
Chapter 7
Disentangling of Stellar Spectra

Petr Hadrava

7.1 Introduction

Observations and the corresponding theory of binary and multiple stars provide us
with a clue to the physics of stars and hence also to the universe beyond the Solar
system:

• From observations of a visual binary, we can determine its orbital period P,
inclination i, eccentricity e and periastron longitude !, the angular distance ˛

between the components (and hence the ratio of the semi-major axis a to the
distance d of the system) and light ratio L1=L2 of the components.

• From observations of an eclipsing binary, we can also assess P, i, with some
limitations also e and !, and in addition to L1=L2 also the ratios of the
components’ radii R1;2 to a.

• From observations of Doppler shifts of lines in spectra of spectroscopic binaries
we can also obtain P, e and !. Moreover, we can get the semi-amplitudes of
radial-velocity curves K1;2, i.e. for a reasonable estimate of i we know the orbital
velocities v1;2 and we can calculate the absolute size of a and also the masses
M1;2 of the component stars.

For spectroscopic binaries which are simultaneously eclipsing, we can thus deter-
mine the basic physical parameters of the stars – M1;2 and R1;2, and from colour
photometry or spectroscopy also the temperatures Teff1;2 and hence the luminosities
L1;2 of the component stars and the photometric distance d of the system. From these
data, we can calculate the angular separation ˛, including for stars that we cannot
resolve by direct imaging (e.g., ˛ � 0:2 � as for the first binary measured in M31
[15]).
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However, the goal of indirect imaging which is usually dependent on some
theoretical model of the object (e.g., in this case the model of components radiation
and the interstellar absorption) is not to compete with observational techniques of
direct imaging, not to say to replace them. To the contrary, the improvement of
such techniques is even more desirable in connection with indirect imaging because
they may provide a complementary information enabling to verify the theory and
to improve the underlying assumptions. For instance, until recently, there were
practically no binaries observed as both visual and spectroscopic because the former
technique prefers wide orbits while the former close binaries with higher amplitudes
of radial velocities. Interferometry, however, enables higher angular resolution,
while improved spectroscopic instrumentation and data processing provides better
spectral resolution, so that the overlap of these two sets of techniques increases.
From a combination of interferometric and spectroscopic observations of (even
non-eclipsing) binaries we can determine ˛, i, v1;2, a and hence also the geometric
distance d (e.g., [23], which solved the Pleiades distance controversy caused by an
error in Hipparcos results).

The observations of binaries can thus provide us with more information than
those of single stars, but their interpretation is at the same time more difficult. In
particular, the spectra (as well as the colours) of the component stars are blended
and can only be distinguished by taking into account their variations with the
orbital motion. While for single stars it is usually sufficient to fit their observed
spectra with synthetic spectra parameterised with Teff, log g (the surface gravity)
and abundances of elements Xi, the physics of binaries is more complicated due
to their interaction and proximity effects, such as tidal forces or reflection effects.
More sophisticated theoretical tools and data-processing methods are thus needed
to interpret the observational data. Such methods actually reveal structure within the
binary systems and belong thus to the methods of indirect imaging.

7.2 Disentangling of Spectra of Multiple Stars

The classical treatment of observed spectra of spectroscopic binaries consists in
measuring radial velocities (RVs), vjjn

jD1, of the n component stars (Fig. 7.1). There
are various techniques to measure RVs, but they all require some model of the
component spectra, at least a simple assumption that the centres of some observed
spectral lines correspond to the vj of a particular component j. The RV curves, i.e.
the set of vj.t/ at different times t, are then fitted to find the orbital parameters p of
the system. A simultaneous solution of other observational data such as photometry
or interferometry is advantageous because these data may better constrain some of
the parameters and the set of solved p may be enriched also by some more physical
parameters (M, R, Teff etc.). To relate the stellar parameters found with the spectra
of individual stars, it is desirable to separate the spectrum Fj of each component j
from the observed spectra F of the whole system of n components. This is possible
thanks to varying conditions in the blending of components in different exposures
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Fig. 7.1 Flow diagram of the standard data processing of spectra of multiple stellar systems and
of the disentangling process

with different Doppler shifts (cf. e.g., [2]) or with different light ratios, e.g., during
an eclipse (cf. [20]). The information on both the Fjjn

jD1 and p is contained in the
observed spectra, but it is entangled there because to retrieve one of them we need
to know the other.

The basic idea of the method of disentangling spectra (cf. [5, 20]) is to solve
simultaneously (or, actually, iteratively) the component spectra Fjjn

jD1 and directly
the orbital parameters p (instead of the intermediate step of RVs) by fitting all the
observed spectra with a model of the form

F.x; tI p/ D
nX

jD1

Fj.x/ � �j.x; tI p/ ; (7.1)

where x � c ln�=�0 is the logarithmic wavelength scale and the broadening function
is given by a simple Doppler-shifted Dirac ı-function

�j.x; tI p/ D ı.x � vj.tI p// : (7.2)

This means that the separated component spectra Fj appropriate to the observed
object are also used for the treatment of RVs instead of a theoretical model or
another template needed in the classical approach.
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7.2.1 Fourier Disentangling

The model given by Eq. (7.1) is linear in Fj and non-linear in p. A �2-fit of
the observed spectra with respect to Fj.x/ thus yields linear condition equations of
the (generally large) dimension given by the number of bins of the spectra times
the number of component stars. Its solution can be further simplified using the
Fourier transformation Fj.x/ ! QFj.y/ which converts the convolution in Eq. (7.1)
into a product. The condition equation then reads

0 D ı�2 D ı

NX

lD1

1

�2
l

Z ˇ̌
ˇ̌
ˇ̌ QF.y; tl/ �

nX

jD1

QFj.y/ Q�j.y; tlI p/

ˇ̌
ˇ̌
ˇ̌

2

dy ; (7.3)

where �l is the noise of exposure F.x; tl/ obtained at time tl and QF.y; tl/ is the y-mode
of Fourier transform of F.x; tl/. Variation of the right-hand side with respect to
ı QF�

k .y/ obviously yields a set of n linear equations for QFj.y/, i.e. separated subsets
of equations for individual Fourier modes

nX

jD1

NX

lD1

Q��
k .y; tlI p/ Q�j.y; tlI p/

�2
l

QFj.y/ D
NX

lD1

Q��
k .y; tlI p/ QF.y; tl/

�2
l

: (7.4)

This makes the separation of spectra, i.e. the solution of the linear part of the
disentangling, numerically easier and more efficient, compared to the solution in
the wavelength domain. The optimisation with respect to ıp can be then performed
by numerical minimisation of the right-hand side of Eq. (7.3), e.g., using the simplex
method.

It is obvious that a necessary (but not sufficient) condition to get a non-singular
matrix on the left-hand side of Eq. (7.4) is N � n and the vectors Q�k should
differ for at least n different tl, i.e. the observations should sufficiently cover
orbital phases with different Q�k. Regarding the intention to minimise the right-
hand side of Eq. (7.3) with respect to p, it should be positive, i.e. Eq. (7.4) should
be overdetermined and hence N > n. A significant over-determinacy is desirable
because it can reduce the random noise in the disentangled Fj.x/ originating from
the observational noise of F.x; tl/.

For a pure orbital Doppler shift, the broadening �j.x; tI p/ is given by Eq. (7.2)
and its Fourier transform can be calculated analytically

Q�j.y; tI p/ D sj.t/ exp.iyvj.tI p// (7.5)

with sj.t/ D 1. It can be seen from here that Q�j.y D 0; tI p/ D 1 and, hence, the
matrix on the left-hand side of Eq. (7.4) is singular for the zeroth Fourier mode
y D 0. This corresponds to the obvious fact (which is also true for the separation
of the spectra in the wavelength domain) that the continuum level is insensitive to
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the orbital motion and consequently it cannot be disentangled from spectroscopy
alone. The disentangled component spectra Fj.x/ are thus defined up to additive
constants, the sum of which (over j) should give the mean value of all observed
F.x; tl/ in a particular spectral region. To get a completely separated spectra of each
component like a spectrum of a single star, it is necessary to find proportions in
which this sum has to be distributed between the components. This information on
light ratios of the components can be in principle obtained, e.g., from interferometry
(this is an example of complementarity of the direct and indirect imaging). In the
case of eclipsing binaries the light ratio is usually obtained from photometry. The
light ratio is wavelength dependent and is usually measured in broad wavelength
regions. A normalisation of the disentangled spectra from the common continuum
of the whole system to the proper continuum of each component should thus take
into account the levels of continua influenced by the presence of spectral lines which
are different for each component in each spectral region. Another possibility of
interpretation of the disentangled spectra is to fit them by model spectra scaled in
the intensity with a general unknown linear transformation.

The change of light ratio in the course of an eclipse and possibly also in other
orbital phases of tidally distorted or mutually illuminated components of binaries
also varies the strengths of lines of all components visible in the spectra. To get a
better fit of the observed spectra in this case, line-strength factors sj.t/ are introduced
in Eq. (7.5) – cf. [6]. A set of linear equations for the values sj.tl/jn

jD1jN
lD1 can be

obtained from Eq. (7.3) and solved iteratively with the separation of Fj.x/ – the
model is bilinear in these two sets of unknown variables. The solution of sj yields
photometric information from the spectra about the luminosity of one component
relative to the other one. The decrement of light due to an eclipse depends on
the limb darkening which in turn depends on the source function S�.��/. In the
approximation of plane-parallel stellar atmosphere

S�.��/ D
X

k

S�;k�
k
� ) I�.�� D 0; 	/ D

X

k

S�;k	
k ; (7.6)

which means that the dominant linear term (k D 1) in the dependence of the
surface intensity I� � .1 � u C u	/ on the directional cosine 	 is proportional
to the first derivative of S� with respect to the monochromatic optical depth �� .
In the local thermodynamic equilibrium (LTE) approximation, S� is given by the
temperature structure of the atmosphere and dS�=d�� is proportional to the vertical
gradient (in geometric depth) of the temperature and inversely proportional to the
monochromatic opacity. In contrary to the frequently adopted approximation that
the change of limb darkening is negligible within the narrow line-profile and the
value of u found from photometry (dominated by the continuum) can be fixed across
the lines, u rapidly decreases from its value at the continuum toward the centre of
line (cf. Fig. 7.2). Actually, the absorption lines are present in the spectra just owing
to this change. In consequence, the signal contained in spectral lines normalised
with respect to the overall continuum of the system may be enhanced not only for
the component in foreground but also for the partly eclipsed component when only
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Fig. 7.2 Limb darkening within the profile of H˛ line in spherical non-LTE model of stellar
atmosphere (Teff D 15;000 K, log g = 2.0; cf. [10])

an edge of its disc is eclipsed which little contributes to the line. The disentangling
of the line-strength factors sj.t/ thus enables to map the surface and actually also
the depth structure of the eclipsed star. It may also reduce errors in rectification of
the observed spectra (i.e. their normalisation with respect to the continuum), which,
however, limits the information gain about the structure of the atmosphere. The line-
strength factors also enable to disentangle the telluric spectrum [6, 7].

7.2.2 Generalised Disentangling

Taking into account non-LTE or higher order terms in Eq. (7.6), the spectral lines
may change during an eclipse, not only in strength, but also in shape. In the
approximation of a thin stellar atmosphere, the observed spectral flux F.x; t/ is given
by an integral of the surface intensity Ij over the visible surface s of all components j,

F.x; t/ D
nX

jD1

Z

s
	Ij.x; s; 	; t/ � ı.x � vj.s; t//d2s ; (7.7)
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where 	 and vj are known functions of s. If in analogy with Eq. (7.6) the intensity
can be expressed in a form of superposition of several spectral functions Fk

j ,

I.x; s; 	; t/ D
X

kD1

Fk
j .x/f k

j .s; 	; t/ ; (7.8)

then the disentangling can be generalised from Eq. (7.1) to

F.x; tI p/ D
X

j;k

Fk
j .x/ � �k

j .x; tI p/ ; (7.9)

where the broadening functions

�k
j .x; tI p/ D

Z

s
	f k

j .s; 	; t/ı.x � vj.s; t//d2s (7.10)

are now dependent not only on the orbital parameters p, but also on other geometri-
cal and physical parameters, as determined by the decomposition in Eq. (7.8).

In particular, if we treat eclipses of a rotating star, its line profile is rotationally
broadened and its shape is distorted in the course of a partial eclipse. This so-called
“rotational effect” [1, 8, 12, 14, 17, 18] is usually treated as a deviation of measured
RVs during the eclipse from an exact Keplerian motion of the component’s centres
of mass. However, its value depends on the method of measurement and definition
of RV of an asymmetric line-profile. The line-profiles are usually modelled in the
form of Eq. (7.1), i.e. as a convolution of the profiles of a non-rotating star with
a rotational broadening function. The rotational broadening, however, depends on
the limb darkening – it has a semi-circular shape for a rigidly rotating sphere with
uniform intensity and a parabolic shape for intensity linearly darkened to zero at
the disc edge (see Fig. 7.3). As can be seen in Fig. 7.2, the line-profile generally
varies across the disc (instead of a simple scaling) and, following Eq. (7.6), it
should be expressed as a sum of contributions with different limb darkenings. A
generalisation from Eqs. (7.1) to (7.9) for the two or more modes k of the limb
darkening can thus fit the observed spectra better. The eclipse then enables to map
the variations of line-profiles and hence the atmospheric structure if the quality of

Fig. 7.3 Rotational broadening during an eclipse for u D 0 (left) and u D 1 (right panel; cf. [8])
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the spectroscopic data (S/N, resolution, phase coverage) is sufficient. In addition
to the synthetic spectra, more detailed results from model atmospheres are needed
for interpretation of such results (as well as the other moments of I�.	/). In any
case, even if the data are not sufficient to distinguish between different modes k, it is
preferable to fit the data with a proper model of shape of �j than to modify vj only
in Eq. (7.2) because we can get a better fit of the data and more reliable parameters
from the eclipse (e.g. the radii, rotational velocities or even inclinations of rotational
axes, cf. [1]).

In addition to the Doppler shift according to Eq. (7.2), the broadening functions
in the generalised disentangling can thus also include intrinsic variations of line
profiles caused by various reasons – either geometric (e.g., eclipses, tidal distortion,
spots) or physical. A frequent example of the latter case is pulsation. In the
case of radial pulsations, the broadening functions for individual limb-darkening
modes can be calculated explicitly (as well as their Fourier transforms, cf. [11]).
This enables to disentangle directly the pulsation velocities of Cepheids and other
radial pulsators and to avoid the need of the so-called projection factor which
relates the effective RV measured in a particular way to the pulsation velocity.
The line-strength factors sj.tl/ introduced in Eq. (7.5) as the simplest generalisation
of Eq. (7.2), which are different for different lines in Cepheids depending on the
influence of the temperature variations during the pulsation period on the rate of
a particular transition, can reveal the temperature. In combination with photometric
observations of luminosity variations or interferometric observations of changes of
angular diameter, the disentangling of spectra of Cepheids may thus provide primary
method of photometric or geometric determination of distance known as the Baade–
Wesselink calibration of the luminosity–period relation.

7.2.3 Constrained Disentangling

As mentioned in the introduction, the aim of separating the spectra of the compo-
nents is to compare them with theoretical models and to find the parameters of the
component’s atmospheres (cf. the “Fit of spectra” in Fig. 7.1). This comparison is
usually performed by means of a least-squares fit similarly to the separation itself.
Provided we have a grid of model spectra, which we believe correspond to some of
the component stars, or a code for their synthesis, we can use them as template(s) by
which the disentangling is constrained to a subspace of all possible solutions. The
sum of the component spectra on the right-hand side of Eq. (7.1) by which we model
the observed spectra F.x; tI p/ then generally splits into the part with the unknown
component spectra Fj.x/jm

jD1 (where m < n), which are to be disentangled and with
the components constrained by templates Gjjn

jDmC1 that are, however, still Doppler
shifted and possibly also broadened (e.g., by some unknown rotation speed). For the
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separation of Fj we thus solve a set of linear equations

mX

jD1

Fj.x/ � �j.x; tI p/ D F.x; tI p/ �
nX

jDmC1

Gj.x/ � �j.x; tI p/ (7.11)

of the order of m only, while the template-constrained components Gj are subtracted
from the observations on the right-hand side (they are the additional input to
the disentangling in Fig. 7.1). The lower number of unknown spectra makes the
solution less sensitive to errors on the observed data – on the other hand, the number
of unknown parameters p in broadenings at both Fj and Gj usually increases a bit.
For instance, the systemic velocity 
 is uncertain for the standard disentangling
and can only be determined when a template Gj is accepted. The line strengths of
Gj are usually given relatively to the continuum level of the component j, while
in the observed spectra F they are normalised by the sum of continua. Free line-
strength factors sj are thus to be solved. They reduce at the same time the uncertainty
in the levels of continua discussed in Sect. 7.2.1.

As it was already mentioned and shown in Fig. 7.1, it is advantageous also in
the classical approach to treat the spectroscopy together with other types of data
because these may better constrain some of the parameters. The simplest way to
utilise such an additional information in the disentangling is to fix the values of
parameters which we know well from the other data and to converge only those,
which can better be determined from the spectroscopy. However, the constraint
has often the form of a hypersurface f . p/ D 0 in the space of parameters p. For
instance, the times of primary and secondary eclipses in binaries depend on the
time of periastron passage, eccentricity and periastron longitude (slightly also on the
inclination), but cannot determine any of these parameters unless information about
some of them is available from elsewhere, e.g., from the RV-curve. The minimising
of �2 in the p-space should thus be constrained to the hypersurface or to the cross-
section of the hypersurfaces if more different constraints fk. p/ D 0 are given by
various observations. Such a minimisation can be performed using the method of
Lagrange multipliers �k, i.e. instead of Eq. (7.3), we minimise its more complex
variant

0 D ı

8
<

:

NX

lD1

1

�2
l

Z
j QF.y; tl/ �

mX

jD1

QFj.y/ Q�j.y; tlI p/ �
nX

jDmC1

QGj.y/ Q�j.y; tlI p/j2dy

C
X

k

�kf 2
k . p/

9
=

; : (7.12)

If the constraints fk D 0 are observational, they are not sharp, but due to the
observational error of a probabilistic nature only. The functions f 2

k . p/ can thus be
chosen as .O � C/2, where C D C. p/ is a model of the observations, O, and the
multipliers �k D ��2

k are given by errors on these observations. The disentangling
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thus turns into a simultaneous solution, i.e. �2-fitting of all available data. From
the point of view of accuracy and conservation of information, it is preferable
to fit the data in their original form than to reduce them into some intermediate
values, such as RVs instead of the source spectra or separations and positions angles
instead of visibilities for spectroscopic or interferometric binaries. On the other
hand, such extracted data preserved in the literature are often the only information
available, hence it is still worth to enrich, e.g., the disentangling of some spectra by
simultaneous solution of RV-curves from other exposures.

7.2.4 Numerical Representation

The observed and solved spectra as well as their Fourier transforms were treated
in the previous sections as continuous functions of x or y, respectively. In practice,
however, the spectra are usually observed and registered using a chip with discrete
pixels and represented in the data-processing from the rough data to the final
separated component spectra as a finite set of values in discrete bins. It means that
the space of RVs in which the spectra and the broadening functions are represented
is quantised. Nevertheless, the position of a smooth line stretched over several bins
can be determined with a sub-pixel resolution from asymmetry of the signal in
surrounding bins. A sub-pixel resolution in RVs enables to determine the orbital
parameters with a higher precision, but this, however, requires representing with
a similar resolution the operator ı.x � vj/ in Eq. (7.2) or in its Fourier transform
Eq. (7.5). For an integer multiple of the bin size �x, the convolution with the
shifted ı-function is given by multiplication with a unit off-diagonal matrix in the
x-representation and by exp.iyvj/ in the y-representation, where the vj must be
rounded to the integer multiple of �x to keep the periodicity in the finite set of
y-values. The change of signal in a sub-pixel shift for v < �x can be found from its
Taylor expansion, in which its derivatives are approximated from the differences in
the neighbouring bins (cf. [9]), i.e.

ı.x � v/ ' ı.x/ � v

2�x
.ı.x C �x/ � ı.x � �x// C (7.13)

C v2

2�2
x

.ı.x C �x/ � 2ı.x/ C ı.x � �x// C o.v3/

and its Fourier transform

exp.iyvj/ ' 1 C iv

�x
sin.y�x/ C v2

�2
x

.cos.y�x/ � 1/ C o.v3/ : (7.14)

The Fourier disentangling with this sub-pixel resolution can be performed using
the author’s code KOREL, which is now available as an on-line service of the Virtual
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Observatory (cf. [21]). A question frequently asked by its users is what signal-to-
noise ratio (S/N) of the input spectra is needed for applicability of the method of
disentangling. A general simple answer is “any, but the better is the input S/N,
the better is the S/N of the disentangled component spectra and the better is the
accuracy of the disentangled parameters”. However, the problem is more complex.
The precision of the results also depends on the degree of the overdetermination,
because the noise in disentangled spectra decreases as

p
N with the number N

of the input spectra. But other important parameters are the spectral resolution,
phase coverage and information content of the input spectra. The useful signal
for disentangling are the spectral lines, i.e. deviations of the spectrum from the
continuum, while the S/N compares the noise with the continuum level. To clarify
this problem, a more detailed analysis is presented in the Appendix.

7.3 Disentangling of Spectra of Interacting Binaries

The method of spectra disentangling assumes that the observed system consists
of several discrete sources with some general unknown spectra, the changes of
which can be parameterised by means of the broadening functions �j. In the case
of interacting binaries with mass exchange, there is a significant contribution of
radiation from the circumstellar matter continuously moving around the component
stars with a complicated velocity field. The methods of Doppler tomography are
used in these cases to map the distribution of the emission sources in the velocity
space (cf. [13]). The intrinsic spectrum of an infinitesimal volume of the source is
mostly supposed to be a Dirac ı-function in frequency at least in the vicinity of
each line used for the Doppler imaging. This simplifying assumption is obviously
false. (E.g., the presence of other lines or absorption features in P-Cygni profiles
violate the mirror symmetry in the opposite phase supposed for the standard Doppler
tomography.) It would thus be desirable to disentangle intrinsic spectra in each point
of the velocity space (or even better in each point of the geometric space). This
problem, however, does not have a unique solution, because a narrow line of source
spread over a wide region of the velocity space results in the same spectra as a wide
line from a narrow source.

Nevertheless, it is possible to approximate the smooth distribution of the
circumstellar matter in the interacting binaries by several blobs of gas and to
disentangle their spectra and (as a free parameter) also their positions in the velocity
space. As an example, disentangling of Cyg X-1 is shown in Fig. 7.4 (cf. [22] for
details). Although this source is variable on a wide range of time-scale, which
violates the underlying assumptions of both the Doppler tomography as well as the
disentangling, both techniques are able to reveal main features of the circumstellar
matter (cf. [4, 19]).

Even in the cases when the assumptions of both these Doppler techniques are
satisfied, the resolved distribution of the radiation sources in the velocity space
does not yield their distribution in space and the consequent angular resolution.
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Fig. 7.4 Disentangled H˛ profile of Cyg X-1. The input observed spectra (blue lines in the
upper part of the panel) are overplotted by their reconstruction (red lines) from the disentangled
component spectra (bottom four green lines): P-Cyg profile of the supergiant, emission profile
of the circumstellar matter, diffuse interstellar band (the disentangled DIB is constrained by a
template constant across the H˛) and telluric lines. The emission is shifted in phase with respect
to the unseen black-hole secondary and its strength is anti-correlated with the X-ray emission

Generally there is no one-to-one correspondence between these spaces due to
the non-uniformity of the velocity field. To get an information about the spatial
structure of the source, the interpretation must be constrained by an appropriate
theoretical model (based e.g. on radiation hydrodynamics, cf. [3]) of the source and
its radiation. The method of synthetic Dopplerograms is promising for this purpose
(cf. [4, 16]).

A direct comparison of the observations with synthetic spectra based on sophisti-
cated models of the sources may be more precise because it may avoid discrepancies
caused by the simplifying assumptions of the methods of indirect imaging. However,
these techniques are useful for indicating the dominant features in the observed
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phenomena and their achievements as well as failures are intuitive in suggesting the
way in which the theory should proceed.
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Appendix: Bayesian Estimation of Parameters Errors

The errors of parameters of a stellar system determined by disentangling of spectra
can be estimated using Bayesian statistics. The errors are caused mainly by the noise
in the observed spectra but they are also influenced by the phase distribution of
the observations and by the sensitivity of the available data to a particular parameter.
Usually we “know” in advance only that the values of parameters p can be expected
in some “reasonable” regions (e.g., hundreds of km/s for orbital RVs, days or from
hours to months for the orbital period, the line strengths and widths corresponding
to the spectral types and rotational broadening, etc.). If previous studies of the same
system exist their results can be taken as a more specific limitation of the possible
range of p (and a first estimate of the new solution), which we want to verify
or improve using a set of new data. If the old data are available they can be
included together with the new ones into the new solution, otherwise the reliability
of the old results must be estimated and they can be included into the new solution
as constraints to the solution in the space of parameters p. Having the set of new
observations, i.e. the spectra F.x/, we can find the “posterior” probability P. pjF/ of
p agreeing with the new data according to Bayes’ theorem

P. pjF/ D P.Fjp/P. p/

P.F/
; (7.15)

where P. p/ is the “prior” probability of p (i.e. either a smooth characteristic of
the wide range of “reasonable” values or the constraint resulting from the old data),
P.Fjp/ is the “liability” that for a chosen value of p the particular shape of F.x/ will
be detected and P.F/ is a general probability do detect the signal F.x/. The best new
solution pmax can be then defined as the maximum of P. pjF/ in the p-space or we
can find a mean value

hpi D
Z

pP. pjF/dp (7.16)

(if P. pjF/ is normalised to unity, i.e.,
R

P. pjF/dp D 1). In both cases the result
depends on our choice of measures in the p space. The errors of resulting parameters
p can be estimated from the behaviour of P. pjF/ around the found solution.
Because p is generally multidimensional (and different dimensions can be of
different nature), it is not sufficient to attribute some error bar to each component
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of p separately as it is a common habit. If P. pjF/ is sufficiently smooth around
its maximum, it can be expanded into a Taylor series up to quadratic terms in
variation of ıp and the non-diagonal components of the corresponding quadratic
form determine the correlation of the parameters. Generally, however, there may be
several local maxima in the p-space, which may be treated as different solutions.1

The errors of these different solutions must be then determined from a local
behaviour of P. pjF/. Generally, the information about the studied system is more
completely characterised by mapping of P. pjF/ than by a simple list of found values
of p and their errors.

Errors of Line Strengths and Radial Velocities

We shall illustrate the calculation of P. pjF/ first on a toy model of measurements
of one spectrum of a single star. Let us assume that the observed spectrum F.x/ is
given by

F.x/ D f .x; p/ C ıF.x/ ; (7.17)

where ıF.x/ is a random observational noise. We fit F.x/ by a model f .x; p/

dependent on a parameter (or a set of parameters) p by minimising the residual
error

S. p/ D
Z

D
.F.x/ � f .x; p//2dx (7.18)

integrated over the whole observed region D of x. The equation(s) for p thus reads

0 D @S. p/

@p
D 2

Z
@f .x; p/

@p
. f .x; p/ � F.x//dx : (7.19)

The random fluctuations ıF in the observed signal F.x/ blur this condition and result
in a deviation ıp of the solution from its correct value. These variations are related
by the condition

ıp
@

@p

Z
@f .x; p/

@p
. f .x; p/ � F.x//dx D

Z
@f .x; p/

@p
ıF.x/dx : (7.20)

1A typical example is the epoch of a periodic RV curve, where for each solution there is an
infinite set of solutions differing by an integer multiple of the period. These solutions are usually
taken as equivalent. The errors and correlation of the epoch with the period depend on which
of these solutions we choose. The period itself may have several solutions due to aliasing in
quasi-periodically sampled data or due to an interference of data obtained in two time-remote
observational seasons.
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For example, let the spectrum be rectified, i.e. normalised to the continuum,
which means f D 1 � ', where '.x/ corresponds to the spectral lines. We shall
assume first that the only unknown free parameter p is the strength of lines, i.e.,
the model has the form

f .x; p/ D 1 � p'1.x/ ; (7.21)

where '1 is a pattern of the line-profile(s) imprinted into the observed spectrum F.x/

with an unknown amplitude (e.g., due to uncertainty in element abundances, due to
a contamination of the signal by light of another star or due to instrumental error
in subtracting dark signal). Equation (7.19) is then a simple linear equation with
solution

p D
R

.1 � F.x//'1.x/dxR
'2

1.x/dx
(7.22)

and in agreement with Eq. (7.20) its variations are given by

ıp D �
R

'1.x/ıF.x/dxR
'2

1.x/dx
: (7.23)

The integrals in these equations are actually summations over K individual pixels
(each one of size �x D D=K) in real observations,

Z
'1.x/ıF.x/dx D �x

KX

iD1

'1.xi/ıF.xi/ ; (7.24)

Z
'2

1.x/dx D �x

KX

iD1

'2
1.xi/ : (7.25)

Let us assume that the probability distribution of the noise ıF of the signal F.x/

in each pixel can be approximated as a Gaussian with standard deviation � , i.e.,
the probability of its value ıF in one pixel xi is

P.ıF.xi// ' exp.�ıF.xi/
2

2�2
/ (7.26)

and, hence, the statistical mean value is hıF2i D �2. In addition, the noise in
different pixels is supposed to be statistically independent, i.e.,

hıF.xi/ıF.xj/i D �2ıij : (7.27)
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The probability distribution of error ıp is then also Gaussian2 with

hıp2i D �2
x�R

'2
1.x/dx

�2
hŒ

KX

iD1

'1.xi/ıF.xi/�
2i D �x�

2

R
'2

1.x/dx
: (7.28)

The squared error of p thus decreases inversely proportionally with the number of
pixels covering the profile '.x/. It can be seen from Eqs. (7.22) and (7.23) that the
strength p and its uncertainty ıp are predominantly determined by the parts of the
spectrum where the lines '1 of the model are deep.

If the unknown free parameter p is the Doppler shift of the spectrum, the model
has the form

f .x/ D 1 � '0.x � p/ ; (7.29)

where '0.x/ is a model line-profile in laboratory wavelength scale. The residual
noise

S. p/ D
Z

.'0.x � p/ � '.x/ C ıF.x//2dx (7.30)

is then no more a simple quadratic function of p and Eq. (7.19), which reads now

0 D @S. p/

@p
D �2

Z
d'0.x � p/

dx
.'0.x � p/ � '.x/ C ıF.x//dx; (7.31)

may have several solutions for p corresponding to coincidences of some improperly
identified observed lines with wrong lines in the model. The uncertainty of p in each
of these solutions can be estimated from the depth and width of the local minimum
of the residual noise. Equation (7.20) reads now

ıp
Z �

d'0

dx

�2

dx D
Z

d'0

dx
ıF.x/dx ; (7.32)

where we have skipped the term d2'0

dx2 .'0 � '/ which should vanish at the correct
value p D p0 where ' D '0 (this need not be true at a false minimum). This
equation shows that the error ıp of RV is dominated by the noise ıF in the steepest
parts of the line profile. Analogously to Eq. (7.28), the mean squared value of this

2 If a quantity x has a probability distribution exp.�.x � x0/2=.2˛2// and quantity y a distribution
exp.�.y � y0/2=.2ˇ2// then the linear combination ax C by has a mean value hax C byi D
ax0 C by0 and the quadratic error h.a.x � x0/ C b.y � y0//2i D a2˛2 C b2ˇ2. Similarly for
a sum of more statistically independent quantities we get recursively hPn

iD1 aixii D Pn
iD1 aixi0

and h.Pn
iD1 ai.xi � xi0//2i D Pn

iD1 a2
i ˛2

i .



7 Disentangling of Stellar Spectra 129

error is now

hıp2i D �x�
2

R
.

d'0

dx /2dx
: (7.33)

The difference between Eqs. (7.28) and (7.33) is due to the fact that the fit of line
strengths is most sensitive to the part of the spectrum where the line is deepest, while
the Doppler shift is most sensitive to the wings where the line profile is steepest.

Errors in Multidimensional Space of Parameters

We can optimise the fit of the observed spectrum simultaneously with respect
to the line-strength, Doppler shift and some additional parameters. Generally, if
the model spectrum '0.x; p/ is a function of several parameters pijm

iD1, we get for
them a set of m generally non-linear equations for p

0 D
Z

@'0

@pi
.1 � F.x/ � '0.x; p//dx : (7.34)

Linearising, we arrive at the set of equations

Mijıpj D ıRi (7.35)

for variations ıpj caused by variations ıF.x/ of the observed spectrum. The matrix
Mij is given here by

Mij �
Z �

@'0

@pi

@'0

@pj
� @2'0

@pi@pj
.1 � F.x/ � '0.x; p//

�
dx (7.36)

and the right-hand side by

ıRi � �
Z

@'0

@pi
ıF.x/dx D �x

KX

kD1

@'0.xk/

@pi
ıF.xk/ : (7.37)

Depending on the form of the model '0, some variation ıF can be compensated by
a change of different pi, so that their variations may be correlated

hıpjıpki D M�1
ji M�1

kl hıRiıRli : (7.38)
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Assuming that the noise ıF.x/ is statistically independent at different pixels xk, xl,
we have

hıRiıRli D �2
x

KX

k;lD1

@'0.xk/

@pi

@'0.xl/

@pj
hıF.xk/ıF.xl/i D

D �x

Z
@'0

@pi

@'0

@pj
hıF.x/2idx : (7.39)

If the noise hıF.x/2i D �2 is statistically the same in all pixels and if the second
term in the integral in Eq. (7.36) is negligible compared to the first one (which is the
case if the fit is good and F.x/ ' 1 � '0.x; p/), then

hıRiıRli D �x�
2Mil (7.40)

and

hıpjıpki D �x�
2M�1

jk : (7.41)

As an example, let us investigate a fit by a simple Gaussian profile

f .x; p/ D 1 � '0.x; p/ D 1 � p1 exp

�
� .x � p3/

2

p2
2

�
: (7.42)

Equation (7.34) then reads

0 D
Z

.x � p3/
k'0.1 � F � '0/dx ; (7.43)

where k D 0; 2; 1 in conditions for p1, p2, p3, resp. The variation of '0 reads

ı'0 D
�

1

p1

ıp1 C 2
.x � p3/

2

p3
2

ıp2 C 2
x � p3

p2
2

ıp3

�
'0 ; (7.44)

so that neglecting the second term in Eq. (7.36), the matrix M has the form

Mij '
Z

@'0

@pi

@'0

@pj
dx D

r
�

2

0

BB@

p2
p1

2
0

p1

2

3p2
1

4p2
0

0 0 p2
1

p2

1

CCA (7.45)
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and hence according to Eq. (7.41) the correlation matrix of parameter errors reads

hıpjıpki '
r

2

�
�x�

2

0
BB@

3
2p2

� 1
p1

0

� 1
p1

2p2

p2
1

0

0 0 p2

p2
1

1
CCA : (7.46)

It means that the errors of the depth p1 and the width p2 of the line-profile given by
Eq. (7.42), which are due to the part of the perturbation ıF symmetric with respect
to the centre of the line, are anti-correlated, while the error in the position p3 of
the line centre is not correlated with them and its squared value is half of that of
the width.

Results of a Monte Carlo simulation of this example can be seen in Fig. 7.5.
The red line shows the profile (cf. Eq. (7.42)) for p1 D 0:2, p2 D 0:2 and p3 D 0:0.
The black line has added a randomly generated noise with � D 0:04 in 1024 pixels
in the displayed interval of x 2 .�1; C1/, i.e., �x D 2�9 ' 0:00195. The blue
line gives the best fit to this particular simulated measurement, which was found
for values of parameters p1 ' 0:2002, p2 ' 0:2085 and p3 D 0:0029. The figure
included in the bottom left corner shows the scatter of p1 and p2 around their true
values for 1000 different choices of ıF (the drawn parts of coordinates correspond
to ˙0:01). Similarly the histogram in the right corner shows the distribution of p3

(the width of each histogram column is 0.001). If the noise � is decreased then

Fig. 7.5 Gaussian line-profile (red line) with a simulated noise (black line) and its best fit (blue
line; see text for a detailed description)
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in agreement with Eq. (7.38) or its approximation (Eq. (7.41)) also the uncertainty
hıpjıpki of the parameters p is reduced. This agrees with the Bayes theorem
(Eq. (7.15)) according to which the probability P. pjF/ of a larger difference of
the true value of p from its best fit to particular data F.x/ decreases with decreasing
probability P.Fjp/ that the random noise will mimic a wrong spectrum.

For real observed spectra we do not know the exact value of � (which can only
be estimated from the level of signal integrated during the exposure), while we may
have a rough estimate only of �x and, generally, we do not know the explicit form
of the matrix Mij and its inversion. However, we can estimate these values from
the value S0 of the residuum S. p/ in its minimum and from variations of S.p/ with
respect to variations of p. If the spectrum is correctly fitted by a proper model,
the residuum S0 should be given by the noise3 only, i.e.,

S0 '
Z

ıF2.x/dx D D�2 D K�x�
2 : (7.47)

The value of �x and hence for known D also the number K of statistically
independent pixels of noise can be estimated from auto-correlation of the residual
noise. In our example, the numerical simulation results in S0=�x ' 1:73, giving
� ' 0:0411 in good agreement with the value 0.04 for which the noise was
generated. The residuum S. p3/ is drawn by the green line in Fig. 7.5 as a function
of p3 for p1;2 fixed to their best values (the zero level is shifted to the bottom of
the panel for S. p3/). Its behaviour can be estimated substituting '0 from Eqs. (7.42)
into (7.30) also for ',

S. p3/ '
Z

.'0.x � p3/ � '0.x/ C ıF.x//2dx

'
Z

ıF2.x/dx C
Z

'2
0.x/dx C

Z
'2

0.x � p3/dx � 2

Z
'0.x � p3/'0.x/dx

D S0 C p
2�p2

1p2

�
1 � exp.� p2

3

2p2
2

/

�
: (7.48)

The residual S. p3/ thus increases with the square of ıp3 around its minimum

S.ıp3/ ' S0 C
r

�

2

p2
1

p2

ıp2
3 ; (7.49)

but it approaches saturation at level S1 D S0Cp
2�p2

1p2 for large ıp3 (in agreement
with numerical results S1=�x ' 12:5 in our example). This saturation corresponds

3In the discrete representation of N input spectra, the residual noise after disentangling of m
components is given by the sum S0 ' .N � m/K�2. However, it should be noted that both the
signal and its noise may be rescaled by the Fourier transform and hence (due to the use of FFT)
the residuum on output from KOREL is KS0 .
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to the possibility that the line visible in the spectrum is actually a random fluctuation
of the noise, while the real line is in the distant wavelength ıp3, but it is hidden in
another noise fluctuation. The probability of this “hidden” solution is proportional to
the width D of the wavelength interval. This may be in principle infinite, so that the
probability of this solution may be high, even for a small value of � . The limitation
of D to the interval .�1; C1/ in our example has a character of the prior P. p3/

which is chosen equal to zero out of this interval.
Regarding the assumption of the Gaussian noise (7.26), the liability P.ıFjp/ of

the noise ıF.xi/jK
iD1 in all pixels is

P.ıFjp/ ' exp

�
�

P
i ıF.xi/

2

2�2

�
D exp

�
� S0

2�x�2

�
: (7.50)

Following Bayes’ theorem (Eq. (7.15)), the probability of p for known F (and a ’flat’
prior P. p/) reads

P. pjF/ ' exp

�
� S. p/

2�x�2

�
' exp

�
�KS. p/

2S0

�
: (7.51)

We thus obtain from Eq. (7.49) the probability distribution of radial velocity ıp3 of
the “visible” line

P.ıp3jF/ ' exp

�
�KS.ıp3/

2S0

�
� exp

�
�

r
�

2

p2
1

2�x�2p2

�
; (7.52)

which yields, according to the definition (Eq. (7.16)), a mean value of squared
velocity shift

hıp2
3i D

R
ıp2

3P.ıp3jF/dıp3R
P.ıp3jF/dıp3

'
r

2

�

�x�
2p2

p2
1

; (7.53)

in agreement with component f j; kg D f3; 3g of Eq. (7.46).

It is worth noting that the error
q

hıp2
3i on the radial velocity p3 is proportional

to the ratio �=p1 of the noise to the line depth. Regarding the problem of desirable
S/N-ratio mentioned in Sect. 7.2.4, we can see from this relation that there is no lim-
itation. However, the higher the S/N-ratio is, the more precise is the determination
of the disentangled parameters. From the observational and instrumental point of
views, the S/N of spectra refers to the ratio of the noise to the overall spectral flux,
i.e. the signal means the continuum. However, it is obvious that the signal which
yields an information about RV and other spectral features is the modulation of
the flux by spectral lines. It is thus desirable to optimise in the observations the ratio
of line depths to the (photon) noise. The RV error is also proportional to the square
root of the line width p2 which indicates that a higher precision can be achieved
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from sharper lines, although they are covered by smaller number of pixels and are
thus more influenced by fluctuations in photon counts.

In the disentangling technique, we do not have explicitly given in Eq. (7.17)
the template spectrum f .x; p/, like in Eqs. (7.21) or (7.42), but a more compli-
cated expression like the right-hand side of Eqs. (7.1) or (7.9). The component
spectra Fj.x/ whose imprints we want to find in the observations are now also
unknown parameters that can be retrieved with some errors only. In analogy to
Eq. (7.28), this error is proportional to the noise � of the input spectra. However,
usually the separation of the component spectra is overdetermined, as explained
in Sect. 7.2.1 and hence, following the relations in the Footnote 2, the amplitude of
the noise of the disentangled spectra decreases inversely proportionally to the square
root of the number of observed spectra. The dependence of the model f .x; p/ on
nonlinear parameters p in the broadening functions �j.x; tI p/ is more complicated
and generally cannot be expressed explicitly like in the above given toy models.
However, it is possible to map the distribution of the residual noise numerically as
a function of these parameters.
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