, to retrieve the show with maxi-
mum unit score among S(ti,ti+1), we can maintain a heap of unit values of shows
in S(ti,ti+1), and furthermore can we build the heap to provide “maximum ele-
ment accessing” and “updating” in logarithmic time. Note that there are at most
kn shows, then for each show, it is inserted into the heap for exactly once, and
it is deleted from the heap for at most once. By amortized analysis, Algorithm 2
runs in O(kn log(kn)) time, which is O(n log n) when k is constant.

4.1 Online Algorithms

Theorem 3. Consider an instance of online profit maximization problem with
n channels, each of which contains at most k shows, Algorithm 2 runs in
O(n log n). And if α = 0 (the switches are charged for free), the chopping strategy
it returns leads to the maximum total net profit.

Proof. When α = 0, there is no cost to treat a time window as the concatenation
of several shorter ones. Hence, Algorithm 2 is the optimal chopping strategy. ��

It is easy to find out that the “free switch” condition is necessary for
Algorithm 2 to achieve the optimal. More inspired, this algorithm has an ability
that it can find the optimal channel with a underlying time interval [ti, ti+1]
with only the knowledge of the shows available currently. This is useful when
the show forecast comes in stream. In other words, Algorithm 2 is online.

Consider an online algorithm ALG to solve this online profit maximization
problem, and denote by OPT the optimal algorithm for the offline profit max-
imization problem. Note that an instance σ for the offline profit maximization
problem can be easily transformed to an instance for the online profit maxi-
mization problem by releasing shows at the time they begin. Then for such an
instance σ, we use σoff and σon to denote its offline version and online version
respectively. Let Eσoff

OPT and Eσon

ALG be the according efficiencies for the solutions
returned by OPT and ALG. Then the competitive ratio of ALG is defined as

sup
σ

Eσoff

OPT

Eσon

ALG

.

Our target is to design online algorithm with the competitive ratio as close to
1 as possible. According to Theorem 3, if the switch is charged for free, the Algo-
rithm 2 achives competitive ratio 1. However, in general, there is no ALG with
bounded competitive ratio. To illustrate this fact, consider following example.

Fig. 3. General case to show the unbounded competitive ratio.
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Consider the example instance shown in Fig. 3. Assume that the cost para-
meter α satisfies α > W (a + b), which implies that any algorithm starting with
the upper channel has no motivation to switch. Note that at time 0, any online
algorithm ALG has no idea about the relation between a and b. Consider two
instances which are just different at b,

– instance 1: b = W · a;
– instance 2: b = 0.

It can be verified that for any deterministic online algorithm ALG, it achieves
at most a fraction of 1/W of the optimal, in either instance 1 or instance 2. When
W is extremely large, it implies the competitive ratio of ALG is unbounded.

Furthermore, it should be noticed that involving randomness does not avoid
the unbounded competitive ratio. Because of the lack of knowledge of upcom-
ing shows, the probability that a randomized algorithm starts with a “perfect”
channel (the one in the optimal solution) is of O(1/n), which is arbitrarily small
as n can be very large. Note that this is true no matter whether the selection of
the first channel is uniform or not.

4.2 Online Profit Maximization with Annoying Cost

We have considered the online version of the profit maximization problem, in
which the shows are released in stream. We will introduce another feature named
annoying cost which also raises naturally in practice.

Definition 3 (Annoying Cost). If there is a switch of channel c at time t
(close the underlying window at time t and start a new window associated with
a different channel), then the cost of such a switch annoying cost is defined to
be (fi − t)/(fi − si). Recall that si and fi are the beginning time and the ending
time of showi, which is the one playing in c at time t.

The idea of annoying cost is not new. In [7], the authors argued that the
recommendation may suffer a penalty if it annoys people too much. Note that
with the definition here, the annoying cost will be large if the current show is far
from the end. At the opposite situation, if the current show is about to end, the
switch is charged for a very low cost. With annoying cost, it is also sufficient to
only consider the switch operations at the time points when some show begins
or ends. Recall the proof of Lemma 1, with annoying cost, the total score during
[t1, t2] is now

μ1 · (t − t1) + μ2 · (t2 − t) − (f1 − t)/(f1 − s1)

which is still monotone on t.

Online Profit Maximization with Annoying Cost. With the annoying cost,
the efficiency of a sequence of time windows W := w0, w1, . . . (using channel
assignment σ) w.r.t. a given set of channels C is defined to be

Eσ
C :=

∑

w∈W

(pw(c) − αc
w),
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where αc
w denotes the annoying cost of switching to channel c ∈ C associated

with window w, under the channel assignment σ. Then the profit maximization
problem with annoying cost is: given a set of channels for which the shows are
released online, find the window W as well as the channel assignment σ that
achieves the optimal efficiency.

5 Conclusions and Future Work

In this paper, we studied the problem to optimize the channel switch strategy, so
as to make personalized real-time channel recommendation. Different from the
video recommendation, channel recommendation has to work without the control
of shows’ starting times and finishing times, i.e. the show under consideration
is live.

As conclusions, we proved that in the offline case, the running time for
any algorithm solving the profit maximization problem has the lower bound
Ω(n log n), where n is the number of channels; and, there exists a backward
dynamic programming algorithm solving the problem in O(n2) time.

We also introduced two online versions of the profit maximization problem,
and presented respectively two algorithms with constant competitive ratio, when
the switch cost is not too large. Furthermore, the proposed online algorithms
runs in O(n log n) time when the number of live shows in each channel is upper
bounded by a constant.

In future works, it is interesting to explore the algorithms for offline version
with o(n2) time. For the online version, it worths further studies on discovering
other non-trivial situation with bounded competitive ratio.
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Abstract. It is well-known that many NP-complete problems will
undergo phase transitions along with the change of some problem-specific
critical parameter values. It has been shown that the phase transition
will occur at an average node degree log(n) + log log(n) for Hamiltonian
cycle problem in random graphs with n nodes. In this paper, we prove
that random graphs with such critical average node degrees tend to be
hamiltonian graphs if their node degrees are greater than one. Using an
improved backtracking algorithm with pruning operations, we try to find
the areas where hard problem instances can be found with high proba-
bility. For random graphs with degrees greater than 1, the experimental
results have demonstrated that hard cases can be found with high prob-
ability when graphs take lower average degrees, and the phase transition
occurs at lower average degrees, too. Empirically, the phase transition
between hamiltonicity and non-hamiltonicity occurs when the average
degree is 1.1601 + 0.2418log(n) for random graphs with degrees greater
than one.

Keywords: Hamiltonian cycle problem · Phase transition · NP-
completeness · Empirical study

1 Introduction

It has been found that the existence of hard instances of NP-complete prob-
lems is closely correlated with the phase transition phenomenon. Cheeseman et
al. firstly studied the issue and they found that hard cases occur at a critical
value of an ‘order’ parameter of the problem [1,2]. Later, the phase transition
phenomena are well studied for some NP-complete or NP-hard problems, e.g.,
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the k-satisfiability (k-SAT) problem [3–6], the Hamiltonian Cycle (HC) problem
[7,8] and the Traveling Salesman Problem (TSP) [9].

It is believed that hard instances of a NP-complete problem normally locate
in the phase transition area of the problem. For example, the ratio of clauses to
variables, denoted as α, is an order parameter for k-SAT problems. For k ≥ 3,
there is a threshold value of α when a phase transition occurs from unsatisfiable
state to satisfiable state. Correspondingly, it is relatively easy to find a satisfiable
solution at low values of α, or show the formulae unsatisfiable at high values of
α. It is most difficult to solve the problem at values of α near the threshold.

For Hamiltonian cycle problem, Cheeseman et al. have shown that the prob-
ability of a random graph containing a HC will change quickly from almost 0 to
almost 1 for some critical values of average connectivity. The critical average con-
nectivity, or average node degree, is log(n) + log log(n) from theoretic prediction,
which is supported by Cheeseman’s experimental results [1], and Vandegriend’s
experimental results [7]. However, by using an improved backtracking algorithm,
Vandegriend et al. have shown that almost all tested random graphs of 100 to
1500 vertices (or nodes) are easily solved. Thus, it raises the question where the
really hard HC problem instances are. Denote a node with degree x by degree-x
node. A graph is non-hamiltonian if it has a degree-0 or degree-1 node. Intu-
itively, hard problem instances should be found in a smaller graph space, e.g., a
graph space without degree-0 or degree-1 vertices.

In this paper, we studied the HC problem in random graphs with node degrees
greater than 1. Firstly, we proved that random graphs with node degrees greater
than 1 tend to be hamiltonian graphs at the phase transition point where average
node degrees take log(n) + log log(n). Using a backtracking algorithm with prun-
ing operations, we studied the phase transition area for these random graphs.
We found that hard instances can appear more frequently and phase transitions
occur at new points which are far from the old value of log(n) + log log(n).
Using a non-linear regression method, we estimated that the phase transition
between hamiltonicity and non-hamiltonicity occurs when the average degree is
1.1601 + 0.2418log(n) for random graphs with degrees greater than one. Such
results suggest that the problem space in the phase transition region need be
examined more thoroughly with degree constraints.

The rest of the paper is organized as follows. Section 2 describes the related
work. Section 3 presents the theoretical analysis of the studied problem and the
experiment method. The experimental results and the corresponding discussions
are given in Sect. 4 and the paper is concluded in Sect. 5.

2 Related Work

The phase transition behavior of k-SAT problem is well studied in previous work.
It has been shown that the phase transition from unsatisfiable state to satisfiable
state is characterized by an order parameter α, the ratio of clauses to variables
[4–6]. The critical value of α is 1 for 2-SAT problems. However, it remains an
open issue to locate the exact critical value of α when k ≥ 3. Empirical results
suggest that the critical value αc ≈ 4.2 for 3-SAT problems.
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Besides the phase transition of satisfiable state, phase transition will occur
on the solution structure of k-SAT problems, too. Xu and Li have shown that the
similarity of different satisfiable solutions will change abruptly at a critical value
of α when k ≥ 5 [6]. The set of literals which take true values in every satisfying
truth assignment is called as the backbone of a k-SAT problem. The backbone
size has been related to problem hardness [5,10]. Zhang has shown that the
backbone of 3-SAT and MAX 3-SAT will experience phase transitions, too [11].
Specifically, the backbone of MAX 3-SAT with size 0.5 appears almost at the
time when 3-SAT is satisfiable with probability 0.5. Mézard et al. have shown
that there is an intermediate phase below the transition threshold αc which
accounts for the increasing of complexity in search algorithms [12]. Krzakala
et al. have studied the distribution of solutions of the k-SAT problem and the
q-coloring problem [13]. Their research work has demonstrated that the solution
clusters will split along with the increasing of α and the ordered sequence of
solution cluster size will converge to a Poisson-Dirichlet process.

Model RB is proposed as a prototypical random constraint satisfaction prob-
lem (CSP) with growing domain size [14]. Under the model, the critical values
of phase transition can be obtained exactly. Zhao et al. have discovered that the
solution space of Model RB is a connected cluster under a threshold value of
the model parameter p. Beyond the threshold value, the set of solutions begins
to split into many disconnected clusters, similar to the phenomenon of k-SAT
problem [15].

As an important problem in graph theory, much analytic work has been done
on the Hamiltonian cycle problem. With regard to the phase transition property,
it is proved that a random graph with n vertices and n

2 (log(n) + log log(n) + c)
edges is hamiltonian with probability pc tending to exp(− exp(−c)) as n → ∞
[16]. Based on the theoretic result, a polynomial time algorithm HAM is pro-
posed for the HC problem. Theoretically, the probability for the HAM algorithm
to find a Hamiltonian cycle in a random graph with n

2 (log(n) + log log(n) + c)
edges is exp(− exp(−c)) as n → ∞, too [17]. Thus, it has been proved that
algorithms with polynomial expected running time exist for the HC problem.
Other theoretic results about the Hamiltonian properties of random graphs can
be found in [18].

Different researchers have examined the phase transition behavior of the
Hamiltonian cycle problem empirically. It is experimentally verified that the
phase transition for Hamiltonicity is very close to the phase transition for bicon-
nectivity in random graphs with n vertices and m edges, denoted by G(n,m) or
Gn,m graphs [19,20]. The critical value of average degree is about log(n) in their
results, while Cheeseman’s results have shown that the phase transition occurs
when the average degree is about log(n) + log log(n). The latter is supported
by Vandegriend and Culberson’s experimental results again [7]. By Komlós and
Szemerédi’s theoretic results, phase transition occurs when the average degree
is c(log(n) + log log(n)) with c = 1 for the HC problem. Vandegriend and Cul-
berson’s experimental results have shown that c is between 1.08 and 1.10 for
random graphs with n ≤ 1500. For directed Hamiltonian Cycle problem, the
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critical edge number of phase transition is proved to be cn(log(n) + log log(n))
with c = 1 [21] and it is verified experimentally that c = 0.9 for directed graphs
with n ≤ 3162 [8].

There are a number of theoretic results on the sufficient conditions for a graph
to be hamiltonian. Although many conditions have been proved, a necessary and
sufficient condition is still absent for the HC problem. See [22] for a survey on
this issue.

3 Hamiltonian Cycles in Random Graphs with Degrees
Greater Than One

For the HC problem, it is proved that there will be an algorithm with polynomial
expected running time for the HC problem. So, our question is where the really
hard problem instances are, with the fact in mind that the HC problem is NP-
complete. Because a graph is not hamiltonian if one node degree is 0 or 1, we
focus on the graphs with node degrees greater than 1 (or ≥ 2) in the paper. Note,
all graphs are considered as undirected graphs implicitly in the paper. Let Γ0

denote the set of graphs with n vertices and m edges and Γ1 denote the subset
of Γ0 where all node degrees of each graph in Γ1 are greater than one. A graph
chosen randomly from Γ0 is denoted by Gn,m, while a graph chosen randomly
from Γ1 is denoted by Gδ>1

n,m.
The following issues are investigated:

– The critical point of phase transition between Hamiltonian and non-
Hamiltonian for Gδ>1

n,m, in term of average node degree;
– The critical value of average node degree when the probability of hard

instances reaches its maximal point.

Firstly, based on the result of Komlós and Szemerédi, we have the following
theorem.

Theorem 1. For a random Gδ>1
n,m graph G with n vertices and m edges, if

m =
n

2
log(n) +

n

2
loglog(n) + cnn (1)

for a constant value c and some numerical sequence cn where cn → c or cn → ∞
when n → ∞, then

lim
n→∞ Pr(Gδ>1

n,m is hamiltonian) = 1. (2)

Proof : Consider the following events:

– A: Gδ>1
n,m is hamiltonian;

– B : Gn,m is hamiltonian;
– C : the minimum degree of Gn,m is at least 2.
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Based on Bayesian formula, we have

Pr(A) = Pr(B|C) =
Pr(BC)
Pr(C)

. (3)

Because the minimum degree of every hamiltonian graph is at least 2, so
Pr(BC) = Pr(B). Thus,

Pr(A) =
Pr(B)
Pr(C)

(4)

Komlós and Szemerédi have proved that [16]

lim
n→∞ Pr(B) = lim

n→∞ Pr(C) =

⎧
⎨

⎩

0 , cn → −∞
e−e−2c

, cn → c
1 , cn → ∞

(5)

so if cn → c or cn → ∞ when n → ∞, we have

lim
n→∞ Pr(A) = 1. (6)

Next, we study the phase transition issues through experiments. The hardness
of a problem instance depends on not only the properties of the instance, but also
the algorithm used to tackle it. In this paper, we adopt the similar algorithm
used by Vandegriend and Culberson [7]. The algorithm is an exact algorithm
which uses backtracking to find a solution. The main difference is that we do
not use the iterated restart technique in the algorithm. The algorithm includes
two stages: initial pruning and recursive search.

(1) Initial pruning. The input graph is initially checked against some simple
conditions:
– Ore’s condition: If deg(x) + deg(y) ≥ n for any nonadjacent vertex pair x

and y in an undirected graph G, then G is hamiltonian;
– Cut-point condition: If there is a cut-point in G, then G is non-hamiltonian;
– Fan’s condition [23]: If for any vertex pair x and y in a 2-connected graph

G, distance(x, y) = 2 implies max(deg(x), deg(y)) ≥ (n/2), then G is
hamiltonian.

Then, the graph is pruned by checking vertices with only two adjacent ver-
tices (called as degree-2 vertices). The pruning rules include:
– rule 1 : If w and v are two neighbors of a degree-2 vertex u, then remove

the vertex u and the edges 〈w, u〉, 〈v, u〉, add an edge 〈w, v〉 if it does not
exist and mark it as a forced edge;

– rule 2 : If a vertex u is attached with two forced edges, then remove other
edges attached with it, and apply the rule 1 on u to remove it;

– rule 3 : If a vertex u is incident to three or more forced edges in the graph
G, then G is non-hamiltonian.

After the pruning, cut-points are checked again to detect non-hamiltonian
graphs.
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(2) Recursive search. The search procedure uses backtracking to find a hamil-
tonian cycle in the input graph. During the search procedure, edges on the
trial path are marked as forced edges and the pruning rules in the first stage
are applied again to accelerate the search process.

A timeout threshold is set so that the search procedure can be terminated
after a specified time. If the input graph can be determined to be hamiltonian or
non-hamiltonian in the specified time, then the problem instance is classified as
an easy case, or else it is considered as a hard one. With an appropriate setting
of the timeout threshold, we can investigate the occurring probability of hard
problem instances.

While there are problem instances which can not be solved within the speci-
fied time, we try to solve them using the SparseHAM algorithm [24], a variation
of Bollobás’s HAM algorithm [17]. The algorithm tries to extend a partial path
from one of its end-points, or from one vertex in the middle of the partial path
if the two end-points are connected. If the path can not be extended, then rota-
tional transformation is used to get a new end-point of the path so that the path
can be extended further.

We made some modifications to improve the original SparseHAM algorithm,
including:

– If there is an edge marked as forced edge in the input graph, then the edge is
used to create the initial path;

– Forced edges are detected and used with high priority if it is not contained in
a path and avoided to be removed from the path;

– Middle results are saved so that backtracking can be performed if attempts
on the current partial path are all failed.

Again, the modified SparseHAM algorithm will terminate with the limitation
of the timeout threshold. It should be noted that the hamiltonian property of
the input graph remains unknown if the SparseHAM algorithm fails to find a
hamiltonian cycle.

4 Experiment Results

We consider random graphs with n vertices where n ranges from 100 to 6000.
The Gn,m graphs are studied firstly, then the Gδ>1

n,m graphs are tested. For graphs
with n vertices, the edge number m increases with the prescribed average degree
increasing from 2 to 2(log(n) + log log(n) + 1). The edge number stops to increase
if the ratio of hamiltonian graphs is larger than 99.9 %.

For each parameter setting, we generate 105 graphs and run the algorithm
once on each graph. Then, the number of hard instances are summed to estimate
the occurring probability of hard instances. The probability of hamiltonian graph
is estimated using the ratio of hamiltonian graphs in all solved instances.

The timeout threshold will affect the decision of easy or hard instances.
During the trial running, we find that most random problem instances can be
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solved at the microsecond level. So, we set the timeout threshold to be 2 s.
Experiments were performed on a PC server with Intel Xeon CPU E5-2650
which has 8 cores and 2 threads per core.

4.1 Results with Backtracking Algorithm

Firstly, we investigate the dynamics of the hard instance ratio with the increasing
of vertex number using the backtracking algorithm. The HAM algorithm is not
executed at this stage. Figure 1 shows the variations of hard instance ratios for
random graphs with 2000, 4000 and 6000 vertices. We compare the results of
Gn,m and Gδ>1

n,m random graphs.
Figure 1 shows that the curve of hard instance ratio increases with the increas-

ing of average degree, and then decreases after reaching some critical points. It
verifies that the“easy-hard-easy” pattern still exists in term of hard instance ratio
for the Hamiltonian cycle problem. Compared to the results of Gn,m graphs, the
“increase-then-decrease” curves are quite distinct for Gδ>1

n,m graphs. Besides, the
peaks come up at lower values of average degree for curves of Gδ>1

n,m graphs than
Gn,m graphs. Roughly, the critical average degree is about 12 for Gn,m graphs,
but is about 6.5 for Gδ>1

n,m graphs.
We take a close look at the curves of hard instance ratio when n = 6000 and

compare them with the curves of hamiltonian graph ratios. Figure 2 shows that
the peaks of curves of hard instance ratio are coupled with the phase transition
of hamiltonian graph ratio. For Gn,m graphs, the peak of curve of hard instance
ratio appears when the average degree is 12.16. The ratio of hamiltonian graphs
is close to 0.5 when the average degree is 11.6, while the theoretic prediction of
phase transition is log(n) + log log(n) = 10.862782. For Gδ>1

n,m graphs, the peak
of curve of hard instance ratio appears at 6.6, while the ratio of hamiltonian
graphs is close to 0.5 at 6.52. Both values are far from the phase transition point
of Gn,m graphs. According to Theorem 1, the probability of hamiltonian graphs
approaches to 1 when the average degree is log(n) + log log(n) for Gδ>1

n,m graphs.
It is verified by the experimental results.

Figure 3 shows the changing of critical degrees with the increasing of graph
size. The critical degree of hard instances is the average degree when the ratio of
hard instances reaches its maximal value. We show two curves of critical degree
values when the ratio of hamiltonian graphs reaches 0.5 and 0.99, respectively.
The curves of theoretic prediction values of phase transition are also plotted for
comparison.

From the figure, for Gn,m graphs, we can see that the critical degree of
hard instances and the critical degree of hamiltonian graphs (0.5) come close
to the theoretic values of phase transition. It conforms to the theoretic analysis
results. However, for Gδ>1

n,m graphs, the critical degree of hard instances and the
critical degree of hamiltonian graphs are much less than log(n) + log log(n). At
present, the theoretic critical degree of phase transition for Gδ>1

n,m graphs remains
unknown, which need be studied in the future. Another meaningful observation
is that the critical degree of hard instances is very close to the critical degree
of hamiltonian graphs (0.5). Thus, the conjecture still holds that most hard
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Fig. 1. Variations of ratios of hard instances
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Fig. 2. Coupling of hard instance ratios and hamiltonian graph ratios

instances appear at the phase transition area where hamiltonian graphs and
non-hamiltonian graphs go fifty-fifty.

Moreover, we apply non-linear regression analysis on the curves of Gδ>1
n,m

graphs. We use the function log(x) to fit the experimental results. For the curve
of critical degrees of hamiltonian graphs where the hamiltonicity probability is
0.5, it can be approximated by 1.1601 + 0.2418log(n). For the curve of critical
degrees of hard instances, it can be fitted by 1.1269 + 0.2490log(n). It seems
that the critical degrees are mainly determined by the factor 1

4 log(n).

4.2 Results with Backtracking and SparseHAM Algorithm

Since the backtracking algorithm can not solve all random-generated graphs, a
modified SparseHAM algorithm is used afterwards. For each Gδ>1

n,m graph which
can not be solved by the backtracking algorithm in prescribed time, we apply
the SparseHAM algorithm on it with the same timeout limitation. The results
are plotted in Fig. 4.
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In Fig. 4a, it shows that the maximal ratio of hard instances increases with the
increasing of graph size. The ratio of Gδ>1

n,m graphs increases faster than the ratio
of Gn,m graphs due to the smaller sampling space as node degrees are restricted
to be greater than 1. The SparseHAM algorithm is applied on instances which
can not be solved by the backtracking algorithm in specified time. From Fig. 4b,
we can see that the maximal ratio of hard instances is greatly reduced. It verifies
the effectiveness of the SparseHAM algorithm. However, the effectiveness of the
SparseHAM algorithm is lowered with the increasing of graph size.

5 Conclusion

In this paper, we have studied the phase transition phenomenon of Hamiltonian
cycle (HC) problem in random graphs with node degrees greater than 1 (called
Gδ>1

n,m graphs). Although the phase transition occurs at the average connectivity
log(n) + log log(n) for random graphs without node degree constraints, we found
that the phase transition occurs at a much lower value of average connectivity if
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the node degree constraint is applied. Specifically, we proved theoretically that
Gδ>1

n,m graphs tend to be hamiltonian if their average degrees take the values of
log(n) + log log(n) + cn and the numerical sequence cn satisfies limn→∞ cn = c or
limn→∞ cn = ∞ where c is a constant value. Using a backtracking algorithm with
pruning operations, we have shown experimentally that the phase transition area
of Gδ>1

n,m graphs has been shifted to areas of lower average connectivity, compared
to Gn,m graphs without node degree constraints. Empirically, the critical average
degree of phase transition can be estimated by 1.1601 + 0.2418 log(n) for Gδ>1

n,m

graphs.
The work presented here is preliminary and the problem space in the phase

transition area need be studied more thoroughly for Gδ>1
n,m random graphs. An

open theoretic problem is also left:

What is the exact point of phase transition for the Hamiltonian cycle prob-
lem in random graphs with node degrees greater than one?
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Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. U.S.A 104(25), 10318–10323 (2007)

14. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
J. Artif. Intell. Res. 12, 93–103 (2000)

15. Zhao, C., Zhang, P., Zheng, Z., Xu, K.: Analytical and belief-propagation studies
of random constraint satisfaction problems with growing domains. Phys. Rev. E
85, 016106 (2012)
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into None Other Than 2-Cycles?
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Abstract. Breakpoint graph is a key data structure to study genome
rearrangements. The problem of Breakpoint Graph Decomposition
(BGD), which asks for a largest collection of edge-disjoint cycles in a
breakpoint graph, is a crucial step in computing rearrangement distances
between genomes. This problem for genomes of unsigned genes is proved
NP-hard, and the best known approximation ratio is 1.4193+ε [1]. In
this paper, we present a polynomial time algorithm to detect whether a
breakpoint graph can be decomposed into none other than 2-cycles. Our
algorithm can be used to detect if there exists a sorting scenario between
two genomes without reusing any breakpoints.

Keywords: Breakpoint graph · Genome rearrangement · Cycle
decomposition

1 Introduction

In 1993, Bafna and Pevzner first introduce an important data structure, break-
point graph, to study the problem of sorting by reversals. A reversal inverts
a subsequence in the genome. Given two genomes, the problem of computing
reversal distance between them asks to find a shortest sequence of reversals that
transform one genome into the other. This distance is often used as a measure
of the evolutionary distance between genomes. Usually we use a permutation π
to represent one genome, and the identity permutation to represent the other
genome, thus we call this problem as sorting by reversals. The problem of sort-
ing unsigned genomes by reversals was first studied by Kececioglu and Sankoff
[2], and later proved to be NP-hard through the reduction from the problem of
Breakpoint Graph Decomposition (BGD) by Caprara [3].

The problem of Breakpoint Graph Decomposition (BGD) is a crucial step
in computing reversal distances as well as other rearrangement distances. For
example, the reversal distance is given by the number of elements in the permu-
tation plus one, minus the number of cycles, plus the number of hurdles, and
plus one if a fortress is present [4]. The number of elements in the permutation is
a constant number given by the input genomes, and the presence of hurdles and
fortresses can be safely ignored in most cases [5–7]. Thus the reversal distance
relies on the number of cycles in BGD. Similarly, computing the translocation
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 205–214, 2016.
DOI: 10.1007/978-3-319-39817-4 20
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distances [8,9] and double-cut-and-join [10] distance is also related to a solution
for BGD. Moreover, Breakpoint Graph Decomposition (BGD) also has applica-
tions in ortholog assignment in comparative genomics [11,12] and approximation
of exemplar breakpoint distance in the presence of duplicated genes [13].

The BGD problem for genomes of unsigned genes is proved NP-hard [3], and
the best known approximation ratio is 1.4193+ε [1]. Lin and Jiang transform
the instance of Breakpoint Graph Decomposition into an instance of the 6-Set
Packing problem — because each subset intersects with at most 6 other subsets,
this problem admits an approximation ratio of 1.4193+ε, based on a suitable
modification on the collection of edge-disjoint length-2 cycles [1].

In this paper, we study the BGD problem in terms of edge-disjoint length-2
cycles. We present a polynomial time algorithm to detect whether a breakpoint
graph can be decomposed into none other than 2-cycles. A cycle decomposi-
tion with none other than 2-cycles will be called as a 2-cycle decomposition of
the breakpoint graph in the following. More specifically, we first simplified the
breakpoint graph and construct a matching graph for the simplified breakpoint
graph. Then we further simplified the matching graph for which we will propose
a polynomial time algorithm to detect whether it admits an excellent match. We
will return a 2-cycle decomposition for the breakpoint graph if the simplified
matching graph admits an excellent match. Our algorithm also can be used to
test whether there exists a sorting scenario between two genomes without reusing
any breakpoints (e.g., under the infinite sites model of genome evolution [14])
and have potential applications in deriving better approximation algorithms for
computing rearrangement distance and improving ortholog assignment in com-
parative genomics.

2 Preliminaries

Let π = (π1, ..., πn) be a permutation of {1, ..., n}, we can construct the break-
point graph, G(π), between π and the identity permutation as follows:

(1) add elements π0 = 0 and πn+1 = n + 1 to π,
(2) construct a corresponding vertex for each element in π,
(3) join two vertices i and j by a black edge if i and j are in consecutive positions

in π and |i − j| �= 1, and join i and j by a gray edge if they are not in
consecutive positions in π and |i − j| = 1.

Note that there is no cycle in G(π) only containing edges of same color.
A cycle in G(π) is called alternating if the colors of every two consecutive edges
in this cycle is different. In the following, when we mention cycles in a breakpoint
graph, they are alternating cycles. The length of a cycle is the number of black
edges (or gray edges) in this cycle. A cycle with length i is denoted by i-cycle.

A key technique used in the approximation algorithms for computing
rearrangement distances is Breakpoint Graph Decomposition (BGD). Each ver-
tex in G(π) is either isolated, or incident to one black edge and one gray edge, or
incident to two black edges and two gray edges. If we split each vertex in G(π)
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that incident to two black edges and two gray edges into two new vertices, and
make each new vertex incident to one black edge and one gray edge respectively.
Then we will get a new graph consisting of edge-disjoint cycles. This new graph
corresponds to a cycle decomposition of G(π). If a cycle decomposition of G(π)
contains none other than 2-cycles, we will call such a cycle decomposition as
a 2-cycle decomposition of G(π). In this paper, we will detect if there exists a
2-cycle decomposition of G(π) in polynomial time.

In order to detect a 2-cycle decomposition of G(π), we will construct a new
graph, denoted by matching graph F (π), from G(π). The matching graph F (π)
is constructed as follows:

(1) construct a vertex for each black edge in G(π),
(2) connect two vertices u and v of F (π) by an edge if the two black edges

corresponding to u and v are contained in a 2-cycle in G(π).

Here each edge in F (π) corresponds to a 2-cycle in G(π). Jiang et al. [1]
showed that the degree of a vertex in F (π) is at most 3 by the following lemma.

Lemma 1. Every edge in a breakpoint graph belongs to at most 3 different 2-
cycles.

If there exists a perfect match M of F (π) and all the 2-cycles corresponding to
edges in M are edge-disjoint, then these 2-cycles provides a 2-cycle decomposition
of G(π). We call such a perfect match as an excellent match of F (π).

3 Simplification on the Breakpoint Graph
and the Matching Graph

In this section, we will apply a rule to simplify the breakpoint graph G(π) and
derive a simplified graph G′(π). Then we construct a matching graph F (π) from
G′(π). Afterwards, we further simplify the matching graph F (π) to derive F ′(π).
In the following, we will prove that there exists an excellent match of F ′(π) if
and only if there exists a 2-cycle decomposition of G(π).

Before presenting the rules to simplify the graphs, we first introduce a lemma
that will be used later. For a 2-cycle u, if the four edges of u are also covered by
two edge-disjoint 2-cycles v0 and v1, then we say u is covered by v0 and v1.

Lemma 2. Assume that (1) G2(π) is a 2-cycle decomposition of G(π), (2) 2-
cycle u is not contained in G2(π), (3) u is covered by two cycles in G2(π). Then
there exists another 2-cycle decomposition of G(π) in which u is included.

Proof. Assume that u is covered by two 2-cycles v0 and v1 in G2(π). If we view
the cycles as edge sets, then u ⊂ v0

⋃
v1. Let u1 = (v0

⋃
v1) − u, it is easy to

see that u1 is a 2-cycle too. Since the edge set of 2-cycles v0 and v1 is completely
same with which of u and u1, we can replace v0 and v1 with u and u1 without
changing other 2-cycles in G2(π). Thus we get another 2-cycle decomposition of
G(π) in which u is included. ��
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Fig. 1. A double tangle induced by vertices {a, b, c, d, a, b, c, d}, the solid lines represent
black edges and the dotted lines represent gray edges, note two possible representations.

Now we will show how to simplify breakpoint graph G(π) first. For four
consecutive vertices {a, b, c, d} in G(π), if (1) the adjacent vertices of b and c
are four consecutive vertices, say {a, b, c, d}, and the adjacent vertices of b are
not consecutive as well as c, (2) the adjacent vertices of b and c are {a, b, c, d},
and the adjacent vertices of b are not consecutive as well as c, then the subgraph
induced by {a, b, c, d, a, b, c, d} is defined as a double tangle (as shown in Fig. 1). If
G(π) contains a double tangle, we will remove it from G(π) to derive a simplified
graph G′(π). Note that removing a subgraph from G(π) includes removing all
the edges in this subgraph from G(π) as well as all the vertices with degree
0. Clearly, G′(π) is also a breakpoint graph. In order to show that the above
simplification is valid, we prove the following lemma,

Lemma 3. There exists a 2-cycle decomposition of breakpoint graph G(π), if
only if there exists a 2-cycle decomposition of breakpoint graph G′(π), where
G′(π) is derived from G(π) by removing all the double tangles.

Proof. Assume that G(π) contains a double tangle as shown in Fig. 1. Let v0 =
(a, b, a, b), v1 = (b, c, b, c), v2 = (c, d, c, d) be 2-cycles in G(π).

(1) If ←: Assume there exists a 2-cycle decomposition of G′(π), denoted by
G′

2(π). It is easy to prove that by adding v0, v1 and v2 to G′
2(π), we will

obtain a 2-cycle decomposition of G(π).
(2) Only if →: Assume there exists a 2-cycle decomposition of G(π), denoted

by G2(π). If v0, v1 and v2 are included in G2(π), then it is easy to see that
G2(π) − v0 − v1 − v2 is a 2-cycle decomposition of G′(π). Otherwise, we
can always transform G2(π) to get another 2-cycle decomposition of G(π)
in which v0, v1 and v2 are included.

Note that, a 2-cycle in G2(π) containing edge (b, c) must be (a, b, c, b),
(b, c, b, c) or (b, c, d, c). It cannot be cycle (a, b, c, d), otherwise we will have a
cycle (a, b, c, d) with only black edges, a contradiction to the property of break-
point graph.

(2.1) If the 2-cycle in G2(π) containing edge (b, c) is (a, b, c, b), then (a, b, c, b)
must be another 2-cycle in G2(π) since it is the only 2-cycle containing
edge (a, b) and edge-disjoint with cycle (a, b, c, b). Then we can replace 2-
cycles (a, b, c, b) and (a, b, c, b) in G2(π) with v0 and v1. If v2 is contained
in G2(π), then we get a 2-cycle decomposition of G(π) containing v0, v1
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and v2. Otherwise, v2 must be covered by two 2-cycles in G2(π), thus it
can be introduced into G2(π) by Lemma 2.

(2.2) If the 2-cycle in G2(π) containing edge (b, c) is (b, c, b, c), namely v1 is
contained in G2(π). Then v0 and v2 are either contained in G2(π) or covered
by two 2-cycles in G2(π) respectively. If they are contained in G2(π), then
G2(π) a 2-cycle decomposition of G(π) containing v0, v1 and v2. Otherwise,
v0 and v2 can be introduced into G2(π) by Lemma 2.

(2.3) If the 2-cycle in G2(π) containing edge (b, c) is (b, c, d, c), we have the
similar argument from case (2.1).

In summary, if G(π) a 2-cycle decomposition, we can always transform
G2(π) to get another 2-cycle decomposition of G(π) in which v0, v1 and v2 are
included. ��

Let’s formalize the above process to simplify the breakpoint graph as double
tangle selection rule:

Double Tangle Selection Rule: If G(π) contains a double tangle (as shown
in Fig. 1), remove it from G(π).

After applying double tangle selection rule, we get a new graph denoted by
G′(π). We then construct a matching graph F (π) from G′(π) as introduced in
the preliminaries. In the following, we further simplify the matching graph F (π)
into F ′(π), for which we design a polynomial algorithm to detect an excellent
match in the next section.

Fig. 2. A tangle induced by vertices {a, b, c, a, b, c}, the solid lines represent black edges
and the dotted lines represent gray edges, note four possible representations.

For three consecutive vertices {a, b, c} and {a, b, c}, if b is incident to a and
c while b is incident to a and c, then we define the subgraph induced by vertices
{a, b, c, a, b, c} as a tangle (as shown in Fig. 2). Let v0 = (a, b, a, b), v1 = (b, c, b, c)
be two edge-disjoint 2-cycles in the tangle. If there exists a tangle in breakpoint
graph G′(π), then there must exist two edges corresponding to v0 and v1 in F (π).
We can always delete these two edges in F (π) to get a simpler graph F ′(π). By
the following lemma, we will find that F ′(π) is a valid simplification of F (π).

Lemma 4. There exists an excellent match of F (π), if and only if there exists
an excellent match of F ′(π), where F ′(π) is derived from F (π) by deleting two
edges corresponding to two edge-disjoint 2-cycles in a tangle of G′(π).

Proof. Assume that G′(π) contains a tangle as shown in Fig. 2. Let v0 =
(a, b, a, b), v1 = (b, c, b, c), u0 = (a, b, c, b), u1 = (b, c, b, a) be 2-cycles in G′(π). We
also use v0, v1, u0 and u1 to denote the corresponding edges in F (π). Without
loss of generality, we delete edges v0 and v1 from F (π).
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(1) If ←: Assume there exist an excellent match of F ′(π), denoted by M ′(π).
Note that the vertex set of F (π) is completely same with which of F ′(π).
Thus M ′(π) is also an excellent match of F (π).

(2) Only if →: Assume there exist an excellent match of F (π), denoted by M(π).
If edges v0 and v1 are not contained in M(π), apparently M(π) is also an
excellent match of F ′(π). Otherwise, we can always transform M(π) to get
another excellent match of F (π) in which v0 and v1 are excluded.
(2.1) If both edges v0 and v1 are contained in M(π), then we can replace

edges v0 and v1 in M(π) with edges u0 and u1 to get another excellent
match of F (π) in which v0 and v1 are excluded.

(2.2) If just one of edges v0 and v1 is contained in M(π), without loss of
generality, we can assume v0 is contained in M(π) while v1 is not.
Let G′

2(π) denote the 2-cycle decomposition of G′(π) corresponding
to M(π), then cycle v0 is contained in G′

2(π) while cycle v1 is not.
However, cycle v1 must be covered by two cycles in G′

2(π). By Lemma 2,
cycle v1 can be introduced to G′

2(π). Then we obtain a corresponding
excellent match of F (π) containing edges v0 and v1. Similar argument
from case (2.1) can be applied.

In conclusion, if F (π) admits an excellent match, we can always transform M(π)
to get another excellent match of F (π) in which v0 and v1 are excluded. ��

Let’s formalize the above process to simplify the matching graph F (π) as
tangle elimination rule:

Tangle Elimination Rule: If G′(π) contains a tangle (as shown in Fig. 2),
delete two edges in F (π) which correspond to two edge-disjoint 2-cycles in the
tangle.

It is easy to see that the double tangles and tangles in G(π) can be found in
polynomial time, thus we can complete the simplification process in this section
polynomially. Since we have proved that there exists an excellent match of F ′(π)
if and only if there exists a 2-cycle decomposition of G(π). In the next section we
will propose a polynomial algorithm to detect whether F ′(π) admits an excellent
match or not.

4 Our Algorithm

In this section, we will try to find an excellent match in matching graph F ′(π) if
it exists. Assume edges (or vertices) contained in an excellent match are called
matching edge (or matching vertices). Note that if there exists a vertex in F ′(π)
with degree 0, then F ′(π) doesn’t admit an excellent match and our algorithm
returns false. Thus, in the following we always assume that the degree of a vertex
in F ′(π) is at least 1.

If there exists a vertex with degree 1 in F ′(π), say v1. Let v2 be the only
adjacent vertex of v1. In order to get an excellent match in F ′(π), edge (v1, v2)
must be chosen as a matching edge. Otherwise, v1 can not be a matching vertex.



Can a Breakpoint Graph be Decomposed into None Other Than 2-Cycles? 211

Note that when one edge is chosen as a matching edge, the two vertices incident
to this edge will be deleted from F ′(π) as well as the edges incident to these two
vertices.

When there are no vertices in F ′(π) with degree 1 any more, by Lemma 1,
the degree of vertices left in F ′(π) is 2 or 3. However, by the following lemma,
we will show that there are no vertices with degree 3 left in F ′(π).

Lemma 5. If F ′(π) contains a vertex with degree 3, then it must contain at
least one vertex with degree less than 2.

Fig. 3. (1) and (2) are two presentations of a black edge belonging to three different
2-cycles.

Fig. 4. (1) the breakpoint graph after making black edges (b, g) and (a, h) belong to
two different 2-cycles. (2) the breakpoint graph after making black edges (f, i) and
(e, j) belong to two different 2-cycles.

Proof. Let u be a vertex in F ′(π) with degree 3, and (a, b) be the corresponding
black edge in G′(π) that belongs to 3 different 2-cycles. Then G′(π) must contain
an induced subgraph as shown in Fig. 3(1) or (2). Note that Fig. 3(1) and (2)
are symmetric. Thus, without loss of generality, we will prove the case shown
in Fig. 3(1), where black edge (a, b) belongs to 2-cycles (a, b, c, d), (a, b, c, e) and
(a, b, f, d). Now we prove it by contradictory. Assume all vertices in F ′(π) have
degree at least 2, i.e., all black edges in G′(π) belong to at least two different
2−cycles.
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Fig. 5. The breakpoint graph after making black edges (i, m) and (j, n) belong to two
different 2-cycles.

Let’s start with black edge (b, g). There are four possible 2-cycles that may
contain black edge (b, g): (g, b, c, e) (by adding gray edge (g, e)), (g, b, c, d) (by
adding gray edge (g, d)), (g, b, f, d) (by adding gray edge (g, d)) and (g, b, f, i) (by
adding black edge (f, i) and gray edge (g, i)). However, once we add gray edge
(g, d), the subgraph induced by vertices a, b, g, c, d, f becomes a tangle. After
using tangle elimination rule, either the edge corresponding to 2-cycle (a, b, f, d)
or the edge corresponding to 2-cycle (a, b, c, d) has been removed from F ′(π)
already. This contradicts with the assumption that the degree of u is 3 in F ′(π).
Thus, we can not add gray edge (g, d) to Fig. 3(1). The only way to make (b, g)
belong to two 2-cycles is adding gray edges (g, e), (g, i) and black edge (f, i)
to obtain 2-cycles (g, b, c, e) and (g, b, f, i). For black edge (a, h), according to
same argument gray edges (h, f), (h, j) and black edge (e, j) are added to obtain
2-cycles (h, a, d, f) and (h, a, e, j) (as shown in Fig. 4(1)).

Now let’s switch to black edge (f, i). It is already contained in 2-cycle
(f, i, g, b). To find one more 2-cycle containing it, we will need to add gray edge
(i, l) to get 2-cycle (i, f, h, l). For black edge (e, j), according to same argument,
gray edge (j, k) will be added to get 2-cycle (j, e, g, k). Since vertices i and j are
incident to two gray edges respectively now, we need to add two new black edges
(i,m) and (j, n) as shown in Fig. 4(2). In order to make black edges (i,m) and
(j, n) belong to two 2-cycles respectively, we will need to add new gray edges
(m, k), (m, p) and (n, l), (n, o) to Fig. 4(2). Afterwards, there will have new black
edges (m, q) and (n, r) need to be included in two 2-cycles respectively (as shown
in Fig. 5). In order to make sure each black edge belongs to at least two different
2-cycles, this iterative process will not stop and the corresponding breakpoint
graph grows into infinite size, a contradiction. Thus F ′(π) must contain at least
one vertex with degree less than 2. ��

By Lemma 5, all the vertices left in F ′(π) are with degree 2. F ′(π) must
be a set of edge disjoint cycles. If there exists an odd cycle in F ′(π), F ′(π)
does not have an excellent match. The algorithm returns false. Otherwise, all
cycles left in F ′(π) are even cycles, and the algorithm obtains a perfect match
by choosing edges alternatively. If such a perfect match is an excellent match,
then our algorithm returns the corresponding 2-cycles otherwise it returns false.

We summarize our polynomial algorithm to detect an excellent match of
matching graph F ′(π) in Fig. 6.
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Algorithm to detect excellent match of F (π)
Input: A matching graph F (π).
Output: Return M(π) as an excellent match of F (π) if F (π) has an excellent match

otherwise return false.
1 For each vertex with degree 1 in F (π), say v1, do
2 M(π) ← (v1, v2), where v2 is the only one adjacent vertex of v1.
3 remove vertices v1 and v2 from F (π) as well as the edges incident to them.
4 End for
5 If there exist a odd cycle left in F (π), return false.
6 For each even cycle left in F (π), say (v1, v2, ..., v2m), do
7 if cycles corresponding to edge set {(v1, v2), (v3, v4), ..., (v2m−1, v2m)} are edge-disjoint,
8 M(π) ← {(v1, v2), (v3, v4), ..., (v2m−1, v2m)}.
9 remove this cycle from F (π)
10 else if cycles corresponding to edge set {(v2, v3), (v4, v5), ..., (v2m, v1)} are edge-disjoint,
11 M(π) ← {(v2, v3), (v4, v5), ..., (v2m, v1)}.
12 remove this cycle from F (π)
13 else return false.
14 End for
15 return M(π) as an excellent match of F (π)

Fig. 6. The polynomial algorithm to detect an excellent match of matching graph
F ′(π), where M(π) represents the excellent match of F ′(π) if it exists.

Theorem 6. If there exists an excellent match of F ′(π), by Lemma 3 and the
construction of matching graph, we can reconstruct a 2-cycle decomposition of
G(π) in polynomial time. Otherwise, G(π) doesn’t admit a 2-cycle decomposition.

5 Conclusion

In this paper, we have proposed a polynomial-time algorithm to detect whether
a breakpoint graph admit a 2-cycle decomposition or not. The 2-cycle decom-
position of a breakpoint graph can be used to sort permutations by reversals
without the reuse of breakpoints (e.g., under the infinite sites model of genome
evolution [14]). The cycle decomposition of breakpoint graph is also a crucial
step in other sorting problems such as sorting by translocations [8,9], or sorting
by DCJs [10], and we will extend our results to study these problems in the
future. Although detecting a 2-cycle decomposition of a breakpoint graph is in
P, the complexity of finding the cycle decomposition with maximum 2-cycles is
still unknown, for which we are also interested to explore.
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Abstract. We present improvements to a branch-and-bound maximum-
clique-finding algorithm MCS (WALCOM 2010, LNCS 5942, pp.
191–203) that was shown to be fast. First, we employ an efficient approx-
imation algorithm for finding a maximum clique. Second, we make use
of appropriate sorting of vertices only near the root of the search tree.
Third, we employ a lightened approximate coloring mainly near the
leaves of the search tree. A new algorithm obtained from MCS with the
above improvements is named MCT. It is shown that MCT is much faster
than MCS by extensive computational experiments. In particular, MCT
is shown to be faster than MCS for gen400 p0.9 75 and gen400 p0.9 65
by over 328,000 and 77,000 times, respectively.

1 Introduction

We define a clique as a complete subgraph in which all pairs of vertices are
adjacent to each other. Algorithms for finding a maximum clique (e.g., [18]) in
a given graph have received much attention especially recently, since they have
many applications. There has been much theoretical and experimental work on
this problem [3,20]. In particular, while finding a maximum clique is a typical
NP-hard problem, considerable progress has been made for solving this problem
in practice. Furthermore, much faster algorithms are required in order to solve
many practical problems. Along this line, Tomita et al. developed a series of
branch-and-bound algorithms MCQ [16], MCR [17], and MCS [18] among others
that run fast in practice. It was shown that MCS is relatively fast for many
instances tested.

In this paper, we present improvements to MCS in order to make it much
faster. First, we turn back to our original MCS [14] that employs an approxi-
mation algorithm for the maximum clique problem in order to obtain an initial
lower bound on the size of a maximum clique. We choose here another approx-
imation algorithm called k-opt local search [7] that runs quite fast. Second, we
sort vertices as in MCR [17] and MCS [18] only appropriately near the root of
the search tree. This technique is based on our successful earlier result [8]. Third,
we employ lightened approximate coloring mainly near the leaves of the search
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DOI: 10.1007/978-3-319-39817-4 21



216 E. Tomita et al.

tree [8]. A new algorithm obtained from MCS with the above improvements
is named MCT. It is shown that MCT is much faster than MCS by extensive
computational experiments.

2 Definitions and Notation

We are concerned with a simple undirected graph G = (V,E) with a finite set
V of vertices and a finite set E of edges. The set V of vertices is considered to
be ordered, and the i-th element in it is denoted by V [i]. A pair of vertices v
and w are said to be adjacent if (v, w) ∈ E. For a vertex v ∈ V , let Γ (v) be the
set of all vertices that are adjacent to v in G = (V,E). We call |Γ (v)| the degree
of v. For a subset R ⊆ V of vertices, G(R) = (R,E ∩ (R × R)) is an induced
subgraph. An induced subgraph G(Q) is said to be a clique if (v, w) ∈ E for
all v, w ∈ Q ⊆ V , with v �= w. In this case, we may simply say that Q is a
clique. A largest clique in a graph is called a maximum clique, and the number
of vertices in a maximum clique in G(R) is denoted by ω(R).

3 Maximum Clique Algorithm MCS

3.1 Search Tree

The preceding branch-and-bound algorithm MCS [18] begins with a small clique
and continues by finding larger and larger cliques. More precisely, we maintain
global variables Q and Qmax, where Q consists of the vertices of the current
clique and Qmax consists of the vertices of the largest clique found so far. Let
R ⊆ V consist of vertices (candidates) that can be added to Q. We begin the
algorithm by letting Q := ∅, Qmax := ∅, and R := V (the set of all vertices).
We select a certain vertex p from R, add it to Q (Q := Q ∪ {p}), and then
compute Rp := R ∩ Γ (p) as the new set of candidate vertices. Such a procedure
is represented by a search tree, where the root is V and, whenever Rp := R ∩ Γ (p)
is applied then Rp is a child of R. The edge between R and Rp := R ∩ Γ (p) is
called a branch.

3.2 Approximate Coloring: Numbering

In order to prune unnecessary searching, we used greedy approximate coloring
or Numbering of the vertices in MCS. That is, each p ∈ R is sequentially
assigned a minimum possible positive integer value No[p], called the Number or
Color of p, such that No[p] �= No[r] if (p, r) ∈ E. Consequently, we have that
ω(R) ≤ Max{No[p]|p ∈ R}. Hence, if |Q| + Max{No[p]|p ∈ R} ≤ |Qmax| holds,
we need not continue the search for R.

After Numbers (Colors) are assigned to all vertices in R, we sort the vertices
in nondecreasing order with respect to their Numbers. Vertices are expanded
for searching from the rightmost to the leftmost on this R. Let Max{No[r]|r ∈
R} = maxno and Ci = {r ∈ R|No[r] = i}, where i = 1, 2, . . . ,maxno.
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3.3 Re-NUMBER

procedure Re-NUMBER(p, Nop,

No, C1, C2, ..., Cmaxno)

begin

Noth := |Qmax| − |Q|;
for k1 := 1 to Noth − 1 do

if |Ck1 ∩ Γ (p)| =1 then

q := the element in (Ck1 ∩ Γ (p)) ;

for k2 := k1 + 1 to Noth do

if Ck2 ∩ Γ (q) = ∅ then

{Exchange the Numbers

of p and q.}
CNop := CNop − {p};

Ck1 := (Ck1 − {q}) ∪ {p};

No[p] := k1;

Ck2 := Ck2 ∪ {q};

No[q] := k2;

return

fi od fi

od

end { of Re-NUMBER}

Fig. 1. Procedure Re-NUMBER

Because of the bounding condition men-
tioned above, if No[r] ≤ |Qmax| − |Q|,
then it is not necessary to search from
vertex r. When we encounter a vertex p
with No[p] > |Qmax| − |Q|, we attempt
to change its Number by Procedure
Re-NUMBER described in Fig. 1, where
Nop denotes the original value of No[p]
and Noth := |Qmax| − |Q| stands for
Nothreshold. Try to find a vertex q in Γ (p)
such that No[q] = k1 ≤ Noth − 1, with
|Ck1 | = 1. If such q is found, then try to
find NUMBER k2 such that no vertex in
Γ (q) has Number k2. If such number k2 is
found, then exchange the NUMBERs of q
and p so that No[q] = k2 and No[p] = k1.
When the vertex q with NUMBER k2 is
found in Fig. 1, No[p] is changed from Nop
to k1 (≤ Noth − 1); thus, it is no longer
necessary to search from p.

Procedure. Re-NUMBER was first pro-
posed in MCS [14] and is shown to be
quite effective [14,18,19].

3.4 EXTENDED INITIAL SORT-NUMBER

At the beginning of MCR and MCS, vertices are sorted in nondecreasing order
from the rightmost to the leftmost mainly with respect to their degrees [17,18].
In addition, vertices are assigned initial Numbers. More precisely, the steps from
{SORT} to just above EXPAND(V,No) in Fig. 4 (Algorithm MCR) in [17] is
named EXTENDED INITIAL SORT-NUMBER to V . Note that global variable
Qmax can be updated by “then Qmax := Rmin” at the final stage of Fig. 4
(Algorithm MCR) in [17].

Here, MCS introduced another new adjunct ordered set Va of vertices in order
to preserve the order of the vertices sorted by EXTENDED INITIAL SORT-
NUMBER. Approximate coloring is carried out in the order of Va from the
left to the right. Lastly, we reconstruct the adjacency matrix in MCS just after
EXTENDED INITIAL SORT-NUMBER. This is to establish a more effective
use of the cache memory.

The algorithm obtained as above is named MCS [18,19].
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4 Improved Algorithms

4.1 Effective Use of an Approximate Solution

When the algorithm MCS was first proposed in [14], the first part of MCS
consisted of a procedure for finding an approximately maximum clique of the
given graph. Its approximation algorithm named init-lb [14] is a local search
algorithm based on our previous work [15]. It finds a near-maximum clique in a
very short time, and the result is used as an initial lower bound of the size of a
maximum clique. It demonstrated the effectiveness of an approximate solution
for finding an exactly maximum clique. More precisely, when a sufficiently large
near-maximum clique Q′

max is found, we let Qmax := Q′
max at the beginning of

MCS. Then Noth := |Qmax| − |Q| becomes large and the bounding condition
becomes more effective.

The final version of MCS presented in [18,19] excluded a procedure for finding
an approximately maximum clique. This is because it is important to examine
the performance of the main body of MCS [18] itself independently of an approx-
imation algorithm. Batsyn et al. [1] and Maslov et al. [12] also demonstrated the
effectiveness of an approximate solution, independently.

We have many approximation algorithms for finding a maximum clique [20],
while finding a good approximate solution for the maximum clique problem
is considered to be very hard [21]. The most important problem is a proper
choice of the trade-off between the quality of the approximate solution and the
time required to obtain it. We now turn back to our original MCS in [14] and
choose another approximation algorithm called k-opt local search [7]. It does
not necessarily give the best quality solution, but it runs quite fast and it is
easy to control the above trade-off. The k-opt local search repeats a number of
local searches from different vertices of the given graph. In this repetition, we
select a vertex with the largest degree one by one from the sorted vertices with
respect to their degrees by EXTENDED INITIAL SORT-NUMBER. When the
number of repetitions becomes large, the quality of the solution increases but
with increased running time.

In order to give a proper compromise between the high quality of the solution
and the time required to obtain it for the given graph G = (V,E) with n =
|V |,m = |E|, and dens = 2m/n(n − 1) (density), we have chosen the number
rep of repetitions as follows by preliminary experiments:

rep = min{20n1/2 × dens3, n} for n ≥ 1.

Hereafter, a procedure for finding an approximate maximum clique of the
given graph G = (V,E) under the above condition is named KLS(V,Q′

max) and
its solution is given to Q′

max.
The new MCS that is composed of a combination of the KLS procedure and

MCS in [18] as above is named MCS1.
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4.2 EXTENDED INITIAL SORT-NUMBER Near the Root
of the Search Tree

It is shown that both search space and overall running time are reduced when
vertices are sorted in a nondecreasing order with respect to their degrees prior
to application of a branch-and-bound depth-first search for finding a maximum
clique [4,5,15,16]. All of the preceding algorithms MCQ, MCR, and MCS employ
such sorting of vertices at the root level (depth = 0) of the search trees. It is also
made clear that if the vertices are sorted as above and followed by Numbering
at every depth of the search tree then the resulting search space becomes more
reduced but with much more overhead of time [8].

Therefore, it becomes important to choose a good trade-off between the
reduction of the search space and the time to realize it. For an earlier algo-
rithm MCLIQ [15] that is a predecessor of MCQ, we proposed a technique to
solve the above trade-off and reduced the overall running time successfully in
the way as follows [8]:

(i) At the first stage near the root of the search tree, we apply sorting of vertices
followed by Numbering. ([8])

(ii) In the second stage of the search tree, we apply Numbering without new
sorting of vertices. (Just as in [15])

(iii) In the third stage of the search tree near the leaves, we expand vertices by
only inheriting the order of vertices and the previous NUMBERs. (Just as
in [5]).

The above techniques are considered to be promising for any algorithm for
finding a maximum clique if we control these three stages appropriately. So, we
apply the techniques of [8] to MCS. Here, we make full use of the adjunct ordered
set Va of vertices in MCS [18] in which vertices are sorted in nondecreasing order
with respect to their degrees from the rightmost (end) to the leftmost (front) by
EXTENDED INITIAL SORT-NUMBER in [18]. In addition, we avoid the set R
of vertices in MCS [18] so that we are free from the task of reconstructing such
R in which vertices are sorted with respect to their NUMBERs. From now on,
we rename Va as R, for simplicity. So, be careful that the set R in this paper
corresponds to Va, and not to R in MCS [18].

Hereafter, the NUMBERing procedure combined with Re-NUMBER is
named NUMBER-R and is shown in Fig. 2. This is exactly the first half of the
procedure Re-NUMBER-SORT in Fig. 2 of MCS [18].

A slightly stronger procedure Re-NUMBER1 is defined as the one obtained
from procedure Re-NUMBER by replacing “for k2 := k1 + 1 to Noth do”
by “for k2 := 1 to k1 − 1 and k1 + 1 to Noth do”. Another slightly modified
procedure NUMBER-R+(R,No) is defined as the one obtained from pro-
cedure NUMBER-R(R,No) by replacing “if (k > Noth) and (k = maxno)
then” by “if (k > Noth) then” and “Re-NUMBER-R” by “Re-NUMBER1”
in NUMBER-R(R,No). That is, the condition for applying Re-NUMBER is
relaxed in procedure NUMBER-R+(R,No).
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procedure NUMBER-R(R, No)
begin

{NUMBER}
maxno := 0;
C1 := ∅;
for i := 1 to |R| do

{ Conventional greedy
approximate coloring }

p := R[i] ;
k := 1;
while Ck ∩ Γ (p) = ∅
do k := k + 1 od

if k > maxno then
maxno := k;
Cmaxno := ∅

fi
Ck := Ck ∪ {p};
No[p] := k;

{ - Re-NUMBER starts - }
Noth := |Qmax| − |Q|;
if (k > Noth) and

(k = maxno) then
Re-NUMBER(p, k, No,

C1, C2, ..., Cmaxno) ;
if Cmaxno = ∅ then

maxno := maxno − 1
fi

fi
{ - Re-NUMBER ends - }

od
end { of NUMBER-R }

Fig. 2. Procedure NUMBER-R

procedure NUMBER-RL(R, No, newNo)
begin

Noth := |Qmax| − |Q|;
for i := 1 to |R| do

Ci := ∅;
od
maxno := 1;
for i := 1 to |R| do
if No[R[i]] ≤ Noth then

k := No[R[i]];
if k > maxno then maxno := k fi
Ck := Ck ∪{R[i]}; newNo[R[i]] := k;

fi
od
for i := 1 to |R| do
if No[R[i]] > Noth then

p := R[i] ; k := 1;
while Ck ∩ Γ (p) = ∅
do k := k + 1 od

if k > maxno then
maxno := k;

fi
Ck := Ck ∪ {p};
newNo[p] := k;
if (k > Noth) then

Re-NUMBER1(p, k, No,
C1, C2, . . . , Cmaxno) ;

if Cmaxno = ∅ then
maxno := maxno − 1

fi
fi

fi
od

end { of NUMBER-RL}

Fig. 3. Procedure NUMBER-RL

At the first stage near and including the root of the search tree, we sort
a set of vertices by EXTENDED INITIAL SORT-NUMBER to R followed by
Numbering by NUMBER-R+(R,No). The procedure is shown in Fig. 4 with
“Th1 = 0.4, Th2 = 0” instead of “Th1 = 0.4, Th2 = 0.1” at {Switches}. It is
experimentally confirmed that NUMBER-R+(R,No) is better than NUMBER-
R(R,No), since NUMBER-R+(R,No) is applied only a few times with better
results but with more overhead than NUMBER-R(R,No).

This task of preprocessing (of sorting vertices followed by NUMBER-R) is
time-consuming. So, as stated at the beginning of Sect. 4.2, it is important to
change this first stage to the second stage at an appropriate switching depth that
is near the root of the search tree. First, for a vertex p ∈ R at a certain depth
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of the search tree, consider newR := Rp = R ∩ Γ (p) that is a child of R. If
the ratio |{v|No[v] > Noth}|/|newR| becomes large, it is considered that much
more preprocessing becomes appropriate. In addition, when dens (density) of
the graph becomes larger it generally requires more time for finding a maximum
clique and then much more number of preprocessing becomes appropriate. As a
result, we consider the following value:

T =
|{v|No[v] > Noth}|

|newR| × dens.

From preliminary experiments, we have chosen that if T ≥ 0.4 then we con-
tinue the same procedure described for the first stage. Otherwise, we switch
the stage to the second stage. Thus, we let Th1 := 0.4 in Fig. 4. The new
procedure obtained from Fig. 4 by replacing “Th1 := 0.4, Th2 := 0.1” by
“Th1 := 0.4, Th2 := 0” at {Switches} is named MCS2. Here, we control the
stage = 1 so that it never returns back to stage = 1 after it changed to the
second or the third stage(�= 1). Konc and Janežič [9] also improved MCQ [16]
successfully in a similar way as in [8], independently.

4.3 Lightened Numbering Mainly Near the Leaves
of the Search Tree

Mainly near the leaves of the search tree, the ratio |{v|No[v] > Noth}|/|newR|
tends to be small. In this third stage, it is preferable to lighten the task of pre-
processing before expansion of vertices. So, we only inherit the order of vertices
from that in their parent depth, as in the second stage. In addition, we inherit
the assigned NUMBERs from those assigned to their parents only if their NUM-
BERs are less than or equal to Noth. If we inherit all the assigned NUMBERs
from those assigned to their parents as in [5] the resulting bounding condition
becomes too weak. In order to remedy this weakness, if the inherited NUMBERs
from those assigned to their parents are greater than Noth then we give them
new NUMBERs. For vertices whose inherited NUMBERs from their parents
are greater than Noth we newly give them NUMBERs by sequential number-
ing combined with Re-Numbering. For this Re-Numbering we adopt stronger
Re-NUMBER1 instead of Re-NUMBER since Re-Numbering is required not so
many times in this stage. The resulting procedure in this stage named proce-
dure NUMBER-RL is shown in Fig. 3.

From preliminary experiments, we have chosen to turn to the new stage =
3 if the previously given value T = (|{v|No[v] > Noth}|/|newR|) × dens is
less than 0.1. Then we let Th2 := 0.1 in Fig. 4. The procedure NUMBER-
RL is weaker than the previous procedure NUMBER-R for obtaining strong
bounding condition, but it requires less overhead than the previous one. However,
if the given graph is too dense then procedure NUMBER-RL becomes too
weak and the number of branches of the search tree grows quite large. So, we
choose to go to new stage = 3 only if dens ≤ 0.95. In addition, a simpler
algorithm is generally better than sophisticated algorithms for sparse graphs.
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procedure MCT(G = (V, E))
begin

global Q := ∅;
global Qmax := ∅;
global dens := 2|E|/|V |(|V | − 1);

{density}
if dens ≤ 0.1 then

MCS(G = (V, E));
else

Th1 := 0.4; Th2 := 0.1;
{Switches}

Apply EXTENDED INITIAL
SORT-NUMBER to V ;

{Qmax can be updated.}
Reconstruct the adjacency

matrix as described in [18];
KLS(V, Qmax);
if Qmax < Qmax then
Qmax := Qmax fi
NUMBER-R+(V, No);

stage := 1;
EXPAND (V, No, stage, Th1, Th2);

fi
output Qmax {Maximum clique}

end { of MCT}

Fig. 4. Procedure MCT

procedure EXPAND(R, No, stage ,Th1, Th2)
begin
for i := |R| downto 1 do

p := R[i];
if (stage = 1 and |Q| + maxv∈R{No[v]} > |Qmax|)
or (stage = 1 and |Q| + No[p] > |Qmax|) then

Q := Q ∪ {p};
newR := R ∩ Γ (p); {preserving the order}
if newR = ∅ then

Noth := |Qmax| − |Q|;
T := |{v|No[v]>Noth}|

|newR| × dens;

if stage = 1 and Th1 ≤ T then
Apply EXTENDED INITIAL

SORT-NUMBER to R;
NUMBER-R+(newR, newNo);
{The initial value of newNo has no significance.}
newstage := 1;

else if dens > 0.95 or Th2 ≤ T then
NUMBER-R(newR, newNo);
newstage := 2;

else
NUMBER-RL(newR, No, newNo);
newstage := 3;

fi
EXPAND(newR, newNo, newstage ,Th1, Th2)

else if |Q| > |Qmax| then Qmax := Q fi
fi
Q := Q − {p};
R := R − {p}; {preserving the order}

fi
od

end { of EXPAND }

Fig. 5. Procedure EXPAND

So, if dens ≤ 0.1 we choose simpler algorithm MCS [18] without relying on any
new technique introduced in this paper (Fig. 4).

The resulting algorithm obtained by taking the total techniques in Sects. 4.1,
4.2 and 4.3 to improve MCS [18] is named MCT (The ‘T’ is for ‘Total’.) and is
shown in Fig. 4.

5 Computational Experiments

In order to demonstrate the effectiveness of the techniques given in the previ-
ous section, we carried out computational experiments. All the algorithms were
implemented in C language. The computer had an Intel core i7-4790 CPU of
3.6 GHz clock with 8 GB of RAM and 8 MB of cache memory. It worked on a
Linux operating system with a compiler gcc -O3. The dfmax running time for
DIMACS benchmark instances [6] for r300.5, r400.5 and r500.5 are 0.14, 0.90
and 3.44 seconds, respectively.

5.1 Stepwise Improvement

Table 1 shows stepwise improvement from MCS to MCT for selected graphs
chosen from the next Table 2.
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Table 1. Comparison of MCS, MCS1, MCS2 and MCT

Graph Times [sec] Branches [×10−6]

MCS MCS1 MCS2 MCT MCS MCS1 MCS2 MCT

brock400 1 288 256 182 116 89 77 52 55

brock800 4 1,768 1,751 1,256 819 381 380 258 270

C250.9 1,171 926 774 404 255 197 154 186

gen400 p0.9 55 22,536 1,651 1,970 167 2,895 181 210 61

gen400 p0.9 65 57,385 5.73 6.07 0.74 7,628 0.33 0.34 0.13

gen400 p0.9 75 108,298 1.38 1.38 0.33 17,153 0.05 0.05 0.02

p hat700-3 900 456 438 216 88 43 40 54

p hat1000-2 85 47 46 29 13 6.6 6.3 10

p hat1500-2 6,299 2,964 2,832 1,560 560 253 234 400

san400 0.7 1 0.26 0.06 0.06 0.06 22,771 200 0 0

frb-30-15-2 1,048 691 773 116 229 135 148 61

(1) Improvement from MCS to MCS1 by an approximate solution in Sect. 4.1:
The improvement is particularly quite effective for the gen graph family. MCS1

is faster than MCS for gen400 p0.9 75 and gen400 p0.9 65 by more than 78,000
and 10,000 times, respectively. This technique is effective for almost all graphs
but with few exceptions as for the MANN graph family.
(2) Improvement from MCS1 to MCS2 by EXTENDED INITIAL SORT-
NUMBER in Sect. 4.2: This technique is effective mainly for the brock graph
family by around 1.4 times. For some graphs such as the gen and frb graph
families, the effect is negative.
(3) Improvement from MCS2 to MCT by Lightened Numbering in Sect. 4.3:
This technique is effective for almost all graphs in reducing computing time in
spite of increased numbers of branches in general. MCT is faster than MCS2 for
gen400 p0.9 55 and gen400 p0.9 65 by more than 11 and 8 times, respectively,
where their numbers of branches are also reduced.

5.2 Overall Improvement

Table 2 shows the result of the overall improvement from MCS to MCT in com-
puting time for the benchmark graphs where the columns sol and time below
KLS show the solution and the computing time by KLS, respectively. The bench-
mark graphs include brock - DSJ graphs in DIMACS [6] and the frb family in
BHOSLIB [2]. They also include random graphs of r200.8 - r20000.1 where rn.p
stands for a random graph with the number of vertices = n and the edge proba-
bility = p. The averages are taken over 10 random graphs except for r200.9 and
r200.95 whose averages are taken over 100 random graphs. The state-of-the-art
result of BBMCX (MCX for short) [13] by Segundo et al. is included. Here,
its computing time is calibrated on the established way in the Second DIMACS
Implementation Challenge [6], where our computer is calculated to be 1.30 times
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Table 2. CPU time [sec] for benchmark graphs

Graph KLS MCS MCT MCX MaxC I&M BG14

Name n dens ω sol time [18] [13] [11] [12] [1]

brock200 1 200 0.75 21 21 0.01 0.36 0.23 0.18 0.34 4.41 2.51

brock400 1 400 0.75 27 25 0.08 288 116 150 205 188 302

brock400 2 400 0.75 29 24 0.08 124 52 68 96 94 132

brock400 3 400 0.75 31 24 0.08 195 86 120 160 145 211

brock400 4 400 0.75 33 25 0.08 103 46 68 100 72 87

brock800 1 800 0.65 23 21 0.22 4,122 1,950 2,690 4,560 4,000 4,220

brock800 2 800 0.65 24 21 0.22 3,683 1,630 2,420 4,000 3,460 3,780

brock800 3 800 0.65 25 21 0.22 2,540 1,110 1,590 2,510 2,360 2,650

brock800 4 800 0.65 26 20 0.22 1,768 819 1,100 1,850 1,680 1,870

C250.9 250 0.90 44 44 0.08 1,171 404 713 268

C2000.5 2000 0.50 16 15 0.59 33,899 21,027

gen200 p0.9 44 200 0.90 44 44 0.05 0.174 0.076 0.155 0.115 1.68

gen200 p0.9 55 200 0.90 55 55 0.06 0.458 0.068 0.312 0.142 2.43 0.917

gen400 p0.9 55 400 0.90 55 53 0.25 22,536 167 19,400 46,500 2,960

gen400 p0.9 65 400 0.90 65 65 0.26 57,385 0.74 66,100 36,700 2,130 19

gen400 p0.9 75 400 0.90 75 75 0.28 108,298 0.33 47,200 9,980 83.5 7.8

MANN a27 378 0.99 126 126 0.81 0.26 1.05 0.18 0.16 1.30

MANN a45 1035 0.99 345 344 21.5 53.4 75.5 32.0 22.7 17.3 55.1

p hat300-3 300 0.74 36 36 0.06 0.99 0.28 0.66 1.16 6.72 3.62

p hat500-3 500 0.75 50 50 0.22 57.1 17.4 33.3 39.6 50.3 59.5

p hat700-3 700 0.75 62 62 0.46 900 216 680 879 552 767

p hat1000-2 1000 0.49 46 46 0.23 85 29 73 101 204 113

p hat1000-3 1000 0.74 68 68 1.00 305,146 38,800

p hat1500-1 1500 0.25 12 11 0.03 1.8 1.4 2.0 10 478 422

p hat1500-2 1500 0.51 65 65 0.73 6,299 1,560 3,850 8,030 5,350 5,430

san1000 1000 0.50 15 10 0.06 1.02 0.21 0.68 0.72 449 158

san200 0.7 1 200 0.70 30 30 0.01 0.0037 0.0133 0.0115 0.0092 7.62

san200 0.9 1 200 0.90 70 70 0.07 0.0848 0.0727 0.0385 0.0131 1.35

san400 0.7 1 400 0.70 40 40 0.06 0.26 0.06 0.14 0.13 15.80 6.69

san400 0.7 2 400 0.70 30 30 0.05 0.0589 0.0519 0.0923 0.0638 19.3

san400 0.7 3 400 0.70 22 18 0.05 0.665 0.273 0.391 0.433 26.9 11.6

sanr200 0.7 200 0.70 18 18 0.01 0.15 0.11 0.079 0.17 5.05 1.03

sanr200 0.9 200 0.90 42 42 0.06 15.3 4.67 7.38 4.21 4.62 10.2

sanr400 0.5 400 0.50 13 13 0.01 0.351 0.274 0.186 0.688 34.9 17.6

sanr400 0.7 400 0.70 21 21 0.06 77.3 40.7 44.5 81.2 86.2 81.4

DSJC500.5 500 0.50 13 13 0.02 1.53 1.20 0.81 2.84

DSJC1000.5 1000 0.50 15 15 0.12 141 93 102 265

keller5 776 0.75 27 27 0.34 82,421 10,000 30,300 4,980 5,780 82,500

frb30-15-1 450 0.82 30 28 0.15 740 156 1,029 560

frb30-15-2 450 0.82 30 30 0.15 1,048 116 672 758

frb30-15-3 450 0.82 30 28 0.15 670 124 350 477

frb30-15-4 450 0.82 30 28 0.15 2,248 535 1,157 955

frb30-15-5 450 0.82 30 28 0.15 972 156 801 705

r200.8 200 0.8 24-27 24-27 0.028 1.66 0.78 0.95 1.08

r200.9 200 0.9 39-43 39-43 0.060 27.0 10.7 14.8 6.2

r200.95 200 0.95 58-66 58-66 0.098 21.1 10.3 30.2 2.5

r500.6 500 0.6 17-18 16-17 0.056 18 11 10 22

r500.7 500 0.7 22-23 21-22 0.101 723 340 423 564

r1000.4 1000 0.4 12 11 0.045 5.99 5.14 4.52 14.5

r1000.5 1000 0.5 15-16 14-15 0.122 134 92 103 231

r5000.1 5000 0.1 7 5-6 0.149 1.17 1.17 1.19 68

r5000.2 5000 0.2 9-10 7-8 0.21 45 39 68 78

r5000.3 5000 0.3 12 10-11 0.52 2,283 1,875

r10000.1 10000 0.1 7 5-6 0.58 14 14 20 684

r10000.2 10000 0.2 10 8-9 0.87 1,303 1,139

r15000.1 15000 0.1 8 6 1.30 62 62 114 2,749

r20000.1 20000 0.1 8 6-7 2.31 234 234
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faster than that in [13]. The calibrated computing time of MaxCLQ (MaxC for
short) [10,11] by Li and Quan is also included from [13]. The calibrated com-
puting time by ILS&MCS (I&M for short) [12] and BG14 [1] are added on the
assumption that the performance of each MCS is the same, for reference, too.
The boldface entries indicate the fastest time in the row.

The result shows that MCT is faster than MCS for graphs gen400 p0.9 75,
gen400 p0.9 65, gen400 p0.9 55, frb-30-15-2, keller5, p hat1000-3, gen200
p0.9 55, frb-30-15-5 and frb-30-15-3 by over 328,000, 77,000, 134, 9.0, 8.2, 7.8,
6.7, 6.2 and 5.4 times, respectively. MCT is faster than MCS for graphs san1000,
frb-30-15-1, san400 0.7 1, frb-30-15-4, p hat700-3 and p hat1500-2 by over 4
times, and for graphs p hat300-3, p hat500-3 and sanr200 0.9 by over 3 times. In
Table 2, MCT is faster than MCS by more than 2 times for the other 16 graphs
including r200.9, r200.8, r500.7 and r200.95. Except for few special graphs as in
MANN family and for easy graphs that can be solved in a very short time, MCT
is faster than MCS for almost all graphs in the instances tested.

MCT is faster than the other algorithms in Table 2 for many instances. Note
that MaxCLQ (MaxC) is fast for dense graphs.

In conclusion, MCT has achieved significant improvement over MCS, that is,
MCT is much faster than MCS.
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Abstract. In the parallel k-stage flow-shops problem, we are given m
identical k-stage flow-shops and a set of jobs. Each job can be processed
by any one of the flow-shops but switching between flow-shops is not
allowed. The objective is to minimize the makespan, which is the finish-
ing time of the last job. This problem generalizes the classical parallel
identical machine scheduling (where k = 1) and the classical flow-shop
scheduling (where m = 1) problems, and thus it is NP-hard. We present
a polynomial-time approximation scheme for the problem, when m and
k are fixed constants. The key technique is to enumerate over schedules
for big jobs, solve a linear programming for small jobs, and add the frac-
tional small jobs at the end. Such a technique has been used in the design
of similar approximation schemes.

Keywords: Multiprocessor scheduling · Flow-shop scheduling ·
Makespan · Linear program · Polynomial-time approximation scheme

1 Introduction

In the parallel k-stage flow-shop problem, we are given m parallel identical k-
stage flow-shops F1, F2, . . . , Fm and a set of n jobs J = {J1, J2, . . . , Jn}. These
k-stage flow-shops are the classic flow-shops, each contains exactly one machine
at every stage, i.e., k sequential machines. Every job has k operations, and
it can be assigned to exactly one of the m flow-shops for processing; once it
is assigned to the flow-shop, its k operations are then respectively processed
on the k sequential machines in the flow-shop. The goal is to minimize the
makespan, which is the completion time of the last job. We denote the problem
for simplicity as (m, k)-PFS. Let M�,1,M�,2, . . . ,M�,k denote the k sequential
c© Springer International Publishing Switzerland 2016
D. Zhu and S. Bereg (Eds.): FAW 2016, LNCS 9711, pp. 227–237, 2016.
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machines in the flow-shop F�, for every �. The job Ji is represented as a k-
tuple (pi,1, pi,2, . . . , pi,k), where pi,j is the processing time for the j-th operation,
that is, Ji needs to be processed non-preemptively on the j-th machine in the
flow-shop to which the job is assigned. For all i, j, pi,j is a non-negative real
number.

It is clear to see that, when m = 1, the (m, k)-PFS problem is the classic
flow-shop scheduling [5] (a k-stage flow-shop); when k = 1, the (m, k)-PFS prob-
lem is the classic multiprocessor scheduling [5] (m parallel identical machines).
When the two-stage flow-shops are involved, i.e., k = 2, the (m, 2)-PFS problem
has been previously studied in [4,13,23,26]. Here we first review the complexity
and the approximation algorithms for the flow-shop scheduling and the multi-
processor scheduling problems.

For the k-stage flow-shop problem, it is known that when k = 2 or 3, there
exists an optimal schedule that is a permutation schedule, in which the jobs
are processed on all the k machines in the same order; but when k ≥ 4, it
is shown [3] that there may exist no optimal schedule that is a permutation
schedule. Johnson [17] presented an O(n log n)-time algorithm for the two-stage
flow-shop problem, where n is the number of jobs; the k-stage flow-shop prob-
lem becomes strongly NP-hard when k ≥ 3 [6]. After several efforts [2,6,7,17],
Hall [12] designed a polynomial-time approximation scheme (PTAS) for the
k-stage flow-shop problem, for any fixed constant k ≥ 3. Due to the strong
NP-hardness, such a PTAS is the best possible unless P = NP. When k is a
part of the input (i.e., an arbitrary integer), Williamson et al. [25] showed that
the flow-shop scheduling cannot be approximated within 1.25; nevertheless, it
remains unknown whether this case is APX-complete, that is, whether the prob-
lem admits a constant ratio approximation algorithm.

For the m-parallel identical machine scheduling problem, it is NP-hard when
m ≥ 2 [5]. When m is a fixed integer, the problem admits a pseudo-polynomial
time exact algorithm [5], and Sahni [21] showed that this exact algorithm can
be used to construct a fully PTAS (FPTAS); when m is a part of the input,
the problem becomes strongly NP-hard, but still admits a PTAS by Hochbaum
and Shmoys [14]. The list-scheduling algorithm by Graham [8] is a (2 − 1/m)-
approximation, for arbitrary m.

Besides the (m, k)-PFS problem, another generalization of the flow-shop
scheduling and the multiprocessor scheduling is the so-called hybrid k-stage flow-
shop problem [19,20]. A hybrid k-stage flow-shop is a flexible flow-shop, that con-
tains mj ≥ 1 parallel identical machines in the j-th stage, for j = 1, 2, . . . , k. The
problem is abbreviated as (m1,m2, . . . ,mk)-HFS. A job Ji is again represented as
a k-tuple (pi,1, pi,2, . . . , pi,k), where pi,j is the processing time for the j-th oper-
ation, which can be processed non-preemptively on any one of the mj machines
in the j-th stage. The objective of the (m1,m2, . . . ,mk)-HFS problem is also to
minimize the makespan. One clearly sees that when m1 = m2 = . . . = mk = 1,
the problem reduces to the classic k-stage flow-shop problem; when k = 1, the
problem reduces to the classic m-parallel identical machine scheduling problem.
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The literature on the hybrid k-stage flow-shop problem (m1,m2, . . . ,mk)-
HFS is also rich [19,20], especially on the hybrid two-stage flow-shop problem
(m1,m2)-HFS. First, (1, 1)-HFS is the classic two-stage flow-shop problem which
can be optimally solved in O(n log n) time [17], where n is the number of jobs.
When max{m1,m2} ≥ 2, Hoogeveen et al. [15] showed that the (m1,m2)-HFS
problem is strongly NP-hard. The special cases (m1, 1)-HFS and (1,m2)-HFS
have attracted many researchers’ attention [1,9–11]; the interested reader might
refer to [24] for a survey on the hybrid two-stage flow-shop problem with a single
machine in one stage.

For the general hybrid k-stage flow-shop problem (m1,m2, . . . ,mk)-HFS,
when all the m1, m2, . . ., mk are fixed integers, Hall [12] claimed that the
PTAS for the classic k-stage flow-shop problem can be extended to a PTAS
for the (m1,m2, . . . ,mk)-HFS problem. Later, Schuurman and Woeginger [22]
presented a PTAS for the hybrid two-stage flow-shop problem (m1,m2)-HFS,
even when the numbers of machines m1 and m2 in the two stages are a part
of the input. Jansen and Sviridenko [16] generalized this result to the hybrid k-
stage flow-shop problem (m1,m2, . . . ,mk)-HFS, where k is a fixed integer while
m1,m2, . . . ,mk can be a part of the input. Due to the inapproximability of the
classic k-stage flow-shop problem, when k is arbitrary, the (m1,m2, . . . ,mk)-HFS
problem cannot be approximated within 1.25 unless P = NP [25]. In addition,
there are plenty of heuristic algorithms in the literature for the general hybrid
k-stage flow-shop problem, and the interested readers can refer to the survey by
Ruiz et al. [20].

Compared to the rich literature on the hybrid k-stage flow-shop problem,
the parallel k-stage flow-shop problem is much less studied. In fact, the general
(m, k)-PFS problem is almost untouched, except only the two-stage flow-shops
are involved [4,13,23,26]. He et al. [13] first studied the m parallel identical
two-stage flow-shop problem (m, 2)-PFS, motivated by an application from the
glass industry. In their work, the (m, 2)-PFS problem is formulated as a mixed-
integer programming and an efficient heuristic is proposed [13]. Vairaktarakis
and Elhafsi [23] also studied the (m, 2)-PFS problem, in order to investigate
the hybrid k-stage flow-shop problem. Among other results, Vairaktarakis and
Elhafsi [23] presented an O(nP 3)-time dynamic programming algorithm for solv-
ing the NP-hard (2, 2)-PFS problem optimally, where n is the number of jobs
and P is the sum of all processing times. That is, the (2, 2)-PFS problem can be
solved exactly in pseudo-polynomial time.

The NP-hardness of (2, 2)-PFS implies that the general (m, 2)-PFS problem
is NP-hard, when either m is a part of the input (arbitrary) or m is a fixed integer
greater than one. Zhang et al. [26] studied on how to approximate the (m, 2)-
PFS problem, more precisely only for the special case where m = 2 or 3. They
designed a 3/2-approximation algorithm when m = 2 and a 12/7-approximation
algorithm when m = 3 [26]. Both algorithms are variations of Johnson’s algo-
rithm and the main idea is first to sort all the jobs using Johnson’s algorithm
into a sequence, then to cut this sequence into two (three, respectively) parts
for the two (three, respectively) two-stage flow-shops in order to minimize the
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makespan. Recently, Dong et al. [4] extended the dynamic programming algo-
rithm for the (2, 2)-PFS problem to solve the (m, 2)-PFS problem, for any fixed
m ≥ 2, in O(nmP 2m+1)-time and O(P 2m)-space. They then designed an FPTAS
for the (m, 2)-PFS problem out of this exact pseudo-polynomial time algorithm.

In this paper, we present a PTAS for the (m, k)-PFS problem when m and k
are fixed integers. Our PTAS borrows some design ideas from the PTAS for the
classic k-stage flow-shop problem by Hall [12]. The key technique is to enumerate
over schedules for big jobs, then to solve a linear programming for small jobs to
obtain the assignments for most of them in each schedule, followed by adding the
fractional small jobs at the end. Such a technique has been used in the design
of similar approximation schemes.

2 A PTAS for the (m, k)-PFS Problem

In the sequel, a schedule for an instance of the (m, k)-PFS problem is an assign-
ment of non-negative starting times to all the operations of the given jobs, each
on one of the m flow-shops, and a feasible schedule is one in which the assign-
ment meets the processing restrictions: (1) each job can have at most one of its
operations undergoing processing at any point in time, (2) each operation of a
job must be processed on a machine non-preemptively for the specified length
of time, and (3) each machine can process at most one operation at any point
in time. We use π∗ to denote an optimal schedule and its makespan is denoted
by OPT.

For ease of presentation, we let Pi =
∑k

j=1 pij denote the total processing
time of the job Ji over all k machines, and assume without loss of generality
that P1 ≥ P2 ≥ . . . ≥ Pn; we also let Qj =

∑n
i=1 pij denote the total processing

time of all the jobs in the j-th stage machines. Define P =
∑n

i=1 Pi =
∑k

j=1 Qj .
The following lemma bounds OPT, the proof of which is omitted due to space
limit.

Lemma 1. We have the following upper and lower bounds on OPT:

max
{

P

mk
, P1

}
≤ OPT ≤ P

m
+ P1.

We normalize the job processing time by dividing each pij by the quantity
2 · max{P/m,P1}, for all i, j. This way, we have

1
2k

≤ OPT ≤ 1. (1)

Note that from the proof of Lemma 1 we also have Cπ ≤ 1, where π is the
schedule produced by the list scheduling algorithm and Cπ denotes its makespan.
We aim to find a better schedule than π and therefore, in the sequel, we consider
only those feasible schedules having a makespan less than or equal to 1.
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We use [n] to denote the set {1, 2, . . . , n}, for every integer n ≥ 1. For some
real number γ ∈ (0, 1), which will be determined later (in Eq. (4)), we partition
the job set J into two subsets of big jobs and small jobs, as follows.

B = {Ji | ∃j ∈ [k], pij ≥ γ}, and S = {Ji | ∀j ∈ [k], pij < γ}. (2)

The next lemma states that there are not too many big jobs, the proof of which
is omitted due to space limit.

Lemma 2. There are at most mk
γ big jobs.

At the high-level, the basic idea in our PTAS is as follows. First we compute
the configuration for each feasible schedule (having a makespan ≤ 1), and the
feasible schedules having the same configuration form into a group; that is, all
feasible schedules are partitioned into groups by their configurations. Then for
each group, we use its configuration to construct a feasible schedule such that its
makespan is very close to the minimum makespan of the schedules in the group.
Lastly, we return the constructed schedule with the minimum makespan over all
the groups.

2.1 Configuration

Recall that π∗ denotes an optimal schedule and its makespan is OPT, which is
lower and upper bounded in Eq. (1). Recall also that the makespan of all the
feasible schedules considered is at most 1. We will determine the parameter γ
later (in Eq. (4)), which depends on the worst-case approximation ratio we want
to achieve.

Let δ ∈ (0, 1) be a multiple of γ (again this multiple will be determined later,
in Eq. (4)), and such that μ = 1/δ is an integer. We call an interval of length δ
a δ-interval. (In our discussion, these intervals are half open.) The time interval
[0, 1) is partitioned into μ consecutive δ-intervals; and we let It denote the t-th
δ-interval [(t − 1)δ, tδ), for each t ∈ [μ].

Given a feasible schedule π (with makespan ≤ 1), for each job Ji, we define
its assignment as Xi = (�, s1, s2, . . . , sk), where � is the index of the flow-shop
to which the job Ji is assigned in the schedule π, and sj records the index of
the δ-interval in which the j-th operation is started. That is, the machine M�,j

starts processing the job Ji in the δ-interval [(sj − 1)δ, sjδ). Let XB = (Xi)Ji∈B
and XS = (Xi)Ji∈S .

In the schedule π, for each δ-interval It, t ∈ [μ] and each machine M�,j ,
(�, j) ∈ [m] × [k], we define Lt,�,j to be the workload of small jobs, which is the
total time inside the interval It the machine M�,j spends for processing small
jobs. Furthermore, we always round Lt,�,j up to the nearest multiple of γ. Let
L = (Lt,�,j)(t,�,j)∈[μ]×[m]×[k].

Then (XB, L) is defined as the configuration of the schedule π, or we say that
the schedule π is associated with the configuration (XB, L). It is important to
note that the configuration does not have any information about the assignments
of small jobs. Clearly, every feasible schedule is associated with exactly one
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configuration; the feasible schedules associated with the same configuration form
a group. The following Lemma 3 states that there are not too many distinct
configurations, of which the proof is omitted due to space limit. Let C be the
collection of all configurations.

Lemma 3. There are at most (mμk)mk/γ(δ/γ + 1)mkμ distinct configurations.

2.2 The PTAS

We want to construct a feasible schedule for every configuration in C, such that
the makespan of the constructed schedule is very close to the minimum makespan
among all the feasible schedules associated with the same configuration. For sim-
plicity, we fix a configuration and assume that the optimal schedule π∗ is associ-
ated with this configuration. That is, among all the feasible schedules associated
with this configuration, the minimum makespan is OPT.

We describe an algorithm called Slide-I (see Fig. 1) that constructs a feasible
schedule when the assignments of all the jobs of J are known, that is, more
information than the configuration. Using the assignments, the algorithm first
collects for each machine M�,j the set of operations it needs to start in the
interval It; let Ot,�,j denote this set of operations, for every (t, �, j) ∈ [μ] ×
[m] × [k]. Next, the machine M�,j processes the operations of Ot,�,j in a non-
decreasing order of processing time (in fact, any order suffices as long as all
operations can be started in the interval It), denoted as

−→O t,�,j (in Lemma 4 we
prove that all these operations can be started in the interval It, in particular
in the non-decreasing order of processing time); thus the sub-schedule on M�,j

is 〈−→O1,�,j ,
−→O2,�,j , . . . ,

−→Oμ,�,j〉. Lastly, the machine M�,j delays the processing by
2(j − 1)δ time.

Algorithm Slide-I:

Input: m parallel identical k-stage flow-shops, J with known assignments, γ, δ;
Output: A feasible schedule π (with makespan at most OPT + 2(k − 1)δ).

Step 1. For each machine M�,j and each interval It:
1.1. let Ot,�,j be the operation set with starting time in It on M�,j ;
1.2. schedule the operations of Ot,�,j in non-decreasing processing time;
1.2. let πt,�,j denote the sub-schedule for Ot,�,j ;

Step 2. For each machine M�,j :
2.1. concatenate πt,�,j in increasing t;
2.2. let π�,j denote the sub-schedule on M�,j ;

Step 3. For each machine M�,j :
3.1. delay the sub-schedule π�,j by 2(j − 1)δ time;

Step 4. Return the final whole schedule denoted as π.

Fig. 1. A high-level description of Slide-I.
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Lemma 4. If in the configuration the assignments for all the jobs of J are
known, then the algorithm Slide-I produces a feasible schedule with makespan
at most OPT + 2(k − 1)δ.

Proof. The proof is omitted due to space limit. 
�
Unfortunately, given a configuration, we do not have the assignment infor-

mation about the small jobs, but only the small job workload for each machine
inside each δ-interval. We next try to obtain from the configuration the assign-
ment information of “most” small jobs. To this purpose, we construct a linear
program (LP) with the decision variables yi,X , each for a small job and an assign-
ment. That is, yi,X = 1 if and only if the small job Ji has an assignment X in
the given configuration. Recall that we use S to denote the set of small jobs and
that there are at most mμk different assignments for each job.

(LP)
∑

X

yi,X = 1, ∀Ji ∈ S;
∑

Ji∈S,X=(�,s1,...,sj=t,...,sk)

pijyi,X ≤ Lt,�,j , ∀(t, �, j) ∈ [μ] × [m] × [k];

y ≥ 0.

In this LP, every small job Ji must have an assignment, and the workload of
the small jobs on the machine M�,j inside the interval It must be less than or
equal to Lt,�,j , due to rounding. Clearly, there are only |S|+kmμ constraints and
therefore the number of variables |S|mμk is considerably larger. It follows that a
basic feasible solution to this LP has at most |S|+kmμ positive values. Note that
for every small job Ji, if there is an X such that yi,X is a positive fractional value,
then there must be another distinct X ′ such that yi,X′ is a positive fractional
value too. Suppose the total number of positive fractional values in the basic
feasible solution is N . Let S1 denote the subset of small jobs for each of which
there is an associated variable having value 1, that is, from the basic solution
we know the assignment for each small job of S1; and let S2 = S − S1 denote
the subset of small jobs for each of which there are some (equivalently, at least
two) associated variables having fractional values. It follows that |S2| ≤ N/2,
and thus |S1| ≥ |S| − N/2. Therefore, the total number of positive values in the
basic solution is at least |S|−N/2+N = |S|+N/2. From |S|+N/2 ≤ |S|+kmμ
we have N ≤ 2kmμ, and thus we conclude that

|S2| ≤ N

2
≤ kmμ. (3)

We summarize the above result from the LP in the following lemma.

Lemma 5. Given a configuration where the assignments for all the jobs of B
are known, the assignments for most, but no more than kmμ, of jobs of S can
be obtained by solving the constructed LP.
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Now we are ready to describe the second algorithm called Slide-II (see
Fig. 2). In the first step, the algorithm uses the given configuration to a linear
program LP as stated in the above, and obtains a basic solution to the LP. In the
second step, the algorithm retrieves the assignments for the small jobs of S1, and
calls the algorithm Slide-I on the job set B∪S1 since it has the assignments for
all the big jobs from the given configuration. Let π denote the achieved schedule.
Lastly, the algorithm appends the small jobs of S2 to the end of the schedule π,
arbitrarily but each of the m flow-shops is assigned |S2|/m small jobs. (When
|S2|/m is not integral, some flow-shops are assigned 
|S2|/m� small jobs of S2,
while the others are assigned �|S2|/m� small jobs.)

Algorithm Slide-II:

Input: m parallel identical k-stage flow-shops, J , a configuration, γ, δ;
Output: A feasible schedule π.

Step 1. Construct a linear program using the configuration and solve it;
1.1. obtain the job subset S1 with known assignments, and S2;

Step 2. Run the algorithm Slide-I on the job subset B ∪ S1;
2.1. obtain a partial schedule π;

Step 3. Append the jobs of S2 to the end of the schedule π;
3.1. each flow-shop is assigned with |S2|/m small jobs of S2;

Step 4. Return the final whole schedule still denoted as π.

Fig. 2. A high-level description of Slide-II.

Lemma 6. Given the configuration, the algorithm Slide-II produces a feasible
solution with makespan at most OPT + 2(k − 1)(δ + γ) + μγ + (kμ + k − 1)γ.

Proof. The proof is omitted due to space limit. 
�
Our final algorithm, called Slide-III, for the (m, k)-PFS problem runs the

algorithm Slide-II on every configuration to achieve a schedule, and returns the
best schedule among them, i.e., the one with the minimum makespan.

Theorem 1. The algorithm Slide-III can be designed into a PTAS for the
(m, k)-PFS problem.

Proof. For any ε ∈ (0, 1), we show how to set up the values for the parameters
δ and γ such that the makespan of the schedule returned by the algorithm
Slide-III is within (1 + ε)OPT. Recall that the job processing times have been
normalized to ensure that Eq. (1) holds for OPT. Recall also that δ is a multiple
of γ. For ease of presentation (to avoid the use of ceiling function) we assume
ε = 1

T for some positive integer T . Let

δ =
ε

8k(k − 1)
, and γ =

ε2

64(k + 1)k2(k − 1)
. (4)



A PTAS for Parallel Flow-Shop Scheduling 235

From Lemma 2, the number of big jobs is at most mk/γ, which is polynomial
in m, k, 1

ε . Moreover, when m and k are fixed constants and ε is given (and thus
a constant as well), mk/γ is a constant. Similarly, from Lemma 3, the number of
distinct configurations is at most (mμk)mk/γ(δ/γ + 1)mkμ, which is a constant
when m, k, ε are fixed constants. That is, the algorithm Slide-III makes only a
constant number of calls to the algorithm Slide-II.

Inside the execution of the algorithm Slide-II, the constructed linear pro-
gram LP contains |S| + kmμ constraints and |S|mμk variables. That is, the size
of the LP is polynomial when m, k, ε are fixed. Since a linear program can be
solved in polynomial time, for example by the interior point method [18], and the
running time of the algorithm Slide-I is polynomial in the number of jobs which
have known assignments, the running time of the algorithm Slide-II is polyno-
mial in the number of jobs. In summary, the algorithm Slide-III is polynomial
in n, the number of jobs, when m, k, ε are fixed constants.

For the performance ratio, from Lemma 6 we only need to measure the addi-
tive error term against OPT. By μ = 1/δ and Eq. (4), we have the following:

2(k − 1)(δ + γ) + μγ + (kμ + k − 1)γ
= 2(k − 1)δ + (3(k − 1) + (k + 1)μ) γ

= 2(k − 1)δ +
(

3(k − 1) +
k + 1

δ

)
γ

=
ε

4k
+

(
3(k − 1) +

8(k + 1)k(k − 1)
ε

)
ε2

64(k + 1)k2(k − 1)

=
ε

4k
+

3ε2

64(k + 1)k2
+

ε

8k

=
(

3
4

+
3ε

32(k + 1)k

)
1
2k

ε

<
1
2k

ε.

It follows that the makespan of the schedule produced by the algorithm Slide-
III is less than OPT + 1

2k ε < (1 + ε)OPT, by Eq. (1). This proves the theorem.

�

3 Conclusions

We presented a polynomial-time approximation scheme (PTAS) for the (m, k)-
PFS problem, in which there are m parallel identical k-stage flow-shops. Our
PTAS requires both m and k to be fixed integers. Since the classic k-stage
flow-shop problem is strongly NP-hard for a fixed k ≥ 3, our PTAS seems the
best possible unless P = NP. The APX-hardness of the classic k-stage flow-shop
problem when k is a part of the input implies the APX-hardness of the (m, k)-
PFS problem when k is a part of the input. An open problem is to investigate the
(in-)approximability of the (m, k)-PFS problem when m is a part of the input
while k is a constant.
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Abstract. In the k-Vertex-Disjoint Paths problem, we are given a
graph G and k terminal pairs of vertices, and are asked whether there is a
set of k vertex-disjoint paths linking these terminal pairs, respectively. In
the k-Path problem, we are given a graph and are asked whether there
is a path of length k. It is known that both problems are NP-hard even
in split graphs, which are the graphs whose vertices can be partitioned
into a clique and an independent set. We study kernelization for the two
problems in split graphs. In particular, we derive a 4k vertex-kernel for
the k-Vertex-Disjoint Paths problem and a 3

2
k2 + 1

2
k vertex-kernel

for the k-Path problem.

1 Introduction

We study two path searching problems in split graphs, the so-called k-Vertex-
Disjoint Paths problem (k-VDP for short) and the k-Path problem. In the
k-Path problem, we are given a graph G and are asked whether there is a path of
length k. In the k-VDP problem, we are given a graph G and k vertex terminal
pairs {s1, t1}, ..., {sk, tk}. The question is whether there are k vertex-disjoint
paths P1, ..., Pk such that Pi, 1 ≤ i ≤ k, is a path linking the vertices si and ti.

A split graph is a graph whose vertices can be partitioned into a clique and
an independent set. Split graphs form a significant graph class and have been
extensively studied in the literature due to its wide applications [8,9,14,18]. It is
known that both the k-VDP problem and the k-Path problem are NP-hard in
split graphs [8,15]. In this paper, we study kernelization algorithms for these two
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problems, and derive a 4k vertex-kernel for the k-VDP problem and a 3
2k

2 + 1
2k

vertex-kernel for the k-Path problem.

Notation. All graphs considered in this paper are finite, simple and undirected.
A graph G with vertex set V and edge set E is denoted by G = (V,E). For
simplicity, we also use V (G) and E(G) to denote the vertex set and the edge set
of the graph G, respectively. An edge between two vertices v and u is denoted by
(v, u) or (u, v). For a vertex v in G, we write NG(v) to denote its neighborhood,
that is, NG(v) = {u ∈ G | (u, v) ∈ E}. The degree of a vertex v is |NG(v)|.
For A ⊆ V (G), let NG(A) = ∪u∈ANG(u) \ A. We drop the subindex G if it
is clear from the context. A path is a vertex sequence (v1, v2, ..., vt) such that
(1) vi �= vj for every integers 1 ≤ i �= j ≤ t; and (2) (vi, vi+1) ∈ E for every
integer 1 ≤ i ≤ t − 1. The length of a path is the number of edges in the path.
A vertex subset C (resp. I) is a clique (resp. independent set) if there is an
(resp. no) edge between every two vertices in C (resp. I). A matching M is a
set of edges such that no two edges in M share a common vertex. A vertex v
is saturated by a matching M if v is in an edge in M . A perfect matching is a
matching that saturates all vertices.

A split graph is a graph whose vertices can be partitioned into a clique C and
an independent set I, either of which may be empty; such a partition (C, I) is
called a split partition. A split graph G with split partition (C, I) and edge set
E is denoted by G = (C ∪ I, E). Notice that in general, a split graph can have
more than one split partition.

A parameterized problem is a subset Q ⊆ Σ∗ × N for some finite alphabet
Σ, where the second part is called the parameter. A kernelization algorithm
(or simply, kernelization) for a parameterized problem Q is an algorithm that
transforms each instance (x, k) of Q in time (|x|+k)O(1) into an instance (x′, k′)
such that (1) (x, k) ∈ Q if and only if (x′, k′) ∈ Q; (2) k′ ≤ f(k) for some
computable function f ; and (3) |x′| ≤ g(k) for some computable function g. The
new instance (x′, k′) is called a kernel of the problem, and g(k) is the size of the
kernel. If g is a polynomial function on k, we say the problem has a polynomial
kernel. In the context of graph problems, many research papers use the term
“vertex-kernel size” to refer to the kernel size counted as the number of vertices
in the kernel, see, e.g., [2,10,17,21,22]. In this paper, we adopt this term.

2 Disjoint Paths

k-Vertex-Disjoint Paths (k-VDP)

Input: A graph G and a collection S = {{s1, t1}, ..., {sk, tk}} of k pairs of vertices
of G, where no two of {s1, ..., sk, t1, ..., tk} are identical.

Parameter: k.

Question: Is there a set P = {P1, P2, ..., Pk} of k pairwise vertex-disjoint paths
such that Pi is a path from si to ti?

In the above definition, the 2k vertices s1, ..., sk, t1, ..., tk are called termi-
nal vertices and each pair {si, ti} ∈ S is called a terminal pair. The k-VDP



240 Y. Yang et al.

problem is a fundamental graph problem with applications in a wide range of
areas, including VLSI layout, transportation networks, network reliability and
virtual circuit routing in high-speed networks or Internet [7,19]. Unfortunately,
the k-VDP problem is NP-hard, even when restricted to special graphs such as
planar graphs and interval graphs [12,13,16]. On the positive side, Robertson
and Seymour [20] showed that the k-VDP problem is FPT in general graphs.
However, assuming NP �⊆ coNP/poly, Bodlaender et al. [5] proved that the
k-VDP problem does not have polynomial kernels. Given the negative result
concerning the kernel lower bound in general graphs, Heggernes et al. [8] studied
the k-VDP problem in split graphs. In fact, they studied a generalization of the
k-VDP problem where the terminal vertices are not necessarily distinct, that is,
si = sj and ti = tj are possible for different i and j, and they define two paths
“vertex disjoint” if they are not identical and the internal vertices in the two
paths are distinct. To start with, they showed that this problem is NP-hard in
split graphs. Their NP-hardness proof directly applies to the k-VDP problem in
split graphs since in the reduction no two terminal vertices are identical (see the
proof of Theorem 3 in [8] for further details). Then, they derived a 4k2 vertex-
kernel for the problem in split graphs. However, applying their kernelization to
the k-VDP problem in split graphs does not reduce the square kernel to a linear
kernel. Their study of the generalization of the k-VDP problem is theoretically
motivated by the close relationship between the problem of finding disjoint paths
and the problem of finding topological minors in graphs, as stated in [8]. How-
ever, there exist many real-world applications where the terminal vertices are
distinct [3,7,11].

In this section, we study the kernelization of the k-VDP problem in split
graphs. In particular, we derive a 4k vertex-kernel for the problem. To this
end, we introduce some reduction rules. Let G = (C ∪ I, E) be a split graph,
and S = {{s1, t1}, {s2, t2}, ..., {sk, tk}} be a collection of terminal pairs. Let
V (S) = {s1, ..., sk, t1, ..., tk} be the set of all terminal vertices.

Rule 1. If there is a non-terminal vertex v ∈ I, then remove v from the graph G.

Rule 2. If there is a terminal pair {si, ti} ∈ S such that (si, ti) ∈ E, then
remove both si and ti from the graph, remove the terminal pair {si, ti} from S,
and decrease the parameter k by one.

For ease of exposition, after each application of Rule 2 on a terminal pair
{si, ti} ∈ S, we denote the terminal pair {sj , tj} for every j > i by {sj−1, tj−1},
so that the indices of all terminal pairs are still consecutive.

Rule 3. If there are two terminal vertices v, u ∈ V (S) such that {v, u} �∈ S,
|{v, u} ∩ I| = 1 and (u, v) ∈ E, then remove the edge (v, u) from the graph G.
Moreover, if there is a vertex w ∈ C such that I ∪ {w} induces an independent
set, remove the vertex w from C to I.

A reduction rule is sound if each application of the reduction rule does not
affect the answer of the instance.

Lemma 1. Rules 1–3 are sound.
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Proof. We prove the soundness of Rules 1–3 one by one.

Rule 1. Let v ∈ I be a non-terminal vertex. Let G′ be the graph obtained from G
by applying Rule 1 on the vertex v. Obviously, G′ is still a split graph. Moreover,
if G′ has k vertex-disjoint paths linking the terminal pairs in S, then so does G.
It remains to prove the opposite direction. Let P be a set of k vertex-disjoint
paths linking the k terminal pairs in S in G. If v is not in any path in P , then
the paths in P still link the terminal pairs in S in G′; we are done. Now, suppose
that v is in some path Pi ∈ P linking the terminal vertices si and ti. Let a and
b be the two neighbors of v in the path Pi. Since G is a split graph and v ∈ I, it
holds that a, b ∈ C. Thus, (a, b) ∈ E. Therefore, deleting v from Pi still results
in a path linking si and ti.

Rule 2. Let {si, ti} ∈ S be a terminal pair such that (si, ti) ∈ E. Let G′ be
the graph obtained from G by applying Rule 2 on {si, ti}. Moreover, let S′ =
S \ {{si, ti}}. Obviously, G′ is a split graph. It is clear that if G′ has a set P ′ of
k − 1 vertex-disjoint paths linking the terminal pairs in S′, then P ′ ∪ {(si, ti)}
is a set of k vertex-disjoint paths linking the terminal pairs in S. It remains to
prove the other direction. Let P be a set of k vertex-disjoint paths linking the
terminal pairs in S in G. Moreover, let Pi ∈ P be the path linking the terminal
pair {si, ti}. Clearly, no path in P \ {Pi} contains si or ti. Therefore, P \ {Pi}
is a set of k − 1 vertex-disjoint paths linking the terminal pairs in S′ in G′.

Rule 3. Let v and u be two terminal vertices such that {v, u} �∈ S, |{v, u}∩I| = 1
and (v, u) ∈ E. Let {si, ti} and {sj , tj} be the two terminal pairs involving v
and u, respectively, that is, v ∈ {si, ti} and u ∈ {sj , tj}. Let G′ be the graph
obtained from G by applying Rule 3 on v and u. It is clear that G′ is still a
split graph. Moreover, if G′ has a set P ′ of k vertex-disjoint paths linking the
terminal pairs in S, then the paths in P ′ still link the terminal pairs in S in
G. It remains to prove the other direction. Let P = {P1, ..., Pk} be a set of k
vertex-disjoint paths linking the terminal pairs in S in G, where Pi, Pj ∈ P are
the paths that link the terminal pairs {si, ti} and {sj , tj}, respectively. Since
paths in P are pairwise vertex disjoint, no path in P \ {Pi} contains v, and no
path in P \ {Pj} contains u. Thus, the edge (v, u) is not included in any path
in P . It is clear now that P is also a set of k vertex-disjoint paths that link the
terminal pairs in S in G′. �

Now we study a useful property. We say an instance is reduced by a set of
reduction rules if no reduction rule in the set applies to the instance.

Lemma 2. Let (G = (C∪I, E), S) be a reduced instance of the k-VDP problem
by Rules 1–3. Then, I = V (S).

Proof. For the sake of contradiction, assume that V (S) �= I. Then, there is a
non-terminal vertex w ∈ I, or a terminal vertex u ∈ C. In the former case, Rule 1
applies, contradicting that (G = (C ∪ I, E), S) is a reduced instance. Therefore,
it holds that I ⊆ V (S). In the following, we shall show that in the latter case,
either Rule 2 or Rule 3 applies. Let v be the vertex that forms a terminal pair
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with u. If (u, v) ∈ E, then Rule 2 applies; otherwise, if there is a vertex x ∈ I
such that (u, x) ∈ E, then the first part of Rule 3 applies; finally, if there is no
edge between u and any vertex in I, then I ∪ {u} induces an independent set,
then, the second part of Rule 3 applies. �

Now we introduce another reduction rule that copes with a specific structure
in the graph, the so-called crown decomposition which has been proved useful
in many kernelization algorithms [1,2,6].

A crown decomposition of a graph G is a partition (A,H,R) of V (G) such
that (1) A is an independent set; (2) H = N(A); and (3) the edges between A
and H contain a matching in which all vertices in H are saturated.

The following lemma is due to [6].

Lemma 3. Given an independent set B of a graph G such that |N(B)| < |B|,
a crown decomposition (A,H,R) of G such that A ⊆ B, along with a matching
between A and H that saturates H, can be found in polynomial time.

Let (G = (C ∪ I, E), S) be a reduced instance of the k-VDP problem by
Rules 1–3. We study a crown rule to further reduce the instance. To this end,
we create an auxiliary graph G′ which is obtained from G by removing all edges
between vertices in C. Clearly, G′ is a bipartite graph and NG′(C) ⊆ I.

Crown Rule. If |C| > |I|, find a crown decomposition (A,H,R) of G′ such
that A ⊆ C in polynomial time according to Lemma 3. Let M be a matching
consisting of edges between A and H that saturates all vertices in H. Then,
remove all vertices in A from the graph G that are not saturated by M .

Lemma 4. Crown Rule is sound.

Proof. Let (G = (C∪I, E), S) and G′ be defined as above. Suppose that |C| > I
so that Crown Rule is applicable. Let (A,H,R) and M be the crown decompo-
sition and the matching as stated in Crown Rule, respectively. Since A ⊆ C and
NG′(C) ⊆ I, according to the definition of crown decomposition, we know that
H ⊆ I. For a vertex v ∈ H, let M(v) be the vertex in A that is matched with v
in M . Moreover, let M(H) = {M(v) | v ∈ H}. Let Ḡ be the reduced graph by
Crown Rule, obtained from G by removing all vertices in A \M(H). Clearly, Ḡ
is still a split graph with the split partition (C̄, I), where C̄ = C \ (A \ M(H)).
Moreover, due to Lemma 2, there is no terminal vertex in C. Thus, no terminal
vertex is removed by Crown Rule. It is easy to see that if Ḡ has a set P of k
vertex-disjoint paths linking the terminal pairs in S, then so does G. It remains
to prove the opposite direction.

Let P = {P1, P2, ..., Pk} be a set of k vertex-disjoint paths in G where Pi

is a path linking the terminal pair {si, ti} ∈ S. Since C is a clique in G, we
assume that each path Pi ∈ P contains at most one edge in G[C] (if some
path Pi contains more than one edge in G[C], we can derive a new solution
by removing all those edges in G[C] from Pi except an one (v, u) such that
{(v, si)(u, ti)} ⊂ E). Therefore, each path Pi takes either the form (si, v, u, ti)
or the form (si, w, ti), where u, v, w are vertices in C. The following procedure
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shows how to derive a solution P ′ for Ḡ from P by replacing some paths in P ,
so that no path in P ′ includes a vertex in A\M(H). By and large, it first copies
each path Pi ∈ P into P ′, and then replaces the intermediate vertices in the
copy of Pi with vertices in A \ M(H) when si or ti are from H.

1 P ′ = ∅;
2 forall the path Pi ∈ P do
3 let P ′

i = Pi;
4 if P ′

i = (si, v, u, ti) then
5 if si ∈ H then
6 replace v with M(si) in P ′

i ;
7 if ti ∈ H then
8 replace u with M(ti) in P ′

i ;

9 if P ′
i = (si, w, ti) and si, ti ∈ H then

10 let P ′
i = (si,M(si),M(ti), ti);

11 P ′ = P ′ ∪ {P ′
i};

Now we prove that P ′ is a solution for Ḡ. It suffices to prove the following
claims.

Claim 1. No element in P ′ contains a vertex in A \ M(H).
Claim 2. Assume Claim 1, every element P ′

i ∈ P ′ is a path in Ḡ.
Claim 3. Assume Claim 2, no two paths in P ′ share a common vertex.

In the following, we prove the claims one by one.

Proof of Claim 1. Let P ′
i be an element in P ′. According to the above procedure,

P ′
i is obtained from Pi by replacing the intermediate vertices with vertices in

M(H). In particular, if Pi contains four vertices, say Pi = (si, v, u, ti), then (a1)
P ′
i = (si,M(si), u, ti) if si ∈ H, ti �∈ H; (a2) P ′

i = (si,M(si),M(ti), ti) if si, ti ∈
H; (a3) P ′

i = (si, v,M(ti), ti) if si �∈ H, ti ∈ H; and (a4) P ′
i = Pi = (si, v, u, ti)

if si, ti �∈ H (see Lines 3–8). If Pi contains three vertices, say Pi = (si, w, ti),
then (b1) P ′

i = (si,M(si),M(ti), ti) if si, ti ∈ H; and (b2) P ′
i = Pi = (si, w, ti);

otherwise. Observe that if si ∈ H (resp. ti ∈ H), then M(si) ∈ M(H) (resp.
M(ti) ∈ M(H). Moreover, recall that si, ti ∈ I. Since A ⊆ C, it holds that
si, ti �∈ A. Furthermore, since H = NG′(A), if si �∈ H (resp. ti �∈ H), according
to the construction of the graph G′, v, w �∈ A (resp. u,w �∈ A) in all cases they
occur. In conclusion, P ′

i contains no vertex in A \ M(H) in all possibilities.

Proof of Claim 2. Let P ′
i be an element in P ′. If P ′

i = Pi, then P ′
i is clearly a path

in Ḡ since P ′
i does not contain any vertex in A \M(H). It remains to prove the

claim for the case P ′
i �= Pi. See the above proof for Claim 1 for all possibilities

of P ′
i such that P ′

i �= Pi. Since M(si),M(ti), u, v are all from the clique C̄ in Ḡ
in all cases they occur, and {(si,M(si)), (ti,M(ti))} ⊆ M ⊆ E(Ḡ), P ′

i is a path
in all possibilities.

Proof of Claim 3. According to the above procedure, each path P ′
i ∈ P ′ is

obtained from the path Pi ∈ P by replacing the intermediate vertices with some
vertices in M(H). Since no vertex belongs to two distinct paths in P , if there
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is a vertex that belongs to two different paths in P ′, the vertex must be from
M(H). Suppose that a ∈ M(H) is a vertex that belongs to two different paths
P ′
i and P ′

j . Then, at least one of the following holds: P ′
i �= Pi or P ′

j �= Pj . Due to
symmetry, suppose that P ′

i �= Pi. Due to the above procedure, P ′
i contains four

vertices. Without loss of generality, assume that P ′
i = (si, a, b, ti) (the proof for

the case that a is the neighbor of ti in the path P ′
i , that is, P ′

i = (si, b, a, ti) can
be proved similarly by exchanging all occurrences of si and ti in the following
arguments). We first show that a = M(si). If |Pi| = 3, then P ′

i is obtained
from Pi by replacing the intermediate vertex with M(si) and M(ti) such that
M(si) is the neighbor of si in P ′

i (see Lines 9–10). Thus, a = M(si) in this case.
Otherwise, since a ∈ M(H) ⊆ A, si ∈ I and H = NG′(A), we know that si ∈ H.
Then, due to Lines 4–8, a = M(si). We proceed with the proof by considering
all cases of P ′

j . We shall show that all cases lead to some contradiction.
Case 1. |P ′

j | = 3. In this case, P ′
j = Pj = (sj , a, tj). Since a ∈ M(H) ⊆

A, sj , tj ∈ I, and H = NG′(A), it holds that sj , tj ∈ H. However, according to
Lines 9–10 in the above procedure, P ′

j = (sj ,M(sj),M(tj), tj); a contradiction.
Case 2. |P ′

j | = 4. In this case, if |Pj | = 3, then according to the above
procedure, P ′

j is obtained from Pj by replacing the intermediate vertex by M(sj)
and M(tj) such that M(sj) is the neighbor of sj and M(tj) is the neighbor of tj
in the path P ′

j (see Lines 9–10). Thus, either a = M(sj) or a = M(tj). However,
since a = M(si) and all terminal vertices are distinct, both cases contradict with
the fact that M is a matching. Assume now that |Pj | = 4. It is clear that a is
either the neighbor of sj or the neighbor of tj in the path P ′

j . Similar to the
proof for Case 1, we can conclude that sj ∈ H in the former case and tj ∈ H in
the latter case. Then, according to Lines 4–8, in the former case a = M(sj) and
in the latter case a = M(tj). Again, since a = M(si) and all terminal vertices
are distinct, both cases contradict with the fact that M is a matching. �

Theorem 1. The k-VDP problem in split graphs admits a 4k vertex-kernel.

Proof. Given an instance of the k-VDP problem, we use Rules 1–3 to reduce
the instance until none of them is applicable. Let (G = (C ∪ I, E), k) be the
resulting instance. Due to Lemma 2, I contains exactly the terminal vertices.
Thus, it holds that |I| = 2k. Then, we apply Crown Rule if |C| > |I|. After this,
|C| ≤ |I|. Thus, the reduced graph G has at most |C| + |I| ≤ 4k vertices.

Due to Lemmas 1 and 4, the original instance is a yes-instance if and only if
the reduced instance by Rules 1–3 and Crown Rule is a yes-instance. Since each
application of a reduction rule reduces the graph by either at least one vertex or
at least one edge, and takes polynomial time, the kernelization takes polynomial
time. �

3 k-Path

The k-Path problem is defined as follows.
k-Path
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Input: A graph G.

Parameter: A positive integer k.

Question: Is there a path of length k in G?
The k-Path problem is a well-known NP-hard problem. From parameterized

complexity perspective, it is FPT in general graphs [4]. However, a polynomial-
size kernel seems unlikely unless PH =

∑P
3 [4]. This argument holds even

when the problem is restricted in several special graph classes such as planar
graphs [10]. In this section, we study kernelization of the k-Path problem in
split graphs. In particular, we derive a square vertex-kernel for the problem in
this setting. Since the Hamiltonian Path problem, a special case of the k-
Path problem with k being the number of vertices in the given graph, remains
NP-hard in split graphs [15], so does the k-Path problem.

We first study a reduction rule. Let G = (C ∪ I, E) be the given split graph
with the split partition (C, I). We assume that k > 3 (if k ≤ 3, we solve the
problem in polynomial time).

Rule 1. If there are two degree-1 vertices v, u ∈ I who have the same neighbor
in C, remove arbitrarily one of them from the graph G.

The correctness of the above reduction rule is based on the observation that
if k > 3, any k-path contains at most one of v and u. In the following, we study
a crown decomposition based reduction rule. We need the definition of tricrown
decomposition and a useful property (a similar concept named “double crown
decomposition” was studied in [17].) Roughly, the tricrown decomposition differs
from the crown decomposition in that the independent set A is at least triple size
of its neighborhood H. Moreover, there are three matchings consisting of edges
between A and H whose vertices in A are disjoint. Moreover, every matching
saturates H. The formal definition is as follows.

A tricrown decomposition of a graph G is a partition (A,H,R) of V (G) such
that

1. A is an independent set;
2. H = NG(A); and
3. there is a partition (A1, A2, A3, A4) of A such that there is a matching Mi

between Ai and H which saturates all vertices in H, for every i ∈ {1, 2, 3}.

The following lemma is useful.

Lemma 5. Given an independent set I of a graph G, if |I| > 3|N(I)|, then there
is a tricrown decomposition (A,H,R) where A ⊆ I. Moreover, such a tricrown
decomposition along with the three matchings as sated in the above definition can
be found in polynomial time.

The proof of the above lemma is similar to the proof of Lemma 9 in [17]
which states that if |I| > 2|N(I)|, a double crown decomposition can be found
in polynomial time. To exploit tricrown decomposition, we need to create an
auxiliary graph. Let (G = (C ∪ I, E), k) be a reduced instance by Rule 1. Let
(E1, E2) be a partition of E where E1 is the set of edges with both ends in C, and
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E2 the set of edges between C and I. Moreover, let (J, I ′) be a partition of I such
that I ′ is the set of all degree-1 vertices in I, and J is the set of the remaining
vertices. We create an auxiliary bipartite graph G′ with vertices E1 ∪ J . For
ease of notation, for an edge (u, v) ∈ E1, we denote by ev,u its corresponding
vertex in G′. Both J and E1 form independent sets in G′. The edges of G′ are
as follows: there is an edge between a vertex eu,v ∈ E1 and a vertex w ∈ J , if w
is adjacent to both v and u in G. The crown rule is as follows.

Crown Rule. If |J | > 3|E1|, then find a tricrown decomposition (A,H,R) of G′

such that A ⊆ J in polynomial time according to Lemma 3. Let (A1, A2, A3, A4)
be a partition as stated in the definition of tricrown decomposition, then remove
all vertices in A4 from the graph G.

In the following, we prove the soundness of the above reduction rule.

Lemma 6. Crown Rule for the k-Path problem is sound.

Proof. Suppose that |J | > 3|E1| so that Crown Rule is applicable. Let Ḡ be
the reduced graph obtained from G by applying the above reduction rule. Let
(A,H,R) be the tricrown decomposition of the graph G′ as discussed above,
and (A1, A2, A3, A4) be a partition of A as stated in Crown Rule. Moreover, let
V (H) = {v ∈ G | ∃u ∈ G such that ev,u ∈ H}. Clearly, Ḡ is a split graph with
a split partition (C,A1 ∪A2 ∪A3 ∪ I ′). Clearly, if Ḡ has a k-path, so does G. It
remains to prove the other direction.

Suppose that P = (v1, v2, ..., vk) is a k-path of G. Every vertex vi with
1 < i < k in the path P is called an inner vertex. If P contains no vertex in
A4, P is a k-path of Ḡ; we are done. Otherwise, we construct a k-path for Ḡ as
follows. Let Mt, t = 1, 2, 3, be the matching between H and At that saturates
H. For a vertex ev,u ∈ H and an integer t ∈ {1, 2, 3}, let Mt(ev,u) be the
vertex matched with ev,u in the matching Mt. Clearly, Mt(ev,u) ∈ At for every
t ∈ {1, 2, 3}. Let vi be an inner vertex. If vi ∈ A, then both of its neighbors
vi−1 and vi+1 in the path P are from C; and thus, (vi−1, vi+1) ∈ E(G). Then,
according to the construction of the graph G′, evi−1,vi+1 is a vertex in G′. We
replace all such inner vertices vi that are in A with vertices only in A1 ∪A2 ∪A3

as follows. First, for each inner vertex vi, if vi ∈ A, then we replace vi in P with
any one of the vertices in

{M1(evi−1,vi+1),M2(evi−1,vi+1),M3(evi−1,vi+1)} \ {v1, vk}.

According to the construction of G′, we know that for every t ∈ {1, 2, 3},
(Mt(evi−1,vi+1), vi−1) ∈ E(G) and (Mt(evi−1,vi+1), vi+1) ∈ E(G). Moreover, since
Mt(evi−1,vi+1), vi−1, vi+1 ∈ V (Ḡ), Mt is a matching between H and At for every
t ∈ {1, 2, 3}, and no two inner vertices have the same two neighbors in the path
P , it holds that after the above replacements the path P without the first and
the last vertices v1 and vk is a (k − 2)-path of the graph Ḡ.

We may need further replace the vertex v1 (resp. vk) in the path P if v1 ∈ A4

(resp. vk ∈ A4). We first claim that if v1 ∈ A4 (resp. vk ∈ A4), then v2 ∈ V (H)
(resp. vk−1 ∈ V (H)): if v1 ∈ A4 ⊆ J (resp. vk ∈ A4 ⊆ J), then v1 (resp. vk)
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has at least two neighbors u,w in C. Then, according to the construction of G′,
eu,w ∈ H. Moreover, there is an edge between eu,w and v1 (resp. vk) in G′. If
v2 ∈ {u,w} (resp. vk−1 ∈ {u,w}), we are done. Otherwise, since v1 ∈ J (resp.
vk ∈ J), it holds that v2 ∈ C (resp. vk−1 ∈ C). Then, (v2, u) ∈ E(G) (resp.
(u, vk−1) ∈ E(G)). According to the construction of G′, it holds that ev2,u ∈ H
(resp. evk−1,u ∈ H). Thus, v2 ∈ V (H) (resp. vk−1 ∈ V (H)). This completes the
proof of the claim.

Now we continue illustrating how to replace the vertex v1 (resp. vk) if v1 ∈ A4

(resp. vk ∈ A4). If there is a vertex x ∈ C which is not on the path P , we
replace v1 (resp. vk) in P with x. Since V (H) ⊆ C, (x, v2) ∈ E(Ḡ) (resp.
(x, vk−1) ∈ E(Ḡ)). Otherwise, according to the above claim, there is a vertex vi
in the path P where i > 2 (resp. i < k− 1) such that ev2,vi

∈ H (resp. evk−1,vi
∈

H). Let M(ev2,vi
) = {M1(ev2,vi

),M2(ev2,vi
),M3(ev2,vi

)} (resp. M(evk−1,vi
) =

{M1(evk−1,vi
),M2(evk−1,vi

),M3(evk−1,vi
)}). In this case, we replace v1 (resp. vk)

with any one vertex in M(ev2,vi
) (resp. M(evk−1,vi

)) that is not on the path P .
Observe that such a vertex must exist. Indeed, if v1 ∈ A4 (resp. vk ∈ A4), then
|M(ev2,vi

) \ {v1, vk}| ≥ 2 (resp. |M(evk−1,vi
) \ {v1, vk}| ≥ 2). Thus, even in the

previous replacements an inner vertex in the path P was replaced with a vertex
in M(ev2,vi

) \ {v1, vk} (resp. M(evk−1,vi
) \ {v1, vk}), there is still at least one

vertex in M(ev2,vi
) \ {v1, vk} (resp. M(evk−1,vi

) \ {v1, vk}) which is not on the
path P at the moment.

After the above replacements, the path P does not contain any vertex in A4,
the set of vertices removed in the application of Crown Rule. Thus, P is a k-path
for the reduced graph Ḡ. �
Theorem 2. The k-Path problem in split graphs has a 3

2k
2 + 1

2k vertex-kernel.

Proof. The kernelization first checks if the clique of the given split graph con-
tains at least k+1 vertices. If so, any ordering of the vertices in the clique forms a
k-path, and we are done. Otherwise, we apply the above reduction rules exhaus-
tively. Let (C, I) be the split partition of the reduced split graph. Moreover, let
J be the set of vertices in I that have at least two neighbors in C, and I ′ the
set of vertices in I that have exactly one neighbor in C. According to Rule 1, we
have that |I ′| ≤ |C| ≤ k. According to Crown Rule, we have |J | ≤ 3

2 (|C|2 −|C|).
In total, the reduced graph contains at most |J |+ |I ′|+ |C| ≤ 3

2k
2 + 1

2k vertices.
Due to the soundness of Rule 1 and Lemma 6, the original instance is a

yes-instance if and only if the reduced instance is a yes-instance. Since each
application of a reduction rule reduces the graph by at least one vertex and
takes polynomial time, the kernelization takes polynomial time. �

4 Conclusion

We have studied the kernelization of the k-Vertex-Disjoint Paths problem
and the k-Path problem in split graphs. In particular, we derived a linear vertex-
kernel for the former problem and a square vertex-kernel for the latter problem.
A further research direction would be to investigate whether the k-Path problem
admits a linear vertex-kernel in split graphs.
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Abstract. The common due window scheduling problem with batching on a
single machine is dealt with to minimize the total penalty of weighted earliness
and tardiness. In this paper it is assumed that a job incurs no penalty as long as it
is completed within the common due window. The problem is extended to the
environment of non-identical job sizes. Then several optimal properties are
given to schedule batches effectively. And by introducing the concept of PRN, it
is proven that the PRN of each batch should be made as small as possible in
order to minimize the objective. Based on these properties, an algorithm F-PRN
for batch forming is proposed for the problem.

Keywords: Batch � Non-identical size � Due window � Earliness � Tardiness

1 Introduction

As the development of Just-In-Time (JIT) philosophy, the early-tardy job scheduling
problem becomes a hot research point over years. JIT production assumes the existence
of job due dates and the advantages are obvious, one of which is to eliminate inventory.
If a job finishes before its due date, an early penalty will be incurred such as holding
cost. And completing the job after it can result in such tardy cost as late charge, express
delivery charge, or lost sale. So a JIT-schedule is to minimize the sum of these
penalties. In this paper, the problem is extended. The due date term is generalized to the
notion of due window, which is a time interval defined by an early due date and a
window size.

On the other hand, there has been significant interest in scheduling problems that
involve batching. The motivation for batching jobs is mainly for efficiency, since it may
be cheaper or faster to process jobs in a batch than individually. Batching is encoun-
tered in many industries, such as semiconductor manufacturing and metal heat treat-
ment. For example, in semiconductor manufacturing, a burn-in oven is regarded as a
batch processing machine which can process a number of IC chips simultaneously.
Further, the environment of non-identical job sizes is more practical.

A batch is a set of jobs processed simultaneously and completed together when the
processing of all jobs in the batch is finished. Therefore, the processing time of a batch
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is equal to the longest processing time of jobs assigned into the batch. Then, the batch
scheduling problem involves assigning jobs into batches and sequencing the batches to
achieve some objective.

In our paper, we combine the above areas of manufacture situation and study batch
scheduling with non-identical job sizes and common due window. The objective is to
minimize the sum of the earliness and tardiness penalties (E/T). The remainder of this
paper is organized as follows: Sect. 2 gives a related literature review. In Sect. 3, a
problem is described and some structural properties of an optimal schedule are pro-
posed. One algorithm is presented in Sect. 4. Section 5 concludes the results.

2 Related Works

In the last several decades, many papers are studied about scheduling problems, but the
majority is on traditional performance measures. Under the Just-In-Time conception,
both earliness and tardiness should be discouraged. In the recent two decades, many
results are concerned with earliness and tardiness penalty but most of them on due date
constraint.

Articles on window scheduling problems are limited and almost about common due
window. Kramer and Lee [1] firstly considered the problem of finding a schedule that
makes the total weighted earliness and tardiness penalties (E/T) minimized. Liman
et al. [2, 3], Weng and Ventura [4] analyzed the same problem as [1], where either the
size or location of due window is given or to be determined. Zhao, Hu, and Li [5] gave
a polynomial algorithm for a common due window scheduling problem with batching
on a single machine to minimize total penalty of E/T.

The problems of scheduling on batch processing machines have received tremen-
dous attention since it was first proposed by Ikura and Gimple [6]. Li and Lee [7]
investigated the batch scheduling problems of minimizing the maximum tardiness and
minimizing the number of tardy jobs and proved both are strongly NP-hard. Pan and
Zhou [8] proposed a weighted cost rate heuristic (WCRH) algorithm for minimizing
E/T with delivery restriction and distinct due dates. Yin, Cheng, Xu, and Wu [9]
considered a problem with a common due date in a batch delivery system for the total
cost of earliness, tardiness, inventory, and batch delivery. Xu, Chen, and Li [10]
investigated the batch scheduling problem with dynamic job arrivals, using an ant
colony optimization (ACO) meta-heuristic to minimize the makespan. All of the above
studies examined problems with unit job size. Uzsoy [11] was the first to consider the
importance of scheduling on burn-in ovens with non-identical job sizes and proposed
several heuristics for problems of minimizing makespan and total completion time.
After that, Sung and Choung [12] proposed a branch-and-bound algorithm and several
heuristics for makespan minimization on a single burn-in oven. Damodaran,
Manjeshwar, and Srihari [13] examined the same problem using a genetic algorithm
(GA), and the results indicated GA outperformed previous algorithms. Chen, Du, and
Huang [14] provided a novel insight into scheduling on a batch processing machine
from a clustering perspective and developed a clustering algorithm.
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3 Problem Description and Optical Properties

There are n jobs to be processed on a batch processing machine. The job set is denoted
by J = {J1, J2, …, Jn} and all of them are available at the same time. Let pi and si be the
processing time and the size of job Ji 2 J.

The machine has a fixed capacity S. The total sizes of all the jobs in a batch cannot
exceed the capacity of the machine. Once processing of a batch is initiated, it cannot be
interrupted. And no jobs can be removed from or introduced into the batch until
processing is completed.

The processing time of the batch is equal to the largest processing time of the jobs
assigned to it. So these jobs have the same start time and the same completion time. For
batch Bj, its processing time is denoted by Tj = max{pi∣ Ji 2 Bj} and the number of
jobs in it as nj. A common due window is defined by the earliest due date e and a latest
due date d with the window size w = d-e. Without loss of generality, suppose that there
are jobs out of [e,d] since otherwise, all jobs are contained in window set for an optimal
schedule. Any job completed within the common due window has no penalty. If a job
finishes out of the due window, it will incur an earliness or tardiness defined as the
difference between the early or tardy due date and the completion time of this job,
depending on whether it is completed before or after the due window. Our goal is to
partition the jobs into batches and schedule the batches in a certain order.

Let Si, Ci be the starting time and completion time of Ji, respectively. Thus for the
batch Bj including Ji, its completion time is C(Bj) = Ci. The earliness and tardiness of
job Ji are Ei = max{0, e−Ci} and Ti = max {0, Ci−d}, respectively. The objective
function for schedule σ is defined as

min FðrÞ ¼
Xn

i¼1

ðEi þ TiÞ ð1Þ

s: t:
XK

k¼1

xik ¼ 1; i ¼ 1; . . .; n ð2Þ

Xn

i¼1

sixik � S; k ¼ 1; . . .;K ð3Þ

xik 2 0; 1f g; i ¼ 1; . . .; n; k ¼ 1; . . .;K ð4Þ

ð
Xn

i¼1

siÞ=S
" #

�K� n; i ¼ 1; . . .; n; k ¼ 1; . . .;K ð5Þ

where (1) is the objective function, (2) ensures each job Ji is arranged in one batch.
(3) makes the total sizes of the jobs in one batch not exceeding the capacity S.
xik = 1 indicates job Ji is arranged in Bk,otherwise xik = 0. K is the total batch
numbers.
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In a given schedule σ, the early set, window set, and tardy set are defined,
respectively, as E(σ) = {Ji∣Ci < e}; W(σ) = {Ji∣e ≤ Ci ≤ d}; and T(σ) = {Ji∣Ci > d}.
They are denoted by E, W, and T, respectively, when it does not cause confusions.
Since jobs in a batch have the same completion time, the batch is also assumed to be
contained in the corresponding set of its jobs for simplicity. We assume that all
parameters are positive integers.

From [1] for independent jobs, the scheduling problem with a common due window
is NP-Complete to minimize the total weighted earliness and tardiness penalties.
Extendedly, we have

Theorem 1. The batch scheduling problem, with non-identical job sizes, minimizing
the total earliness and tardiness penalties, is NP-Complete.

Several dominant properties of an optimal schedule are presented as follow, which
will be used to develop its fine algorithms.

Property 1 [5]. In an optimal schedule, no idle time is inserted between the starting
time of the first batch and the completion time of the last batch.

Property 2 [5]. In an optimal schedule σ, there exists one batch B such that C(B) = e
or C(B) = d, unless the starting time of the first processed batch is zero.

Property 3. For a given set of formed batches, it is optimal to sequence the batches for
set E in a batch weighted longest processing time (BWLPT) order such as
T1
n1

� T2
n2

� . . .; where Tj as the processing time of early batches. And for set T in a

batch weighted shortest processing time (BWSPT) order such as T
0
1

n0
1

� T
0
2

n0
2

� . . .; where

T′j as the processing time of tardy batches.

Property 3 is as a extended result from [15], where all jobs have identical sizes.
Each batch has two attributes: processing time and number of jobs contained. The ratio
of a batch processing time to job number in the batch is denoted by PRN. Suppose
there was a batch Bk containing nk jobs and its processing time is Tk. Then PRN

(Bk) =
Tk
nk
.

Property 4. If there are two batches in E where batches have been sequenced by
BWLPT, any interchange of jobs between two batches, that decreases PRN of one
batch and keep another’s unchanged, will result in a smaller total penalty, under the
capacity constraint without changing the number of jobs in each batch.

Proof. A feasible schedule with r batches where E has been sequenced by BWLPT. As

for batches in E, we have T1
n1

� T2
n2

� . . .Tr
nr
, where n1, n2 … nr denote the number of

jobs in each batch, respectively. Without loss of generality, we choose two batches Bi

and Bj in E with assumption of Ti � Tj. If there exists a job Jk in batch Bi where Ti �
Tj > pk and exchange the job Jk with the job having the longest processing time in
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batch Bj without violating the machine capacity constraint, then the processing time
of batch Bi stays unchanged and that of batch Bj turns into T′j, T′j < Tj. Then ΔF =
(n1 + n2 + … +nj-1) (T′j - Tj) < 0. So we get a smaller total penalty. □

Moreover, the batches in set T have the similar result but in BWSPT.

4 Algorithm

There are three phases to solve our problem: (1) Assign the jobs into different sets,
namely E, W and T; (2) assign the jobs into batches in each set, respectively; and
(3) schedule the formed batches, respectively. As for the third phase, after the batches
are formed, it is optimal to sequence the jobs by BWLPT and BWSPT in E and T
respectively. Consequently, the more difficult remaining problem is how to form bat-
ches in E, W and T, respectively. It is critical to find an efficient batch forming
algorithm, as the batch forming phase greatly affects our objective.

Through the analysis of our problem, the heuristic information of making PRN of
each batch as small as possible is obtained. Thus, a new greedy algorithm F-PRN is
proposed as follows.

Algorithm 1 (F-PRN)
Step 1. Index the jobs in SPT(shortest processing time) order, denoted as J1, J2,…, Jn.
Step 2. Set i = 1, j = 1, K = 1. Put the first job J1 in the first batch B1.
Step 3. The remaining job set as J′ = {Ji+1, …, Jn}. Denote B = {B1,…, BK} be the

batches presently and compute the ratios Tj/nj, j = 1,…,K.

Step 4. Set i = i+1. Put Ji in batch Bj satisfied min{j∣ pi
nj þ 1 � Tj

nj
, si +P

u2Bj
su � S;Bj 2 B}. If such j does not exist, push Ji into a new batch Bk+1. Set K = K+1.

Step 5 If J′ ≠ ∅, go to Step 3. Otherwise, stop.
The principle of the F-PRN algorithm is making PRN of each batch as small as

possible, which has been proven in Property 4. The preconditions of adding a job into a
given batch are (1) that the remaining sizes of the batch is large enough for the job and
(2) PRN of the batch after merging this job is smaller than that of all other possibly
added jobs. This procedure costs the time of O(n2).

The following property can be used from my previous one of reference [5]: there
exists an optimal schedule, where the window set W contains the batches with smallest
processing time.

Then, the remaining batches are in set E and T. Next, we can use the dynamic
program in [1] of time O(n2e + nd), as a more efficient algorithm. In it, the obtained
batches are as ordinary jobs ignoring the size. But the processing time is treated as njTj,
because the contribution to the total penalty is njTj, where Tj be the processing time and
nj be the number of jobs contained in batch Bj.
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5 Conclusion

The common due window scheduling problem is investigated on a batch machine
which can process many jobs simultaneously. In this paper, the bounded version is
considered with batch capacity and non-identical job sizes. The objective is to mini-
mize the weighted earliness and tardiness total penalty. Based on properties proposed,
an efficient algorithm is presented.

As a future research direction, similar problems, where jobs have different penalty
coefficient and due window, are challenging and worthy of investigation. When the
release times of jobs are different or multiple machines are involved, the problems are
more competitive.
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Abstract. To accelerate cache access and reduce the access time, the
large number of data produced with different combined positions and
many candidate sequences are distributed to the texture memory in
GPUs when the modeling computation is used to solve in parallel the
(l,d)-motif identification problem. The size of thread blocks in GPUs is
set according to the size of data in combined positions, the best number
of running threads in a thread block is found, and a cache-efficient par-
allel algorithm for identifying (l,d)-motifs in biosequences is designed by
CPU and GPUs cooperative computing. The experimental results show
that the proposed parallel algorithm can solve some (l,d)-motif identifi-
cation instances of large size in less computation time and obtain good
speedup and scalability.

Keywords: Motif identification · Combinatorial computation · Parallel
algorithm · Hybrid CPU and GPU architectures · Texture memory

1 Introduction

Identifying motifs from biological sequences is an important issue in biological
information computing. For given n input sequences which the length of each
sequence is L, each sequence contains a variant Mi of motif M of length l,
l <L, Mi is evolved from M and the Hamming distance between M and Mi is
not greater than d. If l and d are known, identifying motif M from the input
sequences is called the implanted (l,d)-motif identification problem [1].

The (l,d)-motif identification problem is a well-known NP-Hard problem in
computational biology. When the number n of the input sequences and length
L of each sequence is large, identifying motifs process is very time consuming.
Recently, people applied parallel computing to accelerate the solution of the
implanted (l,d)-motif identification problem. Based on the unified projection
approach and the voting algorithm, a parallel identifying motifs algorithm was
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designed on heterogeneous cluster system of single-core processor [2]. The par-
allel algorithm [3] spent 6.9 h to solve successfully the (21,8)-motif identification
instance on the multi-core computer having 16 cores. A modeling computation
algorithm [4] was proposed to solve in parallel the planted motif identification
problem on multi-processor system by combinatorial computation approach. The
modeling computation algorithm produced large number of the data with differ-
ent combined positions and many candidate sequences during identifying (l,d)-
motifs. The modeling computation algorithm is difficult to solve the (l,d)-motif
identification problem in an acceptable time when l is large. The parallel algo-
rithm [5] solved the (25, 10) and (26, 11)-motif identification instances, and
identified successfully the (50,12)-motif instance.

A brute force algorithm was presented to solve recursively the (l,d)-motif
identification problem on multi-core processor [6]. The time complexity of this
algorithm is reduced to the exponential level of d, where d is the number of muta-
tion positions. By distributing large number of the data produced with different
combined positions during the modeling computation to L3, L2 and L1 caches,
a thread-level parallel algorithm called MLC-Modeling was designed to solve the
(l,d)-motif identification problem [7]. An improved Gibbs sampling algorithm
was presented to solve the (l,d)-motif identification problem on single GPU [8].
This parallel algorithm can solve the (l,d)-motif identification instance of larger
l, but it was not cache-efficient. Based on CUDA programming model, a MEME
algorithm was designed to solve the (l,d)-motif identification problem on single
GPU in the two-level mode of parallel processing sequence and substrings [9].
To solve the planted motif finding problem, a parallelizable enumeration-based
approach called BitBased [10] was proposed on CPU and GPU, which it was able
to solve the (21,8)-motif identification instance. A GPUmotif method [11] was
developed to accelerate the motif analysis, where the fragmentation technique
was used to hide data transfer time between memories. A parallel projection
algorithm for finding motifs [12] was implemented on GPUs. This algorithm
can solve the instances of large input (600–1000 base pair per sequence) in an
inordinate amount of time. To find DNA-binding motifs in ChIP-Seq and DNase-
Seq data, EXTREME algorithm [13] was presented, which uses the expectation
-maximization algorithm for motif discovery. The EXTREME algorithm can dis-
cover motifs in large datasets in a practical amount of time without discarding
any sequences.

This paper designs a cache-efficient parallel algorithm for identifying (l,d)-
motifs in biosequences on hybrid CPU and GPU architecture. The remainder
is organized as follows. Section 2 describe and analyze the parallel algorithm.
Section 3 reports the experimental results. Section 4 concludes the paper.

2 Algorithm

For the multi-core computer with single GPU, CPU converts the data types
and transmits the data to the GPU, and allocates the space of video mem-
ory in GPU. Assume that there are r different combined positions when the
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modeling computation algorithm [4] is used. We let GPU execute the model-
ing computation for one position. Assume also that there are s threads in a
thread block in GPU. Hence, the r/s thread blocks are set. When the kernel
functions are run, position i of current thread in Grid can be computed by
blockDim.x×blockIdx.x+threadIdx.x. Each thread just deals with one position
according to the computation mapping of i. The GPU returns the results to the
main memory in CPU, and CPU identifies the motifs from the returned results.

Algorithm SGPU-Modeling describes parallel solving (l,d)-motif problem on
single GPU.

Algorithm 1. SGPU-Modeling
Input: L, l, d, DNA sequence BSi, i=1,2,. . . ,n;
Output: the motifs;
CPU side:
Begin
1. for i=1 to n do
2. for j=1 to L-l+1 do
3. If there is at least one subsequence of length l in each input DNA sequence except
for BSi and the Hamming distance between this subsequence and Rij is smaller than
or equal to d, Rij is a subsequence of length l starting from position j in BSi, then
output motif Rij and algorithm ends;
4. Construct corresponding sets C and CM for Rij , C is the set of sequences whose
the Hamming distance between each sequence of length l and Rij is smaller than 2d,
and CM is the set of sequences whose the Hamming distance between each sequence
of length l and Rij is equal to 2d ;
5. for k=1 to |CM | do
6. Record 2d different positions between Rij and ck and r=

(
2d
d

)
combined positions

produced by selecting randomly d ones from the 2d positions, and ck is the k -th
sequence in CM ;
7. CPU sends Rij ,ck,C and the array of combined positions to GPU, and distributes
C and the array of combined positions to the texture memory in GPU;
8. Call kernel function FindMotifkernel<<<num blocks, num threads>>>(input
parameter, output parameter);
9. CPU identifies the motifs in the results from GPU.
End.
GPU side:
FindMotifkernel<<<num blocks,num threads>>>(input parameter, output parame-
ter)
Begin
1. i=blockDim.x*blockIdx.x+threadIdx.x ;
2. Thread i executes the modeling computation for Rij and ck in current mapping
and obtains the result R′

ij ;
3. If R′

ij is a motif, its corresponding mark position is set to 1.
End.
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In algorithm SGPU-Modeling, step 3 and step 4 require O(n×L) time respec-
tively, step 6 requires O(l×r) time, step 7 requires O(1) time, step 8 requires
O(d+|C|) time, and step 9 requires O(r) time.

So, the time complexity of SGPU-Modeling algorithm is = O(n × L × (n ×
L + |CM | × (|C| + r))), and the speedup is O( n×L+|CM |×r×|C|

(n×L+|CM |×(|C|+r) ).
Assume that the multi-core computer has ng GPUs and there are r

different combined positions, each GPU executes the modeling computa-
tion for a position, and there are s threads in each thread block in
each GPU. Hence, each GPU sets r/(s×ng) thread blocks. When the ker-
nel function is run, position i of current thread in Grid is obtained by
ngi×gpuIndex+blockDim.x×blockIdx.x+threadIdx.x, where ngi denotes the num-
ber of the i -th GPU. Each thread can just deal with a position according to
computation mapping of i.

Algorithm 2. MGPU-Modeling
Input: L, l, d, DNA sequence BSi, i=1,2,. . . ,n;
Output: motifs;
CPU side:
Begin
1. for i=1 to n do
2. for j=1 to L-l+1 do
3. If there is at least one subsequence of length l in each input sequence except for
BSi and the Hamming distance between the subsequence and Rij is less than or equal
to d, then output the motif Rij and algorithm ends;
4. Construct corresponding sets C and CM for Rij ;
5. for k=1 to |CM | do
6. Record 2d different positions between Rij and ck and r=

(
2d
d

)
combined positions

produced by selecting randomly d ones from the 2d positions;
7. for g=1 to ng do in parallel
8. cudaSetDevice(g);
9. CPU sends Rij ,ck,C and the array of combined positions to the g-th GPU, and
distributes C and the array of combined positions to the texture memory in the g-th
GPU;
10. Call kernel function FindMotifkernel<<<num blocks, num threads>>>(input
parameter, output parameter);
11. CPU identifies the motifs in results from GPUs;
End.
GPU side:
FindMotifkernel<<<num block,snum threads >>>(input parameter, output parame-
ter)
Begin
1. i=ngi*gpuIndex+blockDim.x*blockIdx.x +threadIdx.x ;
2. Thread i execute the modeling computation for Rij and ck in current mapping and
obtains the result R′

ij ;
3. If R′

ij is a motif, the corresponding mark position is set to 1;
End.
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MGPU-Modeling is the parallel identifying (l,d)-motif algorithm on multiple
GPUs. In algorithm MGPU-Modeling, step 3 requires O(n × L) time, step 4
requires O(n× L) time, step 6 requires O(l× r) time, both of step 8 and step 9
require O(1) time, step 10 requires O(d+|C|) time, step 7 requires O((d+|C|)/ng)
time, and step 11 requires O(r) time.

The time complexity of algorithm MGPU-Modeling is O(n × (L − l + 1) ×
(2× (n×L) + |CM | × (l× r+ (d+ |C|)/ng + r))) = O(n×L× (n×L+ |CM | ×
(|C|/ng + r))), and the speedup is O( n×L+|CM |×r×|C|

(n×L+|CM |×(r+|C|/ng) ).
Now, we analyze the times of access to caches when algorithms SGPU-

Modeling and MGPU-Modeling are executed. When the CPU transmits the data
to the GPUs, the candidate sequence set C and the array of combined positions
are bound to the texture memory in GPU, the sequence Rij and ck are stored
into the global memory. In the global memory in GPU, each thread executes the
modeling computation for Rij and ck, and it needs to execute d replacement
operations. The times of comparing result sequences and the sequences in set C
is |C| × l in the detection process. Therefore, each thread accesses to the global
memory (2 × d + |C| × l) times, and all threads in GPUs access to the global
memory r×(2×d+ |C|× l) times. Each thread computes the data in a row of the
array of combined positions, and it accesses to the texture memory d times. The
times of comparing result sequences and the sequences in set C is also |C| × l.
Hence, each thread accesses to the texture memory (d + |C| × l) times, and all
threads in GPUs access to the texture memory r× (d+ |C| × l) times. Although
the global memory access frequency is almost the same as the texture memory
access frequency, the data access to the texture memory can be accelerated by
caching.

Therefore, SGPU-Modeling and MGPU-Modeling can make full use of the
characteristics of GPU memory, and they are cache-efficient.

3 Experiment

3.1 Experimental Environment and Data

The computer contains 4 GPUs (4*Nvidia Tesla C2050 3 GB), 2 Intel Xeon E5620
2.4 GHz processors with each processor having 4 cores, and 12 GB main memory.
The running operating system is Red Hat Enterprise Linux 5. The programming
language and tools are C, OpenMP and CUDA respectively.

Here the experimental data are 20 simulated DNA sequences of length 600
and one motif sequence of length l. The bases (A,T,C,G) in each position of every
sequence are generated independently with equal probability, and the variants
of motifs are implanted in the random positions of the 20 DNA sequences.

3.2 Experimental Results

We first evaluate the execution time of SGUP-Modeling when multiple threads
are run in a thread block in GPU. For solving the (24,6),(28,7), (32,8), (36,9),
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Table 1. Execution time of SGPU-Modeling algorithm (/s)

(l,d) Number of running threads in a thread block in GPU

64 96 128 192 224 256 512

(24,6) 29.68 27.75 26.67 27.75 27.73 27.74 29.69

(28,7) 30.97 28.95 27.82 28.96 28.64 27.9 28.9

(32,8) 37.07 32.23 32.32 32.65 32.79 34.22 34.37

(36,9) 58.29 56.04 53.22 56.35 56.07 55.1 56.79

(40,10) 131.09 124.84 115.04 119.35 119.39 121.27 121.15

(44,11) 695.01 646.65 615.2 626.28 635.4 629.4 637.83

(48,12) 1632.4 1538.6 1477.9 1497.9 1475.8 1480.2 1500.9

(40,10), (44,11) and (48,12)-motif identification instances, when the number of
running threads is gradually increased, the execution time of SGUP-Modeling is
shown in Table 1.

We can see from Table 1 that the required time of executing SGUP-Modeling
is impacted by the number of running threads in a thread block. In addition,
except for the (32, 8) and (48,12)-motif identification instances, when 128 threads
are run in a thread block in GPU, the required time of executing SGPU-Modeling
is the least.

Next, the required time of executing SGPU-Modeling on single GPU and the
required time of executing MLC-Modeling on multi-core CPU are evaluated.

When 128 threads in a thread block are run in GPU, the execution time of
SGPU-Modeling and MLC-Modeling is shown in Fig. 1.

Fig. 1. Execution time of SGPU-Modeling and MLC-Modeling
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As see from Fig. 1, when the (l,d)-motif identification instances of small size
are solved, compared to algorithm MLC-Modeling on multi-core processor, the
advantage of algorithm SGPU-Modeling is not obvious. But along with increase
of l, the execution time of SGPU-Modeling is significantly less. This is because
the use of thread blocks in GPU and parallel threads in thread block can greatly
improve computational efficiency. In addition, the CPU is responsible for data
pre-processing and serial computation, and the logical processing capability of
CPU is fully utilized. It indicates that hybrid CPU and GPU computation can
accelerate the (l,d)-motif identification.

Figure 2 shows the speedup of MLC-Modeling and SGPU-Modeling when 128
threads in a thread block in GPU are run.

Fig. 2. Speedup of SGPU-Modeling and MLC-Modeling

From Fig. 2 we can see that the speedup of SGPU-Modeling begins to be
decreased when l > 44 and d > 11, the speedup of MLC-Modeling begins to be
decreased when l > 36 and d > 9, and the obtained speedup of SGPU-Modeling
is obviously higher than that of MLC-Modeling. Furthermore, SGPU-Modeling
can solve successfully the (52,13)-motif identification instance in 1 h and 50 min,
but MLC-Modeling cannot solve this instance in the acceptable time.
When multiple GPUs are activated to solve in parallel the (l,d)-motif identifi-
cation instances, the execution time of MGUP-Modeling is shown in Tables 2, 3
and 4 respectively.

From Tables 2, 3 and 4 we can see that the execution time of MGUP-Modeling
is dependent on the number of GPUs activated, and the execution time is rel-
atively less when the number of running threads in a thread block is 128 or
224 for a given (l,d)-motif identification instance. In addition, when three GPUs
and four GPUs are activated to execute MGUP-Modeling, the required time for
solving one instance of smaller size is longer than that for solving one instance
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Table 2. Execution time of MGUP-Modeling using 2 GPUs (/s)

(l,d) Number of running threads in a thread block in GPU

64 96 128 192 224 256 512

(24,6) 38.74 36.38 35.35 35.93 35.86 36.45 38.26

(28,7) 40.67 40.52 40.15 40.84 40.03 41.96 42.72

(32,8) 48.31 48.46 48.06 48.82 49.48 49.9 50.28

(36,9) 55.29 53.33 51.21 54.22 54.02 52.75 52.64

(40,10) 120.36 114.76 102.41 113.65 113.73 115.23 113.06

(44,11) 663.51 613.62 580.31 597.54 603.76 615.45 617.19

(48,12) 1463.7 1290.6 1183.5 1209.6 1221.3 1225.0 1311.4

Table 3. Execution time of MGUP-Modeling using 3 GPUs (/s)

(l,d) Number of running threads in a thread block in GPU

64 96 128 192 224 256 512

(24,6) 52.59 51.59 51.47 51.95 51.08 51.28 53.92

(28,7) 55.67 55.61 53.24 55.55 53.51 55.35 57.47

(32,8) 62.44 61.89 61.65 62.24 61.71 61.84 62.35

(36,9) 48.37 46.24 45.03 46.32 46.96 47.85 47.61

(40,10) 109.21 105.76 90.34 93.87 95.61 99.14 99.38

(44,11) 629.17 563.34 539.51 546.93 546.24 551.39 560.61

(48,12) 1142.4 1036.8 964.25 991.35 968.28 975.42 1013.7

Table 4. Execution time of MGUP-Modeling using 4 GPUs (/s)

(l,d) Number of running threads in a thread block in GPU

64 96 128 192 224 256 512

(24,6) 67.62 63.28 63.26 64.86 63.26 67.81 66.68

(28,7) 74.6 74.39 70.16 73.25 70.36 70.41 75.41

(32,8) 69.41 67.65 66.03 66.73 67.06 66.93 67.86

(36,9) 43.95 42.86 41.65 41.79 42.56 42.5 43.00

(40,10) 97.05 83.63 79.71 81.23 82.96 84.51 84.41

(44,11) 546.57 492.62 453.86 471.19 479.63 487.34 489.35

(48,12) 1034.6 925.86 793.54 817.47 804.15 811.03 856.71

of larger size. The reason is that when multiple GPUs are activated to solve
in parallel the (l,d)-motif identification instances of smaller size, the time that
CPU transmits data to multiple GPUs, the time of booting GPUs, and the wait-
ing time of multiple threads synchronization are longer in this case. However,
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along with gradual increase of the size of the instances, hybrid CPU and multi-
ple GPUs parallel computing can accelerate solving the (l,d)-motif identification
instances and improve the efficiency of MGUP-Modeling.

When 128 threads in a thread block are run in GPU, one GPU, two GPUs,
three GPUs and four GPUs are activated respectively, and the execution time
of MGUP-Modeling is shown in Fig. 3.

Fig. 3. Execution time of MGUP-Modeling using multiple GPUs

We can see from Fig. 3 that in the case of solving (l,d)-motif identification
instances of small size, the execution time of MGUP-Modeling using multiple
GPUs is little longer than that of MGUP-Modeling using single GPU. This is
because at this time, the communication time between CPU and GPUs, the
time of booting GPUs and the waiting time of multiple threads synchroniza-
tion occupy a large portion of the required time for solving these instances,
the advantage of multiple GPUs parallel computing is not played fully. How-
ever, along with gradual increase of the size of solving (l,d)-motif identification
instances, the execution time of MGPU-Modeling on multiple GPUs is signifi-
cantly less than that of MGPU-Modeling on single GPU. We can also see from
Fig. 3 that the efficiency of MGPU-Modeling is the highest when four GPUs
are activated. It illustrates that MGPU-Modeling is suit solving the (l,d)-motif
identification instances of large size.

When 128 threads in a thread block are run in GPU, one, two, three and four
GPUs are activated respectively, and the speedup of MGUP-Modeling is shown
in Fig. 4.

Figure 4 shows that for solving (l,d)-motif identification instances of small
size, the speedup of MGUP-Modeling using single GPU is relatively high, but
with increase of size of the instances, the speedup of MGPU-Modeling using
multiple GPUs is increased gradually.



266 C. Zhong et al.

Fig. 4. Speedup of MGUP-Modeling using multiple GPUs

Scalability is also one important measure for evaluating the performance of
parallel algorithms. According to the standard of equal speed measure [14,15], we
evaluate the scalability of MGPU-Modeling. Figure 5 shows the scalability when
MGPU-Modeling is run to solve the (36,9), (40,10), (44,11) and (48,12)-motif
identification instances.

Fig. 5. Scalability of MGPU-Modeling

As can be seen from Fig. 5, with gradual increase of GPUs activated, the
speed of MGPU-Modeling is also gradually increased. It illustrates that the
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MGPU-Modeling has good scalability. We also see form Fig. 5 that when MGPU-
Modeling solves the (l,d)-motif instances of larger size, it obtains higher speed
in the case of the same number of GPUs activated.

4 Conclusions

The proposed parallel algorithm using hybrid CPU and GPU computing can
solve efficiently the (l,d)-motif identification instances of large size in less com-
putation time. The algorithm is cache-efficient and obtains good speedup and
scalability. Further work will be focused on how to establish task scheduling
model to balance the loads among compute nodes and solve the (l,d)-motif
identification problem of larger l on heterogeneous hybrid CPU/GPU cluster
system.
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Abstract. A k-CNF formula is said to be p-satisfiable if there exists a
truth assignment satisfying a fraction of 1− 2−k + p2−k of its clauses. We
obtain better lower bounds for random 3 and 4-SAT to be p-satisfiable.
The technique we use is a delicate weighting scheme of the second moment
method, where for every clause we give appropriate weight to truth assign-
ments according to their number of satisfied literal occurrences.

Keywords: Maximum satisfiability · The second moment method ·
Weighting scheme

1 Introduction

Maximum satisfiability (Max-SAT) is one of the central problems in theoretical
computer science; it is the optimization version of the satisfiability problem. For
a Boolean CNF formula F , Max-SAT is meant to determine whether there exists
a truth assignment that satisfies a given number of clauses in F . The decision
version of Max-SAT is NP-complete; however, Max-SAT can be approximated
within a constant ratio. In recent years, a lot of results have been given by various
approximation algorithms [BF,FK,GW,H1,H2]. Broder et al. [BFU] proved that
the maximum number of satisfied clauses in a given CNF formula is tightly
concentrated around its mean.

Recently, attention has been focused on the phase transition of random Max-
SAT problems. A k-CNF formula with n variables and rn clauses, denoted by
Fk(n, rn), is said to be p-satisfiable if there exists a truth assignment satisfying
a fraction of 1 − 2−k + p2−k of its clauses (note that p = 1 corresponds to the
k-SAT problem; every k-CNF is 0-satisfiable). Say that a sequence of random
events ξn occurs with high probability (w.h.p.) if limn→∞ P[ξn] = 1. For every
k ≥ 2 and p ∈ [0, 1], let

rk(p) ≡ sup{r : Fk(n, rn) is p-satisfiable w.h.p.},

r∗
k(p) ≡ inf{r : Fk(n, rn) is p-unsatisfiable w.h.p.}.

Partially supported by NSFC 11301091.

c© Springer International Publishing Switzerland 2016
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Using the first moment method and algorithm analysis, Coppersmith et al.
[CGHS] proved that for all k ≥ 2 and sufficiently small p

k2k+2

π(k + 1)2
× p−2 − O(p−1) ≤ rk(p) ≤ r∗

k(p) ≤ 2(2k − 1) ln 2 × p−2.

Later, the bounds above were improved by Achlioptas et al. [ANP], who
established that there exists a sequence δk = O(k2−k/2) such that for all k ≥ 2
and p ∈ (0, 1)

(1 − δk)
2k ln 2

p + (1 − p) ln(1 − p)
< rk(p) ≤ r∗

k(p) ≤ 2k ln 2
p + (1 − p) ln(1 − p)

. (1)

The approach to prove the lower bounds in (1) was by using a weighted
version of the second moment method, which involves the application of the
following Cauchy type inequality

P[X > 0] ≥ E[X]2

E[X2]
, (2)

where X represents any non-negative random variable. If X counts the number
of p-satisfiable assignments, then (2) gives a lower bound on the probability of
being p-satisfiable.

To state it precisely, let F be a random k-CNF formula on n variables and
m = rn clauses, and S(F ) be the set of satisfying truth assignments of F .
For a fixed truth assignment σ ∈ {0, 1}n, let H = H(σ, F ) be the difference
between the number of satisfied and unsatisfied literal occurrences in F under
σ. Let U = U(σ, F ) be the number of unsatisfied clauses in F under σ. For fixed
0 < γ, η < 1 and u0 = (1− p)2−k, Achlioptas et al. [ANP] adopted the following
bivariate weighting scheme on the p-satisfiable assignments,

X0 = X0(γ, η) =
∑

σ

γH(σ,F )ηU(σ,F )−u0rn. (3)

In this way, “balanced” truth assignments (which mean the truth assignments
that satisfy approximately half of all literal occurrences) were counted and assign-
ments that violate more than (1−p)2−krn clauses were suppressed exponentially.
By (1) we see that, the ratio between the upper and lower bounds above tends to
1 as k increases, which greatly improves the previous results. However, there still
exist big gaps between the lower and upper bounds for small k.

In this paper, we further improve the lower bounds of rk(p) for k = 3 and
4. Our method is a more general version of the weighting form (3), inspired by
the works of [LGX,YV]. It’s worth mentioning that by using different weighting
schemes when applying the second moment method, the known best 2.68 lower
bound for 3-SAT [AP] has been improved to 2.83 [LGX]; the known best 7.91
lower bound for 4-SAT [AP] has been improved to 8.09 [LGX,YV]. Specially,
our lower bound r3(1) matches the lower bound in [LGX], and r4(1) matches
the lower bound in [LGX,YV]. Finally, it is worth mentioning that, the compu-
tational complexity of this weighting scheme increases rapidly when k increases,
but has little advantage over the one in [ANP] for large k.
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2 Weighting and Estimating

In this section, we consider a refined transformation of the number of p-satisfiable
truth assignments when applying the second moment method. For a random
CNF formula F , appropriate weight will be given to every truth assignment
σ ∈ {0, 1}n depending on their number of satisfied literal occurrences in each
clause. Later, we will give some necessary moment estimations which will be
used to improve the bound of the probability of being p-satisfiable.

2.1 Our Weighting Scheme

For a random k-CNF formula F where the clauses are independently chosen, let
c = �1 ∨ �2 ∨ ... ∨ �k be a random clause, where �1, �2, ..., �k are i.i.d. uniformly
distributed literals. Let S1(c) be the set of all truth assignments that satisfy
exactly one of the k literals �1, �2, ..., �k in clause c. For some fixed γ, η > 0 and
u0 = (1 − p)2−k, we adopt the following weighting form

X = X(γ, η, μ) =
∑

σ

∏

c

γH(σ,c)ηU(σ,c)−u0

(
1 + μ × 1σ∈S1(c)

)
, (4)

where μ > −1. For some fixed A > 0, we consider the following subset of truth
assignments

S∗ =
{
σ ∈ {0, 1}n : H(σ, F ) ≥ 0 and U(σ, F ) ∈ [

u0m,u0m + A
√

m
]}

.

For fixed μ > −1 and u0 = (1 − p)2−k, let γ0 = γ0(μ) and η0 = η0(μ) be
positive real values (in fact the existence of γ0, η0 can be seen by numerical
calculation) satisfying the following equations

⎧
⎨

⎩

1 − η0 =
(
1 − γ2

0

)(
1 + γ2

0

)k−1 + (k − 2)μγ2
0

u0 =
η0

(1 + γ2
0)k + kμγ2

0 − (1 − η0)
.

(5)

Define

X∗ = X∗(γ0, η0, μ) =
∑

σ∈S∗

∏

c

γ
H(σ,c)
0 η

U(σ,c)−u0
0

(
1 + μ × 1σ∈S1(c)

)
. (6)

By definition, if X∗ > 0 then at least one truth assignment must falsify at
most u0m + A

√
m clauses. Thus if we prove that there exists a constant D > 0

(which is independent of n) such that E[X2
∗ ] < D × E[X∗]2, then applying (2)

we see that Fk(n,m) is w.h.p. p′-satisfiable for all p′ < p.

2.2 Moment Estimations and Truncation

We define two functions that will play an important role in our analysis.
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η2u0f(α, γ, η, μ) =
(

α
(γ2 + γ−2

2

)
+ 1 − α

)k

− 2(1 − η)
(αγ−2 + 1 − α

2

)k

+ (1 − η)2
(αγ−2

2

)k

+ 2kμ

[(
αγ2 + 1 − α

2

)(
αγ−2 + 1 − α

2

)k−1

− (1 − η)
(

1 − α

2

) (
αγ−2

2

)k−1
]

+ kμ2γ−2(k−2)

[
(α

2

)k

+ (k − 1)
(

1 − α

2

)2 (α

2

)k−2
]

, (7)

and

gr(α, γ, η, μ) =
f(α, γ, η, μ)r

αα(1 − α)1−α
. (8)

Lemma 1. For every γ, η > 0 and μ > −1,

E[X]2 =
(

2gr

(
1
2
, γ, η, μ

))n

.

Proof. By linearity of expectation and clause-independence we see that

ηu0mE[X] =
∑

σ

E

[
∏

c

γH(σ,c)ηU(σ,c)
(
1 + μ × 1σ∈S1(ci)

)
]

= 2n
(
E

[
γH(σ,c)ηU(σ,c)

(
1 + μ × 1σ∈S1(c)

)])m

.

It is easy to see that

E
[
γH(σ,c)ηU(σ,c)

(
1 + μ × 1σ∈S1(c)

)]

= E
[
γH(σ,c)

]
− (1 − η)E

[
γH(σ,c)1σ �∈S(c)

]
+ μE

[
γH(σ,c)1σ∈S1(c)

]
.

Simple calculation yields that

E
[
γH(σ,c)

]
=

(
γ + γ−1

2

)k

,

E
[
γH(σ,c)1σ �∈S(c)

]
=

(
γ−1

2

)k

,

E
[
γH(σ,c)1σ∈S1(c)

]
=

(
k

1

)(γ

2

)(
γ−1

2

)k−1

.

Therefore

E
[
γH(σ,c)ηU(σ,c)

(
1 + μ × 1σ∈S1(c)

)]

=
(

γ + γ−1

2

)k

− (1 − η)
(

γ−1

2

)k

+ kμ
(γ

2

) (
γ−1

2

)k−1

≡ Z(γ, η, μ). (9)
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Note that η−2u0Z(γ, η, μ)2 = f(1/2, γ, η, μ), then

E[X]2 = (2gr(1/2, γ, η, μ))2 .

The following is to show that asymptotically E[X∗(γ0, η0, μ)] is a constant
fraction of E[X(γ0, η0, μ)].

Lemma 2. For every u0 ∈ [0, 2−k] and μ > −1, suppose that γ0, η0 > 0 satisfy
Eq. (5), then there exists θ = θ(k, u0, μ, γ0, η0, A) > 0 such that

lim
n→∞

E[X∗(γ0, η0, μ)]
E[X(γ0, η0, μ)]

= θ.

Proof. By linearity of expectation, it suffices to prove that there exists some
θ = θ(k, u0, μ, γ0, η0, A) > 0 such that for the values of μ, γ0 and η0, and every
truth assignment σ, it holds that

lim
n→∞

E
[∏

c γ
H(σ,c)
0 η

U(σ,c)
0

(
1 + μ × 1σ∈S1(c)

)
1σ∈S∗(F )

]

E
[∏

c γ
H(σ,c)
0 η

U(σ,c)
0

(
1 + μ × 1σ∈S1(c)

)] = θ. (10)

Recalling the formulas in our model are sequences of i.i.d. random literals
�1, ..., �km, let P(·) denote the probability assigned by our distribution to any
such sequence, i.e., (2n)−km. Now, fix any truth assignment σ and consider an
auxiliary distribution Pσ on k-CNF formulas where the m clauses c1, ..., cm are
again i.i.d. among all (2n)k clauses, but where now for any fixed clause ω

Pσ(ci = ω) =
γ

H(σ,ω)
0 η

U(σ,ω)
0

(
1 + μ × 1σ∈S1(ω)

)
P(ω)

Z(γ0, η0, μ)
, (11)

where the function Z(γ, η, μ) is given by (9), thus

Z(γ0, η0, μ) = E
[
γ

H(σ,c)
0 η

U(σ,c)
0

(
1 + μ × 1σ∈S1(c)

)]
.

Under P(·) every k-CNF formula F with m clauses had the same probability
P(F ) = (2n)−km, but under Pσ its probability is

Pσ(F ) =
γ

H(σ,F )
0 η

U(σ,F )
0 P(F )

∏m
i=1

(
1 + μ × 1σ∈S1(ci)

)

Z(γ0, η0, μ)m
, (12)

Let Eσ be the expectation operator corresponding to Pσ. Keep the equations
in (5) in mind, then

Z(γ0, η0, μ)Eσ [H(σ, c)] = Z(γ0, η0, μ)Eσ [H(σ, c)1σ∈S(c)] + Z(γ0, η0, μ)Eσ[H(σ, c)1σ �∈S(c)]

=
k∑

i=1

(k
i

)
(2i − k)γ2i−k

0 (1 + μ × 1i=1)2−k − kη0γ−k
0 2−k

= k(2γ0)−k
[
(1− η0)−

(
1− γ2

0

)(
1 + γ2

0

)k−1 − (k − 2)μγ2
0

]

= 0,

Z(γ0, η0, μ)Eσ
[
U(σ, c)− u0

]
=
(
2γ0
)−k

η0 − Z(γ0, η0, μ)u0 = 0.
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Apply the multivariate central limit theorem to the i.i.d. mean-zero random
vectors (H(σ, ci), U(σ, ci) − u0) for i = 1, ...,m. Observe that, since k ≥ 2, the
common law of these random vectors is not supported on a line. Then as n → ∞

Pσ[σ ∈ S∗(F )] = Pσ

[
H(σ, F ) ≥ 0 and U(σ, F ) ∈ [

mu0,mu0 + A
√

m
]]

→ θ(k, u0, μ, γ0, η0, A) > 0.

The right hand side is the probability that a certain non-degenerate bivariate
normal law assigns to a certain open set, and its exact value is unimportant. By
(11), this is equivalent to (10).

Next, we will give the estimation of the second moment of X∗(γ0, η0, μ).

Lemma 3.

E[X2
∗ ] ≤ 2n

n∑

z=0

(
n

z

)
inf

γ≥γ0,η≥η0
f(z/n, γ, η, μ)m. (13)

Proof. Let σ and τ be any pair of truth assignments that agree on z = αn
variables, and �1, �2, ..., �k be i.i.d. uniformly distributed literals and c = �1 ∨
�2 ∨ ... ∨ �k. Since σ ∈ S∗ implies H(σ, F ) ≥ 0 and U(σ, F ) ≥ u0m, then for any
γ ≥ γ0 and η ≥ η0, we have

E[X
2
∗ ]

=
∑

σ,τ

E

[

γ
H(σ,F )+H(τ,F )
0 η

U(σ,F )+U(τ,F )−2u0m
0 1σ,τ∈S∗(F)

∏

c

(
1 + μ × 1σ∈S1(c)

)(
1 + μ × 1τ∈S1(c)

)
]

≤
∑

σ,τ

(
E
[
γ

H(σ,c)+H(τ,c)
η

U(σ,c)+U(τ,c)−2u0
(
1 + μ × 1σ∈S1(c)

)(
1 + μ × 1τ∈S1(c)

)])m
. (14)

Next, we will estimate (14). According to [ANP], it holds that

E
[
γH(σ,c)+H(τ,c)ηU(σ,c)+U(τ,c)

]

=

(
α

(
γ2 + γ−2

2

)
+ 1 − α

)k

− 2(1 − η)

(
αγ−2 + 1 − α

2

)k

+ (1 − η)2
(

αγ−2

2

)k

.

(15)

Note that 1σ∈S1(c),τ∈S(c) = 1σ∈S1(c) − 1σ∈S1(c),τ �∈S(c), then

E
[
γH(σ,c)+H(τ,c)ηU(τ,c)1σ∈S1(c)

]

= E
[
γH(σ,c)+H(τ,c)1σ∈S1(c)

]
− (1 − η)E

[
γH(σ,c)+H(τ,c)1σ∈S1(c),τ �∈S(c)

]

= k

(
αγ2 + 1 − α

2

)(
αγ−2 + 1 − α

2

)k−1

− k(1 − η)
(

1 − α

2

)(
αγ−2

2

)k−1

.(16)

If σ, τ ∈ S1(c), we have two cases:
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(1) Each of the k literals in clause c is assigned the same value in σ as that in τ ;
(2) exactly two of the k literals in c are assigned the opposite value.

Then it follows that

E
[
γH(σ,c)+H(τ,c)1σ∈S1(c),τ∈S1(c)

]

= k

(
αγ2

2

) (
αγ−2

2

)k−1

+ k(k − 1)
(

1 − α

2

)2 (
αγ−2

2

)k−1

. (17)

Combining (15)–(17), we can deduce that

E
[
γH(σ,c)+H(τ,c)ηU(σ,c)+U(τ,c)−2u0

(
1 + μ × 1σ∈S1(c)

) (
1 + μ × 1τ∈S1(c)

)]

= η−2u0

(
E

[
γH(σ,c)+H(τ,c)ηU(σ,c)+U(τ,c)

]
+ 2μE

[
γH(σ,c)+H(τ,c)ηU(τ,c)1σ∈S1(c)

]

+μ2E
[
γH(σ,c)+H(τ,c)1σ∈S1(c),τ∈S1(c)

] )

= f(α, γ, η, μ). (18)

Since the number of ordered pairs of assignments with overlap z is 2n
(
n
z

)
,

(14) and (18) yield that

E[X2
∗ ] ≤ 2n

n∑

z=0

(
n

z

)
inf

γ≥γ0,η≥η0
f(z/n, γ, η, μ)m.

The proof of the following lemma follows by applying the Laplace method of
asymptotic analysis [DB].

Lemma 4 [AM]. Let φ be any real, positive, twice-differential function on [0, 1]
and let

Sn =
n∑

z=0

(
n

z

)
φ(z/n)n.

Letting 00 ≡ 1, define g on [0, 1] as

g(α) =
φ(α)

αα(1 − α)1−α
.

If there exists αmax ∈ (0, 1) such that g(αmax) ≡ gmax > g(α) for all α 
=
αmax, and g

′′
(αmax) < 0, then there exist constants B,C > 0 such that for all

sufficiently large n
B × gn

max ≤ Sn ≤ C × gn
max.

The following result follows by combining Lemmas 1–4.

Corollary 1. Let χ : [0, 1] → [γ0,+∞) and ω : [0, 1] → [η0,+∞) be
arbitrary functions satisfying χ(1/2) = γ0, ω(1/2) = η0, and let g∗

r (α) =
gr(α, χ(α), ω(α), μ). If g∗

r (1/2) > g∗
r (α) for all α 
= 1/2, and (g∗

r )
′′
(1/2) < 0,

then there exists a constant D = Dχ,ω(k, r, p, μ,A) > 0 such that for all suffi-
ciently large n

E[X2
∗ ] ≤ D × E[X∗]2.
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Lemma 5. For all 0 < x ≤ 1/2, gr(1/2 + x, γ, η, μ) > gr(1/2 − x, γ, η, μ).

Proof. Note that αα(1 − α)1−α is symmetric around 1/2, so it suffices to prove
that for every x ∈ (0, 1/2),

f

(
1
2

+ x, γ, η, μ

)
> f

(
1
2

− x, γ, η, μ

)
,

where γ, η > 0 and μ > −1.

2kη2u0f

(
1

2
+ x, γ, η, μ

)

=
1

2k

[(
γ−1 + γ

)k − (1 − η)γ−k + kμγ−(k−2)
]2

+
k

2k−1

[(
γ−1 + γ

)k−1 − (1 − η)γ−k + (k − 2)μγ−(k−2)
]2

x

+
k∑

j=2

(
k

j

)
1

2k−j

[(
γ−1 + γ

)k−j(
γ−1 − γ

)j − (1 − η)γ−k + (k − 2j)μγ−(k−2)
]2

xj

=
k∑

j=0

(
k

j

)
1

2k−j

[(
γ−1 + γ

)k−j(
γ−1 − γ

)j − (1 − η)γ−k + (k − 2j)μγ−(k−2)
]2

xj

≡
k∑

j=0

ajx
j .

Note that aj ≥ 0 (j = 0, ..., k) and at least one of the aj ’s is non-zero.
Moreover, for every x > 0 and odd j it holds that xj − (−x)j > 0, then the
conclusion holds.

Remark. By Lemma 5, we know that

inf
γ≥γ0,η≥η0

gr(1/2 + x, γ, η, μ) ≥ inf
γ≥γ0,η≥η0

gr(1/2 − x, γ, η, μ),

which simplifies the Corollary 1 to consider only α ∈ (1/2, 1].

3 Experimental Results and Performance Analysis

From Corollary 1 and Lemma 5 we see that, if for any given p ∈ (0, 1] and r > 0
there exists constant μ > −1, and functions χ : [0, 1] → [γ0,+∞) and ω : [0, 1] →
[η0,+∞) such that for all α ∈ (1/2, 1], g∗

r (1/2) > g∗
r (α) and (g∗

r )′′(1/2) < 0, then
there exists a constant D = Dχ,ω(k, r, p, μ,A) such that for all sufficiently large n,
E[X2

∗ ] ≤ D ×E[X∗]2. Thus, a random k-CNF formula Fk(n, rn) is p-satisfiable.
For computing simplicity, we will let 0 < γ, η < 1, and let μ ∈ (−1, 1) in this
paper.

For k = 3 and k = 4, the lower bounds (shown in Figs. 1 and 3) can be
determined numerically by using a refined adaptation of γ, η with respect to
α. Specifically, for each value of p ∈ [0, 1], we compute over all μ ∈ (−1, 1),
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and for every value of μ there exists a choice of functions χ, ω satisfying
gr(1/2, γ0, η0, μ) > gr(α, χ(α), ω(α), μ) for all α ∈ (1/2, 1]. Note that, to guar-
antee that (g∗

r )
′′
(α) is twice differentiable at 1/2, we will let

g∗
r (α) =

{
gr(α, γ0, η0, μ) ifα ∈ ( 12 − ε, 1

2 + ε)
inf

1>γ≥γ0,1>η≥η0
gr(α, γ0, η0, μ) otherwise (19)

where ε > 0 is a small enough constant. Let rk(p) ≡ maxμ∈(−1,1) rk(p, μ), we can
then obtain the results in Figs. 1 and 3. The values of rk(p) for some specific p
are shown in Tables 1 and 2.

Furthermore, we record an optimal value of μ for each p (as illustrated in
Figs. 2 and 4). Note that, the value of μ may not be in one-to-one correspondence
with p, which means that for each p there may exist several satisfying values of
μ and we choose one of them arbitrarily.

Table 1. Comparison of lower bounds r3(p) for different p

p 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Achlioptas et al.’s
lower bound

2.68 3.25 4.04 5.2 6.9 9.89 15.29 26.82 60.01 238.93

Our lower bound 2.83 3.4 4.2 5.36 7.15 10.12 15.57 27.42 61.08 243.89

Table 2. Comparison of lower bounds r4(p) for different p

p 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Achlioptas et al.’s
lower bound

7.91 10.13 13.13 17.38 23.94 34.88 54.05 95.35 212.96 847.08

Our lower bound 8.09 10.59 13.92 18.75 26.1 38.46 60.85 110.22 245.67 922.46

Fig. 1. Comparison of the lower
bounds for the density r as a function
of q = 1 − p for k = 3.

Fig. 2. The optimal choice of μ (with
respect to q = 1 − p) for k = 3.
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Fig. 3. Comparison of the lower
bounds for the density r as a function
of q = 1 − p for k = 4.

Fig. 4. The optimal choice of μ (with
respect to q = 1 − p) for k = 4.
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Abstract. In a social network, the trust among its members usually
cannot be carried over many hops. So it is important to find disjoint clus-
ters with a small diameter and with a decent size, formally called dense
clubs in this paper. This paper focuses on handling this NP-complete
problem. First, from the parameterized computational complexity point
of view, we show that this problem does not admit a polynomial kernel
(implying that it is unlikely to apply some reduction rules to obtain a
practically small problem size). Then, we focus on the dual version of
the problem, i.e., deleting d vertices to obtain some disjoint dense clubs.
We show that this dual problem admits a simple FPT algorithm using
a bounded search tree method (the running time is still too high for
practical datasets). Finally, we combine a simple reduction rule together
with some heuristic method to obtain a practical solution (verified by
extensive testing on practical datasets).

1 Introduction

Social network gives people a new “world” where we can share everything that
happens around us and social networks have grown enormously in recent years.
It is full of data and has become an indispensable part of our life. Finding
cohesive subgroups is vital to understanding the structure of the network. Clique
is commonly used to describe a dense subgroup. However, the requirements of
a clique are too restrictive in many situations, thus various relaxed cohesive
subgroup structures based on clique have been proposed, such as s-club, s-clique,
and s-plex, etc. [1,2].

Given an undirected graph G = (V,E), a clique is a subset of vertices such
that any pair of vertices in this subset form an edge in E. In fact, the maximum
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-39817-4 27



280 P. Zou et al.

clique problem is one of the most widely studied NP-complete problems [3].
Many algorithms for this problem are available in the literature [4–6]. Motivated
by practical applications in social and biological networks, s-club is a diameter-
based graph-theoretic generalization of clique, which was first introduced as an
alternative approach to model a cohesive subgroup in the social network area
[7,8]. A s-club is a subset of vertices V ′ ⊆ V , such that the diameter of the
induced subgraph G[V ′] is at most s.

With the development of social networks, the trust among its members has
become a big issue. In a social network, the trust among its members usually
cannot be carried over many hops. So it is important to find disjoint clusters
with a small diameter and with a decent size, formally called dense clubs in
this paper. Secondly, a complex social network is usually composed of several
groups/communities, and this characterization of community structure means
the appearance of densely connected groups of vertices, with only sparse con-
nections between groups [9], see Fig. 1.

Fig. 1. A small example of the network structure. There are three groups denoted by
the circle with many edges and only a small number of edges between the groups.

A s-clique is a subset of vertices S ⊆ V if the shortest path distance
dG(u, v) ≤ s for all u, v ∈ S. It is pretty obvious that a s-club is also a s-
clique, but the converse is not true in general [10]. And for s = 1, a s-club is
simply a clique. It is known that the maximum clique problem is a classical NP-
complete problem [4,5], which is also hard to approximate [11]. The maximum
s-club problem [12,13] is NP-complete for any fixed s, even when restricted to
graphs of fixed diameter s + 1 [12]. In fact, testing whether a s-club is maximal
is also NP-complete for any fixed integer s [14].

In reference [15], Bourjolly et al. posed three heuristic methods which are
DROP, CONDTELLATION and s-DLIQUE-DROP for the maximum s-club
problem. A variable neighborhood search (VNS) meta-heuristic algorithm was
proposed by Shahinpour et al. [10]. In fact, they used the VNS heuristic method
as the lower bound to develop an exact algorithm for the maximum s-club prob-
lem [10]. Recently, a new heuristic algorithm called IDROP for the largest s-club
problem was given in the paper [16].

From the parameterized computational complexity point of view, two fixed-
parameter tractable (FPT) algorithms for the maximum s-club problem were
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obtained [17]. The paper [18] extends the previous parameterized complexity
study for 2-club and provides polynomial-size kernels for 2-club parameterized
by “cluster editing set size of G” and “size of a cluster editing set of G”. For the 2-
club-editing problem, the paper [21] proposes an improved search tree algorithm
with running time O∗(3.31k) based on two new branching cases, improving the
trivial O∗(4k) bound.

In this paper, we first study the disjoint dense club problem. Specifically, we
show that the problem does not have a polynomial kernel (unless the polynomial
hierarchy collapses to the third level). This implies that it is unlikely to obtain
any efficient FPT algorithm for the problem (and the related ones). Then we
consider the dual problem of editing a graph (by deleting vertices) into disjoint
s-clubs. Since the trivial bounded-degree search method takes O∗((s+2)d) time,
which is not efficient for most real datasets, we propose three rules for build an
efficient heuristic method. We then test this method with two real datasets.

The rest of this paper is organized as follows. We will introduce some nec-
essary definitions and notations in Sect. 2. In Sect. 3, theoretical results are
reported. All computational results are shown in Sect. 4. We conclude the paper
in Sect. 5.

2 Preliminaries

In this section, we present the relevant definitions and review some useful notions.
FPT Algorithms and Kernels. FPT (Fixed-Parameter-Tractable) algorithms
are used to study the computational complexity of NP-hard problems [22–24].
Beside the input size n, we also consider a parameter k (or several parame-
ters). An FPT algorithm is one which solves a parameterized problem L in
O(f(k)nc) = O∗(f(k)) time (i.e., decide whether (x, k) ∈ L, where n = |x|),
where f(−) is any computable function and c is a constant not related to n
and k.

A parameterized problem L admits a problem kernel if there is a polynomial-
time transformation of any instance (I, k) to an instance (I ′, k′) such that
(1) (I, k) ∈ L iff (I ′, k′) ∈ L; (2) |I ′| ≤ g(k); and (3) k′ ≤ k. L has a poly-
nomial kernel if g(k) is a polynomial function. It is known that L admits an
FPT algorithm iff it has a kernel (not necessarily polynomial). But if L has a
polynomial kernel then usually it means L is relatively easier to solve.

Polynomial Parameter Transformations. A polynomial parameter reduc-
tion is used to reduce a problem known to be without a polynomial kernel to
another problem B [19,20]. It is different from the traditional FPT-reductions.

Definition 1. Let P,Q be parameterized problem. P is polynomial parameter
reducible to Q, written as P ≤pp Q, if there exists a polynomial time computable
function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for all (x, k) ∈
Σ∗ × N , (1)(x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q, and (2) |x′| ≤ p(k).
The function f is called a polynomial parameter transformation.

In [20], the following proposition was proved.
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Proposition 1. Let P and Q be the parameterized problems and P̃ and Q̃
be the unparameterized versions of P and Q respectively. Suppose that Q̃ is
NP-complete and P̃ is in NP. Furthermore, if there is a polynomial parameter
transformation from P to Q, then if Q has a polynomial kernel, then P also has
a polynomial kernel.

The above proposition can be used to prove kernelization lower bounds.

Graphs, Clubs, and Neighborhoods. We consider simple undirected graphs
in this paper. Given a graph G = (V,E), the distance δ(u, v) between two vertices
(u, v) ∈ V is the length of the shortest path between u and v. The diameter of
G is the maximum of all δ-distances between pairs of nodes in V . The (open) i-
neighborhood Ni(v) = {x|δ(x, v) ≤ i} of v is the set of vertices that has distance
at most i to v. The closed i-neighborhood of v is the set Ni[v] = Ni(v) ∪ {v}.
The exact i-neighborhood of v is the set Ne

i (v) = {x|δ(x, v) = i}, which is the
set of vertices have distance exactly i to v. For a vertex set T , G[T ] denotes the
subgraph of G induced by T having edge set ET = {(u, v) ∈ E|u, v ∈ T}.

A graph H is an s-club if the diameter of H is at most s. (A subset S ⊆ V is
an s-slub if G[S] is an s-club.) And an s-club H is a (t, s)-club if the number of
vertices in V is at least t, i.e., V (H) ≥ t. Notice that when s = 1, an s-club is a
clique. Throughout this paper, we assume that s is a small constant with s ≥ 2.
We next define the Maximum Club problem.

Problem (1): Maximum Club Problem.
Input: An undirected graph G and a constant integer s ≥ 2, and integer t.
Question: Is there a (t, s)-club in G?

The Maximum Club problem is NP-complete [13]; in fact, it is NP-complete
even in graphs of diameter s + 1 [12]. The parameterized version of the problem
(with t being a parameter) is shown to be FPT but does not admit a polynomial
kernel unless the polynomial hierarchy collapses to its third level (i.e., NP ⊆
coNP/Poly) [17].

In a complex social network, finding a single club is probably not too inter-
esting, so we define the following problems. As they are both NP-complete, we
focus on the parameterized versions of the problems in this paper.

Problem (2): Disjoint Dense Clubs (DDC) Problem.
Input: An undirected graph G and a constant integer s ≥ 2, and integers t, k.
Question: Are there k disjoint (t, s)-clubs in G?

Problem (3): Maximum Disjoint Dense Clubs (MDDC) Problem.
Input: An undirected graph G and a constant integer s ≥ 2, and integer �.
Question: Is there a set of disjoint s-clubs whose total size is at least � in G?
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3 Parameterized Results

In this section, we first present some theoretical results on the parameterized
complexity for DDC and MDCC. Based on some of these results, we try to
design a practical algorithm for them.

Theorem 1. The disjoint dense clubs problem, parameterized by k and t, does
not admit a polynomial kernel unless NP ⊆ coNP/Poly.

Proof. We reduce the Maximum Club problem of finding a maximum s-club
(with parameter p being its size) to the parameterized version of the DDC prob-
lem (parameterized by k and t), with a polynomial parameter reduction. Take
the input 〈G, s, p〉, we construct p copies of G, i.e., G1, . . . , Gp, as the new graph
G. For G we set k = p and t = p. Then G has an s-club of size p iff G has k = p
disjoint (p, s)-clubs.

“→”: If G has an s-club of size p, then each Gi has an s-club of size p (or,
each Gi has a (p, s)-club). Obviously, G has p disjoint (p, s)-clubs.

“←”: If G has k = p disjoint (p, s)-club, then each Gi must have a (p, s)-club.
As G is known to be isomorphic to Gi, G must also have a (p, s)-club.

As deciding whether G has a (p, s)-club, parameterized by p, has no polyno-
mial kernel unless NP ⊆ coNP/Poly, the DDC problem (parameterized by k, t)
also has no polynomial kernel unless NP ⊆ coNP/Poly. ��
Theorem 2. The maximum disjoint dense clubs problem, parameterized by �,
does not admit a polynomial kernel unless NP ⊆ coNP/Poly.

Proof. The reduction is that same as before. Just set the parameter � = p2. ��
The above two results, while simple, imply that it is unlikely to obtain effi-

cient FPT algorithms to solve the DCC and MDCC problems. Next we look at
the dual version of these problems.

Theorem 3. The disjoint dense clubs problem, parameterized by d = |V | − kt,
does admit an FPT algorithm running in O∗((s + 2)d) time.

Proof. If between all pair of vertices u, v we have δ(u, v) ≤ s, then the whole
graph G is an s-club. Then we are done. So to obtain disjoint s-club, we just
need to branch over a pair of vertices u, v with δ(u, v) = s + 1. Between and
inclusive of u and v, there are s + 2 vertices. One of these s + 2 vertices must be
deleted. Therefore, we have s + 2 choices at level-1. Then we repeat the above
process for d rounds. Among the (≤ (s+2)d) leaf nodes, if there are k (t, s)-clubs
left, return YES; otherwise, return NO. ��
Theorem 4. The maximum disjoint dense clubs problem, parameterized by d =
|V | − �, does admit an FPT algorithm running in O∗((s + 2)d) time.

Proof. The branching algorithm is the same as before. When we have a bound
search tree of depth d, there are at most ≤ (s + 2)d leaf nodes. We eliminate all
those which are not an s-club, then check whether the (remaining) leaf nodes
have a total size which is at least �. The running time is O∗((s + 2)d). ��
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Notice that the running time for the bounded search tree algorithm is too
high for practical datasets. In fact, even if we could reduce the running time to
roughly O∗(3d), similar to [21] for s = 2, it is still too high for practical datasets.
So we need some practical method. We first present the following reduction rule.

Lemma 1. (Reduction Rule I:) If |Ns(v)| < t − 1, then v cannot be in any
(t, s)-club.

Proof. For any two nodes u, v in the same club, we must have |Ns[v] ∩ Ns[u]| ≥ t.
Hence we have Ns(v) ≥ t−1. All the nodes in the club must satisfy this property,
otherwise this node cannot be in any (t, s)-club. ��

Note that we can repeatedly run this reduction rule. And when it is not
possible to apply it, we have the following lemmas which do not necessarily help
us reduce the problem size, but could help us reduce the solution search space.

Lemma 2. (Branching Rule II:) Let d(u, v) = 1. If for all w ∈ Ns(u) ∩ Ns(v)
we have |Ns(w)| < t − 1, then u, v cannot be in the same (t, s)-club.

Proof. As d(u, v) = 1, if u, v are in the same (t, s)-club, then there must exist
a w ∈ Ns(u) ∩ Ns(v) which is in the same (t, s)-club. However, by assumption,
for all w ∈ Ns(u) ∩ Ns(v) we have |Ns(w)| < t − 1, i.e., there is not such a club
containing u, v and w which is dense enough. Then we have a contradiction.
Therefore, u, v cannot be in the same (t, s)-club. ��
Lemma 3. (Branching Rule III:) Let d(u, v) = 1. If for all w ∈ Ns(u) ∩ Ns(v),
we have |Ns[w] ∩ Ns[u] ∩ Ns[v]| < t, then u, v cannot in the same (t, s)-club.

Proof. As d(u, v) = 1, if u, v are in the same (t, s)-club, then there must exist
a node x ∈ Ns(u) ∩ Ns(v) which is in the same (t, s)-club. (Here, |Ns[x]| could
be larger than t.) By assumption, for all w ∈ Ns(u) ∩ Ns(v) we have |Ns[w] ∩
Ns[u] ∩ Ns[v]| < t, i.e., there is no w connecting a club which contains both u
and v, is completely in Ns[u] ∩ Ns[v] and is dense enough. (Intuitively, some
nodes in Ns[w] are more than s edges away from u or v.) Hence, we have a
contradiction. Therefore, u, v cannot be in the same (t, s)-club. ��

Based on Lemmas 1, 2 and 3, we design a new practical bounded search tree
algorithm for DCC. (The algorithm also works for the MDCC problem.) The
first step is to apply Lemma 1 on the input graph G. Lemma 1 can delete all
nodes unlikely to be in any club. Then, we set d(u, v) = 1 to apply Lemmas 2
and 3. If we can find two nodes satisfying Lemma 2 or 3, one of these two nodes
must be deleted. The running time of this algorithm is O∗(2d).

We would not be able to claim any theoretical result on the algorithm yet,
as there are instances that the algorithm fails to handle (e.g., when we have two
intersecting (t, s)-clubs). More investigation is needed to make the algorithm a
true FPT algorithm for the dual version of DCC and MDCC with a running
time of O∗(2d).

In the next section, we show some computational results based on this
algorithm. The motivation is to avoid the O∗((s + 2)d) time FPT algorithm
(Theorems 3 and 4), which is too high even for s = 2, 3.
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4 Computational Results

We implemented the new bounded-search tree algorithm based on Lemmas 1, 2
and 3. We focused on s = 2, 3 for all of our empirical results. The algorithm
was run on a laptop with Intel Core(TM) i7-3770 CPU, 3.40 GHz, 16 GB RAM.
We tested our algorithm on two graphs. The first graph is the US Power Grid
with 4941 vertices and 6594 edges. The diameter of the US Power Grid graph is
46. We downloaded it from the website:http://konect.uni-koblenz.de/networks/
opsahl-powergrid. The second graph is “Autonomous System AS-733” with 6474
vertices and 12572 edges. The diameter of this graph is 9. We downloaded the
graph from the website:http://snap.stanford.edu/data/as.html. It was shown on
the webpage that the graph has 6474 vertices and 13895 edges. But there are
self-loop edges which are meaningless to us. We preprocessed the graph and
deleted all self-loop edges.

Table 1. The performance of Lemma 1 on the US Power Grid graph.

Diameter (s) Size (t) Nodes deleted Time (ms)

2 10 4200 950

2 15 4857 935

2 20 4921 928

3 10 1236 595

3 15 3049 784

3 20 4240 936

3 25 4759 1011

3 30 4911 826

As we are using a bounded-search tree algorithm, we cannot expect to delete
too many vertices from the graph (i.e., d should not be too large). The key
contribution of Lemma1 is to delete nodes unlikely to be a member of any t-
s-club, i.e., before running the bounded-search step, we could already reduce
the problem size by Lemma 1. We tested Lemma 1 on the US Power Grid and
the results are listed in Table 1. From Table 1, we could find that Lemma1 can
delete more nodes with the increase of the size of clubs (e.g., t) when the diameter
of clubs (e.g., s) is fixed. Moreover, Lemma 1 can delete more nodes with the
decrease of the diameter of clubs (e.g., s) when the size of clubs (e.g., t) is fixed.
In general, Lemma 1 is very sensitive to s and t.

We report the empirical results for the US Power Grid graph in Table 2. In
the last column, ‘No’ means a solution has not been found after d steps and ‘Yes’
means a solution has been found. As the graph has a large diameter, there are
in fact many small clubs.

We report the empirical results on the Autonomous System AS-733 graph in
Table 3, where ‘Yes/No’ carry the same meaning as in Table 2. As the graph has
a small diameter, it is reasonable to assume that there are not many clubs.

http://konect.uni-koblenz.de/networks/opsahl-powergrid
http://konect.uni-koblenz.de/networks/opsahl-powergrid
http://snap.stanford.edu/data/as.html
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Table 2. Empirical results for the US Power Grid graph.

Diameter (s) Size (t) Steps (d) Running Time (ms) Result

2 10 10 24258 No

2 10 11 37874 No

2 10 12 65843 No

2 10 13 121148 No

2 10 14 232313 No

2 11 15 420401 No

2 14 15 521941 Yes

2 15 15 18543 Yes

3 11 10 81634 No

3 11 11 158064 No

3 12 11 142547 No

3 13 11 129704 No

3 14 11 119538 No

3 15 11 107597 No

3 16 12 179937 No

3 17 12 169046 No

3 18 12 178398 No

3 19 12 183689 No

3 20 12 140499 No

3 21 12 120817 No

3 22 13 235501 No

3 23 13 221456 No

3 24 13 157454 No

3 25 13 149456 No

3 26 14 266087 No

3 27 14 87690 Yes

The density of the US Power Grid graph is lower than the density of the
Autonomous System AS-733 graph, and the diameter of the US Power Grid is
much larger than that of the Autonomous System AS-733 graph. So the size of
the clubs in the US Power Grid graph are smaller than the size of the clubs in
the Autonomous System AS-733 graph. The running time of algorithm is faster
when the input is the US Power Grid graph. For the same instance, the running
time of this algorithm grows with the diameter of clubs and the size of clubs —
which is reasonable.
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Table 3. Empirical results for the Autonomous System AS-733 graph.

Diameter (s) Size (t) Steps (d) Running Time (ms) Result

2 1300 1 67848 Yes

2 700 5 30197324 No

2 750 4 10993184 No

2 760 5 1188221 No

2 770 5 1183132 No

2 770 8 1129920 No

2 780 8 1161247 No

2 790 8 114362 Yes

2 750 8 193337876 No

3 2800 1 8640385 No

3 2850 3 37265 Yes

5 Concluding Remarks

In this paper, we considered the Disjoint Dense Clubs problem which originates
from social networks. While we proved that the problem is theoretically hard, we
successfully designed a practical algorithm for its dual version (based on three
rules). We tested this algorithm on two real graphs of 4941 and 6474 vertices
respectively and the empirical results are promising. It would be interesting to
add some extra rules to obtain an FPT algorithm, roughly running in O∗(2d)
time, for this dual problem.
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