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    Chapter 4   
 Structures and Transport Mechanisms 
of the ABC Effl ux Pumps                     

     Cédric     Orelle     and     Jean-Michel     Jault    

    Abstract     The ATP-binding cassette (ABC) transporters form one of the largest 
families of proteins in living organisms. They are overrepresented in bacteria where 
they are involved in the infl ux or effl ux of various molecules. Although bacterial 
drug effl ux transporters were initially discovered as ion-motive-driven pumps, evi-
dence has accumulated since the mid-1990s that members of the ABC superfamily 
can play a prominent role in drug resistance mechanisms. Yet, the implication of 
drug effl ux ABC transporters in clinical settings is still lagging behind for most 
bacterial pathogens. Thanks to the accumulation of three-dimensional structures, 
our knowledge of the functioning mechanisms of drug effl ux transporters has pro-
gressed tremendously in the recent years, but many questions still remain. In this 
chapter, we will summarize the current view of the structures and transport mecha-
nisms of drug effl ux ABC transporters with an emphasis on multidrug bacterial 
effl ux pumps. Unsolved mysteries about these fascinating transporters will also be 
mentioned.  
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4.1       Introduction 

 The ATP-binding cassette (ABC) transporters form a large superfamily of proteins 
that use the energy of ATP binding and hydrolysis to translocate a wide variety of 
solutes across biological membranes [ 1 ]. (Although this chapter is focused on bac-
terial transporters, some references to eukaryotic transporters will also be included 
when relevant to this topic.) Apart from a few exceptions [ 2 ], the importers are only 
present in prokaryotes, while exporters are found in all organisms. The minimal 
functional unit contains two transmembrane domains (TMDs) and two nucleotide-
binding domains (NBDs) [ 3 ,  4 ]. These domains can be synthesized as four separate 
polypeptides or as various combinations of three, two, or a single polypeptide. The 
NBDs energize the transporter by binding and hydrolyzing ATP, while the TMDs 
are responsible for the specifi city and translocation pathway of the substrates. 
Therefore the NBD primary sequences are fairly well conserved, while the TMD 
sequences and topology, in particular the number of transmembrane helices, are 
highly variable depending on the solute transported. In addition, the majority of the 
importers require an extracellular substrate-binding protein that delivers the sub-
strate to the transporter [ 5 ].  

4.2     Multidrug Transporters 

4.2.1     Homodimers 

 The fi rst bacterial multidrug resistance (MDR) ABC transporter was discovered in 
 Lactococcus lactis  and was named LmrA ( Lactococcus  multidrug resistance ATP) 
[ 6 ]. LmrA functions as a homodimer [ 7 ], each monomer being made of one TMD 
containing six predicted transmembrane helices and one ABC domain. LmrA was 
initially chosen for investigation based on its homology with the human MDR trans-
porter P-glycoprotein. It was later shown to complement the P-glycoprotein human 
gene in eukaryotic cells [ 8 ]. The overexpression of LmrA in a drug- hypersusceptible 
strain of  Escherichia coli  induced a resistance phenotype to several structurally 
unrelated compounds, i.e., ethidium, daunorubicin, rhodamine 6G, and tetrap-
henylphosphonium [ 6 ]. In addition, the accumulation of daunorubicin in inverted 
membrane vesicles was dependent on ATP hydrolysis and inhibited by the other 
substrates and reserpine, a classical inhibitor of drug effl ux pumps. 

 A  Bacillus subtilis  transporter homologous to LmrA was shown to transport a 
variety of drugs (e.g., Hoechst 33342, doxorubicin, and 7-aminoactinomycin D) 
when overexpressed in inverted  E. coli  membrane vesicles. Originally known as 
YvcC [ 9 ], this homodimeric transporter [ 10 ] was renamed BmrA ( Bacillus  multi-
drug resistance ATP) [ 11 ]. Later, a  B. subtilis  strain resistant to the antibiotic cervi-
mycin C was isolated and shown to strongly upregulate the expression of  bmrA  due 
to a promoter mutation [ 12 ]. 
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 Two other drug transporters, Sav1866 from  Staphylococcus aureus  and MsbA 
from various bacteria, will be described in more details below.  

4.2.2     Heterodimers 

 While LmrA and BmrA are typical homodimers, other drug transporters are het-
erodimers. The latter transporters include LmrCD in  L. lactis  [ 13 ], BmrCD in  B. 
subtilis  [ 14 ], PatAB in  Streptococcus pneumoniae  [ 15 ], and SmdAB in  Serratia 
marcescens  [ 16 ]. In these heterodimers, one of the ATP-binding sites is degenerated 
[ 17 ,  18 ] with conserved residues such as the glutamate adjacent to the Walker B 
motif, the histidine of the H-loop, and/or some residues in the signature motif of the 
opposite NBD being naturally substituted by non-consensual residues. Consequently, 
the functioning mechanism of these heterodimers is asymmetric with the degener-
ated NDB being poorly active in ATP hydrolysis. A similar scenario occurs in 
eukaryotic transporters that bear two nonequivalent NBDs (e.g., multidrug resis-
tance protein MRP1, cystic fi brosis transmembrane conductance regulator CFTR, 
or antigen peptide transporter TAP1/TAP2) [ 19 ,  20 ]. 

 LmrCD was shown to be a major MDR transporter in  L. lactis  [ 21 ,  22 ] and its 
expression is under the control of the transcriptional repressor LmrR [ 23 ,  24 ]. 
Binding of drugs to LmrR reduces its affi nity for LmrCD promoter thereby induc-
ing the expression of the MDR transporter [ 25 – 27 ]. 

 BmrCD is a  B. subtilis  transporter whose expression is stimulated by various 
antimicrobial agents [ 14 ], especially protein synthesis inhibitors. The latter drugs 
were recently shown to induce the expression of BmrCD through a ribosome- 
mediated transcriptional attenuation mechanism [ 28 ]. When overexpressed in  E. 
coli  membranes, BmrCD transports several drugs such as Hoechst 33342, doxoru-
bicin, and mitoxantrone [ 14 ]. Its effi cient expression and purifi cation was exploited 
for several structural and functional studies [ 29 – 31 ]. 

 The implication of the  S. pneumoniae  transporter PatAB in MDR was fi rst 
demonstrated when inactivation of its genes induced an increased susceptibility to 
several antimicrobial agents: acrifl avine, berberine, ethidium bromide, and nor-
fl oxacin [ 32 ]. After exposing a laboratory strain to ciprofl oxacin, a multidrug-
resistant strain was isolated in which PatA and PatB genes were upregulated [ 33 ]. 
Such upregulation by fl uoroquinolones was also found in clinical isolates [ 34 – 36 ]. 
Importantly, disruption of PatA and PatB genes overexpressed in many clinical 
isolates restored drug susceptibility, either completely for ethidium bromide or 
partially for fl uoroquinolones [ 35 ]. Several mechanisms were described for PatAB 
upregulation: disruption of a transcriptional attenuator [ 37 ], gene duplication 
[ 38 ], or promoter region and internal mutations [ 39 ]. Studies of the transporter 
overexpressed in  E. coli  show that only the heterodimer is functional for drug 
effl ux [ 40 ]. 

 Other transporters whose function is less characterized were shown to have drug 
transport capabilities, such as TmrAB in  Thermus thermophilus  [ 18 ] or TM287/
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TM288 in  Thermotoga maritima  [ 41 ]. A recent study suggests that TmrAB may be 
a glycolipid fl ippase analogous to the transporter MsbA [ 42 ].  

4.2.3     Other Drug ABC Exporters with a Different Topology 

 DrrAB from  Streptomyces peucetius  exports the anticancer antibiotics daunorubicin 
and doxorubicin that this microbe produces. It was long thought to be a narrow- 
spectrum drug transporter until a recent biochemical characterization indicated its 
ability to also transport the Hoechst 33342 and ethidium bromide [ 43 ]. In contrast 
to LmrA and BmrA, where each monomer is a TMD fused to an NBD, DrrA is a 
single NBD subunit, while DrrB is a TMD subunit predicted to contain eight trans-
membrane helices [ 44 ]. 

 MacAB-TolC from  E. coli  was characterized as a macrolide-specifi c tripartite 
effl ux pump [ 45 ]. Homologues are present in various Gram-negative bacteria. MacB 
is an ABC transporter from the cytoplasmic membrane with an inverted topology: 
an  N -terminal NBD is fused to a  C -terminal TMD containing four predicted trans-
membrane helices. TolC is an outer membrane channel protein, while MacA is a 
membrane fusion protein that interacts with both partner proteins. Nanomolar affi n-
ity interactions occur between TolC and MacA and between MacA and MacB [ 46 ]. 
MacB is a dimer [ 47 ] whose ATPase activity is strongly stimulated by MacA [ 48 ]. 
Several drug-unrelated physiological functions have been proposed, the latest being 
protoporphyrin effl ux [ 49 ].   

4.3     Structure of the Nucleotide-Binding Domains, Consensus 
Motifs, and the ATP Sandwich Dimer 

 The NBDs of ABC transporters are well conserved, both in sequence with several 
motifs and in structure [ 50 ]. HisP, which is the ATPase subunit from a bacterial 
histidine importer, was the fi rst NBD crystallized [ 51 ]. The domain had an L shape 
and is made of three subdomains (Fig.  4.1 ) [ 52 ]. One is a RecA-like subdomain 
present in many ATPases and that carries the Walker A and Walker B motifs [ 53 ,  54 ] 
as originally described in numerous ATPases (e.g., the Fo-F1) [ 55 ]. The former, also 
known as the P-loop, has the consensus sequence GX 2 GXGKT/S (where X is any 
residue; see Fig.  4.1 ). Some backbone amino groups within this motif, and espe-
cially the ε-amino group of the conserved lysine, stabilize the bound nucleotide by 
making hydrogen bonds with the β- and γ-phosphate oxygen atoms. The Walker B 
motif is usually made of four hydrophobic residues that form a β-strand and is ter-
minated by a conserved Asp. This Asp residue coordinates the catalytic Mg 2+  cofac-
tor by hydrogen bonding via a water molecule.
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   In ABC transporters with NBDs bearing consensual signatures motifs, the Walker 
B motif is immediately followed by an invariant Glu residue whose position in the 
three-dimensional (3D) structure is reminiscent of the catalytic Glu found in other 
ATPases [ 53 ,  56 ,  57 ]. The involvement of this residue as a catalytic base, as initially 
proposed based on mutagenesis and kinetic studies [ 58 ], has been later substantiated 
by the 3D structure of the maltose transporter [ 59 ], and this seemed to nail down the 
original controversy about this residue [ 60 ]. Additional motifs are present in the RecA-
like subdomain including: (i) The Q-loop, a stretch of ~ eight amino acids starting with 
a conserved Gln and joining the RecA-like and α-helical subdomains, makes part of 
the interface with the TMDs. A conformational switch of the Gln residue during the 
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...GX2 GXGKT/S...

x-loop
...TEVGERG...

Walker B
...h4D...

H-loop
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D-loop
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...Q...

ABC
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  Fig. 4.1    Structure of the nucleotide-binding domains. ( a ) Schematic view of the conserved ele-
ments present in the NBD of exporters (see the text for details). The color-coding is the same as in 
( b ). ( b ) The dimer of NBDs trapped in a transient ATP-bound state. The two identical NBDs of 
LolD (PDB code MJ0796) are shown here, and one is colored in gray and the other is colored in 
pale green, wheat, and pale yellow for the β-, RecA-, and α-helical subdomains, respectively. The 
conserved motifs are shown for one monomer in  red  (Walker A),  orange  (Walker B),  blue  (H-loop), 
 magenta  (Q-loop),  gray  (ABC signature),  green  (x-loop), and  cyan  (D-loop). The tyrosine which 
is part of the A-loop and stacks the adenine ring of ATP is shown in stick representation, like the 
two ATP molecules trapped at the NBD interface, and colored by elements (C,  green ; O,  red ; N, 
 blue ; and P,  orange ). An ATPase inactive mutant was used here (Glu171Gln) allowing the stabili-
zation of this transient ATP-bound conformation. This fi gure was made with PyMOL using the 
PDB code 1L2T [ 65 ]       
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catalytic cycle, engaging the MgATP and moving away after ATP hydrolysis, may be 
involved in transmitting conformational changes between NBDs and TMDs. (ii) The 
H-loop contains a conserved His that acts as a linchpin in ATP hydrolysis by interact-
ing with the γ-phosphate of ATP and the catalytic Glu [ 61 ]. (iii) The D-loop carries 
usually the conserved sequence “SALD,” a distinctive feature of ABC proteins located 
downstream of the Walker B motif. When the NBDs are suffi ciently close to each 
other, the D-loop establishes a complex hydrogen bond and electrostatic network with 
the Walker A motif and H-loop of the opposite NBD. Because of its position at the 
dimer interface, the “D-loop” originally referred to “dimer” [ 62 ], while it was later 
alluded to the invariant aspartic acid of the motif. In the NBD dimers, the D-loops also 
connect and stabilize the catalytic Glu and attacking water [ 59 ,  63 ]. By contacting the 
ATP-binding sites both in  cis  and in  trans , the D-loops are likely to play a major role 
in the communication between the active sites, the control of ATP hydrolysis, and also 
the directionality and energy of the transport as shown recently [ 64 ]. 

 The two other subdomains are specifi c to the ABC family. One is the α-helical 
subdomain, which contains the family signature motif. Its sequence usually starts 
with LSGGQ and belongs to a loop located at the N-terminus of an α-helix. The 
role of this motif had remained elusive for a long time until the 3D structures of 
ABC dimers were solved [ 62 ,  65 ]. Hence, in all ABC family members, the NBDs 
associate transiently in a head-to-tail dimer in which the ATP molecules are sand-
wiched between the Walker A motif of one domain and the signature motif of the 
other domain. The LSGGQ sequence makes extensive hydrogen bonds with the 
ATP and is required for ATP hydrolysis. The role of this motif is likely similar to 
the arginine fi nger present in some P-loop GTPases, which stabilize the active site 
of the opposite domain (see Fig.  4.1 ). Another motif present in this subdomain is 
the x-loop, defi ned as TEVGERG sequence in Sav1866 (see below). It is only pres-
ent in exporters and precedes the signature motif in the α-helical subdomain [ 66 ]. 
Its name refers to the fact that it interacts with both intracellular loops. Based on its 
proximity with the signature motif, it has been hypothesized to transmit conforma-
tional changes between the ATP-binding site and the TMDs [ 67 – 70 ]. 

 The other subdomain is called the β-subdomain. It encompasses the A-loop 
which is located upstream of the Walker A motif and bears a conserved aromatic 
(A) residue that stacks against the adenine ring of the nucleotide, helping to stabi-
lize it [ 53 ,  71 ]. While providing extremely valuable insights into the mechanism of 
ABC transporters, the structures of isolated NBDs lead to fl awed interpretations of 
catalytic mechanisms since the TMDs impose some structural constraints and alter 
the geometry of the catalytic sites [ 59 ,  72 ,  73 ].  

4.4     Structures of Whole Drug Exporters 

 Crystallized exporters were captured in mainly two opposite conformational states: 
outward facing and inward facing (Fig.  4.2 ).
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   Some structures originally contained major errors and were later corrected 
[ 74 ,  75 ]. Sav1866 is a multidrug transporter from  S. aureus  [ 76 ], and its crystal 
structure caused the retraction of erroneous MsbA structures [ 77 ] and thus 
revealed for the fi rst time the correct architecture of an ABC exporter [ 66 ]. 
Sav1866 is a homodimer, and each protomer is made of six transmembrane heli-
ces located at the  N -terminal side of the transporter and one  C -terminal NBD 
(Fig.  4.2 ). Sav1866 was crystallized in an outward-facing conformation in which 
the NBDs are in close contact (closed state). Although this conformation was 
observed with ADP bound in the catalytic sites, this state most likely represents 
an ATP-bound state. Accordingly, a second structure with AMP-PNP bound 
instead was virtually identical [ 78 ]. The two monomers exhibit an extensive 
twist, and the domains of each monomer signifi cantly contact those of the other 
monomer (Fig.  4.2 ). In this state, a central cavity was formed at the interface of 
the two TMDs. This cavity was shielded from the cytoplasm and the inner leafl et 
of the lipid bilayer, but accessible from the outer leafl et and the extracellular 
space (outward-facing conformation). The transmembrane helices are connected 
via short extracellular loops and long intracellular loops that protrude and extend 
the helical transmembrane bundles (Fig.  4.2 ). Consequently, the NBDs are 
located 25 Å away from the membrane. The TMD interface with the NBDs 
mostly involves the so-called coupling helices of the intracellular domains ICD1 
and ICD2. The coupling helix 1 of ICD1 is located between transmembrane heli-
ces 2 and 3 and interacts mostly with the NBD of its own monomer. The coupling 
helix 2 of ICD2 located between transmembrane helices 4 and 5 interacts only 
with the opposite monomer (Fig.  4.3 ). This  trans  interaction of ICD2 is the trade-
mark of the ABC exporters. Yet, the coupling helix 2 is rather similar to the 
coupling helix of the importers since it docks into a groove at the interface 
between the RecA-like and α-helical subdomains of the NBDs (Fig.  4.3 ). In this 

P-gp (C.elegans)
PDB 4F4C

P-gp (M.musculus)
PDB 4M1M

TM287/TM288 (T.maritima)
PDB 3QF4

90°

Sav1866 (S.aureus)
PDB 2ONJ

  Fig. 4.2    3D structures of selected drug exporters from ABC family. The N-terminal half of 
P-glycoprotein (P-gp), TM287, and one monomer of Sav1866 are colored in  green , while the 
C-terminal half of P-gp, TM288, and the other monomer of Sav1866 are shown in  blue . When 
present, AMP-PNP is shown in  red stick  representation       
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closed outward- facing conformation, the interaction of the two NBDs is similar 
to the transient head-to-tail conformation of isolated NBDs.

   MsbA is a lipid A fl ippase [ 79 ], but it also has the ability to transport some 
drugs [ 80 ,  81 ]. Depending on its origin and the crystallization conditions, three 
different conformations were obtained for this exporter: one which is very similar 
to the Sav1866 structure (closed AMP-PNP bound or ADP-Vi state, MsbA of 
 Salmonella enterica  serovar Typhimurium), one where the two NBDs are close to 
each other but not yet engaged in a tight interaction (closed apo state, MsbA of 
 Vibrio cholerae ), and fi nally one with the two NBDs widely separated in the so-
called open state with an inward-facing conformation (MsbA of  E. coli  [EcMsbA]) 
[ 75 ]. In all the conformations, the transmembrane helices 4–5 and the associated 
coupling helix 2 cross over the homodimer interface and contact the opposite 
subunit. However, intracellular loop 1 loses contact with the opposite subunit in 
the open apo state. The open conformation has been subjected to controversy, but 
similar conformations were obtained for the mouse or  Caenorhabditis elegans  
P-glycoproteins [ 82 ,  83 ], yet not as widely open as in the structure of EcMsbA 
(i.e., the NBDs are separated by ~ 25–30 Å in the P-glycoprotein  vs.  ~ 50 Å in 
EcMsbA). Interestingly, a structure of a fl ippase was recently solved in three dif-
ferent conformations: two open with various separations of the NBDs (44 Å and 
30 Å) and one closed in an ADP-bound outward-occluded conformation [ 84 ]. 
Again, the two open inward-facing structures were suspected to be biased by the 
presence of detergent or crystal lattice contacts. However, the 3D structure of 
BmrA obtained in a lipidic environment was consistent with the open structures 
of P-glycoproteins [ 85 ], and this suggests that the presence of detergent in the 
X-ray crystallography experiments was not forcing the structure of the transport-
ers in abnormal conformations. 

  Fig. 4.3    Close view of the 
interface NBD/TMD in 
Sav1866 (PDB code 
2ONJ). One monomer is 
shown in  green , while 
transmembrane helices 4–5 
and coupling helix 2 (CH2) 
from the other monomer 
are colored in  blue . The 
Q-loop is colored in 
 orange , while the x-loop is 
shown in  yellow . AMP- 
PNP is visible in  red  sticks       

 

C. Orelle and J.-M. Jault



81

 The structure of an antimicrobial peptide exporter, McjD, offers presumably the 
fi rst view of an intermediate conformation of the catalytic cycle of exporters, in an 
outward-occluded state [ 86 ]. While the two NBDs of McjD are still engaged in an 
ATP-bound conformation similar to that found in Sav1866, the TMD moiety shows 
a different organization of the transmembrane helices. This creates an internal cav-
ity not accessible to either side of the membrane and that could possibly accommo-
date the transported molecule, i.e., the microcin J25. 

 The fi rst structure of a heterodimer was obtained for TM287/TM288 [ 41 ]. It 
showed an inward-facing conformation at the membrane level, but the NBDs were 
only partially disengaged with signifi cant contact being maintained at the degener-
ate ATP-binding site where an AMP-PNP molecule was still bound. However, even 
in the apo form of TM287/TM288, its two NBDs keep the same interaction/orienta-
tion at the degenerate site [ 87 ]. Hence, the authors raised the possibility that AMP- 
PNP is a poor ATP analogue for heterodimeric ABC transporters. Of note, AMP-PNP 
and AMP-PCP also failed to generate a closed NBD conformation in the homodi-
mer of ABCB10 [ 88 ]. 

 In addition to the crystal structures, the structure of the heterodimer TmrAB in a 
nucleotide-free state was obtained at a subnanometric scale by cryo-EM. It revealed 
an inward- facing conformation, yet a contact was maintained between the two 
NBDs at the level of the two  C t-helices, one in each NBD [ 89 ]. Therefore, it is pos-
sible that a full physical separation between the two NBDs, in the nucleotide-free 
state, is a prerogative of homodimers or full-length transporters bearing two consen-
sual ATP- binding sites.  

4.5     An Alternating Access Mechanism 

 An alternating access mechanism seems the prevailing process in ABC transporters. 
It involves switching between two opposite conformations in which the substrate- 
binding site is alternatively accessible to one side of the membrane [ 75 ,  90 – 92 ]. 
Substrate binding on the inner or outer membrane leafl et and release on the opposite 
side are coordinated by the catalytic events, i.e., ATP binding, hydrolysis, and prod-
uct release. Several studies on drug transporters suggest a lower affi nity for drugs in 
the outward-facing conformation thereby explaining their release outside the cell [ 7 , 
 93 ,  94 ]. The different conformational structures of MsbA lead to a transition model 
[ 75 ] in which pivoting of transmembrane helices 4–5 around the extracellular loops 
2 and 3 brings the NBDs near each other; in this confi guration, the NBDs are not 
properly aligned since the two Walker A motifs are facing each other, and a sliding 
movement of the NBDs along the interface would be required to align each Walker 
A motif with each LSGGQ motif, thereby pulling transmembrane helices 3–6 away 
from transmembrane helices 1–2. The newly formed outward opening is created 
between transmembrane helices 1 and 3, whereas the inward opening was formed 
between transmembrane helices 4 and 6. Recent molecular dynamic studies suggest 
twisting of the NBDs during the catalytic cycle of MsbA [ 95 ] and P-glycoprotein 
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[ 96 ]. Furthermore, a misalignment of the NBDs was also observed in the crystal 
structures of ABCB10 [ 88 ], a putative transporter of heme precursors [ 97 ,  98 ]. In 
contrast, the NBDs in the heterodimer TM287/TM288 are partially interacting and 
are correctly aligned for canonical dimer formation [ 87 ]. Further experimental vali-
dation will be required to determine whether these conformational differences are 
physiologically relevant and truly refl ect mechanistic differences between trans-
porters. A variation of the classical alternating access mechanism has been recently 
proposed for the lipid-linked oligosaccharide fl ippase PglK of  Campylobacter 
jejuni  [ 84 ]. In this model, although the transporter can adopt inward- and outward- 
facing conformations, the substrate directly binds the outward-facing state and is 
fl ipped upon ATP hydrolysis.  

4.6     Drug-Binding Sites 

 The most remarkable feature of MDR pumps is their ability to transport a wide 
variety of structurally dissimilar drugs. X-ray structures of murine P-glycoprotein 
revealed a large internal cavity open to both the cytoplasm and the membrane inner 

  Fig. 4.4    Structure of 
P-glycoprotein in complex 
with two QZ59-SSS 
molecules (PDB 4M2T). 
The N-terminal half of 
P-glycoprotein is shown in 
 green  cartoon 
representation, and the 
C-terminal half is shown in 
 transparent blue  surface 
( TM  transmembrane helix). 
The two drugs are colored 
in  red  and  circled  by  black 
spheres . The putative 
drug-binding cavity is 
indicated with the  yellow 
triangle        
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leafl et, with a wide separation between the two NBDs [ 74 ,  82 ]. This confi guration 
generates the presence of two portals at the level of the inner membrane leafl et. The 
fi rst is located between transmembrane helices 4 and 6 on one side and the second 
between transmembrane helices 10 and 12 on the other side (Fig.  4.4 ). Of note, an 
 N -terminal helical hairpin occludes one of these portals in the crystal structure of 
the  C. elegans  P-glycoprotein, but the overall shape of the two proteins is otherwise 
similar [ 83 ]. Drugs could reach access to the transport pathway from the aqueous 
phase [ 99 – 101 ] or through these portals within the membrane. Because many drug 
substrates partition and concentrate in the membranes [ 102 ], it is likely that drugs 
usually enter the transporter through the membrane inner leafl et. Consistent with 
this, Jin et al. observed a 100- to 4,000-fold increase in drug apparent affi nity when 
studying the drug-stimulated ATPase activity of P-glycoprotein in membranes as 
compared to detergent [ 83 ].

   The identifi cation of the drug-binding site(s) in P-glycoprotein has been the goal 
of many studies (see a review in [ 103 ]). It was early recognized that a drug-binding 
site was localized within the TMDs [ 104 ]. Binding and kinetic analysis suggested 
the presence of several drug-binding sites [ 105 – 107 ]. Based on kinetic studies, 
Shapiro and collaborators proposed the existence of three drug-binding sites in 
P-glycoprotein, named H (Hoechst), R (rhodamine), and P (prazosin and progester-
one) sites [ 108 ,  109 ]. Both the H and R sites are competent for transport, while the 
P site is an allosteric site. The R site preferentially binds rhodamine 123 and anthra-
cyclines; the H site preferentially binds Hoechst 33342, quercetin, and colchicine; 
the P site binds preferentially prazosin and progesterone. The existence of two dif-
ferent H and R sites in P-glycoprotein was also evidenced by Förster resonance 
energy transfer (FRET) studies from Sharom’s laboratory [ 110 ,  111 ]. A positive 
cooperative effect between the R and H sites was observed: the addition of a small 
concentration of a drug that binds to one site stimulates the transport of the substrate 
bound to the other site. Such reciprocal drug transport stimulation was also later 
observed with LmrA [ 7 ] and BmrA [ 11 ]. Shapiro and Ling also reported that other 
drugs such as vinblastine, etoposide, and actinomycin D compete with both H and 
R sites. Cysteine-scanning mutagenesis and thiol-reactive drugs such as dibromobi-
mane, methanethiosulfonate-rhodamine, and methanethiosulfonate-verapamil were 
extensively employed to localize drug-binding sites in P-glycoprotein [ 112 ]. A 
common drug-binding pocket was found at the interface between the TMDs that can 
accommodate at least two drugs [ 113 ]. 

 Murine P-glycoprotein was co-crystallized with two stereoisomers of cyclic 
hexapeptide inhibitors, cyclic-tris-(R)-valineselenazole (QZ59-RRR) and cyclic- 
tris-(S)-valineselenazole (QZ59-SSS). Either one molecule of QZ59-RRR or two 
molecules of QZ59-SSS were found in the central cavity of P-glycoprotein (Fig.  4.4 ) 
[ 74 ,  82 ]. 

 The drug-binding cavity contains nine aromatic residues that are identical in 
human and murine P-glycoprotein but not conserved in  C. elegans  P-glycoprotein. 
There are no charged residues in the drug-binding pocket of mammalian 
P-glycoprotein structures, in contrast to  C. elegans  P-glycoprotein and MsbA, 
which has 16 charged residues pointing directly toward the substrate translocation 
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pathway [ 74 ]. Knowing the position of the two cyclic peptides QZ59-RRR and 
QZ59-SSS in the central cavity of the mouse P-glycoprotein, Martinez et al. sought 
to localize the H and R sites by assessing whether these peptides compete with the 
transport of Hoechst 33342 and daunorubicin and by performing molecular docking 
simulations [ 114 ]. They proposed the location of the H site along the central cavity 
and the QZ59-SSS molecule closer to the center of the membrane, with the R site at 
a deeper position in the cavity, overlapping the location of the QZ59-SSS molecule 
most embedded in the structure (see also [ 103 ]). Another group proposed similar 
locations for H and R sites, and the potent inhibitors tariquidar and elacridar bind to 
P-glycoprotein sites that coincide or overlap with these sites [ 115 ]. Importantly, the 
suggested R site is consistent with the cross-linking studies with methanethiosulfonate- 
rhodamine [ 112 ]. However, daunorubicin-binding site in MsbA was mapped at a 
different location, closer to the inner leafl et of the membrane [ 116 ]. Since the physi-
ological substrate of MsbA is lipid A, it is conceivable that drugs opportunistically 
accommodate to the binding pocket of the transporter, possibly in a different loca-
tion from typical multidrug transporters [ 117 ].  

4.7     Basal ATPase Activity in Multidrug Transporters 

 Multidrug transporters typically display a high basal ATPase activity, which for 
bacterial transporters is often moderately stimulated by drugs [ 11 ,  30 ,  118 ,  119 ]. 
This behavior contrasts for instance with the well-coupled peptide exporter com-
plex TAP [ 120 ] or some ABC importers [ 121 – 123 ]. Nevertheless, several lines of 
evidence suggest that drugs binding facilitate the dimerization of the NBDs thereby 
stimulating ATP hydrolysis [ 124 ,  125 ]. These observations are reminiscent of the 
mechanism of ATPase stimulation in other ABC transporters by allocrites [ 126 ], 
partner proteins [ 127 ], or proteins delivering the solute to importers [ 128 – 130 ]. 

 Several plausible explanations could account for this seemingly “futile” ATPase 
activity in drug transporters. First, it might be due to nonoptimal conditions of puri-
fi cation or reconstitution procedures; given that this behavior is widespread among 
differently purifi ed multidrug transporters, this seems unlikely. Second, it might 
result from the transport of lipids that could stimulate the ATP hydrolysis of the 
transporters [ 42 ,  80 ,  131 ,  132 ]. Third, it might be an intrinsic property of drug trans-
porters, as suggested by a thermodynamic analysis of P-glycoprotein activity [ 133 ]. 
Ernst, Schmitt, and collaborators have proposed an elegant hypothesis: the kinetic 
substrate selection model [ 134 ,  135 ]. The basal ATPase activity may have the 
advantage of maximizing the number of transporters competent for substrate bind-
ing in inward-facing conformations. This model proposes that the time spent in the 
inward- or outward-facing states affects substrate selection and explains how two 
substrates with identical affi nities, but dissimilar k on  and k off , can be transported with 
different effi ciencies. MDR transporters have the unique ability to recognize a huge 
variety of structurally dissimilar substrates. If the ATPase activities of these trans-
porters were tightly coupled to the drug extrusion process, then only the substrates 
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capable of stimulating the ATPase activity would be transported. Possibly, a tight 
coupling would only be achieved at the expense of substrate diversity. Being capa-
ble to switch rapidly between the two opposite conformations, inward facing (i.e., 
in a conformation allowing to capture a noxious compound if present) and outward 
facing in an ATPase active conformation, even in the absence of a drug, might be the 
price to pay to make sure that any bound drug will be rapidly expelled out of the cell 
before being released from the transporter in an on and off process. Given the 
 apparently relatively low affi nity for many drugs, a fast rate of ATPase activity 
(coupled or not with the transport process) might overcome the rate constant of the 
drug release (k off ). Thus, wasting some energy in the absence of a drug might ensure 
the polyspecifi city for many unwanted molecules and their effi cient effl ux once 
captured by the transporter.  

4.8     Transport Mechanisms and Structural Flexibility 
of Multidrug Transporters 

 During the catalytic cycle, the two NBDs of ABC transporters engage and disen-
gage with each other [ 129 ,  136 ]. Because the two ATP-binding sites are localized 
at the interface of the two monomers, ATP binding promotes the formation of a 
closed conformation [ 137 ,  138 ]. Although the interface of dimerization was a mat-
ter of debate for some time [ 139 ], the head-to-tail orientation fi rst envisioned by 
Jones and George [ 140 ] was observed in the crystal structure of the ABC protein 
Rad50 involved in DNA double-strand break repair [ 62 ]. Later, this arrangement 
was validated with the crystal structure of an NBD dimer stabilized by the muta-
tion of the catalytic glutamate [ 65 ] and the photocleavage of both the Walker A 
and LSGGQ motifs by the transition state analogue orthovanadate in the maltose 
transporter [ 141 ]. The latter observation also indicated that ATP hydrolysis occurs 
only in the closed conformation. Consistent with this, mutations in the LSGGQ 
motif strongly alter the ATPase activity of ABC transporters [ 142 ,  143 ]. The 
release of Pi and/or ADP destabilizes the dimer such that the NBDs move apart 
from each other. In addition to the interdomain movement, the RecA-like and 
α-helical subdomains within each NBD rotate toward each other upon ATP bind-
ing and move outward in the post-hydrolysis stage [ 52 ,  139 ,  144 ]. Hence, the 
energy of ATP binding and hydrolysis is coupled to conformational changes in the 
TMD thereby mediating alternating access of the substrate-binding site to each 
side of the membrane. 

 Several inward-facing conformations of P-glycoprotein exhibiting different 
degrees of domain separation were crystallized [ 74 ,  83 ,  145 ] hence suggesting a 
highly fl exible protein. The distance between the α-carbons of the Walker A cyste-
ines in the mouse or  C. elegans  P-glycoprotein varied between 38 and 53 Å [ 103 ]. 
These observations are consistent with the fl exibility reported in the apo states of 
LmrA [ 146 ] and BmrA [ 147 ] in detergent. This fl exibility evidenced by high rates 
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of H/D exchange in the apo state of BmrA is presumably caused by multiple con-
formations of the two ICDs, thereby allowing some freedom of rotation of the NBD 
[ 147 ]. In line with this, Cys-Cys cross-links were obtained for BmrA between the 
NBD and ICD1 that suggests the existence of additional, possibly transient, confor-
mations of BmrA in the resting state [ 148 ]. Additionally, it was possible to cross- 
link two Cys residues, one in each Walker A motif of the P-glycoprotein suggesting 
that the two NBDs adopt alternate orientations in the resting state [ 149 ]. 
P-Glycoprotein structures have been suspected to exhibit nonphysiological 
 conformations due to the absence of lipid bilayer and nucleotides. However, Wen 
et al. recently showed that, in intact lipid bilayers and in the presence or absence of 
nucleotides, P-glycoprotein adopts a wider range of conformations (both longer and 
shorter) compared to the original mouse P-glycoprotein crystal structure [ 150 ]. The 
authors suggested that this fl exibility might originate from a high number of Gly 
and Pro residues thereby causing kinking and/or unwinding within the TMDs. Such 
fl exibility may be advantageous to accommodate substrates of various sizes and 
chemical properties. 

 The mode and extent of NBD separation in MDR transporters is, however, still 
under debate [ 151 ], and two main hypotheses describing the mechanism of action 
of ABC transporters have been proposed: the ATP switch model [ 152 ] and the con-
stant contact model [ 153 ]. 

4.8.1     The ATP Switch Model 

 In the switch model [ 152 ], which is also referred as the processive clamp model 
[ 154 ], the NBDs are proposed to dimerize upon ATP binding, sequentially hydro-
lyze ATP, and completely separate upon release of Pi and/or ADP. The ATP- 
dependent dimerization generates the outward-facing state, during which the 
drugs are translocated from the inner to the outer membrane leafl et, while ATP 
hydrolysis and release of hydrolysis products reset the transporter to the inward-
facing conformation. This model largely relies on the available structures of ABC 
transporters in nucleotide-free or nucleotide-bound conformations. Many experi-
mental data support this model. ATP binding promotes association of isolated 
NBDs [ 155 ] and ATP hydrolysis induces their dissociation [ 156 ]. In the context 
of intact transporters, biophysical and cross-linking studies suggest large-scale 
movements in MsbA [ 136 ,  157 – 159 ]. Moreover, ATP binding promotes large 
conformational changes in LmrA [ 146 ] and BmrA [ 160 ]. The main concern 
regarding this model is that apo states, as studied in biochemical experiments, 
may not be physiologically relevant. Given the prevalence of the nucleotide in 
cells, it has been proposed that transporters will likely have ATP bound  in vivo  
[ 161 ]. Yet, cells and microorganisms in particular have to face stressful condi-
tions that will strongly deplete ATP concentrations (see the discussion in [ 85 ]). 
Moreover, even in optimal laboratory conditions and for fast-growing  E. coli  bac-
teria, the ATP level can vary greatly among a bacterial population that originates 
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from a single clone [ 162 ]. Two other points are worth considering. First, in which 
conformational state ADP is released from the transporter? If ADP is released in 
the open state, then the transporter will return to this state before ATP can bind 
again, regardless of its concentration in the cell. Second, it is not the ATP concen-
tration itself that really matters but rather the k on  of ATP binding. If this rate is 
slow as compared to the rate of transition between the closed state (just after ATP 
hydrolysis) and the open state, then the transporter will be able to return to the 
open state before ATP binds again. Considering all these parameters, the apo state 
should not be so infrequent for multidrug transporters, in particular in bacteria. In 
order to test the presence of the inward-facing conformation of P-glycoprotein in 
mammalian cells, Loo and Clarke [ 163 ] placed reporter cysteines in extracellular 
loops close enough to form a disulfi de bond in this conformation but widely sepa-
rated in the outward-facing conformation. Spontaneous cross-linking strongly 
suggested the existence, at least transiently in cells, of the inward-facing confor-
mation in which the NBDs are open.  

4.8.2     The Constant Contact Model 

 An alternative model has been proposed by Jones and George [ 153 ], in which the 
NBDs remain in contact throughout the catalytic cycle. This model should not be 
mistaken with a constant peripheral interaction between NBDs, as, for instance, in 
many ABC importers. In this constant contact model, ATP hydrolysis occurs alter-
nately at each site, with one site able to open and exchange hydrolysis products, 
while the other ATP-bound site remains closed. Hydrolysis of ATP promotes an 
opening at that site by an outward rotation of the RecA-like subdomain relative to 
the helical subdomain [ 164 ]. This model built on earlier P-glycoprotein work from 
Senior and collaborators [ 165 ]. They proposed an alternating hydrolysis of the 
NBDs based notably on the observation that both sites were equally active and that 
orthovanadate-induced ADP trapping in one catalytic site was suffi cient to inhibit 
ATP hydrolysis in both sites [ 166 ]. The occlusion of one nucleotide during the tran-
sition state has indeed been observed in several proteins: P-glycoprotein [ 165 ], 
BmrA [ 58 ], LmrA [ 7 ], and maltose transporter [ 167 ]. In contrast, two nucleotides 
were shown trapped in the heterodimeric TmrAB transporter [ 18 ]. The asymmetry 
observed in structural [ 168 ], biochemical [ 169 – 171 ] and molecular dynamic studies 
[ 164 ,  172 ] is often interpreted in favor of the constant contact model. 

 Another argument cited in favor of this model is that P-glycoprotein retains an 
ATPase activity when the NBDs are covalently linked together [ 173 – 175 ]. A single 
molecule FRET analysis of reconstituted P-glycoprotein rather supports a model 
where the NBDs do not completely dissociate from one another during steady state 
catalysis although, given the broad distance distribution recorded in all ligand con-
ditions, full dissociation of the NBDs cannot be entirely excluded and may occur 
during some of the cycles [ 176 ]. This model involves an alternating catalysis in 
which ATP hydrolysis and Pi release are coupled to drug transport. 
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 Lastly, the NBDs in the crystal structures of TM287/TM288 remained in contact, 
but with coupling helices separated by 15 Å, which is suffi cient to make the 
substrate- binding cavity accessible from inside without the need for NBD full dis-
engagement [ 87 ].   

4.9     Concluding Remarks 

 It should be noted that alternate models are rarely discussed but could be as plausible 
as the models discussed above. For instance, one can imagine a scenario in which the 
binding of two ATP molecules generate an outward-facing conformation, as in the 
switch model, but the hydrolysis of one ATP molecule is suffi cient to destabilize the 
dimer thereby implying a catalytic asymmetry. Whether the two catalytic sites in 
homodimeric ABC exporters hydrolyze ATP simultaneously, sequentially, in an 
alternating or stochastic manner has not yet been settled. In the isolated NBDs, 
MJ0796, the hydrolysis of one molecule of ATP is suffi cient to allow the physical 
disengagement of the two NBDs [ 156 ]. Although a stoichiometry of two ATP mole-
cules per substrate transported has been found for the OpuA importer [ 177 ], a stoichi-
ometry of one ATP molecule was determined for P-glycoprotein [ 178 ]. Owing to the 
structural and functional diversity of ABC transporters, there might not be a single 
unifi ed mechanism for all members. For instance, one of two catalytic sites is poorly 
active in heterodimeric ABC exporters, and such transporters may employ a different 
catalytic cycle than the homodimeric transporters. Recently, Mchaourab and col-
leagues proposed that the power stroke for drug export by BmrC/BmrD is the ATP 
hydrolysis step, in contrast to homodimeric exporters like MsbA where the transport 
process will occur during the NBD dimerization driven by ATP binding [ 31 ]. 

 The recent 3D structure of ABCG5/ABG8, the human sterol exporter exempli-
fi es again the diversity of this family. It shows a unique structure with some traits 
similar to importers like the lack of cross talk afforded by a coupling helix [ 179 ].     
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