
Efficient and Customisable Declarative
Process Mining with SQL

Stefan Schönig1(B), Andreas Rogge-Solti1, Cristina Cabanillas1,
Stefan Jablonski2, and Jan Mendling1

1 Vienna University of Economics and Business, Vienna, Austria
{stefan.schonig,andreas.rogge-solti,cristina.cabanillas,

jan.mendling}@wu.ac.at
2 University of Bayreuth, Bayreuth, Germany

stefan.jablonski@uni-bayreuth.de

Abstract. Flexible business processes can often be modelled more easily
using a declarative rather than a procedural modelling approach. Process
mining aims at automating the discovery of business process models.
Existing declarative process mining approaches either suffer from perfor-
mance issues with real-life event logs or limit their expressiveness to a
specific set of constaint types. Lately, RelationalXES, a relational data-
base architecture for storing event log data, has been introduced. In this
paper, we introduce a mining approach that directly works on relational
event data by querying the log with conventional SQL. By leveraging
database performance technology, the mining procedure is fast without
limiting itself to detecting certain control-flow constraints. Queries can
be customised and cover process perspectives beyond control flow, e.g.,
organisational aspects. We evaluated the performance and the capabili-
ties of our approach with regard to several real-life event logs.

Keywords: Declarative process mining · Relational databases · SQL

1 Introduction

Process mining is the area of research that embraces the automated discovery,
conformance checking and enhancement of process models. All involved tech-
niques are evidence-based, as the input is event logs that comprise a collection
of computer recorded information that track the executions of process instances.

Two different types of processes can be distinguished [1]: well-structured
routine processes with exactly predescribed control flow and flexible processes
whose control flow evolves at run time without being fully predefined a priori.
Likewise, two different representational paradigms can be distinguished: pro-
cedural models describe which activities can be executed next and declarative
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models define execution constraints that the process has to satisfy. The more
constraints we add to the model, the less possible execution alternatives remain.
As flexible processes may not be completely known a priori, they can often be
captured more easily using a declarative rather than a procedural modelling app-
roach [2–4]. Declarative languages like Declare [5], Dynamic Condition Response
(DCR) graphs [6] or Declarative Process Intermediate Language (DPIL) [7] can
be used to represent these models, and tools like DeclareMiner [8], MINERful [9]
or DPILMiner [10] offer capabilities to automatically discover such models from
event logs. Existing declarative process mining approaches either suffer from per-
formance issues with real-life event logs or limit their search space to a specific
and fixed set of constraints to be able to cope with the size of real-life event logs.
Both issues are highlighted in current literature, e.g., [9–12]. To the best of our
knowledge an approach that is fast and customisable does not exist.

We fill this research gap by introducing a declarative mining approach that
works on event data that is stored in relational databases by querying the log
with conventional SQL. An overview of the approach is given in Fig. 1. Process
mining by means of SQL queries turns out to be an integrated and language over-
spanning solution to process discovery. By leveraging relational database perfor-
mance technology, e.g., indexes on data columns, it is relatively fast without lim-
iting itself to certain predefined constraints. Queries can be tailored to arbitrary
aspects of a process, e.g., control flow as well as organisational issues. Further-
more, the results can be transformed to each of the mentioned process modelling
languages. We evaluated the performance using several real-life event logs. More-
over, we demonstrate capabilities, expressiveness and additional insights of our
approach by providing a list of queries for discovering commonly used process
constraints. All queries are published in a technical report [13]. Further material
as well as a screencast are accessible online at http://sqlminer.kppq.de. Summing
up the contributions of this work, we introduce a (i) customisable, (ii) language
independent and (iii) performant declarative process mining technique.

The remainder of this paper is structured as follows: Sect. 2 describes the
input data, fundamentals of declarative process mining and related work. In
Sect. 3 we introduce our approach to discover process constraints using SQL
queries. The approach is evaluated in Sect. 4, and Sect. 5 concludes the paper.

Fig. 1. Overview of the SQL-based process mining approach

http://sqlminer.kppq.de
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2 Background and Related Work

Next, we describe the input data for our approach as well as fundamentals of
declarative process modelling and automated discovery of models.

2.1 Storing Event Log Data in Relational Databases

Our process mining approach takes as input (i) an event log, i.e., a machine-
readable file that reports on the execution of activities during the enactment of
the instances of a given process, and optionally (ii) organisational background
knowledge, i.e., prior knowledge about the roles, capabilities and the assignment
of resources to organisational units. In an event log, every process instance cor-
responds to a sequence (trace) of recorded entries, namely, events. We require
that events contain an explicit reference to the enacted activity. For discovering
resource-related aspects we additionally require an explicit reference to the oper-
ating resource. Typically, these requirements are met when business processes
are enacted by information systems [14].

The standardised, extensible storage format OpenXES was developed for the
purpose of storing event data [15]. Lately, with RelationalXES (RXES) a rela-
tional database architecture for storing event log data has been introduced [16].
The RXES architecture uses a database to store the event log where traces and
events are represented by tables with identifiers (IDs). RXES provides a full
implementation of all OpenXES interfaces using the database as a backend. The
database schema used in RXES allows for a significant reduction of redundancy
by storing frequently occurring attributes only once rather than repeating them
for every occurrence.

In this paper, we consider an event log to be available according to the RXES
architecture and therefore to be stored in a conventional relational database.
For readability we use a denormalised event log table like in Table 1, capturing
only the attributes EventID (unique identifier for each recorded event), Tra-
ceID (unique identifier for the corresponding trace), ActivityID (name of the
corresponding activity the event refers to), Time (date and time the event has
occurred) as well as Identity (identifier of the performing resource or person).
In the remainder of the paper, we will use the shorthand notation (a, idx) for
indicating an event of activity a that has been executed by an identity idx. The
given events are ordered temporally so that timestamps are not encoded explic-
itly. The following example event log contains four traces comprising events of
four different activities and executed by five different resources:

〈(a,id1),(b,id1),(c,id2)〉, 〈(b,id2),(c,id2)〉, 〈(a,id2),(d,id4),(c,id2)〉,
〈(a,id5),(a,id5),(b,id1),(c,id3)〉.

In the case that correlations between process execution and resource char-
acteristics should be examined, organisational background information, e.g., in
form of an organisational model must also be given in a relational database table.
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Table 1. Event log excerpt stored in a denormalized relational database table

Event ID Trace ID Activity ID Time Identity

1 1 a 2015-11-06 15:31:00 id1

2 1 b 2015-11-06 15:35:00 id1

3 1 c 2015-11-06 15:37:00 id2

4 2 b 2015-11-06 16:22:00 id2

5 2 c 2015-11-06 16:45:00 id2

...

We build upon the generic organisational meta-model defined in [17]. A Iden-
tity represents an individual person that can be directly assigned to activities.
A Group describes several resources as a whole. A Relation represents the inter-
play between Identity and Group. For Relations, a RelationType specifies its inter-
pretation. For instance, an organisation may have three Groups (Professor, Stu-
dent, Admin), five Identities (id1, id2, id3, id4 and id5) and the following four
Relations of RelationType “role” describing the roles that are assigned to each
resource:

( id1,role,Student), ( id2,role,Professor), ( id3,role,Professor), ( id4,role,Admin),
( id5,role,Student).

This knowledge can help us to identify resource allocation rules as well as
control flow rules that only apply to certain groups.

2.2 Fundamentals of Declarative Process Mining

In the following, we describe the basic aspects of declarative process modelling
and the principle of automated discovery of such models from event log data.

Declarative Process Modelling Languages. During the last decade sev-
eral declarative process modelling languages have been developed [5–7]. These
languages are based on so-called constraint templates. A constraint template cap-
tures frequently occurring relations and defines a particular type of constraint.
Templates have formal semantics specified through logical formulae and are
equipped either with user-friendly graphical representations (e.g., in Declare [5])
or macros in textual languages (e.g., in DPIL [7]) that make the model easier to
understand. A constraint template consists of placeholders, i.e., typed variables.
It is instantiated by providing concrete values for these placeholders.

Concrete constraints are rules constraining, e.g., the execution of activities.
For example, Response(a,b) of the Declare language is a constraint on the activ-
ities a and b, forcing b to be executed eventually if activity a was performed
before. The ChainResponse(a,b) constraint is stronger and forces activity b to be
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executed directly after activity a was executed. Some languages allow in addition
to control-flow aspects the definition of constraints concerning the assignment
of certain resources to activites. RoleBasedAllocation(a,r) of the DPIL language
is a constraint on activity a, demanding a, if executed, to be performed by a
person in a specific role r.

As shown, constraint templates can be categorized into different groups
depending on the process perspective they concern or their cardinality, i.e.,
the number of activities affected. For example, instances of the Response(A,B)
template are pure control flow constraints that describe the temporal relation
between two activities. On the other hand, the RoleBasedAllocation(A,R) tem-
plate refers to the resource perspective and constrains the resources that are
assigned to one certain activity.

Declarative Process Mining. For almost each declarative process mod-
elling language a corresponding mining approach exists. The first approach to
extract declarative constraints from event logs introduced by Maggi et al. is
the DeclareMiner [8]. Here, the user can select from a set of predefined Declare
constraint templates the ones to be discovered. The system then generates all
possible constraints by instantiating the chosen set of constraint templates with
all possible combinations of occurring process elements provided in the event
log. For example, the Response(A,B) template consists of two placeholders for
activities. Assuming that |A| different activities occur in the event log, |A|2 con-
straint candidates are generated. All the resulting candidates are subsequently
checked w.r.t. the event log. Additional mining parameters like PoE (Percent-
age of Events) or PoI (Percentage of Instances) are used to distinguish between
valid and non-valid constraint candidates. Maggi et al. propose an evaluation of
this algorithm with the adoption of a two-phase approach [11]. During the first
phase, frequent sets of correlated activities are identified. The candidate con-
straints are only generated on the basis of these activities. In the second phase,
the candidates are then checked in the same way as in [8]. Additionally, there are
post-processing approaches that aim at simplifying the resulting Declare mod-
els in terms of , a.o., redundancy elimination [9,18] and disambiguation [19]. In
essence, the focus of these approaches is control flow with extensions to cover
data dependencies [20]. The DPILMiner [10] proposes a declarative mining app-
roach to incorporate the resource perspective and to mine for a set of predefined
resource assignment constraints. All the mentioned approaches suffer from per-
formance issues w.r.t. real-life event logs. Furthermore, the set of constraint
templates to be analysed is predefined, i.e., cannot be customised by the user.

Efficient algorithms to discover Declare models are presented in [12,21].
Westergaard presents the UnconstrainedMiner [12], whose outstanding perfor-
mance is obtained by constraint checking parallelisation and by relying on
efficient data structures. The MINERful approach [9] that has been imple-
mented [21] in the ProM framework has shown to be the most efficient algorithm
to discover control-flow constraints using the Declare language. Both approaches,
however, are limited to discover control-flow constraints of the Declare language.
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Mining Metrics. Checking constraint candidates provides for every con-
straint candidate the number of satisfactions in the event log. The constraint
Response(a,b), e.g., is satisfied three times in the example event log since in
three cases of an occurrence of a, b eventually follows in the same trace. Based
on the number of satisfactions two metrics Support and Confidence are calculated
that express the probability of a constraint to hold in the process. Constraints
are considered valid, if their Support and Confidence measures are above a user
defined threshold. In literature, there are two different definitions of support and
confidence in the context of process mining. For our approach we adopt the most
recent definition by Di Ciccio et al. [9] where the metrics are defined as follows:

– Support: It is the number of fulfilments of a constraint divided by the num-
ber of occurrences of the condition of a constraint. In the example log, the
support of Response(a,b) is 0.75, as 3 a’s out of 4 fulfil the constraint. In case
of constraints that do not depict implications like Existence constraints in
Declare, the Support is defined as the number of fulfilments divided by the
number of traces in the log.

– Confidence: It is the product of the support and the fraction of traces in
the log where the condition (implications) or the constrained activity (not
implications) occurs. The confidence of Response(a,b) is 0.75 · 0.75 = 0.5625,
since condition a occurs in 3 traces out of 4.

The definitions above show that for discovering a certain constraint three
different constraint specific values need to be extracted from event logs: (i) the
number of occurrences of the condition of the constraint, (ii) the number of ful-
filments of the constraint, and (iii) the fraction of traces in the log where the
condition holds.

3 Declarative Process Mining with SQL

With RXES a standardised architecture for storing event log data in relational
databases was introduced. In this section we show that it is possible to extract
relevant process knowledge from event logs stored in relational tables by apply-
ing conventional database queries without any parsing or data conversion. The
Structured Query Language (SQL) is a declarative language designed for man-
aging data held in a relational database. It is based upon relational algebra. For
space reasons we cannot explain language details and therefore refer to one of
the available SQL handbooks [22].

In the following we introduce a procedure to map constraint templates
from various declarative process modelling languages to SQL queries. First, we
describe the general query assembly by means of the Response constraint tem-
plate. Subsequently, we describe the mapping of a more complex control flow
constraint template. Finally, we show that it is possible to map and discover
customised constraints involving different process perspectives apart from con-
trol flow.



296 S. Schönig et al.

SELECT

FROM

WHERE

GROUP BY

HAVING

Name, Parameter 1, 2,…, n Support Confidence

Constraint Expression nConstraint Expression 1

Parameter 1, 2,…, n

Support > minSupp Confidence > minConf

…

Log,  (Organisational Model), Activity Combinations

Output

Source Tables

Constraint 
Expressions

Grouping

Thresholds

Fig. 2. SQL query assembly for querying declarative constraint templates

3.1 General Query Assembly

Figure 2 depicts the basic structure of an SQL query that discovers all constraints
of a certain template under consideration of two thresholds minSupp and min-
Conf. Here, subqueries are marked with a symbol on the upper right corner. We
describe the different SQL directives in the order they get executed.

We show the approach with an example, namely, the Response(A,B) con-
straint template, which aims at discovering all the activity combinations (a,b)
where b is forced to be executed if a was completed at some point before. As
depicted in Fig. 2, the query for discovering Response constraints is organised as
follows:

SELECT ‘response’, A, B, [Support], [Confidence]

FROM Log l1, [ActivityCombinations] c

l1.Activity = c.A

AND

EXISTS(SELECT *

FROM Log l2

WHERE l2.Activity = c.B AND l2.Instance = l1.Instance AND

l2.Time > l1.Time)

GROUP BY c.A, c.B

HAVING [Support] > minSupp AND [Confidence] > minConf

FROM clause: Here, the data source tables are joined together, i.e., the
table of the analysed event Log where every tuple depicts a single event and,
if available, the table of the OrganisationalModel. Furthermore, the clause con-
tains a subquery ActivityCombinations that provides a table with the activity
combinations that should be checked. In case of constraints that comprise two
activities like Response, this subquery looks as follows:

SELECT l1.Activity AS A, l2.Activity AS B

FROM Log l1, Log l2 WHERE l1.Activity != l2.Activity

GROUP BY l1.Activity, l2.Activity

Every source table gets an abbreviation assigned to be referable in other
clauses, e.g., “l1” for the event log table or “c” for the combination table.
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WHERE clause: This clause contains the different constraint expressions
that have to hold for activities and their events, i.e., the constraint activation
condition as well as their fulfilment requirements. If an expression cannot be
derived directly, a corresponding subquery is used. For Response constraints
the condition activation is any occurrence of an event of the currently selected
activity a. In order to be fulfilled the constraint expression has to hold: activity b
must occur in the same instance and it must occur eventually after a. Therefore,
the WHERE clause for querying Response constraints contains a subquery:

l1.Activity = c.A

AND

EXISTS(SELECT *

FROM Log l2

WHERE l2.Activity = c.B AND l2.Instance = l1.Instance AND

l2.Time > l1.Time)

It tests if at least one event of an activity b exists that is executed after the
currently observed event of a. In case all logical terms in the clause evaluate to
true, the currently observed tuple depicts one fulfilment of the constraint. The
resulting set of tuples depicts all fulfilments of the analysed constraint template.

GROUP BY clause: After deriving the fulfilments, the tuples are grouped
by the set of parameters of the constraint template. Hence, in the query to
discover Response constraints, we group w.r.t. the two parameters referring to
activities A and B.

HAVING clause: As described in Sect. 2.2 the number of fulfilments of each
constraint needs to be computed in order to calculate the support and confidence
values. After grouping, the number of tuples corresponding to a certain parame-
ter combination can be extracted using the SQL aggregate function COUNT(*).
In addition, a subquery computes the number of occurrences of the condition of
the constraint. This way, the Support value of each constraint can be derived. In
case of Response constraints the condition is depicted by the number of occur-
rences of the currently selected activity a. The SQL expression for calculating
the Support of Response constraints is given as:

COUNT(*) / (SELECT COUNT(*) FROM Log WHERE Activity = A)

The Confidence of each parameter combination can be calculated in a similar
way. Recall that Confidence is defined as the product of Support and the fraction
of traces in the log where the condition occurs. Therefore, in case of Response,
we calculate the fraction of the outcome of two subqueries to (i) extract the
number of instances where a occurs at least once and (ii) to extract the number
of traces in the log.

Support * ((SELECT COUNT(*) FROM

(SELECT Instance FROM Log WHERE Activity = A GROUP BY Instance) t ) /

(SELECT COUNT(*) FROM (SELECT Instance FROM Log GROUP BY Instance) t2 ))
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Table 2. Result table of the Response query w.r.t. the example log

ID Name A B Support Confidence

1 Response a b 0.75 0.5625

2 Response a c 1 0.75

3 Response b c 1 0.75

4 Response d c 1 0.25

The resulting values of both queries can then be filtered by user-defined
thresholds.

SELECT clause: In the last step the query output is selected, i.e., the para-
meter combination and its corresponding Support and Confidence values. The
result set contains tuples for each parameter combination that fulfils the con-
straint under consideration of the given thresholds. Table 2 results from applying
the Response query to the example event log of Sect. 2.2 with the thresholds min-
Supp=0.7 and minConf=0.2.

3.2 Mining Complex Control-Flow Constraints

More complex control flow constraint templates can be mapped to SQL queries
by adding the additional constraint expressions of the constraint template to
the WHERE-clause of the query. Consider for example the ChainResponse(A,B)
constraint template of the Declare language which states that an activity b is
always executed directly after an activity a has been completed. In addition to
the fulfilment requirements of a Response constraint, a ChainResponse requires
that b has to follow a without any other activity in-between. This additional
requirement is implemented by adding another subquery to the WHERE-clause:

[Response Constraint Expressions Subquery]

AND

NOT EXISTS(SELECT * FROM Log l2, Log l3

WHERE l3.Instance = l1.Instance AND l2.Instance = l1.Instance

AND l2.Activity = c.B

AND l3.Time > l1.Time AND l3.Time < l2.Time)

The subquery provides all events that temporally took place in-between the
currently selected event of an activity a and any event of an activity b in the same
instance. The constraint is only fulfilled for a certain activity combination (a,b),
if there exists no event of any activity between any occurrence of a and b. Other
constraint templates of the Declare language, like AlternateResponse, Precedence
or NotSuccession can be mapped in an analogous manner. Subsequently, the
result set can be post-processed with existing pruning methods for declarative
process mining, like pruning based on constraint hierarchies [23].
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3.3 Customised Queries Including Additional Perspectives

In this section, we demonstrate how queries can be customised by adding aspects
of further process perspectives. First, we focus on the organisational perspec-
tive, i.e., we describe how resource assignment contraints can be discovered by
means of SQL queries. Second, we show how queries can be customised in order
to analyse the interplay of different perspectives, specifically to discover the
influence of resources on the control flow of the process [10]. We explain the
functionality with example constraints.

Resource Assignment Constraints. Resource assignment in business
processes is extensively discussed by the workflow resource patterns. These pat-
terns capture the various ways in which resources are represented and utilised in
processes [24]. As an example, we explain the SQL query to extract role-based
resource assignment constraints, i.e., that a certain activity can only be executed
by resources assigned to a certain role. This constraint type is captured by the
RoleBasedAllocation(A,R) template in the DPIL language and consists of para-
meters for activities A and roles R. Here, we assume organisational information
to be available in a relational table Relations. Without loss of generality Rela-
tions has the attributes Resource, RelationType and Group. The FROM, WHERE
and GROUP BY clauses of the query are then given as follows:

FROM Log l, Relations r1, [ActivityCombinations] c

WHERE l.Activity = c.A AND r1.RelationType = ‘role’

AND l.Resource = r1.Resource AND

NOT EXISTS(SELECT * FROM Log l2, Relation r2

WHERE l2.Resource = r2.Resource AND r2.RelationType = ‘role’

AND l2.Activity = l.Activity AND NOT r2.Group = r1.Group)

GROUP BY c.A, r1.Group

Table 3. Result table of the RoleBasedAllocation query w.r.t. the example log

ID Name A Role Support Confidence

1 RoleBasedAllocation d Admin 1 0.25

2 RoleBasedAllocation c Professor 1 1

In addition to the event log and the activity combinations we also join the
table with all relations according to the organisational model in the FROM
clause. The constraint is only fulfilled for a certain event of an activity a if
there exists no event of a that has been performed by a resource with a dif-
ferent role. The fulfilments are then grouped by every occurring activity and
role combination. Since the condition of the constraint is like in case of the
Response constraints the occurrence of activity a, the SELECT and HAVING
clauses are identical. Applying the query with the thresholds minSupp=0.7 and
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minConf=0.2 to the example event log and organisational model described in
Sect. 2.1 results in a set of two tuples as shown in Table 3. The constraints express
that activity d has always been performed by a resource with role Admin and
activity c by a resource with role Professor, respectively.

Cross-Perspective Constraints. Resource allocation can also have effects on
the execution order of activities. These rules are called “cross-perspective” [10].
They can be found in different application areas, e.g., in cases where the exe-
cution order of certain process steps is bound to conditions that hold only for
certain resources. A RoleBasedResponse(A,B,R) template, e.g., represents situa-
tions in which an activity must be executed after another one for specific organ-
isational roles but not for others. These types of contraints cannot be discovered
with pure control-flow mining approaches but require a customisation to com-
bine the control flow and organisational perspectives. In order to extract control
flow dependencies between activities that only hold for resources with a certain
role, the subquery for calculating the Support value of RoleBasedResponse query
needs to be given as follows:

COUNT(*) / (SELECT COUNT(*) FROM Log l2, Relation r2

WHERE r2.RelationType = ‘role’ AND l2.Resource = r2.Resource

AND Activity = c.A AND r2.Group = r1.Group)

Here, the number of fulfilments of the constraint is divided by the number of
occurrences of events of activity a that have been performed by resources with
a certain role. Applying the customised query with the thresholds minSupp =
0.7 and minConf=0.2 to the example event log and the organisational model
of Sect. 2.1 the resulting constraints are given in Table 4. When comparing the
discovered constraints with the Response constraints of Table 2, we can see that
in general activity b does not have to be executed after a in every case (Sup-
port=0.75 ). However, when activity a has been performed by a Student, b fol-
lowed eventually in every case (Support=1 ). The results of the customised query
give a more fine-grained resolution of constraint satisfaction w.r.t. the roles of
performing resources.

Note that the higher flexibility in the constraints (e.g., ternary versus binary
constraints) increases the number of possible rule candidates exponentially in
the number of parameters. This curse of dimensionality can lead to overfitting
issues, i.e., the constraint model allows us to capture rules that reflect noise
rather than real patterns. Nevertheless, this problem is mitigated by the use of a
higher confidence threshold for the constraints. That way, we make sure that we
do not incorporate rules that are only triggered a few times. Given enough data
samples, however, these more precise constraints can also reach higher confidence
levels and in the end yield a more accurate model.

4 Evaluation

The approach has been implemented and tested by means of conventional SQL
and a relational database. Furthermore, we implemented a tool that imports
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Table 4. Result table of the RoleBasedResponse query w.r.t. the example log

ID Name A B Role Support Confidence

1 RoleBasedResponse a b Student 1 0.25

2 RoleBasedResponse a c Professor 1 0.25

3 RoleBasedResponse a c Student 1 0.25

4 RoleBasedResponse a d Professor 1 0.25

5 RoleBasedResponse b c Professor 1 0.25

6 RoleBasedResponse b c Student 1 0.5

7 RoleBasedResponse d c Admin 1 0.25

event logs given in the XML-based XES format to a relational database table.
We evaluate our approach in two phases: first, we measure the performance with
respect to publicly available real-life event logs. Second, we assess capabilities
and expressiveness of SQL-based process mining (SQLMiner).

4.1 Performance Analysis

We measure the performance of the SQLMiner w.r.t. two real-life event logs from
the financial1 and healthcare2 domains by means of control-flow contraints. Their
characteristics are summarised in Table 5. The event logs have been imported
into a Microsoft SQL Server 2008 R2 database. We compare the performance to
the ProM implementations (Version 6.5.1) of state-of-the-art declarative process
mining tools, namely, DeclareMiner [11], MINERful [21] and the Unconstrained-
Miner [12]. For all tests we use the default settings of each tool.

We execute the queries of eight commonly known Declare constraint tem-
plates: AlternateReponse, Response, ChainResponse, AlternatePrecedence, Prece-
dence, ChainPrecedence, RespondedExistence and NotSuccession. Note that all
these templates have as parameters two activities. Hence, the result tables have
the same number and type of columns. Consequently, all the queries can be
executed together by connecting them with the SQL UNION operator. All the
computation times reported in this section are measured on a Core i7 CPU @ 2.80
GHz with 8 GB RAM. Table 5 shows the results of our performance tests. We can
see that for both logs the MINERful3 and UnconstrainedMiner tools reach an
outstanding performance due to their efficient and specialised data structures.
Nonetheless, the SQLMiner performs slower than these tools only within the
range of seconds or a few minutes, respectively. The DeclareMiner takes for the
analysis in both cases more than one, respectively three, hours. Recall that in
contrast to the specialised Declare mining tools, SQL queries can be adapted
to the analysts needs and refer to all the stored process information of different
perspectives. Therefore, our approach depicts a trade-off between customisation
and performance.

1 doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
2 doi:10.4121/d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.
3 The MINERful plugin does not allow to select certain templates to be analysed.

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
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Table 5. Performance of SQL-based mining over real-life event logs

Source Activities Traces Events Total Time Miner

Financial Log 24 13 087 262 200 01:03:47 Dec. Miner

00:00:17 MINERful

00:00:14 Unc. Miner

00:01:08 SQLMiner

Hospital Log 624 1 143 150 291 03:11:12 Dec. Miner

00:12:28 MINERful

00:16:45 Unc. Miner

00:19:30 SQLMiner

4.2 Capabilities and Expressiveness

For showing the capabilities of SQL-based process mining, we express commonly
known process constraints of different perspectives to SQL queries and test them
on real-life event logs. All queries are published in a technical report [13] and
are additionally accessible online at http://sqlminer.kppq.de. For control flow
related constraints, we map and test a list of fourteen frequently used Declare
constraints, e.g., Response and ChainResponse among others defined in [9]. For
resource-related aspects (i.e., the organisational perspective) we use the group of
so-called creation patterns of the workflow resource patterns [24] including, a.o.,
role-based allocation and separation of duties. The SQLMiner is able to discover
six creation patterns, similarly to the DPILMiner [10].

Furthermore, we show the additional insights in process data by applying
(i) the traditional Response query and (ii) the cross-perspective RoleBase-
dResponse query to a real-life university business trip management event log4.
The log contains 2104 events of 10 different activities related to the application
and the approval of university business trips as well as the management of accom-
modations and transfers, i.e., booking hotels and buying transport tickets. The
system has been used for 6 months by 10 university employees. In total, there
are 128 business trip cases recorded in the log. We configured the queries with
the thresholds minSupp = 0.7 and minConf = 0.5, respectively. The result
set was composed of 29 Response and also 29 RoleBasedResponse constraints.
The additional insights are explained by means of the following two extracted
constraints that describe the temporal dependency between the activities Apply
for Trip and Book flight :

– Response, Apply for trip, Book flight, Supp=0.75, Conf=0.75
– RoleBasedResponse, Apply for trip, Book flight, Student, Supp=1, Conf=0.75

4 The event log is available for download at sqlminer.kppq.de.

http://sqlminer.kppq.de
http://sqlminer.kppq.de
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We discovered the influence of resources on the execution order of the activ-
ities. Although employees usually applied for the trip before they booked the
corresponding flight, it was apparently not mandatory. Nonetheless, there are
cases in which certain employees already booked the flight without applying for
the trip (Support=0.75 ). However, when analysing the ordering of tasks under
consideration of performing resources, we extracted that resources with role Stu-
dent always applied for the trip before they booked a flight (Support=1 ). While
professors are free to book a flight without an approved application, students
mandatorily have to stick to a certain order of tasks.

5 Conclusions and Future Work

In this paper, we introduced an SQL-based declarative process mining approach
that analyses event log data stored in relational databases. While existing declar-
ative process mining approaches either suffer from performance issues with real-
life event logs or limit their search space to a specific and fixed set of constraints,
the SQLMiner approach constitutes a trade-off between performance and cus-
tomisation capabilities. We showed that it is possible to discover commonly
used process constraints by means of conventional SQL queries. Leveraging rela-
tional database performance technology the approach is fast without limiting
itself to certain predefined constraints. Queries can be customised and comprise
process perspectives apart from control flow, such as organisational aspects.
We evaluated the performance w.r.t. several real-life event logs. Moreover, we
demonstrated capabilities and expressiveness by providing a list of queries for
discovering commonly used process constraints.

The approach still has missing aspects, e.g., data-related constraints have not
been integrated yet. As future work we plan to extend the SQLMiner to cover
further process perspectives as well as to develop a publicly available query tool
for declarative process mining on relational databases. Furthermore, understand-
ability of queries will be enhanced by using SQL functions to represent common
parts of different queries.
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