
CloudMap: A Visual Notation for Representing
and Managing Cloud Resources

Denis Weerasiri1(B), Moshe Chai Barukh1, Boualem Benatallah1,
and Cao Jian2

1 University of New South Wales, Sydney, Australia
{denisw,mosheb,boualem}@cse.unsw.edu.au

2 Shanghai Jiaotong University, Shanghai, China
cao-jian@cs.sjtu.edu.cn

Abstract. With the vast proliferation of cloud computing technologies,
DevOps are inevitably faced with managing large amounts of complex
cloud resource configurations. This involves being able to proficiently
understand and analyze cloud resource attributes and relationships, and
make decisions on demand. However, a majority of cloud tools encode
resource descriptions and monitoring and control scripts in tedious tex-
tual formats. This presents complex and overwhelming challenges for
DevOps to manually read, and iteratively build a mental representation
especially when it involves a large number of cloud resources. To alle-
viate these frustrations we propose a model-driven notation to visually
represent, monitor and control cloud resource configurations; managed
underneath by existing cloud resource orchestration tools such as Docker.
We propose a mindmap-based interface and set of visualization patterns.
We have employed an extensive user-study to base design decisions, and
validate our work based on experimentation with real-world scenarios.
The results show significant productivity and efficiency improvements.

Keywords: Cloud resource management · DevOps · Visual notations

1 Introduction

Cloud computing is rapidly evolving in public, private and hybrid cloud net-
works [1]. The many benefits include enabling virtualization capabilities as well
as outsourcing strategies – the cloud will be a firm priority for productivity and
economic development. It is estimated by 2016, growth in cloud computing will
consume the bulk of IT spend1. There are however crucial gaps in the cloud-
enabled endeavor [1]. Modern resource configuration management systems like
Puppet, Ubuntu Juju, Ansible, Amazon OpsWorks and Chef provide scripting-
based languages over cloud services [4]. This implies even sophisticated pro-
grammers and administrators are forced to understand different low-level cloud
service Application Programming Interfaces (APIs), command-line syntax, and

1 http://www.gartner.com/newsroom/id/2613015.

c© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 427–443, 2016.
DOI: 10.1007/978-3-319-39696-5 26

http://www.gartner.com/newsroom/id/2613015


428 D. Weerasiri et al.

programming constructs, to create and maintain complex cloud resource config-
urations. Moreover, this problem worsens as the variety of cloud services and
the variations of application resource requirements and constraints increase.

Inevitably, typical cloud-based organizations are finding it difficult to
productively utilize their very large repositories ladened with textual cloud
resource description and management artifacts, [1]. For example, simple man-
agement tasks commonly involve: analyzing resource descriptions; understand-
ing the inter-relationships between resources; and aggregating monitoring data.
However, until now DevOps (i.e., developers and operation personnel who are
collectively involved in designing, developing, deploying and managing cloud
applications) are required to manually and iteratively read several low-level files
and use command-line tools to extract monitoring information. In fact, it has
been confirmed that DevOps dedicate the majority of their time to understand
existing artifacts instead of creating new ones, updating and/or testing them [6].

To overcome these challenges, we present CloudMap. Leveraging the old-age
dictum of “a picture tells a thousand words!”, we develop visual notations to sim-
plify representing and managing cloud resources. We argue this novel approach
will enable DevOps to invest more on creating, configuring and managing cloud
resources, instead of the frustrations and time spent to understand them. Since
we are at the foundational stage, we have specialized our framework to Docker
[10]; albeit in future it can easily be extended with other orchestration tools (e.g.,
JuJu or Ansible). Docker is an open-source and widely-praised industry standard
initiative. Its Container-based virtualization technique offers a lightweight and
portable resource isolation alternative to Virtual Machines (VMs). This tech-
nique emerged to simplify and accelerate the configuration and management
of cloud resources. More specifically, for composite service-based cloud resources
that depend on multiple service middleware for their operations, container-based
virtualizations enable accelerated and efficient deployment of optimally config-
ured, scalable and lightweight middleware instances. However, since to the best
of our knowledge current tools merely leverage textual resource representations,
it does not do justice to improving the productivity and efficiency of DevOps.
Accordingly, this paper makes the following main contributions:

Expert User-Study. Based on an extensive survey of 21 participants (system
administrators and software engineers with 3–10 years experience), we discover
gaps and challenges in current solutions. We form a strong understanding of the
requirements, and derive key design decisions for our novel solution.

Visual Notation for Representing & Managing Cloud Resources. We
formulate the necessary notational constructs (i.e., Entities and Links) and
define the semantics for each. We also propose novel auxiliary features called
Probes and Control Actions, that can be “tagged” to entities.

Cloud Visualization Patterns. We identify common visualization patterns
for cloud resource configuration. Existing architectural patterns are high-level
and mostly suitable for solution architects or IT directors [5]. In contrast, we
believe DevOps require more fine-grained visual abstractions for understanding,



CloudMap: A Visual Notation for Managing Cloud Resources 429

navigating, monitoring and controlling complex cloud resources. Resultantly, we
present three patterns and describe their benefits via practical scenarios.

The rest of this paper is organized as follows: In Sect. 2, we position this
work with respect to our previous work; and explain how our visual notation is
applied within the cloud resource lifecycle. Furthermore, we present the results
of our user-study. In Sect. 3, we detail our visual notation and its semantics, and
present three organizational patterns. We employ a mind-map interface, and
illustrate how they could be used over various use-cases which span across selec-
tion, configuration, deployment, monitoring and controlling of cloud resources.
In Sects. 4, we present our implementation and GUI; evaluation in Sect. 5; then
related-work, and conclusions in Sect. 6.

2 Background

2.1 Motivating Example

Cloud resources management typically involves: (i) An initially sequential stage
of consisting of: Select, Configure and Deploy ; (ii) Followed by an iterative phase
consisting of: Monitor and Control.

As a running example, consider the 3-tier system illustrated in Fig. 1. We
begin by selecting the required resources. In this case, business logic is executed
using Business Process Execution Language (BPEL), with state data stored on
a MySQL DB. For scaling purposes, we introduce a Nginx Load Balancer that
propagates requests to a cluster of Apache Orchestration Director Engine (ODE)
Servers. To configure and deploy, DevOps determine the relationships between
components and write configuration and deployment scripts, that describes the
attributes (e.g., no. of BPEL engines, CPU allocation). Subsequently, DevOps
also collect and analyze events to monitor and apply control actions if necessary.

Fig. 1. Resource diagram of the typical 3-tier (BPEL-based) application

2.2 Requirements for Cloud Resources Visual Notation

To articulate the requirements of our novel solution, we sought to gain insight
about the gaps and challenges in current strategies. We conducted a user-study
over 21 experts with 3–10 years of working experience: 9 server administrators
and 12 software engineers (e.g., cloud-based application developers).



430 D. Weerasiri et al.

Research Questions and Results. Three main areas of investigation were
sought. Techniques to: (a) navigate and understand cloud resource attributes
and relationships; and (b) monitor and control cloud resources. In addition,
(c) we sought to discover how the above increased in complexity when the number
of managed resources increased. Responses were automatically recorded in an
online spreadsheet, and the raw results summarized in Fig. 2.

Fig. 2. Survey questions and results

Survey Analysis. While a more detailed discussion of the analysis is largely
outside the scope of this paper, we summarize our findings below and derive the
fundamental requirements for our proposed visual notation. This was also done
in conjunction with our own investigation and systematic literature review2 on
a range of cloud resource orchestration tools and techniques [2,10,11].

– The majority (71.4 %) of DevOps rely on command line tools to navigate
cloud resources and discover their properties and relationships. While nearly
half (38.1 %) has resorted to manual and error-prone techniques (e.g., reading
and memorizing configuration files). This was primarily due to that fact most
of simple GUIs were limited to resource attributes only. Accordingly, we have
sought to extend visual techniques for displaying not only attributes, but types
of resources and important directional links between resources.

– A large majority (76.2–81%) admitted they rely on log files and notifications
(e.g., emails, SMS) to monitor cloud resources. While regarding control and

2 Internal Report prepared and impending Journal to be submitted: “D.Weerasiri et al.
A taxonomy and survey of cloud resource orchestration techniques”.



CloudMap: A Visual Notation for Managing Cloud Resources 431

(re-)configuration, most DevOps use command-line tools, APIs and/or SDKs
(65–85%). Participants also complained about the inconvenience of switching
between multiple tools to monitor and control cloud resources. Accordingly,
our work sought to integrate visual probe and control elements to facilitate
not only monitoring, but (re-)actions and control of cloud resources.

– Overall, the need for simplifying all aspects of cloud resource management (i.e.,
navigation and understanding configured resources; monitoring and control),
was widely championed by participants. This was because a wide majority
(71.5 %) of DevOps manage large numbers (approx. <100) of cloud resources.
Matters also exasperate when many (76.3 %) have to simultaneously manage
multiple cloud resource providers (e.g., AWS, VMWare).

3 CloudMap: Visual Notation for Cloud Resource
Management

CloudMap offers a refreshing “visual” attempt at simplifying the way DevOps
can navigate and understand cloud resource configurations, as well as monitor
and control such resources. The concepts of CloudMap are associated with both

Fig. 3. CloudMap visual notations



432 D. Weerasiri et al.

a visual notation and an underlying textual JSON syntax. The textual syntax
provides the context in which visual primates can be specified and executed.

The constructs of the notation are specified as the following: (i) Struc-
tural model represents primitive cloud resource entities and their attributes.
Attributes have string name with one or a set of string values. (ii) Navigation
Model represents the topology of links between entities. Links are directional
with a single string label. The set of valid links are domain-specific; (we will
explain in Sect. 4 how CloudMap depends upon our previous work CloudBase
to determine domain context). (iii) Badges are an auxiliary feature to the fun-
damental constructs mentioned above. A badge represents a special entity that
may be “tagged” to another entity. Visually, a badge is realized as a single or set
of widgets, which may be used to monitor and/or control tagged entities. The
data model of a badge specifies which entity-type it applies to.

Figure 3 illustrates the graphical notation, while Fig. 4 the syntactical schema
of the underlying JSON model. Below we explain each of these constructs.

Fig. 4. CloudMap syntactical schema of constructs

3.1 Structural Model: Entities

An entity is a single cloud resource, referred to as a Resource Entity ; or collec-
tion thereof, referred to as a Index Entity. Syntactically, an entity as shown in
Fig. 4(a) contains a string name and description and set of properties. The
overall structure for each entity type is in accordance with the Domain-Specific
schema3.
3 See our previous work: ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201514.

pdf.

ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201514.pdf
ftp://ftp.cse.unsw.edu.au/pub/doc/papers/UNSW/201514.pdf


CloudMap: A Visual Notation for Managing Cloud Resources 433

Resource Entities. We have identified 5 resource entities types: (1) Containers
represents a virtualized software container (e.g., Linux and OpenVZ4 containers)
where an application or a component of an application (e.g., an Apache ODE
Server installed on Ubuntu OS) is deployed. (2) Hosting Machines represents
a computer system where Containers are hosted (e.g., Virtual Machine (VM)
or a physical machine). (3) Clusters represents a set of Hosting Machines. This
reduces the overhead of dynamically managing multiple machines. For example,
the Cluster may automatically decide which Hosting Machine will be chosen to
deploy the given container based on an optimization algorithm [7]. (4) Applica-
tions represents a logical entity that includes a collection of related Containers.
Each Container constitutes a component of the Application. (5) Images repre-
sents the deployment description of a Container, that is fed to the runtime of
the orchestration tool in order to instantiate the Container.

Index Entities. Similarly, we have identified 3 index entity types: (1) Hosting
Machine Registry is a logical entity that contains a set of Hosting Machines
and Clusters. (2) Application Registry represents a repository of Applications.
DevOps organize and discover all deployed cloud applications within the Reg-
istry. (3) Image Registry represents a repository of Images where DevOps may
organize, curate and share resource deployment knowledge.

3.2 Navigation Model: Links

The relationship between entities are represented as links and enable navigation.
Syntactically, links have a string name and description. They also define the
source and target participants. Additional attributes may also be defined.

We have identified 5 different groups of links, as categorized below: (1) Com-
munication Links are defined between two Containers that interact or exchange
data. For example, an Apache ODE (BPEL) server communicates with a MySQL
database server, about a BPEL instances. (2) Containment Links defines the
hierarchical organization of entities. In practice, they may also be also used to
simultaneously control a set of related resources (e.g., control actions on a par-
ent automatically triggers actions on all children). The valid set of containment
links are defined in the links’ schema (also as illustrated in Fig. 3). (3) Hosting
Links defines a relationship between a Hosting Machine and Container or an
Application. For example, between a PHP application engine and a VM where
the PHP application engine is deployed. (4) Dependency Links defines a relation-
ship between two Images, where the attributes of a particular resource depend
upon the other resource. (5) Instantiation Links defines a relationship between
an Image and Container, when the latter may be produced from the former. For
example, a Conteiner may instantiate an Image.

3.3 Badges: Probes and Control-Actions

A badge represents an auxiliary feature to the fundamental constructs of entities
and links. Syntactically, they define a string name and description, and may
4 http://openvz.org/.

http://openvz.org/


434 D. Weerasiri et al.

only be applied to certain entity types, defined in the applies-to property.
When tagged to some entity, they apply some behavioral function, depending on
the type of badge: either a probe (used for monitoring) or control action (used
for performing some action). Visually, when a badge is tagged to an entity, it
renders a widget; a badge thus also contains a pointer to one or a set of widgets.

Probes. At present, we have developed 2 probes: (1) Attribute Probe displays the
name and values of attributes for a given entity. For example, a VM in AWS-EC2
contains attributes about the number of CPU cores, storage and memory capac-
ity, OS and access rules. (2) Monitoring Probe continuously monitor runtime
data of deployed cloud resources. For example, if an Application, a Container or
a Hosting Machine is tagged by the “monitoring probe”, an appropriate widget
becomes available to graphically analyze the underlying resource consumption
statistics (e.g., memory usage, network I/O, CPU usage). Monitoring probes
may also be attached on several resources at the same time, and the associated
widget aggregates, summarizes and provides a visual technique to compare the
performance of multiple cloud resources.

Control Actions. Actions can be both manual or automated. Manual actions
are self-prompted by dragging specific badges onto entities. For example,
(1) Elasticity Control applies to a Container or Hosting Machine to scale up or
down (e.g., no. of CPUs or memory); and (2) Migration Control to migrate a
container across VMs. Automated actions are inputed as ECA-rules (see Sect. 4),
via a dedicated universal badge that renders a rule-input widget.

3.4 Visualization Patterns for Cloud Resource Configurations

We consolidate the above by identifying 3 organizational patterns commonly
found within cloud resource management. We describe the benefits of these via
practical scenarios and accompanying illustrations.

Image Map. An Image Map visualizes the recursive dependency of Images
within a Registry. In general, cloud resource descriptions, deployment and/or

Fig. 5. Image Map



CloudMap: A Visual Notation for Managing Cloud Resources 435

control scripts typically have inter-relationships among them. Understanding
this is essential during deployment; it also assists to avoid errors in updating and
creating new deployment artifacts. Ordinarily, DevOps would have to manually
examine and comparing deployment artifacts to extract such inter-relationships.

Example. Figure 5 depicts an Image Map focused on “Ubuntu-OS”. Consider
we want to extend the “Apache-ODE” Image with an additional feature (e.g.,
BPEL4People). We are required to know all existing dependencies (e.g., Java-
VM version) recursively up until the root Image. Thus the Image Map provides
an indispensable visual technique to easily discover whether the “Apache-ODE”
Image is dependent upon a particular version of “Java-VM” (e.g., Java7-VM).
It is also useful as DevOps can identify, customize and reuse existing resources.

Application Map. An Application Map visualizes the organization and inter-
action of Hosting Machines and/or Containers of an Application. Deployed
resources usually depend on other cloud resources to provide and consume
services. Thus understanding their runtime interactions proves extremely impor-
tant, particularly when applying modifications (e.g., reconfiguring, scaling,
shutting down). This could otherwise lead to Service-Level-Agreement (SLA)
violations, or catastrophic disruptions to the complete resource infrastructure5.

Example. Figure 6 depicts an Application Map focused on the “BPEL-App”.
Consider a DevOp may wish to scale-up the “Apache-ODE-Server”. This requires
creating a new “Apache-ODE-Server” and the communication links with any
related Containers (e.g., “MySQL-DB-Server” and “Nginx-LB”). DevOps hence
need to understand: (a) what are the existing Containers of an Application;
(b) how each are related to one another; and (c) what Image is to be used to
instantiate the new Container. Using the Application Map in conjunction with
the Image Map, DevOps can easily determine which image would be needed,
and the related containers to setup the communication links.

Another use-case is understanding the communication links between Con-
tainers. Traditionally, this is achieved via command-line tools, which only returns
details about a single container. DevOps would thus iteratively discover infor-
mation about each Container to derive a global view. Command-line tools are
also only suitable for sophisticated administrators. Monitoring details and con-
trol actions are represented in textual forms which are hard to memorize and
understand compared to visual forms.

Example. To optimize the overall performance of an Application we may min-
imize data communication across different Hosting Machines. One such tech-
nique is to detect inter-communicating Containers and migrate into one Hosting
Machine to reduce network latencies.

5 http://aws.amazon.com/message/65648/.

http://aws.amazon.com/message/65648/


436 D. Weerasiri et al.

Fig. 6. Application Map

Hosting-Machine Map. A Hosting-Machine Map visualizes the organization
of Containers and Applications within a specific Hosting Machine. This is use-
ful for DevOps who manage a complete cloud environment; as opposed to the
Application Map which only shows the Containers for a specific Application.

Example. Figure 7 shows the set of Containers deployed on a Hosting Machine
“HM-1”. DevOps are constantly responsible to check for optimization strategies:
identifying under- or over- used machines. Suppose “HM1” can host a maximum
of five Containers. We can use the map to determine there are only three running
Containers (i.e., ODE-Server 1, 2 and 3). Thus it is possible to deploy two new
Containers or migrate two existing ones. On the other hand, DevOps may delete
Hosting Machines which are not currently hosting any Containers.

Furthermore, in conjunction with the Monitoring Probe, DevOps may observe
data such as memory and storage utilization, as well as the existence of any
exhausted machines. Actions may then be taken to avoid potential memory over-
flows and crashes of Containers. For instance, scaling-up the Hosting Machines
to increase their underlying resources; or notify the owners to take any necessary
actions (e.g., migrate Containers to a non-exhausted machines).

4 Implementation

We leverage our previous work CloudBase [14] to simplify the interactions
between underlying orchestration tools. With our proposed Domain Specific
Model (DSM), high-level resource configurations can be supplied which are then
automatically translated into their native language using Connectors. Layered
above this as shown in Fig. 8, CloudMap implements: (i) An interactive mind-
map visualization for navigating cloud resources; (ii) Detecting and displays



CloudMap: A Visual Notation for Managing Cloud Resources 437

Fig. 7. Hosting Machine Map

events for monitoring; and (iii) allowing to perform both manual and automated
actions.

Mind-Map Generation. The knowledge needed to generated the mind-maps
are serialized from a supplied CloudMap JSON file. This is typically written by
DevOps for a desired cloud configuration using the CloudMap Notation we pre-
sented in Sect. 3. As mentioned, constructs that pertain to some orchestration
tool (e.g., Docker), must abide by the DSM’s schema. For example, the BPEL-
App entity abides by the docker.rest.Application schema, as shown in Fig. 8.
When this is the case, behind the scenes the CloudBase engine is able to inter-
pret complex and heterogeneous configurations and seamlessly connect to the
underlying orchestration tool. This means, when a configuration file is written
it is automatically translated into the low-level tool-specific language/API and
deployed. The graphical mind-maps is rendered via the JS InfoVis Toolkit6.

Event Management System. Upon loading a CloudMap JSON file, we also
use CloudBase to determine the type of events that can be detected. For exam-
ple, the BPEL-App includes events such as: @Created, @Stopped, @Pasued,
@Running, etc. Thereby, the Event Processor component sets up the necessary,
polling, processing and aggregating of event data. Once again, we leverage the
Connectors implemented in CloudBase to help extract monitoring data from
the low-level API (e.g., Docker Remote API7); and we assume access credentials
are supplied in advance by the user. Connectors leverage Apache Camel8 for
event subscription. Events are then archived and indexed in a single MySQL

6 http://philogb.github.io/jit/.
7 http://docs.docker.com/reference/api/docker remote api/.
8 http://camel.apache.org/.

http://philogb.github.io/jit/
http://docs.docker.com/reference/api/docker_remote_api/
http://camel.apache.org/


438 D. Weerasiri et al.

Fig. 8. CloudMap system architecture

database table, the Monitoring Events DB. Each table entry includes the ID
of the Resource, timestamp, data-type (e.g., CPU or memory usage) and data-
value.

Rule Processor. To enable automation, DevOps may also supply simple reac-
tive rules. For example, if @Stopped then #notify, which implies if the BPEL-
App stopped perform some notification action. To greatly simplify the way rules
can be defined, we reuse a simple rule-definition language adapted from our
previous work [9]. In that previous work, we assumed a “Knowledge-driven” app-
roach, which means APIs and their constituents (i.e., operations, input/output
types) of the orchestration tools are loaded in a knowledge-base. This makes it
possible to write high-level rule definitions and translate into concrete actions.

Activity/Control Wall. To enable interactivity, we have implemented a con-
textualized dashboard and control wall. For example, when either a Probe or
Control badge is drag-n-dropped onto a mind map entity, an appropriate widget
is displayed. Activity events are also posted. Badges may also be attached to
multiple nodes to formulate an aggregated visualization. For example, Figs. 6
and 7 compares absolute memory consumption statistics of each Container and
Hosting Machine. Similarly, control actions widgets allow DevOps to “manually”
perform actions to modify the resource configurations. Widgets are implemented



CloudMap: A Visual Notation for Managing Cloud Resources 439

in HTML/JS and leverages Google Chart Library9; we assume the requisite wid-
gets are pre-built and curated in the Widgets Base. Realtime updates to the
widget is also achieved by triggers on the Monitoring Events DB that notify the
affected widget when new event entries are received in the DB.

5 Evaluation

5.1 Experimental Setup

We conducted a user-study to evaluate the following hypotheses: H1, CloudMap
increases the efficiency to accurately understand and navigate attributes and
relationships of deployed cloud resources; H2, increases the efficiency to accu-
rately perform monitor and control actions; and H3, the key features offered are
useful and comprehensible. We measured efficiency as the time taken to complete
the tasks; and accuracy was determined using a set of questions (see below). The
total time to complete the tasks was until all questions were answered accurately.

Evaluation Task & Questionnaire. The task consisted of both a practical and
written component. Written feedback was provided via a questionnaire divided
into four main parts: (a) Background; (b) Functionality; (c) Usability; and
(d) Insights and Improvements. The Background questions sought to discover
the participants’ familiarity with existing cloud resource orchestration techniques
(i.e., Docker). The Functionality questions provided the necessary instructions
and to determine the accuracy in completing the tasks. Questions10 targeted
different features and were related to the given task, such as understanding
attributes; navigating relationships; and performing control actions.

Participant Selection & Grouping. Participants were sourced with diverse
levels of technical expertise. For the sake of analysis, we classified a total of 12
participants into 2 main groups: (I) Experts (7 participants) with sophisticated
understanding of cloud orchestration tools with 2–8 years of experience. And
(II) Generalists (5 participants) who have average knowledge of cloud orchestra-
tion tool for day-to-day requirements, with around 1–5 years of experience.

5.2 Experiment Results and Analysis

Evaluation of H1 and H2. The hypotheses H1 and H2 were evaluated based
on the time taken to perform the tasks and provide accurate responses to the
questionnaire. Alternatively, we sought to disprove the null hypotheses H10 and
H20. Both hypotheses were examined by conducting a t-test with a probability
threshold of 5 %, and assuming unequal variance.

As shown in Fig. 9, it was pleasantly surprising that even generalists demon-
strated a significant increase in efficiency (and reduction in time). The compar-
ative experiment focused on one third-party tool only, Shipyard11. Due to the
9 http://developers.google.com/chart/.

10 See mosheb.web.cse.unsw.edu.au/CloudMapQns.html for a complete list of ques-
tions.

11 https://shipyard-project.com/.

http://developers.google.com/chart/
https://shipyard-project.com/


440 D. Weerasiri et al.

Fig. 9. Time results (grouped by expertise) to complete the tasks; and below t-test
Results for H1 and H2

Fig. 10. Rate of usability of the main features of CloudMap

high number of existing cloud management tools, as well as project-based con-
straints, a more exhaustive comparative experiment was outside the scope. How-
ever, given the stark differences in times (means of 15.58 mins against 25.33 mins
for H1; and means of 7.83 mins against 10.89 mins for H2), we postulate that it
is unlikely to observe fundamental differences when comparing with any other
tools similar to Shipyard. Accordingly, given our observations the likelihood of
both H10 and H20 (equal mean modeling time) was around 5 %. Therefore, we
could safely reject these null hypotheses, and imply the truth of H1 and H2.

Evaluation of H3. We evaluated this hypothesis through the Usability section
of the questionnaire, and by asking participants to rate the usability for each
feature (scale 0–5). We examined basic features such as the Application, Image
and Hosting Map. As well as advanced features such as using badges and widgets
to monitor and control (M&C) applications and hosting machines. We observed
that the mean score for all features in Fig. 10 is above the neutral value of 3.



CloudMap: A Visual Notation for Managing Cloud Resources 441

5.3 Discussion

Overall participants found that Mind-Map visualization a new but familiar con-
cept. It was also impressive that CloudMap had a considerably fast learning-
curve rate. Participants also championed the explicit visualization of cloud
resource relationships as it is very useful for navigating through complex cloud
resources. Similarly for the widgets that enabled seamless monitoring, analysis
and control. Participants also suggested potential extensions such as widgets
for: (a) cost visualization; (b) sorting and filtering based on the geographical
region and role; (c) cost comparison; (d) scheduling orchestration tasks; and
(e) generating recommendations to recover from error conditions.

6 Related Work and Concluding Remarks

Orchestrations tools (e.g., AWS OpsWorks, Juju or Docker) provide languages
to represent and manage resources over cloud environments [10,11]. These lan-
guages can either be textual, visual or hybrid (i.e., a mixture of both textual and
visual notations). The visual paradigm often simplify the manner of understand-
ing compared to textual notations. While such visual techniques can be applied
over most of the cloud resource lifecycle, we scope this paper on: navigation,
understanding, discovery, monitoring and control concerns of cloud resources.

Discovery, Navigation, Understanding and Selection. Tools and research
initiatives such as AWS Management Console, OpenTOSCA, and CA AppLogic
provide visual features to facilitate discovery, navigation, understanding and
selection of cloud resources [2]. However, these tools provide a flat view (e.g., cat-
alogs) of cloud resources with sorting and filtering features. DevOps may select
a particular resource to analyze their attributes, albeit they do not explicitly
visualize relationships, dependencies and memberships between cloud resources.
This implies DevOps would need to manually mine relationship details via tex-
tual descriptions. In contrast to the above, we contribute an extensible frame-
work (i.e., in future additional Entities, Links, Badges and/or Widgets can be
curated) for visualizing cloud resources via the familiar notion of mind-maps.

Deployment, Monitoring and Controlling. Tools such as Juju GUI, Open-
TOSCA and VisualOps provide visual abstractions to describe deployment work-
flows and resource topologies [2,11,12]. Cloud resource monitoring tools such
as Nagios and CloudFielder allow DevOps to define Service Level Agreement
(SLA), detect anomalies and notify about SLA violations. AWS Management
Console, VisualOps, CA AppLogic and other cloud resource management tools
provide control features such as restarting, scaling and migration [12]. Ordinar-
ily, DevOps would have to switch between multiple tools for different aspects
of the cloud resource management lifecycle, this is time-consuming and cumber-
some. In contrast, our tool greatly compliments this work, as we can integrate
these features as pluggable widgets to seamlessly and centrally manage cloud
resources.



442 D. Weerasiri et al.

Visual Notations in Other Domains. Visual notations are adopted in other
closely related domains, such as Object-oriented programming, and Business
Process modeling. Existing visual notations for service orchestration such as
Business Process Modeling Notation (BPMN), focus primarily on the application
layer. However, orchestrating cloud resources requires rich abstractions to reason
about application resource requirements and constraints; support troubleshoot-
ing; and flexible and efficient scheduling of resources. Architexa [8] visualizes
Java-based source codes and execution aspects in terms of hierarchical trees and
UML sequence diagrams. WebML introduces a visual notation to model Web
sites [3]. All these visual notations or languages adopt Entity-Relationship (ER)
models (e.g., graphs, trees, UML class diagrams), which served as our moti-
vation. Eden [15] is a visual notation for network management that proposed
the concept of Badges to associate security and access policies with network
devices. Similarly, we were inspired to propose the concept of Badges which can
be attached to cloud resources to enable Probes and Control Actions functions.

Summary. Visual techniques provide a refreshing approach in contrast with
existing largely text-based solutions. With the vast proliferation of cloud com-
puting and large amount of complex configurations DevOps are faced with, this
work provides a timely contribution. Our design was based on a detailed survey
comprising 21 experts, where we aggregated, analyzed and applied our findings to
propose a visual notation for cloud resource management. We further proposed
the notion of Badges via drag-n-drop to enable monitoring and control features.
To support the effectiveness of our approach, we also identified 3 common visu-
alization patterns. We evaluated our work with a user-study of 12 participants,
and our approach yielded significantly promising results with 33.29 % improved
efficiency. We are therefore confident our work provides an innovative approach
to a new way of cloud management. As future work, we plan to integrate visual
notations to specify cloud resource deployment and reconfiguration workflows,
also based on our previous work [13]. Moreover, we endeavor to provide high-
level monitoring features such as cost estimation and comparison of cloud-based
solutions across multiple providers (e.g., AWS EC2 and Google Cloud).

References

1. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 692–695. Springer, Heidelberg (2013)

3. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebMI): a modeling
language for designing web sites. Comput. Netw. 33(1), 137–157 (2000)

4. Delaet, T., Joosen, W., Vanbrabant, B.: A survey of system configuration tools.
In: 24th International Conference on LISA, pp. 1–8. USENIX Association (2010)

5. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns. Springer, Wien (2014)



CloudMap: A Visual Notation for Managing Cloud Resources 443

6. Pigoski, T.M.: Practical Software Maintenance: Best Practices for Managing Your
Software Investment. Wiley, New York (1996)

7. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic business
process management: state of the art and open challenges for bpm in the cloud.
Future Gener. Comput. Syst. 46, 36–50 (2015)

8. Sinha, V., et al.: Understanding code architectures via interactive exploration and
layout of layered diagrams. In: Companion to the 23rd ACM SIGPLAN Conference
on OOPSLA, OOPSLA Companion 2008, pp. 745–746. ACM (2008)

9. Sun, Y.-J.J., Barukh, M.C., Benatallah, B., Beheshti, S.-M.-R.: Scalable SaaS-
based process customization with casewalls. In: Barros, A., Grigori, D., Narendra,
N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 218–233. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48616-0 14

10. Turnbull, J.: The Docker Book: Containerization is the new virtualization (2014)
11. Ubuntu: Juju (2013). http://www.ubuntu.com/cloud/tools/juju
12. VisualOps: Visualops - wysiwyg for your cloud (2015). http://docs.visualops.io/
13. Weerasiri, D., Benatallah, B., Barukh, M.C.: Process-driven configuration of fed-

erated cloud resources. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.)
DASFAA 2015. LNCS, vol. 9049, pp. 334–350. Springer, Heidelberg (2015)

14. Weerasiri, D., et al.: A model-driven framework for interoperable cloud resources
management. Technical report UNSW-CSE-TR-201514, UNSW (2015)

15. Yang, J., Edwards, W.K., Haslem, D.: Eden: supporting home network manage-
ment through interactive visual tools. In: Proceedings of the 23nd Annual ACM
Symposium on User Interface Software and Technology, pp. 109–118. ACM (2010)

http://dx.doi.org/10.1007/978-3-662-48616-0_14
http://www.ubuntu.com/cloud/tools/juju
http://docs.visualops.io/

	CloudMap: A Visual Notation for Representing and Managing Cloud Resources
	1 Introduction
	2 Background
	2.1 Motivating Example
	2.2 Requirements for Cloud Resources Visual Notation

	3 CloudMap: Visual Notation for Cloud Resource Management
	3.1 Structural Model: Entities
	3.2 Navigation Model: Links
	3.3 Badges: Probes and Control-Actions
	3.4 Visualization Patterns for Cloud Resource Configurations

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experiment Results and Analysis
	5.3 Discussion

	6 Related Work and Concluding Remarks
	References


