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Abstract. Understanding the links between application programs and
their database is useful in various contexts such as migrating information
systems towards a new database platform, evolving the database schema,
or assessing the overall system quality. In the case of Java systems, iden-
tifying which portion of the source code accesses which portion of the
database may prove challenging. Indeed, Java programs typically access
their database in a dynamic way. The queries they send to the database
server are built at runtime, through String concatenations, or Object-
Relational Mapping frameworks like Hibernate and JPA. This paper
presents a static analysis approach to program-database links recovery,
specifically designed for Java systems. The approach allows developers
to automatically identify the source code locations accessing given data-
base tables and columns. It focuses on the combined analysis of JDBC,
Hibernate and JPA invocations. We report on the use of our approach
to analyse three real-life Java systems.

Keywords: Database access recovery · Static analysis · Java · ORM

1 Introduction

In various maintenance and evolution scenarios, developers have to determine
which portion of the source code of their applications accesses (a given fragment
of) the database. Let us consider, among others, the cases of database reverse
engineering, database refactoring, database platform migration, service identi-
fication, quality assessment or impact analysis for database schema change. In
the context of each of these processes, one needs to identify and analyze all the
database queries executed by the application programs.

In the case of systems written in Java, the most popular programming lan-
guage today [1], database manipulation has become increasingly complex in
recent years. Indeed, a large-scale empirical study, carried out by Goeminne
et al. [8], reveals that a wide range of dynamic database access technologies are
used by Java systems to manipulate their database. Those access mechanisms
partly or fully hide the actual SQL queries executed by the programs [6]. Those
queries are generated at run time before they are sent to the database server.
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In this paper, we address this problem of recovering the traceability links
between Java programs and their database in presence of such a level of dynam-
icity. We propose a static analysis approach allowing developers to identify the
source code locations where database queries are executed, and to extract the
set of actual SQL queries that could be executed at each location. The approach
is based on algorithms that operate on the call graph of the application and the
intra-procedural control-flow of the methods. It considers three of the most pop-
ular database access technologies used in Java systems, according to [8], namely
JDBC, Hibernate, and JPA. We evaluated our approach based on three real-
life open-source systems with size ranging from 250 to 2,054 kLOC accessing
88 – 480 tables in the database. We could extract queries for 71.5 % – 99 % of
database accesses with 87.9 % – 100 % of valid queries.

The paper is organized as follows. Section 2 introduces the three database
access technologies considered by our approach. Section 3 presents our approach
and illustrates it through examples. Section 4 reports on the use of our approach
to analyze real-life Java systems. A related work discussion is provided in Sect. 5.
Concluding remarks are given in Sect. 6.

2 Java Database Access Technologies

Below we briefly introduce JDBC, Hibernate and JPA, by illustrating their
underlying database access mechanisms.
JDBC. The JDBC API is the industry standard for database-independent con-
nectivity between the Java programming language and relational databases. It
provides a call-level API for SQL-based database access, and offers the devel-
oper a set of methods for querying the database, for instance, methods from
Statement and PreparedStatement classes (see Fig. 1).

Fig. 1. Java code fragment using the JDBC API to execute a SQL query (line 10).

Hibernate. Hibernate is an Object-Relational Mapping (ORM) library for
Java, providing a framework for mapping an object-oriented domain model to
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a traditional relational database. Its primary feature is to map Java classes to
database tables (and Java data types to SQL data types). Hibernate provides
also an SQL-inspired language called Hibernate Query Language (HQL) which
allows to write SQL-like queries using the mappings defined before. Figure 2
(1) provides an example of an HQL query execution (line 13). In addition, Cri-
teria Queries are provided as an object-oriented alternative to HQL, where one
can construct a query by simple method invocations. See Fig. 2 (2) for a sam-
ple usage of a Criteria Query. Hibernate also provides a way to perform CRUD
operations (Create, Read, Update, and Delete) on the instances of the mapped
entity classes. Figure 2 (3) illustrates a sample record insertion in the database.

Fig. 2. Samples of hibernate accesses.

Java Persistence API. JPA is a Java API specification to describe the manage-
ment of relational data in applications. Just like Hibernate, JPA also provides
a higher level of abstraction based on the mapping between Java classes and
database tables permitting operations on objects, attributes and relationships
instead of tables and columns. It offers the developers several ways to access
the database. One of them is the Java Persistence Query Language (JPQL), a
platform-independent object-oriented query language which is defined as part of
the JPA API specification. JPQL is used to make queries against entities stored
in a relational database. Like HQL, it is inspired by SQL, but it operates on JPA
entity objects rather than on database tables. Figure 3 (1) shows an example of
JPQL query execution. JPA also provides a way to perform CRUD operations
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Fig. 3. Samples of JPA accesses.

on the instances of mapped entity classes. For instance, Fig. 3 (2) illustrates the
creation and insertion of a new order in the database.

3 Approach

Figure 4 presents an overview of our approach which combines three differ-
ent analyses: the JDBC, Hibernate and JPA analyses. The output of the full
process is a set of database access locations and the database objects (tables
and columns) impacted/accessed by a given access. Those database objects are
detected based on the actual database schema.

3.1 Initial Analysis

Call Graph Extraction. The complete recovery of a query executed in a given
Java method is a complex process. In most cases, a SQL query (a database
access in general) is constructed using some of the input parameters of the given
method. For instance, the executeQuery method in Fig. 1 uses its parameters
for constructing the SQL query. Consequently, the local recovery of the query
is not sufficient and the exploration of the call graph of that given method is

Fig. 4. Overview of the proposed approach.
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necessary for determining the different possible values of the needed parameters.
We designed an approach based on inter-procedural analysis in order to deal
with the call graph reconstruction and the extraction of every possible value of
the parameters used in the query construction.

Database Access Detection. The database access detection step aims to
detect all the source code locations querying the database by means of a
JDBC/Hibernate/JPA method. Our Java analyzer constructs an abstract syn-
tax tree and uses a visitor to navigate through the different Java nodes and
expressions. We defined an exhaustive list of JDBC, Hibernate and JPA meth-
ods accessing the database (based on the documentation of each technology).
Our detection is designed to detect the calls of those methods and to send them
to the corresponding analysis (JDBC, Hibernate or JPA analysis).

3.2 JDBC Analysis

Our JDBC analysis focuses on the database accesses using the JDBC API, where
we follow a two-phase process. As illustrated in Sect. 2, a JDBC access recovery
can be seen as a String expression recovery. Once our analyzer has detected a
JDBC access, it will then recover the corresponding SQL query. Finally, our
SQL parser constructs the abstract syntax tree of the SQL query and identifies
which part of the database schema is involved in that access; that is, the parser
identifies the database tables and columns accessed with it. This identification
relies on the actual database schema.

Algorithm 1 formalizes the first phase allowing the recovery of all the possible
string values of an expression (a more detailed description of the used procedures
is given in Algorithm 2). First, we locally resolve the expression and then we deal
with the call graph extraction, when it is necessary. Let us apply Algorithm 1
on the sample code in Fig. 1. This algorithm gets executed when the Database
Access Detection finds a JDBC-based data access, i.e., st.execute(sql). Here,
sql is the String expression which will be recovered by the algorithm and which
is located in the method executeQuery(String x, String y). These two ele-
ments will be the inputs of the algorithm. First, the algorithm extracts the pos-
sible local values of sql, i.e., ‘select * from x’ and ‘select * from x order
by y’ (line 2). Then it deals with the x and y input parameters by extracting
the call graph first. Analyzing the call graph allows us to recover the possible
values of the parameters. We illustrate this step for each possible value.

Let value = ‘select * from x’; x is the only parameter of the executeQuery
method (line 4). The algorithm explores the code for retrieving the expressions
invoking the executeQuery method (line 8). It returns only one call expression,
namely executeQuery(tableName, columnName). The next step is to retrieve
tableName (line 10), the input expression corresponding to x. For this step, we
recursively resolve the expression tableName (line 13); the result is ‘Provider’.
Then, we replace all the input parameters with their corresponding values
obtained earlier (line 15). In this example, we merely replace x with ‘Provider’
and thus, the resulting value for the query string is ‘select * from Provider’.
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Procedure recoverExpr(Expression expr, Method method)
Input: a Java expression representing a String value and the Java method where the

expression is located.
Output: the list of every possible String values corresponding to this expression.
1 Expr[] result = initialize()

// Locally extracting the values of the given expression
2 Expr[] values = getLocalValues(expr, method)
3 for value ∈ values do

//Extracting the used input parameters from the current value
4 Variable[] inputs = getInputParams(method, value)
5 if inputs = null then
6 result.add(value)
7 else

//Extracting the call graph of the given method in order to recover
the value of each used input

8 MethodCallExpr[] callGraph = callGraph(method)
9 for call ∈ callGraph do

//Extracting the input values from the current call
10 Expr[] inputExprs = extractParamValues(method, call, inputs)
11 Expr[][] inputValues = initialize()
12 for inputExpr ∈ inputExprs do

//Recursive call for each input
13 inputValues.add(recoverExpr(inputExpr, inputExpr.method()))

14 end
//Replacing each input by the obtained values

15 Expr[] product = replaceInput(value, inputs, inputValues)
16 for e ∈ product do
17 result.add(e)
18 end

19 end

20 end

21 end
22 return result

Algorithm 1. Algorithm for recovering the string values of a given Java
expression.

Let value = ‘select * from x order by y’; the process is slightly differ-
ent. In this case there are two input parameters: x and y. The result for x is
the same as above (‘Provider’), but y, reduced to columnName, may corre-
spond to two different values: ‘provider id’ and ‘provider name’. The algo-
rithm returns two possible values (line 15): ‘select * from Provider order
by provider id’ and ‘select * from Provider order by provider name’.

The final result of the algorithm will be 3 different string values for the
sql expression: ‘select * from Provider’, ‘select * from Provider order
by provider id’, and ‘select * from Provider order by provider name’.
In the end of the process, the SQL parsing phase will point to the Provider
table and its provider id and provider name columns as the accessed objects.

3.3 Hibernate Analysis

Similarly to the JDBC API, Hibernate provides the developer multiple data-
base access/query mechanisms. The aim of the Hibernate analysis is to identify
the source code locations accessing the database through Hibernate. While it
partly relies on the JDBC analysis and its algorithm of string value recovery,
the Hibernate analysis is more sophisticated due to the ORM complexity.
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Procedure getLocalValues(Expr expr, Method method)
Input: A Java expression representing a String value and the Java method where the

expression is located
Output: All the possible values of the given expression by only exploring the given local

method.
Procedure getInputParams(Method method, Expr expr)
Input: A Java method declaration and a Java expression.
Output: The input parameters of the given method which are part of the given expression
Example:

- method = public static void printCustomer(Connection con, Integer id)
- expr = ”select * from Customer where cust id =” + id
- res = [id]

Procedure callGraph(Method method)
Input: A Java method declaration.
Output: The Java expressions invoking the given method.
Procedure extractParamValues(Method method, MethodCallExpr mce, Variable[] inputs)
Input: A Java method declaration, a Java expression invoking the given method and a set of

input parameters of the given method.
Output: The corresponding value of each parameter.
Example:

- method = public static void printCustomer(Connection con, Integer id)
- mce = printCustomer(myConnection, 201456)
- inputs = [id]
- res = [201456]

Procedure replaceInput(Expr expr, Variable[] inputs, Expr[][] inputValues)
Input: A Java expression, a list of variables used by the given expression, the possible values

of each variable
Output: Replacing the variables part of the given expression by their corresponding values
Example:

- expr = ”select * from Customer where first name =” + firstName + ”and last name
=” + lastName

- inputs = [firstName, lastName]
- inputValues = [ [’James’, ’John’], [’Smith’] ]
- res = [ select * from Customer where first name = ’James’ and last name = ’Smith’,

select * from Customer where first name = ’John’ and last name = ’Smith’]

Algorithm 2. Description of the procedures used in Algorithm 1

Like the JDBC API, Hibernate also proposes different Java methods to exe-
cute either native SQL queries or HQL queries. The extraction process of those
queries is similar to the JDBC analysis process (Algorithm 1). However, our
HQL parser is slightly different from the parser of the JDBC analysis. Indeed, at
this point we cannot just extract a SQL query string. Thus, we implemented a
feature to be able to translate an HQL query into the corresponding SQL query.
This translation is processed by invoking the internal HQL to SQL compiler of
Hibernate (org.hibernate.hql.QueryTranslator) with the same context that
would be used for execution. Once we obtained the corresponding translated
SQL query, we are able to parse it and extract the involved objects.

Furthermore, as previously described, Hibernate also offers a set of meth-
ods operating on instances of mapped entity classes, e.g., Fig. 2 (3). This way
of accessing the database cannot be reduced to a mere string recovery process.
Instead, the purpose is to determine the Java class of the object. The proposed
solution consists in firstly determining the entity class(es) of the input object
and then, detecting the corresponding mapped database objects. This last phase
analyzes the Hibernate mapping files of the system. These mapping files instruct
Hibernate how to map the defined class or classes to the database tables. We did
not present our algorithm allowing to determine the entity class of an input Java
object because it uses the same logic (but simplified) that Algorithm 1. Instead,
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we illustrate the use of that algorithm on Fig. 2 (3). The Database Access Detec-
tion detects session.save(o) as a database access. o is the expression to resolve
and it is located in saveObject(Object o). o is identified as an input parameter
of the method saveObject. Then, the algorithm explores the code to retrieve the
expressions invoking the saveObject method (call graph extraction). Only one
call expression is returned, namely saveObject(myCustomer). Next, we recur-
sively resolve the myCustomer expression. myCustomer is also a parameter of
the saveCustomer method, however, there is no call expression for it (empty call
graph). Thus, we resolve myCustomer locally: by exploring the saveCustomer
method, we detect that myCustomer is an instance of the Customer class. This
step will, therefore, return the Customer class as the only solution for the o
expression. Finally, our solver will detect the mapping between the Customer
class and its corresponding database table.

3.4 JPA Analysis

The JPA analysis concentrates on the database accesses by means of JPA. Like
Hibernate, JPA proposes Java methods to execute either native SQL queries or
JPQL queries. The extraction process of those queries is similar to the Hibernate
analysis: we rebuild the query value by means of Algorithm 1 and then we parse
the JPQL query. The JPQL parser uses the same approach as for HQL, by
invoking the internal HQL to SQL compiler of Hibernate.

Like Hibernate, JPA also permits accessing the database by operating on Java
instances of mapped entity classes, e.g., Fig. 3 (2). We use the same approach
to address that problem. However, instead of using the Hibernate mapping files
for establishing the mapping between the entity classes and the database tables,
the DB Mapper will consider the JPA annotations which define this mapping.

3.5 Process Output

The output of the full process is the set of the database accesses detected by our
static analysis as well as the code location of each access and the database tables
and columns involved in it. The code location of a given access is expressed by
the minimal program path necessary for creating and executing the database
access. The below example shows sample information gathered for a database
access where a SQL query is executed at line 124 in DatabaseUtil.java. The
current method in which the query execution occurs is called by CheckDrug
OrderUnit.java at line 56. The database objects involved in this query are the
drug order table and units, one of its columns.

JDBC access: ’SELECT DISTINCT units FROM drug order WHERE units is NOT NULL’
Program path: [CheckDrugOrderUnit.java, line=56] → [DatabaseUtil.java, line=124]
Database schema objects:

↪→ Database Tables: [ drug order ]
↪→ Database Columns: [ drug order.units ]
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4 Evaluation

In this section we evaluate our approach on three real-life systems. The detailed
results of this evaluation are available as an online appendix1.

4.1 Evaluation Environment

Table 1 presents an overview of the main characteristics of the target systems.
Oscar (oscar-emr.com) is an open-source information system that is widely used
in the healthcare industry in Canada. The source code comprises approximately
two million lines of code. OSCAR combines JDBC, Hibernate and JPA to access
the database. OpenMRS (openmrs.org) is a collaborative open-source project to
develop software to support the delivery of health care in developing countries
(mainly in Africa). OpenMRS uses a MySQL database accessed via Hibernate
and dynamic SQL (JDBC). Broadleaf Commerce (broadleafcommerce.org) is an
open-source, e-commerce framework written entirely in Java on top of the Spring
framework. Broadleaf uses a relational database accessed via JPA.

Table 2 contains the results of the process of identifying database accesses
applied to the three systems. For each system and technology supported, it
presents the total number of locations accessing the database.

Table 1. Size metrics of the systems

System Description LOC Tables Columns

Oscar Medical record system 2 054 940 480 13 822

OpenMRS Medical record system 301 232 88 951

Broadleaf E-commerce framework 254 027 179 965

Table 2. Number of database
access locations per technology

System Database accesses
JDBC Hib JPA

Oscar 123 661 727 31 729

OpenMRS 77 687 0

Broadleaf 0 0 930

Table 3. Complexity of database access
recovery

JDBC Hib JPA
x̄ max x̄ max x̄ max

Oscar 4 8 1.5 3 3.8 7

OpenMRS 1.2 3 1 2 − −
Broadleaf − − − − 1 1

Figure 5 shows the set of tables and columns accessible by the different tech-
nologies. In the Oscar system, we notice that JDBC remains the most widely used
technology regarding the number of different columns accessed (10,350 columns
accessed from 123,661 source code locations). Concerning OpenMRS, the biggest
database part is accessed by Hibernate (713 columns for 687 locations) whereas
JPA is the only used mechanism in Broadleaf (431 columns for 930 locations).
1 https://staff.info.unamur.be/lme/CAISE16/.

http://oscar-emr.com
http://openmrs.org
http://broadleafcommerce.org
https://staff.info.unamur.be/lme/CAISE16/
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Fig. 5. Distribution of tables and columns by access technology

Table 3 depicts, for each system, the algorithmic complexity in terms of the
number of recursive calls needed for completely recovering a code location access-
ing the database, i.e., the number of recursive calls in Algorithm 1. In Oscar, one
can notice that 4 recursive calls are required, on average, to fully reconstruct a
database access via JDBC, while the most complex detected accesses require 8
recursive calls. By comparing with the other systems in Table 3, we note that
Oscar is the most complex, recursive calls being often necessary to recover the
database accesses. In contrast, we can observe that in OpenMRS and Broadleaf,
most database accesses are built within the same method.

4.2 Successfully Extracted Queries

The Oracle. To evaluate the effectiveness of our approach in extracting data-
base accesses, we assess whether we can identify most of the database accesses
and also the noise of the technique. First we need to have a ground truth, i.e.,
the actual set of queries that are sent to the database with their corresponding
source code locations. Once we have this set of queries, we can compare them to
our extracted set of queries. However, the availability of a complete ground truth
is not a realistic working assumption in the context of large legacy systems.

The oracle that we used for assessing our approach is the set of unit tests
of each software system. That is, we systematically collected all the database
accesses (JDBC, Hibernate and JPA) produced by the execution of the test
suites. We gathered this query set by analyzing trace logs of the execution of the
unit tests of each system. To do so, we used our modified version of log4jdbc2 to
2 http://code.google.com/p/log4jdbc/.

http://code.google.com/p/log4jdbc/
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Table 4. Coverage values of the unit tests

System Test Test Covered classes Covered locations

LOC Runs HIB/JPA JDBC HIB/JPA JDBC

Oscar 49 086 1 311 65.00 % 1.05 % 56.79 % 0.28 %

OpenMRS 76 960 3 258 69.57 % 16.00 % 58.16 % 13.56 %

Broadleaf 17 633 255 33.96 % - 19.10 % -

collect trace logs containing the exact string values of all of the queries sent to
the database and their corresponding stack traces.

Table 4 presents statistics about the unit tests of the systems under question.
We count the number of test runs reported by the build system and show the
total lines of Java code in the testing directories. In addition to the test classes,
there are functional tests (e.g., Broadleaf uses Groovy tests), resulting that the
number of executed test cases are larger than the number of test classes. In
general, all the systems are well tested with unit tests, and developers do not
just test core functionality of their systems, but the testing of DAO classes is
also one of their main goals. All the systems have test databases and hundreds of
test cases for testing database usage. Thus, it is reasonable to consider as oracle
the data accesses collected through the execution of the unit tests.

The queries that we identify with the help of log4jdbc are filtered based on
their stack traces, in order to distinguish between queries sent to the database
directly through JDBC or Hibernate. Also, this filtering keeps queries generated
by Hibernate explicitly for HQL or JPA queries and filters those implicit queries,
which are generated for caching or lazy data fetching purposes, for instance.

Table 4 shows what percentages of the classes and locations (that we
extracted as data accesses) are covered by the unit tests. For Oscar and Open-
MRS, the two largest systems that we analyzed, this coverage value is 65 % for
the classes where we found Hibernate or JPA queries. The coverage value of
JDBC data accesses is, however, quite low for all systems. The reason for this
is that these systems implement main features using ORM technologies, and it
mostly happens out of the scope of the main features where they use JDBC to
accesses the database, e.g., in utility classes for upgrading the database, or in
classes to prepare test databases. These parts of the code are usually not tested
by unit tests, resulting in low coverage for our analysis.

Percentages of Successfully Extracted Queries. Conceptually, the number
of possible queries is infinite (i.e., when a part of a query depends on user input,
its value could be anything). However, to assess if we were able to identify most
of the database accesses or not, we calculate the percentages of successfully
extracted and unextracted queries. We consider a query of the oracle (a query
logged in the execution traces of the unit tests) successfully extracted if we could
also extract it from the source code. Otherwise, we consider it unextracted. In
other words, successfully extracted queries are the true positive queries, while the
unextracted ones are the false negatives. To determine if a query in the oracle
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Table 5. Percentage of successfully extracted
queries for each system

System Technologies Total

JDBC HIB/JPA

Oscar 1681/2038 892/1558 71,5%

OpenMRS 31/41 268/322 82,4%

Broadleaf − 94/95 99%

Table 6. Percentage of valid queries
for each system

System Technologies Total

JDBC Hib/JPA

Oscar 14/17 656/689 94.9%

OpenMRS 8/8 86/99 87.9%

Broadleaf − 29/29 100%

was successfully extracted or not, we compare the stack trace of all of these
queries to the ‘program paths’ (see Sect. 3.5) of the extracted queries. Moreover,
we compare the string values of the SQL queries.

Table 5 shows the percentages of the successfully extracted queries. For
assessing the JDBC analysis on Oscar, we found 2,038 queries in the trace logs,
among which our approach successfully extracts 1,681. Regarding the Hiber-
nate/JPA analysis, we identified 892 queries out of 1,558. In general, we identified
71.5 % of the queries. In the case of OpenMRS, for the JDBC analysis, we iden-
tified 31 queries out of 41, while we identified 268 Hibernate/JPA accesses out
of 322. In total, we identify 82.4 % of the queries. For Broadleaf, the percentage
of successfully extracted queries is 99 % (94 JPA accesses out of 95).

Percentage of Valid Queries. It is possible that we extract a query, and we
report it as valid, but it is never constructed in the code. Hence it is invalid. It
can happen when our static technique fails to deal with constructs in the code
which would require additional information that we cannot extract statically,
e.g., evaluating conditional statements (see Sect. 4.3). We consider these queries
as the noise of our approach. In other words, these queries are the false positive
queries reported by our technique.

We limit the assessment to those database access points that are covered by
the unit tests. If the tests cover an access point, we can make the assumption that
the possibly valid queries on that location were sent to the database and traced
by our dynamic analysis. All the queries that were reported for these locations,
and are not in the oracle, are thus considered as invalid (false positives).

Results are presented in Table 6. In the case of Oscar, with the JDBC analy-
sis we obtain 14 valid out of 17 queries and 656 valid out of 689 for the
Hibernate/JPA analysis. The percentage of the valid queries value is 94.9 %.
For OpenMRS, we obtain a percentage of 87.9 % with 8 true positive out of 8
for the JDBC analysis and 86 true positives out of 99 for the Hibernate/JPA
analysis. Finally, for Broadleaf there are no invalid queries (29 true positives out
of 29).

4.3 Limitations

As we have seen, our approach reached good results when applied to real-life
Java systems. However, we identified some limitations of our approach that are
mainly due to its static nature. Below, we give an overview of those limitations
that may cause failures in the automated extraction of (valid) SQL queries.
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String Manipulation Classes. The standard Java API provides developers
with classes to manipulate String objects, such as StringBuilder and String-
Buffer. The main operations of those classes are the append and insert methods,
which are overloaded so as to accept data of any type. In particular, a String-
Builder/StringBuffer may be used for creating a database access (e.g., a SQL
query). The current version of our analysis does not handle the use of those
classes in the string value recovery process. This is one reason for some unsuc-
cessfully extracted queries. As we manually investigated it for the OpenMRS
system, among the 54 Hibernate/JPA accesses not extracted by our parser (see
Table 5), 49 are due to the use of StringBuilder objects for creating the query
value. This obviously affects the percentage of successfully extracted queries3.

User-Given Inputs. Similarly, executed SQL queries sometimes include input
values given by the application users. This is the case in highly dynamic applica-
tions that allow users to query the database by selecting columns and/or tables
in the user interface. In such a situation, which we did not encounter in our eval-
uation environment, our approach can still detect the database access location
but the static recovery of the associated SQL queries may be incomplete.

Boolean Conditions. Another limitation we observed relates to the conditions
in if-then, while, for, and case statements. Our parser is designed to rebuild all
the possible string values for the SQL query. Thus, it considers all the possible
program paths. Since our static analyzer is unable to resolve a boolean condition
(a dynamic analysis would be preferable), these cases generate some noise (false
positive queries). In the three subjects systems, a total of 12 invalid queries were
extracted by our approach due to boolean conditions4.

5 Related Work

The key novelty of our approach relies on the static reconstruction of SQL queries
from Java source code in the presence of Object-Relational Mapping frameworks
such as Hibernate and JPA. In particular, we are not aware of another approach
supporting such a task in the case of hybrid database access mechanisms, where
JDBC, Hibernate, and JPA accesses co-exist in the same information system.

Several previous papers identify database accesses by extracting dynami-
cally constructed SQL queries (e.g., for JDBC-based database accesses). The
purpose of these approaches ranges from error checking [4,9,15,17], SQL fault
localization [5], fault diagnosis [10] to impact analysis for database schema
changes [11,16]. A pioneer work was published by Christensen et al. [4], who
propose a static string analysis technique that translates a given Java program
into a flow graph, and then analyzes the flow graph to generate a finite-state
automaton. They evaluate their approach on Java classes with at most 4 kLOC.
3 Example of the use of StringBuilder to create a SQL query: http://bit.ly/1XNeL4e.
4 Example of invalid extracted query: “from Concept as concept left join con-
cept.names as names where names.conceptNameType =‘FULLY SPECIFIED’ and
concept.retired = false order by concept.conceptId asc”. http://bit.ly/1Y0TJAT.

http://bit.ly/1XNeL4e
http://bit.ly/1Y0TJAT
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Gould et al. propose a technique close to a pointer analysis, based on an interpro-
cedural data-flow analysis [9,17]. Maule et al. use a similar k-CFA algorithm and
a software dependence graph to identify the impact of relational database schema
changes upon object-oriented applications [11]. van den Brink et al. present a
quality assessment approach for SQL statements embedded in PL/SQL, COBOL
and Visual Basic code [2]. The initial phase of their method consists in extracting
the SQL statements from the source code using control and data-flow analysis
techniques. They evaluate their method on COBOL programs with at most 4
kLOC. Ngo and Tan [14] make use of symbolic execution to extract database
interaction points from web applications. Through a case study of PHP applica-
tions with sizes ranging 2 – 584 kLOC, they show that their method is able to
extract about 80 % of such interactions.

Compared to the above previous approaches [2,4,9,11,14,17], our SQL
extraction technique does not require an expensive data-flow analysis nor sym-
bolic execution. Its input is the abstract syntax tree, and it relies on the intrapro-
cedural control flow of the methods associated with their call graph. This makes
the approach applicable to large-scale Java applications, as shown in this paper.
In addition, the above approaches are not directly applicable to ORM-based
Java systems.

There are only a few studies targeting applications using ORM frameworks,
particularly Java applications using Hibernate. Goeminne et al. [7] study the co-
evolution between code-related and database-related activities in data-intensive
systems combining several ways to access the database (native SQL queries and
Object-Relational Mapping). Their analysis remains at the granularity level of
source code files, and does not involve the fine-grained inspection of the ORM
queries. Chen et al. [3] propose an automated framework for detecting, flagging
and prioritizing database-related performance anti-patterns in applications that
use object-relational mapping. In this context, the authors identify database-
accessing code paths through control-flow and data-flow analysis, but they do
not reconstruct statically the SQL queries that correspond to the identified ORM
code fragments. Instead, they execute the applications and rely on log4jdbc to log
the SQL queries that are executed. The above papers study the peculiarities of
ORM code, but they do not contribute to database usage analysis in general, nor
to query reconstruction in particular. Our approach is, therefore, the first static
analysis technique able to identify database accesses in Java systems that rely
on an ORM framework and to translate them to queries sent to the database.

In our recent work, we applied an earlier version of our approach to two
usage scenarios. First, we were able to elicit implicit foreign keys in a Java sys-
tem [12], based on the analysis of JDBC invocations. We analyzed both the
database schema and the schema recovered from the source code, but the Hiber-
nate and JPA analysis was only limited to the analysis of the schema mapping
files and annotations, used as heuristics. Second, in [13], we conducted a study
on locating the source code origin of a SQL query executed on the database side.
While this short paper relies on our query extraction approach, it focuses on the
algorithm for matching one concrete SQL query against others. In this paper,
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we significantly extend our query extraction technique towards a hybrid approach
by complementing it with the Hibernate and JPA analyses, and we perform an
experimental evaluation of its accuracy based on real-life information systems.

6 Conclusions and Future Directions

We presented a static analysis approach that allows developers to identify and
analyze database access locations from highly dynamic Java systems. Our app-
roach is able to handle Java systems that combine JDBC-based data accesses
with the usage of Hibernate and/or JPA as popular object-relational mapping
technologies. The evaluation shows that the proposed approach can successfully
extract queries for 71.5 % – 99 % of database accesses with 87.9 % – 100 % of
valid queries. Although we identified some limitations (as we presented above),
we argue that our approach is applicable in practice to real-life Java projects,
and can achieve useful results for further analyzes.

In our future work, we plan to extend our results to other programming lan-
guages and database platforms. We also intend to empirically analyse database
usage evolution practices, and to study program-database co-evolution patterns.
Our ultimate goal is to support developers in the context of software evolution
scenarios such as database schema change and database platform migration.
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