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Chapter 5
Pharmacokinetics, Pharmacodynamics 
and Pharmacogenetics of Antileukemic Drugs

Kjeld Schmiegelow and Inge van der Sluis

5.1  �Introduction

At least 85% of children with acute lymphoblastic leukemia (ALL) can be cured by 
the best contemporary therapy, but it is uncertain which of the multiple effector 
mechanisms of the antileukemic agents that are responsible for the efficacy (Fig. 5.1 
and Table 5.1). This contrasts the modern era of targeted therapy, where molecular 
mapping of chemoresistant cancer cells has led to development of drugs that specifi-
cally target aberrant pathways (see Chap. 9).

Antileukemic chemotherapy [1, 2] has its roots in the late 1940s, when Sidney 
Farber and coworkers demonstrated that antifolates could induce remission in child-
hood ALL [3]. A few years later Joseph Burchenal and coworkers obtained similar 
results with thiopurines [4]. Soon Vincristine (VCR) and glucocorticosteroids 
(Steroid) and even adrenocorticotropic hormone were shown to be most effective 
(and least toxic) for inducing morphologic bone-marrow remission (<5% leukemic 
blasts), while a combination of daily oral 6-mercaptopurine (6MP) and weekly oral 
methotrexate (MTX) was superior for remission maintenance. By the late 1960s all 
the currently used, so-called traditional, antileukemic drugs were available, i.e. 

K. Schmiegelow, MD, DrMedSci. (*) 
Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 
Copenhagen, Denmark 

Institute of Clinical Medicine, University of Copenhagen, København, Denmark 

Department of Pediatrics and Adolescent Medicine, JMC-4072, Rigshospitalet,  
Blegdamsvej 9, 2100 Copenhagen, Denmark
e-mail: kschmiegelow@rh.dk 

I. van der Sluis, MD, PhD 
Department of Pediatric Hematology-Oncology, Erasmus Medical Center – Sophia  
Children’s Hospital, Rotterdam, The Netherlands

The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands

http://dx.doi.org/10.1007/978-3-319-39708-5_9
mailto:kschmiegelow@rh.dk


100

L-asparaginase (Asp), thioguanine (6TG), cyclophosphamide, and cytosine 
arabinoside (AraC) in the 1950s, and ifosfamide and epipodophylloxins in the 
1960s. Improved understanding of their pharmacokinetics (PK) and pharmacody-
namics (PD) has made childhood ALL therapy one of the most impressive successes 
of modern medicine. This was not least due to (i) introduction of central nervous 
system (CNS) directed therapy in the 1960s, i.e. intrathecal (i.t.) chemotherapy, 
high-dose MTX and AraC (HD-MTX, HD-AraC) and irradiation [5, 6], (ii) intro-
duction of intensive post-induction consolidation therapy and delayed intensifica-
tion in the 1970s [7], (iii) observational studies linking biologically defined subsets 
of ALL patients to specific treatment requirements (e.g. lower propensity for MTX 
polyglutamation by T-lineage leukemia necessitating HD-MTX [8]), (iv) implemen-
tation of precise quantification of minimal residual disease (MRD) for risk/treatment 
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Fig. 5.1  Primary sites of action of traditional antileukemic drugs. Their use during antileukemic 
treatment program is outlined at the bottom. The antileukemic agents can roughly be divided into 
3 groups. Goups II drugs interact with DNA. They generally cause profound acute nausea, hair 
loss, mucositis and myelo-/immunosuppression. They may also cause serious late effects, e.g. 
cardiotoxicity, urothelium damage, and second cancer. Group I, the antimetabolites, are analogues 
of normal folate or nucleotide precursors that interferes with DNA synthesis. Group III are the 
post-translational drugs. The acute toxicities of groups I and III are relatively limited compared to 
group II, including less nausea, hair loss, mucositis, myelo- and immunosuppression (can be sig-
nificant for high dose methotrexate/cytarabine). In addition, each drug may be associated with 
specific toxicities (see text). Groups I and III drugs rarely lead to serious late effects, unless severe 
acute toxicities have occurred. CMP = cytidine monophosphate; dCMP =  deoxycytidine mono-
phosphate; FH2 = dihydrofolate; FH4 = tetrahydrofolate; dTMP = deoxythymidine monophos-
phate; dUMP = deoxyuridine monophosphate
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group stratification [9–13], and (v) exploration for acquired mutations allowing pre-
cision medicine approaches [14] (see Chaps. 7 and 9).

Contemporary treatment programs can roughly be divided into (i) a three to four 
drugs remission induction phase with VCR, Steroid, and Asp and/or anthracyclines 
[15], (ii) a consolidation phase with alternating of additional drugs combinations 
including HD-MTX, (iii) delayed intensification phases using drug classes similar 
to those used for remission induction followed by a short consolidation phase, (iv) 
CNS targeted treatment with or without cranial irradiation [6], and (v) maintenance 
therapy with oral daily 6MP and weekly MTX until 2.0–3.0 years from diagnosis, 
which in some protocols include VCR/Steroid pulses [16, 17] (see Chap. 8).

5.2  �Pharmacokinetics and Pharmacodynamics

PK deals with drug (and metabolite) concentration-time courses in body fluids after 
administration of a specific dose, whereas PD covers the effects (efficacy and toxic-
ity) resulting from a certain drug concentration (Fig. 5.2) [18]. Thus, PK is what the 
body does to the drug, and PD is what the drug does to the body. For all antileuke-
mic agents there is a several fold interindividual variation in the so-called LADME 
parameters, i.e. Liberation (e.g. from a liposomal formulation), Absorption, 
Distribution, Metabolism and Excretion, where that latter four primarily reflect 
variations in liver and kidney function as well as patients’ age, size and body com-
position. With few exceptions, PK parameters are not predictable, but need to be 

Pharmacokinetics Pharmacodynamics

Dose                      Concentration Effect

Therapeutics

Fig. 5.2  Pharmacokinetics and pharmacodynamics

5  Pharmacokinetics, Pharmacodynamics and Pharmacogenetics of Antileukemic Drugs
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measured and calculated directly. Such calculations can be performed using non-
compartmental or compartmental methods in various PK models. For many drug 
dosing regimens (e.g. HD-MTX) the PK model can be approximated to a 
2-compartment model. Although these are theoretical model compartments, the 
central compartment from where the maternal drug and its metabolites are elimi-
nated generally represent the circulation, including the liver and kidneys. First order 
kinetics of elimination of antileukemic agents describe that the volume of blood 
cleared per time unit is constant (but not the absolute amount cleared). Accordingly, 
the plasma concentration will be linear on a logarithmic curve (Fig. 5.3). In zero 
order kinetics the amount eliminated per time unit is constant (e.g. ethanol), since 
the elimination capacity is saturated. If the rate of clearance of an infused drug, is 
independent of its concentration (approximately the case for HD-MTX), the steady 
state concentration (and the areas under the concentration curve, AUC) will change 
proportional to the dose given. Thus, a reduction of the infused dose by 50% will 
provide a 50% reduction in the steady-state concentration.

The therapeutic window for most anticancer agents is very narrow, and the stan-
dard dose of an antileukemic agent is determined by the maximum tolerated dose, 
i.e. the dose that in phase 1 studies caused unacceptable toxicities in an acceptable 
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very low percentage of patients [19]. However, due to wide interindividual variations 
in PK, this standard dose will provide insufficient systemic exposure to many patients 
and a potentially increased risk of relapse (Fig. 5.3).

Except for folinic acid rescue after HD-MTX [20], Asp dosing based on 
enzyme activity measurements [21, 22], and toxicity-targeted 6MP/MTX-based 
maintenance therapy [17], individualised drug dosing according to drug concen-
trations or to the limit of toxicity is not used outside research trials [23–25]. Thus, 
in spite of huge differences in tissue distribution and drug metabolism virtually all 
traditional antileukemic agents are rigorously dosed by body surface area (BSA). 
The few exceptions include i.t. chemotherapy (dose based on age) and infants 
(dose based on body weight). The original Du Bois formula for calculating BSA 
has nowadays been replaced by the far simpler Mosteller formula [26]: 

BSA kg cm= ( )´ ( )weight height / 3600 . BSA-based drug dosing does not pro-

vide equal or even predictable PK for individual patients, but its general use at 
least allows comparison of treatment intensity across ALL protocols [27, 28].

5.3  �Pharmacogenetics

Pharmacogenetics covers genetic variations affecting PK and/or PD, i.e. treatment 
response phenotypes (review see Davidsen et al. [29] and Dulucq et al. [30]). Recent 
technological opportunities for low-cost, genome-wide analysis of millions of com-
mon host genome variants (primarily single nucleotide polymorphisms (SNPs) and 
indels) and easy-to-use bioinformatics online tools for data handling have created an 
expectation that mapping of host genome variants, will allow more precise dosing of 
anticancer agents [31, 32]. So far pharmacogenomics data has mainly focused on the 
widely used Steroid, MTX, and thiopurines, or on metabolic pathways and transport 
mechanisms that are common to several drugs, such as the glutathione S-transferases 
(GST) and cytochrome P450 enzymes (CYP) [29, 30, 33–35]. Although pharmacoge-
nomic drug dosing may reduce toxicity [36, 37], no prospective studies have so far 
demonstrated that host genome based dosing of chemotherapy provides better cure 
rates in childhood ALL than drug dosing by BSA or by toxicity [37], and attempts to 
replicate genotype-phenotype associations in childhood ALL have often failed [29, 
30]. However, it is noteworthy that variants associated with treatment response are 
frequently associated with PK and PD of the antileukemic drugs [38, 39].

ALL treatment strategies often include more than 10 different antileukemic 
agents, hundreds of genes, and thousands of common genome variants that can 
influence PK and PD, which questions the likelihood that single SNPs will have 
clinically significant impact on response phenotypes [29]. Complex bioinformatics 
analysis integrating the clinical impact of multiple variants in a pathway is doable, 
but has so far not been clinically implemented in health care [39, 40].
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5.4  �Glucocorticosteroid

The Steroids prednisone, prednisolone, and dexamethasone are among the most 
effective antileukemic agents, and in vitro Steroid sensitivity of leukemic cells are 
significant predictors of early treatment response and risk of relapse [41, 42]. 
Accordingly, many continental European groups use the reduction of blast count in 
peripheral blood after a seven days prednisolone prephase for risk group stratifica-
tion, since in vivo prednisone poor response correlates with the likelihood of later 
leukemic recurrence [43].

Steroids are used during induction (prednis(ol)one or dexamethasone) and delayed 
intensification (generally dexamethasone), and as 5–6  days pulses in combination 
with VCR during maintenance therapy, although the efficacy of the latter is uncertain 
[25, 44, 45]. There is plenty of room for adjusting Steroid treatment intensity through 
choice of drug and dose-intensity. Continuous and discontinuous (1 week on, 1 week 
off, 1 week on) Steroid during induction phases, reduces the risk of osteonecrosis, but 
do not seem to interfere with the antileukemic effects [46, 47]. The in vivo antileuke-
mic superiority of dexamethasone compared to prednisolone depends on the treat-
ment intensity, with prednisolone (or prednisone) being less efficacious than 
dexamethasone, if administered less than six- to sevenfold higher doses, e.g. 60 mg 
prednisolone per m.sq. vs 10 mg dexamethasone per m.sq. [48, 49].

In vitro the antileukemic potency of dexamethasone is much higher than that of 
prednisolone [50], but due to the risk of toxicities associated with dexamethasone 
[46, 51], some collaborative ALL study groups restrict the use of a 10 mg/m2 dose 
of dexamethasone during induction therapy to T-ALL, since it provides better 
event-free survival (EFS) rates as well as overall survival, whereas the latter may 
not the case for other ALL subsets [52]. Other groups such as the United Kingdom 
ALL group have used a lower dexamethasone dose (6 mg/m2) during induction 
therapy for all non-infant ALL patients with acceptable toxicity rates and excellent 
cure rates [53, 54].

The lipophilic Steroids passively diffuse intracellularly, where they bind to the 
Steroid receptor (GR or NR3C1), which becomes activated by dissociation from the 
protein complex it is otherwise bound to [29, 55]. The Steroid-receptor complex is 
then translocated to the nucleus, where it binds to glucocorticosteroid responsive 
elements (GRE), which then up- or downregulates specific gene transcriptions lead-
ing to apoptosis of Steroid-sensitive leukemic blasts. Prednisolone and dexametha-
sone seem to regulate the same genes [56]. The Steroid-GR–mediated response can 
be modified by interactions between the inactive GR and several other proteins such 
as heat shock proteins, polymorphic hormone receptors and cytokines, including 
tumor necrosis factor (TNF) and interleukins (ILs). The binding of Steroid to the 
GR receptors up-regulates the expression of CYP3A and IL-10, but decreases 
expression of TNF30. Conversely TNFs reduces and IL10 increases the number of 
GRs and thus modulate Steroid sensitivity. Currently, there is little knowledge on 
how to score the combined interactions of these cytokines in the individual patient 
to further optimise glucocorticosteroid therapy [57].
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Oral Steroids have almost complete bioavailability [58, 59]. After absorption, 
prednisone is rapidly converted to prednisolone in the liver, and these two drugs 
have similar PK [60]. The highly polymorphic genes encoding GSTs and CYP3A 
are involved in Steroid elimination, and Steroid are in themselves inducers of 
CYP3A enzymes, which subsequently may enhance the metabolism of others drugs, 
including VCR, epipodophyllotoxins, and cyclophosphamide [29]. Dexamethasone 
has better CNS penetration than prednisolone, a longer half-life in cerebrospinal 
fluid (CSF), but is also associated with a higher risk of neurotoxicity [51, 61]. 
Adding a physiologic dose of hydrocortisone to dexamethasone treatment may 
compensate for dexamethasone induced deficiency of cerebral mineralocorticoste-
roid signalling, and thus reduce the occurrence of serious neuropsychological 
adverse effects and sleep-related difficulties [62].

Multiple host genome variants influence Steroid ligands, receptors, and down-
stream effectors, and candidate gene studies have, although inconsistently, been 
associated with risk of hyperbilirubinemia, gastrointestinal toxicity, osteonecrosis, 
and risk of CNS relapse in high-risk ALL [29, 63]. However, due to the complexity 
of the Steroid responses, the power of the pharmacogenetics studies, and the diver-
sity of results, no SNPs involved in Steroid PK, pharmacodynamics (PD) or down-
stream pathways have so far found a clinical role in the care of childhood ALL 
patients [57]. Patients with poor prednisone response, who are heterozygous for 
TNF -308G>A have been shown to have a significantly increased risk of relapse 
compared with the wild-type patients [64]. In addition, deletions of GSTM1 and 
GSTT1 has been associated with increased risk of prednisone poor response [34, 
65]. Finally, a SNP in the IL10 promoter region (IL-10 -1082A>G), leads to elevated 
plasma levels of IL-10 in patients homozygous for the G allele, and they are less 
likely to be prednisone poor responders, although this may not lead to an overall 
reduction in risk of relapse [29, 64].

5.5  �Vincristine

The Vinca alkaloid VCR binds to β-tubulin and disrupts the mitotic spindle neces-
sary for chromosome separation, which ultimately leads to apoptosis [66]. VCR is 
used in induction, consolidation, delayed intensification phases, and as reinduction 
pulses together with Steroid during maintenance therapy [45]. Doses vary from 1.5 
to 2.0 mg/m2, and are generally capped at a maximum dose of 2.0 mg to limit the 
risk of serious neurotoxicity, although some groups have capped the dose at 2.5 mg1. 
It is most commonly given as an intravenous (iv) bolus injection or as a brief diluted 
infusion to prevent the risk of accidental and fatal i.t. administration [67]. 
Extravasation of VCR results in local tissue damage, although less severe than with 
anthracyclines.

VCR is metabolised in the liver by CYP3A4 and CYP3A5 [68]. Fifty percent of 
excreted products are metabolites, the biliary system being the primary route of 
elimination [69]. Only 10% are excreted in the urine. CYP3A4 can be induced by 
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multiple agents, including Steroid, VCR itself, phenytoin, and carbamazepine, thus 
reducing VCR exposure and potentially increasing the risk of relapse [70, 71]. On 
the other hand, inhibitors of CYP3A activity, such as the antifungal azoles, as well 
as significantly reduced liver or biliary function can decrease clearance of VCR, and 
thus increase the side effects of vincristine, but the effects in the individual patient 
is unpredictable and useful dosing guidelines are lacking. If clinically feasible, the 
administration of concomitant strong CYP3A inhibitors, such as azoles, should be 
interrupted, not least when VCR is administered weekly.

The inter- and even intraindividual variations in PK are large and unpredictable 
[72], which may explain their lack of correlation with in vivo antileukemic effect in 
some [73], although not all, studies [74]. Prolonged infusion seems to result in less 
neurotoxicity, but unchanged antileukemic efficacy. Recent use of slow release lipo-
somal VCR supports that the risk of neurotoxicity, but not efficacy, is associated 
with high peak concentrations [75].

Peripheral neuropathy caused by interference with axonal microtubules is the 
primary and dose-limiting side effect giving VCR a narrow therapeutic index  
[76, 77]. The symptoms are generally symmetric and include sensory-motor poly-
neuropathy such as neuropathic pain, loss of tendon reflexes, motor dysfunction, 
foot/wrist drop, and paralysis [78]. The very rare occurrence of paresis of the vocal 
cords starts with hoarseness, but may result in severe airway obstruction. Autonomic 
neurotoxicity may cause constipation, abdominal pain and ileus, and prophylactic 
administration of laxatives and/or gut motility promotors should be used. Although 
VCR passes very poorly across the blood-brain-barrier, it can in rare cases affect the 
hypothalamic/pituitary axis directly and cause syndrome of inappropriate secretion 
of antidiuretic hormone (SIADH) with profound hyponatremia and convulsions. In 
a few patients neuropathy is very severe and indicates exploration for Charcot-
Marie-Tooth syndrome [79], but common germline SNPs may also markedly 
increase the risk of dose-limiting neuropathy [77, 80].

5.6  �Anthracyclines

The anthracycline antibiotics doxorubicin and daunorubicin are among the most 
effective antileukemic drugs, but may cause serious toxicities, not least cardiotoxic-
ity [81]. They are generally used for remission induction and/or during intensifica-
tion phases, including in high risk blocks. Due to risk of cardiotoxicity and severe 
myelo-/immunosuppression, the use of anthracyclines has been reduced or even 
abrogated in very low-risk patients as defined by younger age and low white blood 
cell count (WBC) at diagnosis, good prognosis karyotypes, and low MRD at the end 
of induction therapy. In contrast, it remains to be determined which subsets of 
higher risk ALL patients that similarly can be cured without anthracyclines [82, 83].

Anthracyclines mediate their cytotoxicity through free radical formation, inhibi-
tion of topoisomerase II, disturbance of helicase function, DNA intercalation, modi-
fication of signal transduction, and ultimately induction of apoptosis. The primary 
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effector mechanism is still not clarified, but most likely reflects its induction of 
DNA breakage, whereas free-radical formation is probably of less importance.

Doxorubicin and daunorubicin are usually administered at iv doses of 30 mg/m2 
per week or as 60 mg/m2 every 3 weeks as prolonged infusion (1 or more hours) 
with caution to avoid extravasation of anthracyclines, since this results in severe 
local tissue damage.

The PK of anthracyclines is very variable [84, 85], but doxorubicin and daunoru-
bicin display very similar PK. Liposomal and conventional daunorubicin have com-
parable plasma PK, but the liposomal formulation provide lower levels of the 
metabolite daunorubicinol and seems associated with a lower risk of later cardio-
toxicity [86, 87]. In the blood 75% of doxorubicin and daunorubicin are bound to 
plasma proteins. Due to rapid binding to tissue DNA, the plasma concentration 
drops rapidly, but the terminal half-life is long. Neither the plasma concentrations of 
daunorubicin nor of daunorubicinol seem associated with outcome in ALL, whereas 
a higher intracellular AUCs rather than peak levels are associated with efficacy [88].

Doxorubicin and daunorubicin are inactivated by GSTs and by the conjugating 
enzyme NAD(P)H quinone oxidoreductase (NQO1), which make them more 
water-soluble and suitable for excretion, and deletions of GSTM1 and GSTT1 
have been associated with reduced risk of relapse [29, 34]. The 13-hydroxylated 
metabolites doxorubicinol and daunorubicinol have only 5–10% of the cytotoxic 
activity of doxorubicin and daunorubicin, but may be more cardiotoxic [89]. Fifty 
percent of a dose is eliminated by hepatic aldo/ketoreductases and excreted by the 
biliary system, and only 10% by renal excretion. Systemic clearance of the anthra-
cyclines is reduced in patients with decreased liver function and hyperbilirubinae-
mia. Accordingly, dose reduction may be indicated in patients with severe hepatic 
or biliary impairment or with exposure to drugs that diminish hepatic reduced 
glutathione pools (e.g. acetaminophen), but clear guidelines are not available.

The most studied NQO1 polymorphism is the NQO1 609C>T, which reduces the 
enzymatic activity to only 2% of the wild-type protein [29]. Although this should 
increase anthracycline exposure and efficacy, a reduced leukemic relapse rate has 
not been reported [90].

Common adverse reactions include nausea, vomiting, mucositis, myelo- and 
immunosuppression with risk of serious infections. The risk of cardiomyopathy is 
associated with female gender, young age, higher cumulative doses and shorter infu-
sion time. It has been suspected that longer infusion time (≥4 h) would reduce car-
diotoxicity without compromising the antileukemic effect, but only the latter seems 
true [91]. Recent studies have identified host genome variants that may be associated 
with anthracycline-induced cardiotoxicity, but this awaits further validation [92].

5.7  �Asparaginase

Asp has been part of childhood ALL treatment protocols for decades, but its optimal 
administration has only been clarified within the last 10–15 years.
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Asp can be extracted from two bacteriae, Erwinia chrysanthemi and Escherichia 
coli. To prolong half-life and decrease immunogenicity, E-coli Asp has been modi-
fied by covalent binding of polyethylene glycol (Peg-Asp). Peg-Asp has become the 
drug of choice in most first-line ALL treatment protocols. The various Asp prepara-
tions and recombinant analogs do not differ in their mode of action, but only in their 
biologic half-lives (shortest for the Erwinia preparation and longest for PEG-Asp 
due to reduced uptake in the reticuloendothelial system) [93, 94] and in their immu-
nogenicity (lowest for PEG-Asp).

Asp reduces the extracellular pool of the non-essential amino acid asparagine 
by hydrolysing it into L-aspartic acid and ammonia, and to a much lesser extent 
Asp also catalyses glutamine (Fig. 5.4). The latter is important for de novo syn-
thesis of purines and pyrimidines, but does not seem to be critical for the antileu-
kemic effect. Asp does not enter cells or the CNS, but through depletion of 
extracellular asparagine Asp deprives these tissues of asparagine. E-coli Asp may 
give a more complete asparagine depletion in the CNS compared to Peg-Asp, sug-
gesting that small amounts of E-coli Asp might enter the CNS [95, 96]. Asparagine 
depletion results in decreased protein and nucleic acid synthesis leading to inhibi-
tion of leukemic cell proliferation and induction of apoptosis. The specific L-Asp 
sensitivity of lymphoblasts reflects their restricted ability to up-regulate aspara-
gine synthetase (ASNS) activity, and their higher need of asparagine due to their 
enhanced proliferation. Accordingly, high expression of ASNS in some ALL 
subsets or in normal bone marrow stroma may lead to resistance to Asp, and 
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Fig. 5.4  L-asparaginase hydrolyses serum asparagine, but also has a low glutaminase activity. 
Most normal cells can synthetize L-asparagine from aspartic acid and glutamine and are therefore 
less susceptible to asparaginase than leukemic blasts. Leukemic blasts are restricted in their abil-
ity to up-regulate asparagine synthetase and have a higher need of asparagine due to enhanced 
proliferation rate
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down-regulation of ASNS can revert this resistance in human leukemia and lym-
phoma cell lines [97, 98].

Asp is metabolised by the reticuloendothelial system, independent of the hepatic 
CYP450 enzymes and renal function. Asp can be administered intramuscularly or 
iv. The intramuscular route results in lower peak levels and may be less immuno-
genic [97]. The differences in half-lives of the various Asp preparations determine 
dosing schedules. Due to its short half-life, Erwinia Asp is given three times a week 
or every other day in a dose of 20,000–25,000 IU/m2 The dosing schedule of native 
E-coli Asp is 5000–10,000 IU/m2 every 3–4 days. Peg-Asp is generally given every 
other week, at doses that vary from 1000 to 3500 IU/m2. Real-time measurement of 
Asp activity level is currently used by several groups and allows dose adjustments 
to keep Asp activity levels above 100 IU/L to obtain complete and sustained deple-
tion of serum asparagine [21, 22].

The toxicity of Asp can be divided in two major groups; the hypersensitivity 
reactions and toxicities caused by asparagine depletion. The most serious toxic 
reactions include hypersensitivity ranging from mild reactions to anaphylactic 
shock, hyperglycemia, pancreatitis liver toxicity such as hyperbilirubinemia, hypo-
albumenia, coagulopathy, hyperammonemia and hypertriglyceridemia [99–103]. 
Since Asp is a foreign protein, it can cause antibody formation [97, 104]. These 
antibodies neutralise Asp with or without clinical signs of hypersensitivity. The lat-
ter is called silent inactivation, and can only be detected by the measurement of 
plasma Asp activity levels. In case of clinical allergy, Asp levels will generally be 
zero irrespective of the severity of the allergy, and these patients may, in addition of 
their lack of asparagine depletion have enhanced clearance of Steroid [105]. 
Premedication with glucocorticosteroid and antihistamines and increased infusion 
time can reduce allergic symptoms, but does not prevent Asp inactivation. Thus, 
symptoms of hypersensitivity indicate switch from E-coli derived preparations to 
Erwinia Asp (and vice versa) [106]. HLA-DRB1*07:01 and genetic variations in 
GRIA1 on chromosome 5q33 are associated with a higher incidence of hypersensi-
tivity and anti-Asp antibodies [107, 108].

Asp-induced hypoalbuminaemia can decrease the clearance of dexamethasone 
and other drugs [105], and Asp decreases MTX polyglutamation in a preclinical 
model, although the clinical significance of this is uncertain [109].

5.8  �Thiopurines

The thiopurines 6MP and 6TG are essential drugs in the treatment of childhood 
ALL. They are included in consolidation therapy (6MP or 6TG in combination with 
low dose AraC), in combination with HD-MTX (6MP), and during maintenance 
therapy (6MP in combination with MTX). Although most groups only prescribe 
25 mg/m2 of 6MP, when given in combination with HD-MTX, most patient will 
tolerate 50 mg/m2 or some even 75 mg/m2 [110]. For 6MP/MTX maintenance ther-
apy the starting dose of 6MP is 50–75 mg/m2 dose of 6MP, which is then adjusted 
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to a set target WBC (usually 1.5–3.0 × 109/L) or ANC [16] as this is associated with 
reduced risk of relapse [17].

Both 6MP and 6TG are prodrugs that exert their cytotoxicity through hypoxan-
thine guanine phosphoribosyl transferase-mediated conversion into thioinosine 
monophosphate that are subsequently converted into mono-, di- and triphosphates 
of 6-thioguanosine (6TGN), which are incorporation into DNA (DNA-TGN) in 
competition with normal guanine (Fig. 5.5) [111]. During DNA replication and 
DNA repair, DNA-TGN will reliably match with cytosine. However, DNA-6TGN 
may become S-methylated which markedly enhance the likelihood of mismatching, 
specifically with thymidine. Although such mismatching can be recognised by the 
mismatch repair system, normal DNA sequence repair will be unsuccessful, since 
the methylated DNA-TGN will continue to mismatch, and the futile repetitive repair 
attempts will eventually either fail and induce point mutations or the multiple exci-
sions and resynthesis attempts will lead to apoptosis [111].
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Fig. 5.5  Simplified outline of 6-mercaptopurine (6MP) metabolism, methotrexate (MTX) metabo-
lism and their interactions. DNA-TG = Thioguanine nucleotides incorporated into DNA; GDP = 
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6TG are more easily converted into 6TGN. 6TG also penetrates better into CSF 
than 6MP [112] and may be a superior drug for preventing leukemic relapse, but 
treatment with 6TG as the maintenance therapy thiopurine has in several studies 
been associated with a 10–20% risk of sinusoidal obstruction syndrome, which in 
a few patients has led to liver failure and need of liver transplantation [113, 114]. 
In some patients development of sinusoidal obstruction syndrome during 
6TG-based maintenance therapy has been associated with reduced thiopurine 
methyl transferase (TPMT) activity [115].

Plasma levels of 6MP in children with ALL exert extensive inter- as well as intra-
individual variability [116](for review see Schmiegelow et al. [16]). Due to a high 
first pass effect of xanthine oxidase in gut and liver, the median bioavailability of 
6MP is less than 20% [117]. Although variants in the xanthine oxidase and 
hypoxanthine guanine phosphoribosyl transferase are known, neither have been 
shown to influence the risk of relapse in childhood ALL.

The conversion of thiopurines to active 6TGN competes with S-methylation of 
6MP and several its metabolites mediated by TPMT, and dose increments of 6MP 
primarily leads to higher concentrations of methylated 6MP metabolites [118]. 
Methylmercaptopurine cannot be converted into active nucleotides. Methyl-
thioinosine monophosphate is a strong inhibitor of purine de novo synthesis [119], 
and high cytosol 6TGN, methylated 6MP metabolites and MTX-polyglutamates, 
enhance DNA incorporation of 6TGN [120–122]. TPMT status can be determined 
by genotyping or phenotyping of erythrocyte TPMT activity. However, TPMT 
activity will be low at diagnosis, since the red blood cell pool is old, increased dur-
ing maintenance therapy due to a reduced erythrocyte life span, and confounded in 
patients who have received allogeneic erythrocyte transfusion [123].

Erythrocyte levels of 6TGN (E-TGN) and methylated metabolites (E-MeMP) 
have been used to monitor the treatment intensity of 6MP, and although E-TGN 
initially seemed promising in this respect [124], this parameter tended to lose its 
significance as intensified 6MP/MTX maintenance therapy gained attention [16, 24]. 
Still, low levels of both E-6TGN and E-MeMP (or high WBC and lack of elevated 
alanine aminotransferase levels) in spite of 6MP dose increments can be an indica-
tor of poor treatment adherence [16, 125].

Patients with inherited low TPMT activity will have higher erythrocyte 6TGN 
levels and be at increased risk of hematopoietic toxicity, and thus tolerate lower 
doses of 6MP during maintenance therapy [36, 126–128].

Numerous SNPs have been described in the TPMT gene, of which TPMT*2 
238G>C, TPMT*3B 460G>A and TPMT*3C 719A>G are the most common vari-
ants [129], leading to reduced enzyme activity and tolerance to 6MP and to a lesser 
extent 6TG [130]. Five to 10% of white are heterozygous for low activity TPMT 
alleles, and 1 in 300 individuals is TPMT deficient with two low activity alleles. 
Patients with low activity TPMT alleles have more rapid reduction in their MRD 
[131] and a reduced risk of relapse when treated with 75 mg/m2 of 6MP [127, 132]. 
However, the relapse rate for TPMT low activity and wild type patients may be 
similar, if the maintenance therapy starting dose of 6MP is reduced for the patients 
with TPMT low activity alleles [37].
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The natural substrate for TPMT is unknown, and TPMT deficient patients are 
otherwise phenotypically normal. So far, TPMT genotype is the only example of 
routine implementation of pharmacogenetics drug dosing in ALL treatment [36, 37, 
130], although most collaborative ALL groups will only test for TPMT variants in 
patients that demonstrate excessive myelotoxicity [123].

During 6MP-based maintenance therapy a median of ~1:8000 DNA nucleotides 
are replaced by 6TGN in nucleated cells [121]. When children on maintenance ther-
apy are dose adjusted by WBC, TPMT wild type and heterozygous patients will 
differ in their E-6TGN and E-MeMP, but obtain very similar DNA-TGN levels 
[121]. Low DNA-TGN has recently been associated with an increased risk of 
relapse [133, but prospective clinical trials are needed to determine, if DNA-TGN 
can supplement or even replace WBC/ANC as guide for 6MP dose adjustments.

In Asian and South American populations low activity TPMT variants are rare, 
whereas low activity NUDT15 variants are common, with allele frequencies up to 
20% [134, 135]. NUDT15 mediates dephosphorylation of thioguanine nucleotides, 
and patients with reduced activity have a phenotype similar to that of TPMT low 
activity patients, with reduced tolerance to 6MP [135].

Bone marrow suppression is the primary dose-limiting side effect of thiopurines 
and primarily reflects intracellular TGN levels, whereas methylated metabolites are 
correlated with hepatotoxicity with a rise in alanine aminotransferase [136, 137]. 
Patients with low activity alleles of TPMT or NUDT15 experience more myelotox-
icity at standard 6MP doses. Thus, the cumulative incidence of 6MP dose reduc-
tions during maintenance therapy is highest for TPMT and/or NUDT15 deficient 
patients (100% of patients), lower for heterozygous, and lowest in wild-type TPMT 
and NUDT15 patients [135]. Accordingly, some groups reduce the starting doses of 
6MP for patients with low activity TPMT alleles to reduced toxicity, but similar 
guidelines for NUDT15 are lacking [123].

Evening dosing of 6MP and MTX was in the 1980’ies associated with a reduced 
risk of relapse [138, 139], and an evening schedule may provide more favorable PK 
[140, 141] but with contemporary more effective antileukemic therapy that is no 
longer the case [142].

Treatment-related second malignant neoplasm (SMN) is a rare toxicity of thio-
purine therapy that is associated with longer maintenance therapy and higher 6MP 
doses and associated with higher 6MP doses and longer maintenance therapy  
[143, 144]. The risk of treatment-related myeloid neoplasia (t-MN) has been associ-
ated with low TPMT activity in some [145], but not all studies [132, 146].

5.9  �Methotrexate

The folate analogue MTX (4-amino-10-methyl-pteroylglutamic acid) plays a key 
role in antileukemic therapy. Its complex pharmacology mirrors that of natural 
folates with a marked interpatient variability in pharmacokinetics, efficacy, and tox-
icity [20]. In childhood ALL, MTX is administered widely during ALL therapy as (i) 
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intrathecal (i.t.) therapy in age-adjusted doses, (ii) intravenous escalating doses with-
out folinic acid rescue, (iii) higher intravenous doses (1.0–5.0 g/m2) necessitating 
high dose folinic acid rescue, and finally as (iv) oral or parenteral low doses of 
20–40 mg/m2 at 1–2 week intervals as part of the backbone of maintenance therapy.

MTX enters the cell by active transport via the reduced folate carrier 1 (RFC1), 
coded on chromosome 21, although other influx and efflux mechanisms mediated by 
ABC transporters (specifically the ABCC1-4) and breast cancer resistance protein 
also play a role for cellular MTX concentrations [147]. At high MTX doses passive 
diffusion across the cell membrane also plays a significant role. MTX interferes with 
the natural folate-homocysteine cycle and inhibits multiple folate-dependent enzymes 
and pathways, including dihydrofolate reductase (DHFR), thymidylate synthase 
(TYMS), 5,10-methylene-tetrahydrofolate reductase (MTHFR), and purine de novo 
synthesis, which leads to lack of reduced folate, inhibition of DNA synthesis, apop-
tosis, increased adenosine levels and potentially life-threatening toxicities [29, 148]. 
When at least 95% of DHFR the synthesis of tetrahydrofolate is compromised [149], 
but folinic acid (reduced folate) can then counteract the effect. Intracellularly, the 
enzyme folylpolyglutamate synthetase (FPGS) polyglutamates MTX (as well as nor-
mal folate) to polyglutamates forms with 2–6 polyglutamate residues (MTXpg), 
which increase intracellular retention as well as affinity (and thus efficacy) for its 
target enzymes proportional to glutamyl chain length [150–154]. In contrast, MTXpg 
hydrolysis by gamma-glutamyl hydrolase will reduce the pool of MTXpg due to 
efflux of the maternal drug and the short-chained polyglutamates [154].

The ability for MTX polyglutamation is reduced in T-cell leukemia, probably 
since T-ALL blasts have lower expression of FPGS and higher breast cancer resis-
tance protein and gammaglutamyl hydrolase (GGH) activity, which reverses poly-
glutamylation process and favorises MTX efflux [147]. Accordingly, most T-ALL 
require higher HD-MTX doses (5  g/m2), whereas B-ALL, especially high-
hyperdiploids, can do with lower doses [23, 155].

Measurement of plasma MTX concentrations during HD-MTX to adjust dosing 
of folinic acid rescue was the first example of routine therapeutic drug monitoring 
in pediatric oncology. Folinic acid rescue is usually postponed until hour 42 after 
the start of the MTX infusion in order to avoid rescue of leukemic blasts [156, 157], 
although this is not well documented. Depletion for more than 42–48 h will cause 
irreversible cytotoxicity to normal tissue [158].

HD-MTX is widely used in childhood ALL therapy, and therapeutic drug moni-
toring of HD-MTX has been shown to reduce relapse rates of B-cell precursor ALL 
[23], although its role is yet not completely clarified. Although it enhances cellular 
uptake and is important for MTX-polyglutamation, a 300-fold increase in MTX 
dose only leads to a 2.0–2.5 fold difference in intracellular MTX content [20]. In 
addition, exposure time, including timing and intensity of folinic acid rescue, 
rather than peak concentrations, are of importance. Thus, 1 g/m2/24 h with two 
doses of folinic acid rescue gives 100-fold lower peak concentrations than 12 g/m2 
over 4 h (7.2 μM versus 700 μM), but more toxicity, longer lasting serum MTX 
concentrations higher than 1.0  μM, and similar event-free and overall survival 
[159, 160].
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When HD-MTX is given, MTX clearance is dependent on a normal renal and 
liver function. A rapid clearance has been linked to reduced cure rates [23, 161], 
although not all studies have confirmed this association [157] potentially reflected 
dosing strategies for both HD-MTX and folinic acid rescue [156]. The liver is 
responsible for degrading approximately one-third of a dose of 5 g/m2 to 7-hydroxy-
MTX (7-OH-MTX) by hepatic aldehyde oxidase. The plasma concentration of 
(7-OH-MTX) can exceed that of MTX, and even enhance MTX-induced toxicity 
including nephrotoxicity [20, 162]. A smaller proportion is metabolised in the liver 
to the inactive metabolite (4-[[2,4-diamino-6-(pteridinyl)methyl]-methylamino]-
benzoic acid) (DAMPA), while the remainder is being excreted unmetabolised by 
the kidneys.

MTX and its metabolites are weak acids that can crystallise in the acidic renal 
environment and cause acute, although reversible, severe reduction in renal function 
[163–165]. The acute renal failure cannot be predicted prior to HD-MTX therapy, 
but can be recognised early by a rise in serum creatinine. Thus, a rise of >50% 
within 24 h from the baseline value has a sensitivity of 0.32 and a specificity of 0.99 
to predict delayed MTX elimination, and 99% of courses with normal clearance 
have a rise in serum creatinine of less than 50% [166]. The severe acute renal toxici-
ties with significantly delayed MTX clearance most frequently occur after the first 
or second HD-MTX courses, and rarely recur [167]. When a significant delay in 
MTX clearance occurs, hydration should be increased from the usual 3000 to 
4500 ml/m2/24 h accompanied by proportional intensification of alkalinisation to 
increase solubility of MTX in the urine. With very severely delay in MTX clearance 
and kidney dysfunction the enzyme carboxypeptidase can be administered, since it 
rapidly degrades MTX to DAMPA and glutamate, although it will not change the 
time to normalisation of the renal function [168, 169].

The efficacy and toxicity of low-dose MTX may be mediated by different 
mechanisms. Oral MTX is rapidly absorbed by an active, but saturable, transport 
mechanism with a bioavailability of 50–95%, a peak concentration of 0.3–
2.2  mM within 1.5–2.5  h from intake, and an elimination half-life of 4–6  h, 
which mainly reflects renal excretion of unmetabolised MTX within 24  h  
[16, 117]. Thus, parenteral administration at these doses will only increase sys-
temic exposure slightly and has not been shown to reduce the relapse rate [170]. 
Rheumatologist have routinely supplemented patients with folic acid (5 mg per 
week) to avoid gastrointestinal toxicity, hepatotoxicity and hyperhomocysteinae-
mia while preserving efficacy [171]. Although hardly studied in childhood ALL, 
children who receive folic acid supplementation have higher folate levels and 
significantly less myelosuppression [172].

Measurements of MTX polyglutamates in erythrocytes (Ery-MTX) has been 
explored for monitoring of maintenance therapy intensity, since Ery-MTX is related 
to the dose of MTX in the preceding weeks, the cellular MTX incorporation in the 
bone-marrow, and the degree of myelosuppression [16, 124]. E-MTX is also 
strongly associated with DNA-TGN levels during 6MP/MTX maintenance therapy 
[122, 133]. However, a recent large randomised study could not demonstrate the a 
benefit of MTX dose adjustments according to Ery-MTX [24].
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MTX passes poorly into the CNS, with a concentration ratio in the order of 1%. 
Accordingly HD-MTX was initially introduced to improve penetration into CNS 
and testicular tissue and to overcome cellular MTX resistance. However, HD-MTX 
is costly, requires several days of hospital admissions until the p-MTX is below a set 
threshold (200 or 400 nM), carries a risk of severe bone-marrow suppression and 
thus treatment interruptions, and recent meta-analyses have questioned its role for 
prevention of CNS relapse [173].

Expression patterns in leukemic cells of the multiple genes involved in folate 
(and MTX) disposition have been strongly associated with leukemia subtypes, 
and some correlate with MTX response in vivo [174]. However, the gene expres-
sion patterns are poorly correlated with host genome polymorphisms of the 
same genes.

MTX disposition in the individual patient mirrors the many genes involved in 
the folate-homocysteine pathway, and numerous pharmacogenetic studies have 
been conducted to explore the impact of host genome variants on MTX PK and 
PD (Table) (see Davidsen et  al. and Schmiegelow et  al. for reviews [20, 29]). 
However, most of the studies are low powered and include only candidate genes, 
and the few well-powered GWAS studies have, with few exceptions, not been 
replicated in independent cohorts [32]. Interindividual variations in HD-MTX 
PK have a genetic component of more than 50%. SNPs in SLC01B1 is one of the 
strongest and best validated determinators of renal clearance of HD-MTX (2.0–
5.0 g/m2), but still accounts for less than 10% of the interindividual differences 
in MTX clearance [175, 176]. These and other variants, e.g. thymidylate syn-
thase tandem repeat polymorphism, have been associated with risk of MTX-
related toxicities [176].

The RFC1 80G>A is one of the most extensively investigated polymorphism in 
the RFC1 gene (also named SLC19A1), and several clinical implications of these 
alleles have been reported. The A allele has a frequency of ~50% and has been asso-
ciated with better cellular uptake [177], higher end-of-infusion plasma levels of 
MTX during HD-MTX therapy methotrexate, as well as a reduced relapse rate com-
pared to patients with one or two G alleles among ALL patients repetitively exposed 
to HD-MTX (5 g/m2/24 h) [178], but only among patients disomic for chromosome 
21 (where RFC1 is coded). The RFC1 80G allele has been associated with hepato-
toxicity, including hyperbiliruinemia, and vomiting.

Methyltetrahydrofolate reductase (MTHFR) is also an important enzyme in 
the folate-homocysteine cycle, and two SNPs in the gene encoding MTHFR 
have been extensively studied: MTHFR 677C>T and MTHFR 1298A>C, both 
of which reduce the enzyme activity [179]. In a study of 520 patients with child-
hood ALL, the T allele of MTHFR 677C>T was shown to be associated with an 
increased risk of relapse [180], but only some studies have been able to confirm 
this [29]. In contrast, the data linking MTHFR polymorphisms to hepatotoxicity, 
myelosuppression, oral mucositis, gastrointestinal and skin toxicity are more 
solid [179].

Trimetroprim-sulfamethoxazole (TMP/SMX) is generally used as Pneumocystis 
jiroveci prophylaxis during ALL therapy [181, 182] and there has been a worry that 
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it could interfere with MTX pharmacokinetics and/or efficacy. However, it seem to 
interfere with neither low dose [183] or HD-MTX PK [184], and although is does 
reduce tolerance to oral MTX-based maintenance therapy, this does not influence 
relapse rate [185].

When oral 6MP is given concurrently with HD-MTX, it seems to be the pri-
mary mediator of bone-marrow suppression [186, 187]. This interaction is bio-
chemically and clinically well supported, since MTX increases the bioavailability 
of 6MP [189, 190], inhibits de novo purine synthesis with increased intracellular 
levels of phosphoribosyl pyrophosphate, and thus increased formation of 6-thio-
guanine nucleotides (the primary mediator of 6MP cytotoxicity)(Fig. 5.5) [119]. 
When HD-MTX (5.0 g/m2/24 h with folinic acid rescue) is given together with 
oral 6MP (75 mg/m2), approximately 40% of the patients will experience treat-
ment interruption of a median of 10 days due to severe myelotoxicity [186]. This 
myelosuppression can be avoided by reductions of the dose of 6MP 1–2 weeks 
before and after HD-MTX [190].

5.10  �Cytosine Arabinoside

AraC is used either as a low dose 4-days schedule together with a thiopurine, or as 
HD-AraC for subsets of ALL patients with a significantly increased risk of relapse. 
The PK of AraC varies widely and the half-life is short with a median T½ of 
minutes.

Nucleoside transporters, primarily the human equilibrative nucleoside trans-
porter 1 (hENT1 or SLC29A1), play a major role in uptake of AraC by leukemic 
cells, and a decrease in hENT1 expression is associated with AraC resistance [191]. 
Intracellularly, AraC undergoes phosphorylation, mediated by deoxycytidine kinase 
(dCK), to arabinoside-cytidine monophosphate (ara-CMP), which by other kinases 
is converted into the cytotoxic form ara-CTP, which then competes with natural 
deoxycytidine triphosphate (dCTP) for incorporation into DNA leading to inhibi-
tion of DNA polymerase, blocking of DNA synthesis and repair, and eventually 
apoptosis. Alternatively, AraC may undergo deamination to the nontoxic uridine 
arabinoside (ara-U) by cytidine deaminase (CDA), and high levels of CDA correlate 
with in vitro and in vivo AraC resistance.

Several SNPs in the hENT1 gene and the promoter region of dCK, and some of 
these have been associated with increased promoter activity and a better outcome 
for myeloid leukemia patients [29]. However, for both hENT1 and dCK clinical 
pharmacogenetic studies in childhood ALL are lacking. High levels of 5NT enzyme 
activity have been associated with a higher relapse rate in childhood ALL [192]. 
Several SNPs in the CDA gene may also affect expression levels, activity, and risk 
of toxicity.

The primary dose-limiting toxic effects of AraC are myelosuppression, mucosi-
tis, and in addition a risk of encephalopathy when HD-AraC is given.
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5.11  �Cyclophosphamide and Ifosfamide

The nitrogen mustards, especially cyclophosphamide, are the most commonly used 
alkylating agents in ALL treatment [193], and applied during consolidation (cyclo-
phosphamide) and as part of intensive blocks for high risk patients by some collab-
orative groups (both cyclophosphamide and ifosfamide). Although oral dosing is 
feasible, cyclophosphamide is generally given iv at doses of 500–1000 mg/m2.

The active metabolites of cyclophosphamide attach an alkyl group to the guanine 
base of DNA, which interferes with DNA replication by forming irreversible intra- 
and inter-strand DNA crosslinks, thus inhibiting DNA replication, which eventually 
leads to apoptosis.

There are large interindividual variations in the PK and metabolism of cyclo-
phosphamide, ifosfamide and their cytotoxic metabolites. Cyclophosphamide is a 
prodrug that becomes active after metabolic transformation by 4-hydroxylation 
activation to 4-hydroxycyclophosphamide, which exists in equilibrium with its 
tautomer aldophosphamide that is spontaneously hydrolysed to phosphoramide 
mustard and acrolein. The former is an active alkylating agent, while the latter 
causes hemorrhagis cystis. The conversion of cyclophosphamide to its active meta
bolites is mediated by several CYP enzymes with CYP2B6 playing the major role, 
since it has higher affinity for cyclophosphamide and higher metabolic capacity 
than the other CYP activators CYP2A6, CYP2C9, CYP2C19, CYP3A4 and 
CYP3A5 [29]. The metabolites are highly protein bound and distributed to all tis-
sues. Detoxification of 4-hydroxycyclophosphamide is mainly by GSTA1 and 
GSTP1, whereas aldophosphamide, in addition to spontaneous elimination, can be 
oxidised to inactive carboxyphosphamide by aldehyde dehydrogenase variants 
ALDH1 and ALDH3. ALDH1 is the most efficient gene variant, and overexpression 
of ALDH1 has been shown to induce cyclophosphamide resistance in vitro.

No childhood ALL studies have explored in detail the clinical impact of host 
genome variants in the CYP and ALDH genes on the effect of cyclophosphamide 
therapy. However, several SNPs have been associated with increased transcriptional 
activity in vitro and PK of cyclophosphamide in other cancers, including CYP2B6 
-82T>C, CYP2B6 516G>T, CYP2B6 785A>G, and CYP2C19*2 681G>A.  It 
remains unclear to what extent GST polymorphisms can be correlated to effects of 
cyclophosphamide treatment and prognosis in childhood ALL [33, 34].

Drugs inducing hepatic P450 enzyme activity may result in accelerated metabo-
lism of cyclophosphamide to its active metabolites, increasing both efficacy and 
toxicity of the drug. In contrast, drugs that inhibit hepatic enzymes (table, e.g. cor-
ticosteroid and azoles) and severe hepatic impairment result in reduced effect of 
cyclophosphamide. Cyclophosphamide and its metabolites are primarily excreted in 
the urine, and the dose should be reduced in patients with impaired renal function.

Cyclophosphamide causes nausea and vomiting, bone-marrow suppression, 
hemorarrhagic cystitis, and the two latter toxicities are the primary dose-limiting 
factors [193]. During and for at least 8  h after the administration, adequate iv 
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amounts of fluid (3000 mL/m2) and mesna should be administered to reduce the risk 
of urinary tract toxicity. The most serious long-term toxicity is an increased risk of 
developing secondary cancer [143].

5.12  �Epipodophyllotoxins

Among the epipodophyllotoxins, etoposide (VP16) is the primarily used antileuke-
mic agent, but is currently only used for high risk patients during consolidation 
blocks.

DNA topoisomerase I and II are essential for DNA replication, transcription, 
chromosomal segregation, and recombination, and epipodophyllotoxins stabilises 
cleavable topoisomerase II/DNA complexes, thus preventing re-ligation of DNA 
strands and causing DNA strand breaks and apoptosis.

The interindividual variability in PK of epipodophyllotoxins in children is sig-
nificant, and this may play a role for efficacy and toxicity [194–197]. The median 
bioavailability of oral VP16 is only 50% and oral VP16 is not used in ALL therapy. 
In plasma, VP16 is more than 95% bound to proteins, and albumin infusion prior to 
VP16 should be considered in patients with profound hypoalbuminemia to avoid 
excessive bone-marrow suppression. Ten to seventy percent are excreted unmetabo-
lised in the urine [198].

Penetration into the CSF is quite limited (0.5%), but it will be far less bound to 
proteins in CSF and may have antileukemic effects [199].

The main non-renal elimination route is hepatic metabolism, and VP16 is a sub-
strate for CYP3A4 and CYP3A5. Mediated by GSTT1/GSTP1 and UGT1A1, 
respectively, glutathione and glucuronide conjugation can inactivate VP16 and sev-
eral of its metabolites. VP16 and its metabolites are mainly excreted by the kidney, 
while biliary excretion plays a minor role. In case of kidney and liver dysfunction 
the dose of VP16 should be reduced proportionate to the creatinine clearance and 
hyperbilirubinaemia.

The efficacy of epipodophyllotoxins and other topoisomerase II targeting anti-
neoplastic agents (e.g. anthracyclines) may vary according to polymorphisms in the 
topoisomerase II genes, but few studies have explored this, even though many can-
didate genes and SNPs have been identified [29](Table). Epipodophyllotoxins are 
substrates for both GSTs and CYP enzymes (primarily CYP3A4, but also CYP3A5) 
and low-activity G alleles of GSTP1 313A>G and of CYP3A5*3 has been associa-
tion with a higher clearance of etoposide, whereas no significant effect of 
CYP3A4*1B polymorphism have been demonstrated. UDP-glucuronosyltransferase 
1 (UGT1A1) glucuronidates VP16, making it more water-soluble and more suitable 
for excretion. A polymorphism with 7 (TA) repeats in the promoter region of 
UGT1A1 (UGT1A1*28) reduces expression of UGT1A1 compared with the wild 
type with six repeats (6TA), and is associated with lower VP16 clearance in children 
with ALL. Furthermore, UGT1A1*28 has been reported to be a strong predictor of 
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hyperbilirubinemia in children with ALL.  Finally, VP16 is a substrate for the 
multiple drug resistance gene P-glycoprotein, and high activity CC genotype of 
MDR1 3435C>T has been associated with higher VP16 clearance. However, the 
impact of these polymorphisms on cure rates remains to be demonstrated, and none 
are currently integrated into clinical care of children with ALL.

Concomitant administration of CYP3A4/5 inducers (e.g. Steroid) can increase 
clearance of VP16 and potentially reduced efficacy. However, preemptive dose 
adjustments are not routinely recommended. Drugs that inhibit CYP3A4/CYPA5, 
such as azoles might also interfere with VP16 metabolism.

The most frequent adverse reactions are nausea and vomiting, mucositis with 
stomatitis and diarrhea, myelosuppression, hepatotoxicity and allergy-like reac-
tions. The latter can be avoided by giving VP16 as a slow infusion of 30–60 min 
to  prevent unspecific mast cell activation, hypotension and/or bronchospasm. 
Epipodophyllotoxin associated second myeloid malignancy is a rare toxicity in 
childhood ALL that frequently involves the MLL gene [143].

5.13  �Intrathecal Chemotherapy and Central Nervous System 
Leukemia

When CNS-targeted therapy was not provided in the 1950s and 1960s, 80% of all 
patients relapsed in the CNS, and although the overall risk of CNS relapse is low with 
contemporary antileukemic therapy, 30–40% of all relapses still involve the CNS. At 
diagnosis of ALL leukemic blasts in CSF with leukocyte levels ≥5 × 106/l can be 
demonstrated by cytospin preparations (so called CNS3) in a few percent of all chil-
dren with ALL at diagnosis, and these patients have an increased risk of relapse. But 
if CSF is explored by sensitive methods (e.g. flow cytometry) or morphologically 
explored before cells decay in CSF, at least 30% have CNS involvement, although at 
levels far below 5 × 106/L (so called CNS2) [200]. The clinical significance of such 
limited CNS involvement for risk of later relapse is yet to be determined. However, 
these findings all underscore the necessity of CNS-targeted therapy. Until recently this 
included cranial irradiation, but with the improvements of both systemic and i.t. che-
motherapy, many groups currently have substituted irradiation with i.t. chemotherapy 
to reduce the risk of neurotoxicity (see Chap. 12) [6, 201].

Although many anticancer agents can be administered i.t., only three antileuke-
mic drugs are used in front-line antileukemic therapy, i.e. MTX, Steroid, and 
AraC.  Most collaborative ALL treatment groups have chosen i.t. MTX as the 
standard drug, whereas the combination of MTX, Steroid, and AraC (triple intrathe-
cal therapy, TIT) has been reserved for higher risk patients and for patients with 
CNS3 at diagnosis. For the latter patients, additional doses of TIT are given during 
induction therapy until the CSF is free of leukemic blasts.

Since the brain and CSF volume grows rapidly during the first years of life, 
and the CSF approaches adult volume by the age of 3 years, the dosing of i.t. 
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chemotherapy is by age groups; i.e. <1.0 years, 1.0–1.9 years, 2.0–2.9 years, and 
≥3.0 years.

After lumbar administration of an anticancer agent it must diffuse against the 
normal CSF flow, which goes from the lateral ventricles to the third, then the forth 
ventricle, and finally to the subarachnoid space. Thus, only 10% of an i.t. dose will 
reach the lateral ventricles [202]. Furthermore, ATP-binding cassette (ABC) trans-
porters will actively pump MTX out of CSF. I.t. MTX causes more bone-marrow 
suppression than an oral MTX at a similar dose, which reflects longer systemic 
exposure above the cytotoxic threshold [203].

Liposomal AraC (Depocyte) has been used in many protocols for second line 
therapy of ALL, but there is a lack of studies with de novo childhood ALL patients 
[204]. A small controlled trial indicated that it may provide superior outcome com-
pared with intrathecal TIT, but with higher risk of short term CNS toxicities, not 
least arachnoiditis [205].

5.14  �Patient Adherence and Physician Compliance

Since childhood ALL is highly chemosensitive, interindividual differences in drug dis-
position as well as physician compliance to dose adjustment guidelines and/or patient 
adherence to orally prescribed chemotherapy may influence risk of relapse [125, 206]. 
During maintenance therapy blood counts and aminotransferase levels have been used 
to target treatment intensity and monitor patient adherence, but this strategy is chal-
lenged by wide inter-ethnicity, -age and -gender associated difference in normal blood 
counts. E-6TGN/MeMP/MTXpg and DNA-TGN can be applied to identify lack of 
patient adherence, but these are not generally available and guidelines for individual 
dose adjustments based on such pharmacological measurements are lacking [16].

5.15  �Treatment of Infants

In the first year of life, significant changes in PK and PD occur as a consequence of 
normal development in body composition, organ maturation and their maturation of 
drug elimination pathways. Although infants differ as much as older children in 
drug disposition, antileukemic drug dosing in infants are generally adjusted by on 
age: three-fourths for patients 6–12  months old and two-thirds for patients 
<6 months, respectively, and furthermore based on body weight (equalising 1 m2 
with 30 kg). The clearance of MTX tends to increase in the first year of life which 
may affect risk of MTX-related toxicities [207–209], and VCR neurotoxicity seems 
to be enhanced although infants do not seem to differ in PK from older children 
[210]. PK studies of Steroid, Daunorubicin, and asparaginase have not indicated 
dose reductions for these drugs [211, 212].
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5.16  �Treatment of Adolescents

Adolescents with ALL have generally been reported to have an inferior outcome com-
pared to younger children, but the gap in outcome is being closed [213, 214]. Although 
they are likely to differ from younger children in PK of some anticancer agents [215] it 
does not seem to be the case for VCR [216], Steroid [59], Asp [217], and i.t. Depocyte 
[218], whereas adolescents do seem to have slower clearance of HD-MTX [219] and 
accumulate higher levels of cytotoxic metabolites of 6MP and MTX [17]. They also 
more frequently have higher risk features, including T-cell leukemia and higher MRD 
at the end of induction therapy [214, 220], but not necessarily more toxicity, except for 
the risk of thrombosis, pancreatitis and osteonecrosis [46, 221, 222]. Furthermore, a 
poor adherence to oral chemotherapy may be risk factor for relapse [223].

5.17  �Treatment of Obese Patients

Worldwide the prevalence of childhood obesity is increasing at an alarming rate, and 
during ALL treatment it may furthermore increase due to exposure to Steroids. Except 
for capping the VCR dose at 2.0–2.5 mg, capping the dose of antileukemic agents is 
not routinely recommend in obese patients, primarily since BSA is a poor measure of 
body composition and a poor predictor of drug disposition although this has only been 
studied in few patients [224]. Furthermore, obesity have been associated with 
decreased EFS, increased relapse rate and unchanged toxicity rates in childhood ALL, 
potentially either due to cytokines released from adipocytes or due to treatment adher-
ence factors associated with cultural patterns of excessive eating and limited physical 
activity [225]. PK data in obese children are limited, but liver and kidney function and 
clearance (per m.sq.) of antileukemic agents would not be expected to change mark-
edly in obese patients, although the role of hepatic steatosis is unexplored [226]. The 
guidelines of the American Society of Clinical Oncology suggest the use of actual 
body weight for appropriate dosing of chemotherapy of adult obese cancer patients, 
but similar guidelines have not been validated for children [227].

5.18  �ALL Predisposition Syndromes and Chemotherapy

Approximately 5% of children with ALL harbour germline mutations that strongly 
predispose them to development of ALL (see Chap. 1). Treating a malignancy in a 
child with an ALL predisposition syndrome is a challenging balance between effi-
cacy and toxicity, since many of these patients are already burdened by their medi-
cal condition and may in addition be at increased risk for chemo- and 
radiotherapy-induced toxicities [228]. It adds to the problem that such patients are 
generally excluded from collaborative clinical trials, and with few exceptions little 
is known with respect to their optimal treatment.
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For children with Down syndrome and ALL, both smaller studies and wide inter-
national collaborations have shown that 6TG and MTX may have different PK in 
children with Down syndrome and provided some guidelines for the treatment of 
these patients [229, 230]. In addition to ALL associated risk factors and PK of anti-
leukemic agents, poor physician compliance to protocol recommendations of dose 
adjustments may contribute to their increased risk of relapse [206]. Among children 
with Down syndrome and ALL, HD-MTX PK does not predict the increased risk of 
MTX-related gastrointestinal toxicity in these patients [231].

For children with ataxia telangiectasia and Nijmegen Breakage Syndrome, a 
recent study indicated that many of these patients stand a good chance of cure with 
conventional chemotherapy with acceptable toxicity profiles, and that they should 
be offered chemotherapy with the intention to cure [232]. Almost half of all patients 
with low-hypodiploid ALL harbor germline TP53 mutations, and there may be 
indication to explore for TP53 mutations in such patients, not least in case of exces-
sive toxicity [233].

5.19  �Conclusions and Future Perspectives

Many childhood ALL patients are at risk of relapse or excessive toxicity due to 
adverse PK and/or tissue tolerance to chemotherapy, and host genome variants are 
likely to explain much of these diversity. The costs of performing genome-wide 
exploration of hundreds of thousands of common germline variants has become low 
and SNP profiling of large patient cohorts on contemporary ALL protocols are 
expected to clarify the critical genotype-phenotype interactions relevant for efficacy 
and toxicity, which eventually may lead to implementation of germline variants into 
future treatment stratification. In addition to genotyping, this will require deeper 
phenotyping than currently performed both with respect to PK and acute toxicities 
[105]. In addition, the benefits of individual dose adjustments based on drug moni-
toring should be explored further and more systematically, not least for Asp, 
HD-MTX, and oral 6MP/MTX maintenance therapy.
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