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Chapter 1
Epidemiology and Etiology of Childhood ALL

Morten Tulstrup, Ulrik Kristoffer Stoltze, Kjeld Schmiegelow, 
and Jun J. Yang

1.1  �Introduction

Despite extensive research, the etiology of childhood acute lymphoblastic leukemia 
(ALL) remains largely unknown. There is growing evidence that this cancer may 
arise from in utero chromosomal abnormalities that can lead to clonal expansion of 
pre-leukemic precursor cells. The risk factors for ALL in children are multiple, most 
notably common germline polymorphisms and rare genetic syndromes that directly 
influence hematopoiesis and cell cycling, as well as possibly infection-related aber-
rant DNA editing.

1.2  �General Epidemiology

The incidence of ALL varies by age, ethnicity, geographic region, and also differs 
by immunologic and molecular subtypes. In both the United States and the Nordic 
countries, the overall incidence rate is 3.9 per 100,000/year before the age of 
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15 years [1, 2]. The incidence is higher in Hispanic Americans (4.1 per 100,000/
year), and is lower in African American children (2.1 per 100,000/year) [3, 4]. In 
general, low-income countries have lower incidences of ALL than high-income 
countries, with a few exceptions such as Costa Rica (4.6 per 100,000/year), however 
these differences may be the result of incomplete registration [4–7]. The incidence 
of ALL shows a characteristic peak between 2 and 5 years after birth [2, 7], but age-
related ALL risk differs substantially by cytogenetic subtype (Fig. 1.1). ALL in 
infants (<1  year) is in most cases characterized by MLL gene rearrangements 
(rMLL), which are rare in older children [8–10]. Between 2 and 5-year olds, ALL is 
dominated by high-hyperdiploid (HeH, modal chromosome number >50) and 
t(12;21)[ETV6-RUNX1] karyotypes, while T-cell ALL has a less pronounced peak 
around 4–9 years [2, 10, 11]. In low-income countries, the 2–5 year age peak is 
much less obvious, with a higher proportion of T-ALL [5–7, 12–15]. Interestingly, 
some studies noted incremental increase in ALL incidences specifically in this age 
range as a function of economic growth and improving living conditions [16–19]. 

T−cell
amp(21)
dic(9;20)
BCR−ABL
TCF3−PBX1
Other
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Normal
ETV6−RUNX1
HeH
rMLL
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Fig. 1.1  Age distribution 
of childhood ALL cases by 
immunologic and 
molecular subtypes. 
Numbers represented are 
all children diagnosed with 
ALL in Denmark, Sweden, 
Norway, Finland, and 
Iceland between 1992–
2007. Upper panel: bar 
heights represent the 
number of cases in each 
age group relative to the 
total number of cases 
between 0 and 14 years. 
Lower panel: relative 
distribution of subtypes 
within each age group. The 
testing for t(12;21)
[ETV6-RUNX1] by 
fluoresence in situ 
hybridization was 
gradually introduced 
during this period, and 
accordingly some amp(21) 
patients have been missed. 
Ph+, Philadelphia 
chromosome-positive; 
HeH, high-hyperdiploid
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Taken together, these observations (1) suggest that different ALL subtypes may 
have distinctive etiological mechanisms and (2) point toward possible effects of 
economic development-related environmental factors on ALL risk.

1.3  �Natural History

Monozygotic twins have a 10–20% concordance rate for ALL, and concordant 
cases have been shown to harbor identical and clonotypic molecular signatures (e.g. 
ETV6-RUNX1 fusion sequence, or T-cell receptor (TCR), immunoglobuline (IGH) 
gene and MLL rearrangements) possibly because a leukemic or preleukemic clone 
arose prenatally in one twin and spread to the other through placental vascular anas-
tomoses [20–25]. Further evidence for a prenatal initiation is provided by studies 
backtracking disease-specific molecular markers in both twin and singleton leuke-
mias in dried blood spot samples (DBSS) from birth (Table 1.1).

For infant rMLL ALL, rearrangement has been identified in DBSS in the vast 
majority of cases, suggesting that this disease almost always arises prenatally. 
Older patients with rMLL are usually DBSS negative, but the translocation has 
been successfully backtracked in one case diagnosed at 6 years. Similar findings 
have been reported for ETV6-RUNX1 ALL. This translocation causes a fusion of 
the ETV6 and RUNX1 genes, and the resulting chimeric protein has been shown to 
promote cell survival in mice and human cells [44–46]. Three studies on concor-
dant (monozygotic) twins revealed identical ETV6-RUNX1 fusion sequences in 
both twins and clonal expansion of fusion-positive precursors at a minimum level 
of 10−4 preleukemic cells at birth. Prenatally initiated ETV6-RUNX1+ cases have 
had a latency of up to 14 years before overt leukemia occurred [47]. Furthermore, 
two ALL-discordant twin pairs have been described in which the healthy twin also 
harbored an ETV6-RUNX1+ clone at birth [30] or at age 3 [44], suggesting that the 
translocation in itself is insufficient for leukemia development. Leukemic ETV6-
RUNX1+ cells harbor a variable number of additional mutations; often a deletion 
of the wildtype ETV6 allele or other genes involved in B-lymphocyte develop-
ment and differentiation [48–51]. Molecular studies of concordant monozygotic 
twins showed that these mutations are unique to each twin and thus occur as sec-
ondary postnatal events [51, 52]. An often cited study found that 1% of all healthy 
newborns harbored ETV6-RUNX1 at birth (i.e. 100-fold of the incidence of ETV6-
RUNX1 ALL) [53], but subsequent validation studies have raised questions about 
the reliability of the initial finding [54–58]. Thus, while healthy children in gen-
eral may harbor ETV6-RUNX1+ cells without developing ALL, the exact preva-
lence of such an event has yet to be determined.

HeH ALL cases frequently have detectable clonotypic IGH rearrangements in 
neonatal blood spots (17 of 29) and the hyperdiploidy in itself can also arise 
prenatally [38]. Importantly, a hyperdiploid clone has been found in a healthy twin 
sibling of a child with HeH ALL [59]. Recently, a whole-genome sequencing 
approach has further supported the notion that gross chromosomal gains occur early 
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Table 1.1  Backtracking studies and their findings

Paper Subtype Marker N N pos. Comments

Gale PNAS 1997 
[26]

rMLL MLL-AF4 3 3

Wiemels Lancet 
1999 [27]

ETV6-
RUNX1

ETV6-RUNX1 11 8 One twin pair, both 
positive

Fasching Blood 
2000 [28]

IGH 1 1
rMLL IGH + 

MLL-AF4/
AF4-MLL

2 2

T-ALL TCR 2 2
Yagi Blood 2000 
[29]

B-ALL IGH + TCRD 4 1 IGH and TCRD positive
HeH IGH + TCRD 1 1 IGH and TCRD positive
rMLL IGH + TCRD 2 2 Both IGH positive, only 

one TCRD positive
Maia Blood 2001 
[30]

ETV6-
RUNX1

ETV6-RUNX1 3 3 Triplets, one healthy

Panzer-Grümayer 
Blood 2002 [31]

HeHa IGH 1 1

Taub Blood 2002 
[32]

B-ALL IGH 10 5 1 Down syndrome, 
TCF3-PBX1, 1 rMLLHeH IGH 6 6

ETV6-
RUNX1

IGH 1 1

Hjalgrim Br J 
Cancer 2002 [33]

ETV6-
RUNX1

ETV6-RUNX1 9 3

Wiemels PNAS 
2002 [34]

TCF3-
PBX1

IGH and 
TCF3-PBX1

15 0

McHale Genes 
Chrom Cancer 2003 
[35]

ETV6-
RUNX1

ETV6-RUNX1 14 7

Teuffel Leukemia 
2004 [36]

ETV6-
RUNX1

ETV6-RUNX1 + 
IGH

2 2 Twins. Shared ETV6-
RUNX1 sequence, 
different IGH

Maia Genes Chrom 
Cancer 2004 [37]

rMLL MLL-AF4 4 1 Specifically chose 
children with higher age a 
diagnosis

ETV6-
RUNX1

ETV6-RUNX1 7 3

Maia Genes Chrom 
Cancer 2004 [2] 
[38]

HeH IGH 11 1 DBSS
HeH Trisomy 15 + 17 1 1 Cord blood – this patient 

was DBSS-IGH negative
Fischer Blood 2007 
[39]

T-ALL TCR 16 1 Other markers: TAL1, 
Notch1, and TCRD-LMO.

Gruhn Leukemia 
2008 [40]

B-ALL IGH 17 11
HeH IGH 6 5
ETV6-
RUNX1

IGH 6 3

BCR-ABL IGH 2 0
rMLL IGH 1 0

M. Tulstrup et al.
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in life as the sentinel event and that additional postnatal events are also necessary for 
leukemia development [60].

Clonal development of T-ALL is much less understood and leukemic genomic 
aberration is rarely detected at birth in children with this ALL subtype, suggesting 
an entirely different etiology compared to B-ALL.

In summary, rMLL, ETV6-RUNX1+, and HeH ALL show the most convincing 
evidence of prenatal initiation, while other subtypes such as T-ALL, BCR-ABL and 
TCF3-PBX1 are less frequently or never prenatally initiated.

1.4  �Environmental Risk Factors

1.4.1  �Infectious Disease and Immune Stimulation

It has long been hypothesized that infectious disease plays a role in the development 
of ALL. In 1988, Leo Kinlen postulated that mixing of previously isolated popula-
tions could cause epidemics of an unidentified pathogen to which leukemia was a 
rare response [61]. This hypothesis was based on observed spatial and temporal 
clustering of ALL cases, which occurs at an exceedingly rare frequency [62]. The 
same year, Mel Greaves suggested that children with little early-life immune stimu-
lation can develop leukemia as an aberrant response to a delayed exposure to com-
mon infections [63]. This ‘delayed-infection hypothesis’, which in many ways is 
similar to the ‘hygiene hypothesis’ concerning allergies and atopic disease, is par-
ticularly relevant to ALL risk in the 2–5 year age peak [64–67]. In these cases, the 
prenatal formation of a preleukemic clone may constitute a commonly occurring 
‘first hit’, and an aberrant immune response due to delayed immune maturation and 
subsequent uncontrolled proliferative stress on exposure to a common childhood 
infection occur subsequently will in rare cases cause a second hit and initiate malig-
nant transformation [64, 65].

A substantial body of evidence has been gathered in support of an association 
between infections and ALL risk. Since the actual number of childhood infections 
is difficult to measure, proxy measures such as daycare-attendance (children in 

Table 1.1  (continued)

Paper Subtype Marker N N pos. Comments

Wiemels Blood Cell 
Mol Dis 2010 [41]

HeH RAS mutations 14 0
HeH IGH 4 3 All four were also tested 

for RAS mutations
Eguchi-Ishimae 
Blood 2011 [42]

T-ALL NOTCH1 3 1

Mansur Br J 
Haematol 2015 [43]

T-ALL PTEN 4 3 Infant T-ALL

High-hyperdiploidy (HeH): >50 chromosomes
aChromosome number or DNA index not specified

1  Epidemiology and Etiology of Childhood ALL
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daycare are more exposed to common infections early in life) are typically exam-
ined [68]. A meta-analysis from 2010 by Urayama et al. included 14 studies and a 
total of 6108 cases and found a significantly reduced risk of ALL among children in 
daycare (OR = 0.76; 95% CI: 0.67–0.87) [69]. A recent study confirmed this finding 
and furthermore indicated that the protective effect of daycare is even stronger with 
earlier start of attendance [70]. Another measure of early immune stimulation is 
breastfeeding, for which two meta-analyses consistently found an association with 
a reduced risk of ALL; subsequently a large case-control study with 7,399 ALL 
cases and 11,181 controls also reported an OR of 0.86 (95% CI: 0.79–0.94) for 
children breastfed for 6  months or more [70–72]. Other proxies for immune 
stimulation include birth order and vaccinations, but epidemiological findings on 
these exposures are inconsistent [70, 73–79]. More direct attempts at measuring 
actual number of infections during early childhood have included patient registries 
[80–84], questionnaires [70, 85, 86], and interviews [87–89]. Generally, studies 
using parentally reported measures found an inverse or no association between 
infections and ALL risk, while the patient registry-based methods, which have the 
strength of eliminating recall bias, found either positive or null associations. 
Interpreting data from these studies is difficult for a number of reasons, most nota-
bly the heterogeneity of exposure definitions and the timing of infections in relation 
to ALL diagnosis. According to the delayed infection hypothesis, children prone to 
ALL-development should have fewer infections in early life and subsequently start 
developing aberrant responses to common infections, most likely resulting in symp-
tomatic infectious disease. However, in the months leading up to ALL diagnosis the 
disease itself also becomes a risk factor for infections, and thus the expected direc-
tion of causality between infection and leukemia becomes difficult to identify in 
such epidemiologic studies [84].

Recent molecular studies have shed new lights on the role of infection in ALL 
development. Whole-genome sequencing of ETV6-RUNX1 ALL cells revealed that 
most of the somatic deletions commonly seen in this subtype are mediated by  
the RAG enzymes, the main function of which is V(D)J recombination in normal 
pre-B cells [90], potentially as a result of infection-related hyperactivation of 
RAG. Subsequently, Swaminathan et  al. showed that premature activation of the 
AID enzyme (which normally mediates somatic hypermutation and class-switch 
recombination in mature B-cells) resulting in inappropriate, synchronous activation 
of AID and RAG increases genetic instability in pre-B cells, especially those with 
the ETV6-RUNX1 fusion [91]. The authors furthermore showed that while infectious 
stimuli (mimicked by lipopolysaccharide) could induce leukemic transformation of 
ETV6-RUNX1+ cells, this development was delayed or prevented in mice without 
functional AID or RAG, respectively. Another example highlighting a molecular 
mechanism involved in infection-mediated ALL development is PAX5, a gene 
commonly mutated in B-ALL. A recent study showed that PAX5 heterozygous mice 
were prone to develop ALL, but only if they were exposed to common infections 
[92]. It is important to note that these molecular studies show that infections are 
likely involved in ALL development, but provide no direct evidence of how early vs. 
late infection alters the risk of ALL during childhood.

M. Tulstrup et al.
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1.4.2  �Other Risk Factors

Despite a large number of epidemiological studies and meta-analyses, most findings 
regarding proposed environmental risk factors remain inconclusive. The only con-
firmed association is high birth weight, although the underlying mechanism is 
unknown [93]. Other factors such as ionizing radiation, electromagnetic fields and 
maternal smoking during pregnancy remain uncertain (Table 1.2). A common limi-
tation is that the vast majority of these studies address ALL as a single disease entity 
and thus may have missed associations with specific ALL subtypes.

1.5  �Heritability of ALL

Studies addressing the risk of leukemia among offspring of childhood leukemia 
survivors have been hampered by small sample sizes [123–126]. More reliable 
estimates of ALL heritability come from studies on risk in siblings of affected 
children. These studies have two important limitations: first, because of preleu-
kemic cells’ ability to spread in utero, twins with leukemia need to be excluded 

Table 1.2  Non-infectious environmental risk factors

Risk factor Certaintya Comments

In utero diagnostic radiation [94, 95] Inconclusive
Background ionizing radiation 
[96–98]

Inconclusive Uncertain association, but if true may 
account for 8–30% of all cases

Radon [99–101] Inconclusive
Extremely low-frequency 
electromagnetic fields [102–104]

Inconclusive If true, this could account for 2–3% of 
cases

Radio frequency electromagnetic 
fields [105, 106]

Unlikely

Birth weight [93] Confirmed OR = 1.26 (95% CI: 1.17–1.37) for 
children ≥4000 g

Maternal age [107, 108] Inconclusive
Alcohol [108–111] Unlikely
Maternal smoking [108, 109] Inconclusive OR = 1.10 (95% CI: 1.02–1.19)
Paternal smoking [112] Inconclusive OR = 1.11 (95% CI: 1.05–1.18)
Prenatal folic acid [113–115] Inconclusive If anything, folate intake during 

pregnancy is protective
Postnatal vitamin K [116, 117] Unlikely
Pesticides [118–120] Inconclusive
Dietary topoisomerase II-inhibitors 
[121, 122]

Unlikely

a“Confirmed” indicates factors with consistent association in meta-analyses, “inconclusive” 
denotes factors with some evidence of association but also inconsistent results from different stud-
ies, whereas “unlikely” is for those with no reliable evidence of association

1  Epidemiology and Etiology of Childhood ALL
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before estimating disease heritability, and secondly it is difficult to distinguish 
genetic effects from shared environmental risk factors between siblings. A recent 
Nordic population-based study reported a standardized incidence ratio (SIR) of 
3.2 for ALL risk among siblings [127]. Furthermore, one study investigating 54 
sibships with two or more cases of ALL found an unexpectedly high subtype 
concordance, pointing to a genetic basis of ALL etiology [128]. On the basis of 
genome-wide SNP data, it was estimated that inherited genetic polymorphisms 
account for at least 24% (95% CI: 6–42%) of variation in ALL risk [129]. In 
conclusion, these reports provide evidence for a genetic component in disease 
susceptibility, although reliable quantitative estimates of genetic contribution to 
ALL risk are not available.

1.6  �High-Penetrance Genetic Predisposition

Out of more than 125 known cancer predisposition genes (CPGs), only 27 genes 
(associated with 9 rare syndromes and two non-heritable congenital disorders) are 
convincingly linked to childhood ALL (Table 1.3 and Fig. 1.2) [130, 131].

In a 2015 a registry study of 4939 childhood ALL cases, only 29 subjects were 
diagnosed with non-Down syndrome (DS) predisposition syndromes (0.6%) [161]. 
However, a recent comprehensive study of whole genome or whole exome sequenc-
ing in 588 non-DS childhood leukemia cases found germline mutations in known 
CPGs in 26 cases (4.4%) [161, 162]. This suggests that high-penetrance Mendelian 
genetics, discussed in detail below, may play a larger role in ALL etiology than 
previously appreciated.

1.6.1  �Syndromes Where ALL Is a Dominant Cancer Phenotype

DS is one of the most common congenital abnormalities (1 in 691 live births) and 
also the most recognizable ALL-predisposition syndrome [140, 163]. ALL and 
AML risk is significantly increased, with SIR before 30 years of 24.4 and 20.3, 
respectively. Interestingly, individuals with DS have significantly lower incidence 
of solid cancers than the background population [142, 164]. DS-associated ALL is 
more likely to have somatic rearrangements involving the CRLF2 gene and almost 
always has B-cell immunophenotype. DS patients represent the only known group 
where ALL is the most common malignancy at any age. Taken together DS-ALL 
constitutes 2–3% of ALL [131, 165].

While the driver of leukemogenesis remains uncertain for DS it is likely that 
chromosome 21 is involved, as an acquired extra copy of chromosome 21 is also 
seen in hyperdiploid ALL and the intracromosomal amplification of chromosome 
21 seen in the iAMP21-ALL subtype [139].

M. Tulstrup et al.
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In fact, iAMP21-ALL has recently been found to be more frequent in individu-
als with the germline translocation rob(15;21)(q10;q10)c, a rare constitutional 
genetic abnormality. Amplification of the genes involved in the translocation 
duplicates the entire abnormal chromosome and confers an estimated 2,700-fold 
increased risk of iAMP21-ALL [138]. However, considering the rarity of both 
iAMP21-ALL and rob(15;21)c, <1 in 1,500 ALL cases are likely to be related to 
rob(15;21)c associated.

PAX5 is known to be somatically mutated or deleted in approximately 30% of 
B-ALL cases [166]. In 2013, one germline PAX5 mutation was found in three kin-
dreds of familial ALL [159, 160]. The 3 families had 18 documented and 3 obligate 
mutation carriers with 11 cases of B-ALL, with another 2 ALLs in untested chil-
dren. These PAX5 mutations may be exclusively related to ALL risk, but further 
study is warranted.

ETV6, like PAX5, is known to be recurrently mutated or translocated in leukemic 
cells [166, 167]. In 2015, three studies independently reported nine families with 
ETV6 germline mutations, all having a dominantly heritable thrombocytopenia and 
high incidence of ALL among mutation carriers [143, 144, 146]. Collectively, 35 
documented and 4 obligate carriers have developed a total of 14 leukemias (mostly 
ALL), with another 2 occurring in untested children. One systematic sequencing 
study targeting germline ETV6 in 4,405 ALL cases, identified 31 ETV6 variants 
potentially related to 35 ALL cases, with carriers found to be significantly older 
than non-carriers (mean age 10.2 vs. 4.7) [144]. Thus, ETV6 mutations may be 
present in nearly 1% of all ALL cases, and perhaps higher in patients over 5 years 
of age.
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Fig. 1.2  Effect sizes and frequencies for known ALL genetic risk factors. Syndrome risks and 
frequencies are based on best available evidence as described in Table 1.3; SNP odds ratios are 
based on references in Table 1.4, and SNP risk allele frequencies are based on worldwide popula-
tions from the 1000 Genomes Project. CMMRD, constitutional mismatch repair-deficiency; AT 
ataxia-telangiectasia, LFS Li-Fraumeni syndrome, DS Down syndrome, FA Fanconi anemia, NF 
neurofibromatosis type 1
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1.6.2  �Syndromes Where ALL Is Part of a Mixed Cancer 
Phenotype

Li-Fraumeni Syndrome (LFS) is a rare cancer predisposition syndrome, in which 
germline TP53 mutation confers a ~90% lifetime risk of developing cancer in a spec-
trum of tissues with one third being diagnosed before 18 years of age. The increased 
ALL risk is largely restricted to cases with low hypodiploid leukemia karyotype 
(underlying TP53 mutation present in 43.3% of low hypodiploid ALL) [168].

Ataxia-telangiectasia (A-T) is a rare syndrome caused by recessive mutations in 
the ATM gene and typically presents with progressive cerebellar ataxia before 
4 years of age [134]. A-T patients have a high risk of leukemias (especially T-cell 
ALL) and lymphomas, as well as hypersensitivity to ionizing radiation and chemo-
therapy related to the role of ATM in DNA repair [132, 134].

Bloom Syndrome is characterized by pre- and postnatal growth deficiency (stat-
ure typically <1.5 m), skin lesions and high risk of ALL, AML, lymphoma, and 
epithelial carcinomas [135]. Twelve ALLs were found in less than the 300 cases 
registered world-wide and in at least two cases ALL preceded Bloom Syndrome 
diagnosis [169, 170].

Nijmegen Breakage Syndrome (NBS) is another very rare recessive syndrome, 
which mainly occurs in Slavic populations [157] (a Slavic founder deletion of five 
bases in the NBN gene is found in >90% of NBS cases), yet NBS has also been 
described in >8 other countries with private mutations [157, 158, 171, 172]. Patients 
display microcephaly, intrauterine growth retardation with short stature, recurrent 
sinopulmonary infections and increased risk of cancers, especially lymphoma and 
leukemia [157, 173].

Fanconi Anemia (FA) is a rare recessive syndrome with a high risk of AML, 
MDS and other hematological diseases set at ~10%/year [147, 174]. In a registry 
with 1300 FA patients only 7 ALLs were reported and FA-leukemias are predomi-
nantly myeloid (96%) [147, 148]. While skeletal deformations and classic hemato-
logical findings often lead to diagnosis early in life, malignancies including ALL 
can be the presenting feature [175, 176].

There is a long string of genetic syndromes for which sporadic reports described 
ALL as a possible cancer manifestation, although the matter has not been systemati-
cally examined. The most common are RASopathies (e.g. NF1) [177–179], where 
6 ALLs were seen among 1176 mutation carriers in 1 study [180]. Others include: 
Bruton’s Agammaglobulinemia [181], Familial Platelet Disorder with Associated 
Myeloid Malignancies [182, 183], Weaver syndrome [184], Sotos syndrome [185], 
Rubinstein-Taybi syndrome [186], Börjeson-Forssman-Lehmann Syndrome [187] 
and SH2B3 deficiency [188].

It should be noted that ALL predisposition syndrome may not be symptomatic 
prior to leukemia diagnosis with only non-specific clinical features such as growth 
failure and microcephaly. Family history needs to be carefully examined to identify 
possible underlying genetic causes in a pediatric oncology setting.

1  Epidemiology and Etiology of Childhood ALL
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1.7  �Low-Penetrance Genetic Predisposition

Emerging from the ‘common disease—common variant’ hypothesis, the past two 
decades have seen the application of first candidate gene-driven and later genome-
wide association studies in ALL etiology research [189, 190].

Single nucleotide polymorphism (SNP)-based candidate gene studies (CGSs) 
have explored ALL etiology by focusing on genes involved in carcinogen metabo-
lism, folate metabolism, and DNA repair pathways. A 2010 systematic review iden-
tified 47 CGSs on 25 variations in 16 genes all tested for association with ALL, 
showing pooled significance (P < 0.05) in only 8 variants (OR range; 0.73–1.78) 
with an apparent false positive report probabilities of at least 20% [191]. Other stud-
ies have focused on human leukocyte antigen (HLA) genes, particularly class II loci 
HLA-DR and HLA-DP, with the latter showing evidence of significantly different 
associations between ALL subtypes as well as interactions with proxies for immune 
stimulation [192, 193]. However, a larger study has cast doubt on the validity of 
these findings [194].

2009 saw the first two genome-wide association studies (GWAS) indepen-
dently demonstrating associations between ALL susceptibility and SNPs in 
ARID5, IKZF1 and CEBPE [195, 196]. Subsequently, SNPs in four other genes 
have been found to be associated with either overall ALL risk or subtype-specific 
risk, with a total of 13 SNPs in 6 genes having been widely validated thus far 
(Table 1.4) [197–201].

Table 1.4  GWAS results

Gene rsid(reference) OR(95% CI)
Associated subtype, 
OR(95% CI) RAF

ARID5B rs7089424 [202] 1.65 (1.54–1.76) HeH, 2.17 (1.5–3.1) 0.37
rs10821936 [196] 1.91 (1.6–2.2) 0.36
rs10994982 [197] 1.86 (1.71–2.03) 0.57

CDKN2A rs17756311 [197] 1.36 (1.18–1.56) 0.06
rs3731217 [203] 0.71 (0.64–0.78) 0.13
rs3731249 [204] 2.99 (2.21–4.26) 0.01

CEBPE rs2239633 [202] 1.31 (1.22–1.42) 0.64
rs4982731 [197] 1.36 (1.24–1.48) 0.33

GATA3 rs3824662 [198] 1.31 (1.21–1.41) Ph-like, 3.85 (2.7–5.4) 0.20
IKZF1 rs4132601 [202] 1.71 (1.58–1.85) 0.22

rs11978267 [197] 1.59 (1.45–1.74) 0.23
PIP4K2A rs7088318 [197] 1.40 (1.28–1.53) HeH 0.59

rs10828317 [198] 1.23 (1.15–1.32) 0.02

Selected SNPs associated with ALL risk. Risk allele frequencies are global frequencies from the 
1000 Genomes Project. SNP single nucleotide polymorphism, HeH high-hyperdiploid, OR odds 
ratio, 95% CI, 95% confidence interval, RAF risk allele frequency, Ph-like Philadelphia-like ALL

M. Tulstrup et al.
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The heterogeneity of ALL is reflected in the GWAS findings, with some SNPs 
showing a stronger association with specific subtypes. ARID5B, for instance, is 
most strongly associated with HeH ALL. SNPs in TP63 and GATA3, on the other 
hand, show isolated associations with ETV6-RUNX1 ALL and Ph-like ALL, respec-
tively [196, 199, 201, 204, 205].

While there is little doubt that the GWAS findings identified genuine inherited 
risk factors for ALL, there is a paucity of studies describing the molecular mecha-
nisms underlying these associations. Somatic deletions in both CDKN2A and IKZF 
are frequent in ALL, and these two genes play important roles in tumor suppression 
and lymphocyte development, respectively [200, 206]. In one recent study, 35 
tumors from CDKN2A risk variant rs3731217 carriers preferentially retained the 
risk allele, suggesting that the SNP is advantageous during tumor growth [204]. 
ARID5B is also involved in lymphocyte differentiation, but its mechanism in ALL 
development is poorly understood.

Within the validated risk variants, no significant gene–gene interactions have been 
reported [195, 196, 203]. The effects of these risk alleles are relatively stable across 
ethnicities, and risk allele frequencies correlate well with population differences in 
ALL incidence [197]. One pathway-based GWAS on ALL risk was recently described 
but these results have yet to be reproduced [207]. Inspired by the observations that 
ALL subtypes differ across both environmental and genetic risk factors, other 
researchers have attempted to identify interactions between the two by combining 
genotypes with data on various environmental exposures [208–211]. These studies, 
however, have so far failed to reliably identify gene-environment interactions.

Studies on childhood ALL etiology will improve knowledge of the pathogenesis, 
predict disease risk, and provide new targets for treatment.

The low-penetrance genetic predispositions discussed above (e.g., risk alleles 
identified by GWAS) constitute a minor increase in the absolute risk of developing 
ALL, e.g. from 1 in 2,000 to 1 in 1,500. While the effects of these variants individu-
ally are modest with limited clinical implication, their cumulative impact can be 
comparable to those of the highly penetrant genetic predisposition syndromes. 
However, it is debatable whether early diagnosis of an aggressive cancer like ALL 
can lead to improved outcome [212]. Hence, clinical surveillance aimed at early 
diagnosis of ALL may not necessarily benefit at-risk subjects and may in fact lead 
to uncertainty and anxiety for the families [213].

Still, many of the genetic syndromes discussed above may modify health condi-
tions other than the risk of developing ALL. Preemptive surveillance for non-ALL 
cancers (e.g. TP53 carriers) and/or treatment modification (e.g. avoidance of radia-
tion therapy in cases with A-T) can lead to lower mortality and morbidity for the 
children and their at-risk family members [214–218]. For this reason, recognition 
and diagnosis of predisposition syndromes in pediatric oncology is crucial. In fact, 
it has been suggested that pediatric cancer patients under the age of five should be 
evaluated for A-T before starting chemotherapy and/or radiotherapy because of 
potentially fatal adverse effects of conventional doses due to defective DNA repair 
in these cases [134, 219].

1  Epidemiology and Etiology of Childhood ALL
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1.8  �Future Directions

While substantial progress has been made in identifying risk factors for ALL 
(especially the role of inherited genetic variants), our understanding of ALL disease 
etiology is far from complete. An important field of research in the coming years 
will be to identify gene-gene and gene-environment interactions that contribute to 
ALL leukemogenesis, and whether approaches can be developed to target these 
processes and reduce disease risk and burden in genetically predisposal children.
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