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    Chapter 3   
 Small Multidrug Resistance Effl ux Pumps                     

     Denice     C.     Bay     and     Raymond     J.     Turner    

    Abstract     Small multidrug resistance (SMR) transporters confer resistance to a 
variety of quaternary cation compound antimicrobials. These secondary active 
transporters are the smallest known transporters and have been demonstrated to 
function within the membrane. The focus of this chapter explores and updates SMR 
family diversity and reviews current structural and functional knowledge of these 
members. This chapter also provides an update of known SMR pump-mediated 
resistance to antimicrobial substrates (including naturally synthesized quaternary 
cation compounds) and their clinical signifi cance.  
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•   EmrE   •   SugE   •   Paired SMR   •   AbeS   •   EbrAB   •   YkkCD   •   YvdRS  

3.1       Introduction 

 Small multidrug resistance (SMR) family proteins confer resistance to a diverse 
assortment of antiseptics and a limited range of antibiotics. They are the smallest 
known multidrug resistance (MDR) transporters found in prokaryotes and transport 
toxic quaternary cation compounds (QCCs) (also known as quaternary ammonium 
compounds [QACs]) using proton motive force [ 1 ,  2 ]. The SMR family is one of the 
14 phylogenetically distinct secondary active transporter families that belong to the 
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drug/metabolite transporter (DMT) superfamily [ 3 ]. As their name implies, SMR 
family proteins are short in length (100–170 amino acids) and span the plasma 
membrane as four hydrophobic α-helical transmembrane strands (TMS). The SMR 
protein active site of H + /drug binding is centered at a single highly conserved Glu 
residue located in the fi rst TMS of SMR proteins [ 2 ,  4 ,  5 ]. 

 SMR family proteins have been studied for many reasons. Their wide distribution 
within bacterial species [ 6 ] and presence on conserved regions of mobile genetic ele-
ments [ 7 ] make them clinically signifi cant targets to combat the spread of antiseptic 
resistance [ 8 ]. The small size and novel dual-topology dimer orientation also makes 
the SMR family evolutionarily signifi cant since they are hypothesized to serve as 
progenitors of larger multidrug transporters [ 3 ,  6 ,  9 ,  10 ]. This chapter describes cur-
rent structural and functional knowledge gathered for this family to explain how 
these remarkably small proteins are capable of transporting such a diverse array of 
substrates, with a focus on characterized SMR subclass family members.  

3.2     SMR Family Diversity 

 SMR family members are encoded chromosomally and/or on mobile genetic ele-
ments in conserved 3′ regions of class 1 integrons [ 7 ,  8 ] and on MDR plasmids [ 11 ] 
in archaea and bacteria [ 6 ]. Members of this family have been subdivided into three 
subclasses based on function, isogenicity, and phylogenetic relatedness [ 6 ,  12 ]: 
small multidrug pumps (SMPs), suppressor of  groEL  mutation proteins (SUG), and 
paired small multidrug resistance (PSMR) pumps. A brief summary of experimen-
tally characterized SMR subclass members is provided in the following sections 
(Table  3.1 ).

3.2.1       The SMP Subclass 

 SMR members belonging to the SMP subclass are characterized by their ability to 
confer isogenic resistance to a broad range of toxic lipophilic QCC [ 13 – 17 ] and 
phylogenetic association to the γ-proteobacterial  Escherichia coli  ethidium MDR 
protein E (Eco-EmrE) [ 6 ,  9 ]. Eco-EmrE is the archetypical member of both the 
SMR family and the SMP subclass due to the extensive functional and high- 
resolution structural characterization of this protein (as reviewed in [ 12 ,  65 ,  66 ]). 
These biophysical studies have resulted in cryoelectron microscopy [ 67 – 70 ], X-ray 
diffraction [ 71 ], and nuclear magnetic resonance (NMR) (solution-state [ 72 – 74 ] 
and solid-state [ 75 ,  76 ]) structures of Eco-EmrE. Although the majority of studies 
have focused on the Gram-negative Eco-EmrE, experimental structure-function 
characterization of other closely related SMP subclass members has also been per-
formed on γ-proteobacterial  Acinetobacter baumannii  AbeS [ 19 ,  20 ] and 
 Pseudomonas aeruginosa  EmrE (Pae-EmrE) [ 21 ,  77 ], β-proteobacterial  Bordetella 
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                  Table 3.1    Characterized SMR protein family members and their substrate profi les   

 SMR subfamily/member 
 Examined 
species a   Location b   Known substrates c   References 

  Small multidrug pumps  ( SMP ) 
 EmrE/MvrC/Ebr  Eco  C  ACR, BAC, BET, 

CHL, CHN, EB, 
ERY, MV, PY, TET, 
TMP, TPP, VAN 

 [ 13 – 18 ] 

 AbeS  Aba  C  ACR, BAC, CHL, 
CIP, DAPI, DOC, 
ERY, EB, NOV, SDS, 
TPP 

 [ 19 ,  20 ] 

 Pae-EmrE/Pasmr  Pae  C  MV, TPP  [ 21 ,  22 ] 
 Bpe-EmrE/BPsmr  Bpe  C  MV, TPP  [ 21 ] 
 EmrE  Lmo  C  BAC  [ 23 ] 
 Mtu-Smr/TBsmr/Mmr  Msm, Mtu  C  ACR, EB, ERY, PY, 

SFO, TPP 
 [ 21 ,  24 ] 

 Hsmr/EbrB  Hsa  C  ACR, EB, MV  [ 25 ,  26 ] 
 Smr/Ebr/QacC/QacD  Eco, Pae, 

Sep, Sma, 
Spa, Swa 

 C, P, In  EB, ERY, GH, HQ, 
TET, TMP, TPP 

 [ 27 – 34 ] 

 QacE  Eae, Kae  P, In  ACR, APG, 
BAC,BEN, CTA, CV, 
EB, PY, R6G, SFO, 
TPA 

 [ 7 ,  35 ] 

 QacEΔ1  Eco, Sau, 
Sen 

 P, In, Tn  ACR, APG, BAC, 
BEN, CTA, CTP, CV, 
EB, PY, R6G, SFO, 
TPA 

 [ 7 ,  35 – 38 ] 

 QacF  Eae, Eco, 
Vch 

 P, In, Tn  AMP, BAC, CTA  [ 39 – 41 ] 

 QacG  Sau  P, In  ACR, BAC, CTA, EB  [ 33 ,  34 , 
 42 – 44 ] 

 QacH  Eco, Lmo, 
Sau, Sin, 
Spa, Ssi, Vch 

 P, In  ACR, BAC, CTA, EB  [ 42 ,  43 ,  45 , 
 46 ] 

 QacJ  Sau, Sha  P  BAC, CTA  [ 43 ] 
 QacZ/EFA0010  Efa  C  BAC  [ 47 ] 
  Suppressor of groEL mutation proteins  ( SUG ) 
 SugES/SugE  Eco  C  CET, CTP  [ 48 – 50 ] 
 SugE  Amo  C  TBT  [ 51 ] 
 SugE  Cfr  C  CHL, EB  [ 52 ] 
 SugE  Ecl  C  BAC, EB, CTA, CTP, 

SDS, TPP 
 [ 53 ] 

 SugE/Sug  Cfr, Eco, 
Kox 

 P, In  BAC, CET, CTP, EB, 
SDS, TPP 

 [ 37 ,  52 ,  54 , 
 55 ] 

 Smr-2  Sau  In  [ 56 ] 

(continued)
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pertussis  (Bpe-Smr) [ 21 ], Gram-positive fi rmicutes  Staphylococcus aureus  (Sau- 
Smr) [ 27 ,  28 ,  78 ], and actinobacterial  Mycobacterium tuberculosis  (Mtu-Smr) [ 21 , 
 24 ,  79 – 81 ]. The consensus from these studies indicates that bacterial SMP members 
form isogenic functional homooligomers that confer broad polyspecifi c drug resis-
tance profi les similar to Eco-EmrE despite their variable sequence identity (32–54 % 
Eco-EmrE). As observed for bacterial SMP members, experimental characteriza-
tion of the archaeal  Halobacterium salinarum  (Hsa-Smr) [ 25 ] also suggests that 
archaeal SMP homologs adopt similar structural and functional features, despite 
their high overall content of Ala and Val residues (40 % total of 112 Hsa-Smr resi-
dues) by comparison to Eco-EmrE (13 % of total 110 residues). 

Table 3.1 (continued)

 SMR subfamily/member 
 Examined 
species a   Location b   Known substrates c   References 

  Paired small multidrug resistance  ( PSMR )  pumps  
 EbrAB  Bsu  C  ACR, BAC, CHL, 

CTA, CTP, CV, EB, 
ERY, PY, R6G, PY, 
TPA, TPP 

 [ 57 – 59 ] 

 MdtIJ/YdgEF  Eco  C  ACR, BAC, CHL, 
CTP, CV, EB, ERY, 
R6G, SDS, SPE, 
TET, TMP, VAN 

 [ 15 ,  60 ] 

 NepAB  Ani  P  MAM  [ 61 ] 
 PsmrAB  Hda  C  [ 62 ] 
 YkkCD  Bsu  C  BAC, CET, CTP, CV, 

EB, PY, TPA 
 [ 9 ,  63 ] 

 YvdRS  Bsu  C  [ 9 ,  64 ] 
 YvaE (YvaD)  Bsu  C  BAC, CET, CTP, CV, 

EB, PY, TPA 
 [ 9 ] 

   a Species abbreviations:  Aba Acinetobacter baumannii ,  Amo Aeromonas molluscorum ,  Ani 
Arthrobacter nicotinovorans ,  Bpe Bordetella pertussis ,  Bsu Bacillus subtilis ,  Cfr Citrobacter 
freundii ,  Eae Enterobacter aerogenes ,  Ecl Enterobacter cloacae ,  Eco Escherichia coli ,  Efa 
Enterococcus faecalis ,  Esp Enterococcus  sp.,  Hda Halobacillus dabanensis ,  Kae Klebsiella aero-
genes ,  Kox Klebsiella oxytoca ,  Lmo Listeria monocytogenes ,  Mtu Mycobacterium tuberculosis , 
 Msm Mycobacterium smegmatis ,  Pae Pseudomonas aeruginosa ,  Sau Staphylococcus aureus ,  Sep 
Staphylococcus epidermidis ,  Sha Staphylococcus haemolyticus ,  Sin Staphylococcus intermedius , 
 Sma Stenotrophomonas maltophilia ,  Spa Staphylococcus pasteuri ,  Ssi Staphylococcus simulans , 
 Swa Staphylococcus warneri ,  Vch Vibrio cholerae  
  b Location abbreviations:  C  chromosome,  In  integron,  P  plasmid,  Tn  transposon 
  c Substrate abbreviations:  ACR  acrifl avine,  AMP  ampicillin,  APG  alkylpolyaminoethylglycine, 
 BAC  benzalkonium chloride,  BEN  benzethonium,  BET  betaine,  CET  cetrimide,  CHL  chloram-
phenicol,  CHN  choline,  CIP  ciprofl oxacin,  CTA  cetyltrimethylammonium,  CTP  cetylpyridinium, 
 CV  crystal violet,  DAPI  4′,6-diamidine-2-phenylindole,  DOC  deoxycholate,  EB  ethidium bro-
mide,  ERY  erythromycin,  GH  guanidine hydrochloride,  HQ  8-hydroxyquinoline,  MAM  methyl-
amine,  MV  methyl viologen (paraquat),  NOV  novobiocin,  PY  pyronin Y,  R6G  rhodamine 6G,  SDS  
sodium dodecyl sulfate,  SFO  safranin O,  SPE  spermidine,  TBT  tributyltin,  TET  tetracycline,  TMP  

trimethoprim,  TPA  tetraphenylarsonium,  TPP  tetraphenylphosphonium,  VAN  vancomycin  
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 Members of the SMP subclass have a diverse distribution within prokaryotes and 
have been identifi ed from chromosomes, from a variety of MDR plasmids, and 
within the 3′ conserved gene cassette region of various class 1 integrons and trans-
posons (Table  3.1 ). SMP members encoded on mobile genetic elements are typi-
cally designated as Qac effl ux pumps based on their ability to confer resistance to 
these toxic compounds. The SMP subclass also possesses the greatest diversity of 
laterally transferred members: QacC, QacE, QacEΔ1, QacF, QacG, QacH, QacJ, 
and QacZ (Table  3.1  and Fig.  3.1 ). QacE and the semi-functional QacEΔ1 (which 
lacks 16 C-terminal residues from the QacE sequence [ 35 ]) were identifi ed as con-
served genes in the 3′ region of class 1 integrons [ 7 ] isolated from Gram-negative 
and Gram-positive bacteria [ 35 ,  36 ,  83 ]. The remaining Qac members, QacF, QacG, 
QacH, QacJ, and QacZ, have been identifi ed from integrons, transposons, and/or 
MDR plasmids (Table  3.1  and Fig.  3.1 ). QacF shares a close homology with QacE 
(68 % identity) and is frequently detected on class 1 integrons and various MDR 
plasmids in Gram-negatives [ 39 ,  40 ,  84 ]. QacG, QacH, and QacJ frequently identi-
fi ed on Gram-positive staphylococcal MDR plasmids and share closer homology to 
Sau-Smr (69–83 % identity) than Eco-EmrE (41–62 %). The most recent addition to 
this group, QacZ (74 % identity to Sau-Smr), was identifi ed from a Gram-positive 
enterococcal plasmid (pTEF1) and conferred resistance to benzalkonium chloride 
but not ethidium or chlorhexidine, indicating that some Qac members may provide 
selective QCC resistance [ 47 ].

3.2.2        The SUG Subclass 

 Similar to the SMP subclass, members of the SUG subclass also confer resistance 
when they are expressed as a single gene but only to a limited range of QCCs [ 48 ]. 
SUG members have been identifi ed on chromosomes and within mobile genetic 
elements (Table  3.1 ) indicating that they also share a diverse heritability similar to 
SMP subclass members. These members are homologous to  E. coli  suppressor of 
 groEL  mutation protein E (Eco-SugE) [ 6 ] which was named according to its initial 
identifi cation in an experiment involving the suppression of  groEL  chaperonin 
mutations [ 49 ]. Confi rmation of Eco-SugE involvement suggests that  groEL  sup-
pression was caused by a cloning artifact, since Eco-SugE was located adjacent to 
the  groES  locus [ 85 ]. Despite this study, SugE proteins have been suggested to 
confer some chaperone-like activity [ 9 ,  86 ,  87 ] making it uncertain what role this 
subclass plays in bacterial protein folding processes. 

 The most well-characterized SUG member is Eco-SugE [ 48 ,  50 ,  88 – 91 ], and 
relatively few studies have examined this protein in comparison to Eco-EmrE, pos-
sibly due to its selective resistance profi le. Eco-SugE serves as the representative 
SUG member and confers resistance to a limited range of detergent-like QCCs [ 48 ] 
(Table  3.1 ). Mutational analysis of Eco-SugE has shown that alteration of specifi c 
residues can alter substrate transport from an exporter to an importer [ 52 ]. 
Characterization of other SUG members has focused solely on Gram-negative 
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proteobacterial homologs from  Aeromonas molluscorum  (Amo-SugE) [ 51 ], 
 Citrobacter freundii  (Cfr-SugE) [ 52 ], and  Enterobacter cloacae  (Ecl-SugE) [ 53 ]. 
It should be noted that functional analysis of Ecl-SugE [ 53 ] and Amo-SugE [ 51 ] 
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  Fig. 3.1    A rooted neighbor joining (NJ) phylogenetic tree of experimentally characterized SMR 
protein family members. NJ distance analysis was performed with a ClustalW [ 82 ] multiple 
sequence alignment of 32 characterized SMR family protein sequences listed in Table  3.1 . The 
outgroup for this analysis was the  Archaeoglobus fulgidus  QacE (Afu-QacE) based on a previous 
phylogenetic study [ 6 ]. The NJ tree represents a consensus of 100 bootstrap replicates, and nodes 
with 75 % or more confi dence are indicated by  black fi lled circles        
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has demonstrated that other SUG members may confer resistance to a broader 
range of substrates that include ethidium and tetraphenylphosphonium (Table  3.1 ). 
SUG members are most frequently identifi ed from chromosomes and more widely 
distributed within archaeal and bacterial species than SMP members. In contrast to 
the SMP subclass, SUG homolog diversity and distribution on mobile genetic ele-
ments are low, and many SUG sequences are closely related to or identical to Cfr-
SugE [ 54 ]. Laterally transferred SUG members are most frequently identifi ed 
within class 1 integrons and transposons [ 92 ] as well as MDR plasmids [ 37 ,  54 ,  55 ] 
from Gram- negative proteobacteria and less frequently from Gram-positive spe-
cies [ 93 ] (Table  3.1  and Fig.  3.1 ).  

3.2.3     PSMR Subclass Members 

 Unlike the SMP and SUG subclasses, members of PSMR subclass require simulta-
neous expression of two SMR gene copies located within the same operon/locus to 
produce drug resistance [ 57 ]. PSMR members were originally predicted and identi-
fi ed from sequenced genome surveys [ 9 ,  87 ] and now include a variety of character-
ized members from both Gram-positive and Gram-negative bacteria (Table  3.1 ). 
PSMR diversity within bacteria has been shown to be greater in Gram-positive 
species (in  Bacillus subtilis  EbrAB, YkkCD, YvaDE, and YvdRS) as compared to 
Gram-negative species ( E. coli  MdtIJ) [ 6 ] (Table  3.1  and Fig.  3.1 ). Phylogenetic 
analysis of SMR subclass members from taxonomically diverse bacteria has indi-
cated that PSMR members recently evolved from gene duplication events and dem-
onstrated that PSMR members MdtIJ, EbrAB, and YvaDE originated from SMP 
members, while PSMR members YkkCD and YvdRS evolved from SUG subclass 
members [ 6 ] (Fig.  3.1 ). 

 The most well-characterized PSMR members are from  B. subtilis  EbrAB (Bsu- 
EbrAB) [ 57 – 59 ,  63 ,  94 ,  95 ] and  E. coli  MdtIJ/YdgEF (Eco-MdtIJ) [ 15 ,  60 ,  84 ,  96 , 
 97 ]. Structural analysis of Bsu-EbrAB has demonstrated that the pair forms a het-
erooligomer [ 58 ,  59 ,  94 ]. Studies of Bsu-EbrAB and Eco-MdtIJ demonstrated that 
PSMR members adopt an opposite insertion orientation from each other in the 
membrane [ 94 ,  97 ,  98 ]. It is important to note that drug resistance from the overex-
pression of a single PSMR gene, specifi cally Bsu-EbrB [ 95 ] and Bsu-YvaE [ 9 ], has 
demonstrated that overexpression of both proteins may not be required to confer 
resistance in  E. coli  expression systems. Additionally, one protein of the PSMR pair 
is generally longer (Bsu-EbrA 105 aa versus Bsu-EbrB 117 aa; Eco- MdtI 109 aa 
versus Eco-MdtJ 121 aa) which result in loop (loops 1 and 3) and C-terminus 
lengthening. Mutational analysis of Bsu-EbrA and Bsu-EbrB which removed the 
loops and C-termini from each protein resulted in a PSMR drug resistant protein 
when expressed as a single gene [ 58 ] indicating that loops and termini enhanced 
PSMR multimerization. The remaining chromosomally encoded PSMR members 
YvaDE and YvdRS appear to be the only subclass members with an unknown sub-
strate profi le [ 9 ]. Studies of the Bsu-YvdRS homolog, PsmrAB from the halophilic 
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 Halobacillus dabanensis  (Hda-PsmrAB) revealed that this protein functions as a 
Na + /H +  antiporter [ 62 ] suggesting that YvdRS homologs may not confer drug resis-
tance but function solely in osmotic regulation. The identifi cation of PSMR mem-
bers on mobile genetic elements is relatively low and appears to be present only on 
plasmids that confer specialized cell functions, as observed for the toxic methyl-
amine effl ux pump NepAB (a homolog of EbrAB [ 6 ]; Fig.  3.1 ) from Gram-positive 
 Arthrobacter nicotinovorans  [ 61 ]. Taken altogether, PSMR subclass distribution 
and diversity appears to be evolving toward specialized substrate transport that in 
some cases maintain antimicrobial transport.   

3.3      SMR Transporter Structure Analysis 

 Structural analysis of SMR family members has primarily focused on Eco- 
EmrE. Over the past two decades, many high-resolution biophysical techniques, 
cryoelectron microscopy (EM), X-ray crystal diffraction, and solution-/solid-state 
NMR, have been performed on Eco-EmrE protein. Early EmrE structural analyses 
of two-dimensional crystals using cryo-EM [ 68 ,  99 ] provided a low-resolution 
(7.0–7.5 Å) projection structure (protein database [PDB] code 2I68) [ 69 ] that sup-
ported an asymmetrically arranged EmrE dimer. The three-dimensional (3D) pro-
jection structure also demonstrated tetraphenylphosphonium binding occurring in 
TMS1–TMS3 regions of each monomer and supported an antiparallel arrangement 
of each protein monomer within the dimer [ 69 ]. Controversy ensued when X-ray 
crystal structures of EmrE were published that failed to agree with the available 
biochemical and biophysical data [ 100 ,  101 ] and were later retracted due to soft-
ware calculation errors [ 102 ,  103 ]. Re-examination of EmrE X-ray diffraction crys-
tals resulted in a 3.8 Å (PDB 3B5D) 3D structure of an EmrE dimer with bound 
tetraphenylphosphonium [ 71 ] (Fig.  3.2b ). Analysis of the X-ray structure also 
resulted in two additional 3D homology structures that provided an apo-EmrE form 
at 4.5 Å resolution (PDB 3B61) and an EmrE dimer bound to tetraphenylphospho-
nium at 4.4 Å (PDB 3B62) [ 71 ]. The revised EmrE X-ray structures appear to be in 
greater agreement with previous cryo-EM structures, by confi rming an asymmetri-
cal arrangement of each protein monomer in an antiparallel orientation. Other bio-
physical techniques such as systematic spin-labeling electron paramagnetic 
resonance (EPR) [ 105 ], solution-state NMR [ 72 ,  89 ,  106 ,  107 ], and solid-state [ 75 , 
 76 ,  90 ] NMR studies of EmrE in bicelles and liposomes also support an asymmetri-
cal antiparallel EmrE dimer. Altogether, these biophysical structural studies are 
beginning to support biochemical analyses that indicate EmrE forms a functional 
antiparallel dimer (as reviewed in [ 70 ]).

   Currently, high-resolution structural analyses are not available for other SMR 
subclass members, but attempts have been made to examine other SMP members 
Mtu-Smr [ 79 – 81 ] and SUG members [ 89 – 91 ] by NMR techniques. Acquiring high- 
resolution structures of other SMR members would be invaluable for comparing the 
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plasticity, drug selectivity, and structural conservation of Eco-EmrE which can aid 
the development of effl ux pump inhibitors and improve antimicrobial development. 

3.3.1      SMR Transporter Topology 

 The topological orientation of SMR family members has been a source of consider-
able controversy over the last decade [ 100 ,  101 ,  108 – 110 ]. According to the 
positive- inside rule, the orientation of a TMS is directed by the number of positively 
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  Fig. 3.2    Cartoon diagrams of Eco-EmrE structures. ( a ) A secondary structure and topology map 
of the Eco-EmrE protein (PDB P23895) generated using the online Protter program version 1.0 
[ 104 ]. Amino acid residues are shown as circles, where E14 ( blue ), W63, Y40, Y60, G90, and G97 
( red ) are highlighted. The membrane bilayer is represented as horizontal lines. ( b ) The 3D X-ray 
diffraction structural model of Eco-EmrE (PDB code 3B5D) bound to the ligand tetraphenylphos-
phonium [ 71 ]. A top down view of all four TMSs ( cylinders ) and loops ( thick lines ) in each EmrE 
monomer ( light blue , monomer A;  orange , monomer B). The bound ligand tetraphenylphospho-
nium ( green ) is shown as a  stick  chemical diagram where the phosphorous atom is in a  circle , and 
each of the four aromatic rings is shown as  hexagons        
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charged (K and R) residues located within loops and termini of the membrane pro-
tein [ 111 – 113 ]. The topology or “KR” bias of a membrane protein can be reliably 
estimated by summing the difference in net positive charges in oppositely facing 
loops and termini, where loops/termini with the greatest positive charge will orient 
to face the cell cytoplasm [ 98 ]. Interestingly, SMR family members from SMP and 
SUG subclasses have KR bias values at or close to zero indicating that their inser-
tion orientation is neutral or random [ 98 ,  114 ]. In contrast, heterooligomeric PSMR 
subclass members are predicted to orient in a fi xed but opposite topology from each 
other to form an antiparallel heterodimer [ 9 ,  97 ]. The topology of SMP member 
Eco-EmrE has been extensively studied, and evidence supporting antiparallel inser-
tion of EmrE has been demonstrated using reporter tag fusions [ 98 ,  114 – 116 ], alter-
ation of positively charged residues [ 98 ,  116 – 118 ], cysteine accessibility and 
cross-linking [ 95 ,  119 ,  120 ], tandem genetic fusions [ 95 ,  121 ], NMR [ 72 ,  107 ,  122 , 
 123 ], and high-resolution X-ray crystal diffraction techniques [ 71 ]. It should be 
noted that experiments have demonstrated that EmrE adopts functional fi xed paral-
lel orientations as tandem fusions [ 95 ] and as cross-linked monomers [ 124 ,  125 ]; 
the emerging consensus appears to support a functional antiparallel topology for 
EmrE due to its reoccurrence in high-resolution structural analyses [ 70 ,  72 ]. 
Antiparallel PSMR pair insertion orientations have been reported for Bsu-EbrAB 
[ 94 ] and Eco-MdtIJ [ 97 ,  98 ,  114 ] providing further support that SMR family mem-
bers can adopt a functional antiparallel topology.  

3.3.2     SMR Transporter Multimerization 

 All SMR proteins are expected to function as oligomers, where SMP members form 
homooligomers (as reviewed in [ 12 ]) and PSMR proteins form heterooligomers 
[ 59 ]. Multimerization studies of SUG members currently indicate these proteins 
predominate as monomers in vitro [ 50 ,  88 ], but due to their sequence similarity to 
SMP members, SUG homologs may also function as multimers. Extensive exami-
nation of SMP subclass member, Eco-EmrE, has revealed that the protein can adopt 
a variety of states: monomeric [ 89 ,  126 – 129 ], dimeric [ 66 ,  67 ,  71 ,  73 ,  99 ,  120 ,  128 , 
 130 – 132 ], trimeric [ 5 ,  17 ,  128 ,  133 ], and higher multimeric [ 5 ,  17 ,  67 ,  68 ,  99 ,  126 , 
 134 ] states, depending on experimental conditions. The overall consensus from 
these biochemical and structural approaches shows that the minimal functional unit 
is a dimer (as reviewed in [ 135 ]). Although the arrangement of monomers within 
the dimer is still contested, growing support for an antiparallel arrangement appears 
to be emerging [ 72 ,  120 ,  121 ] (refer to discussion in Sect.  3.3.1 ). Closer examina-
tion of Eco-EmrE and another SMP homolog Hsa-Smr has revealed the importance 
of the fourth TMS (TMS4) for multimer stability and transport [ 26 ,  136 ], and muta-
genesis of moderate to highly conserved Gly residues in Eco-EmrE TMS4 has iden-
tifi ed a Gly90-X 6 -Gly97 motif (Fig.  3.2 ) [ 75 ,  137 ]. Studies of PSMR Bsu-EbrAB 
protein variants lacking regions within loops 1 and 3 in addition to the C-terminus 
resulted in drug resistance from either EbrA or EbrB when expressed individually 
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[ 58 ] supporting their involvement in multimerization. Therefore, a variety of SMR 
regions, TMS4, loops 1–3, and C-terminus, are currently known to participate in 
SMR multimerization. 

 The variation in SMR multimerization may be explained by its small size and 
diverse topology and its plasticity may be linked to modifi cations and conditions 
used to isolate these proteins. Most studies of Eco-EmrE have involved the addition 
of an affi nity purifi cation tag and the most commonly used tag adds a C-terminal 
 myc -epitope linker with a hexahistidine tag [ 5 ,  138 ], and this approach has yielded 
preparations with mixed monomeric and dimeric states [ 131 ]. Due to its extreme 
hydrophobicity, untagged Eco-EmrE purifi cation approaches that involve organic 
solvent extraction have also been performed and shown to yield predominately 
monomeric protein with a low occurrence of dimers [ 128 ,  139 ]. The choice of mem-
brane mimetics, such as different detergents ( N -dodecyl-β-D-maltoside is the most 
commonly used as reviewed in [ 12 ]), bicelles [ 72 ,  73 ,  76 ,  78 ,  106 ,  107 ,  123 ], nano-
discs [ 91 ], and liposomes [ 2 ,  73 ,  106 ,  140 – 143 ] used to isolate these proteins, may 
also infl uence multimeric diversity and stability.  

3.3.3     SMR Transporter Lipid Dependence 

 The infl uence of the membrane mimetic environment on the structure and function 
of SMR proteins has been gaining interest but has also underscored the importance 
of the membrane environment used to study these proteins. Membrane composition 
is known to infl uence the folding and function of bacterial transporters in vitro [ 144 ] 
and in vivo [ 145 ,  146 ]. The surfactant and membrane disrupting mechanisms of 
action caused by SMR antimicrobial substrates are also known to signifi cantly alter 
lipid domain organization in the membrane [ 147 ]. Therefore, studies of SMR family 
members have also highlighted the importance of considering not only the protein 
and its modifi cations but also the membrane mimetic systems used for their 
characterization. 

 Studies of SMP and SUG protein folding and reconstitution in different deter-
gents have revealed differences in multimerization and ligand binding affi nities by 
proteins [ 126 ,  128 ]. Analysis of Eco-EmrE purifi ed in the detergent  N -dodecyl-β-D-
maltoside has shown that multimer formation and protein stability alter depending 
on the concentration of detergent added [ 128 ,  131 ]. Comparisons of Eco-EmrE 
dimer stability have also been performed in NMR experiments and determined that 
dimer affi nity increased when the protein was reconstituted from  N -dodecyl-β-D-
maltoside detergent micelles into bicelles composed of dilauroylphosphatidylcho-
line [ 73 ,  106 ]. These fi ndings indicate that SMR protein multimerization and folding 
stability vastly improve when membrane mimetics that resemble the native lipid 
environment of SMR proteins are used for in vitro characterization. 

 Many in vitro studies examining SMR protein folding and transport activity in 
liposomes have also been performed on SMP members. The advantage of these self- 
contained artifi cial phospholipid bilayer vesicles is the ability to determine transport 
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activities in contrast to using detergent micelles and bicelles/nanodisc systems. 
Examination of Eco-EmrE transport, folding, and insertion into liposomes com-
posed of derivatized phosphatidylcholine (PC) (a nonnative phospholipid in  E. coli ) 
and phosphatidylethanolamine (PE) (the dominant phospholipid [70–75 %] in  E. coli  
membranes [ 148 ]) has demonstrated that as the ratio of PE increased, the rate of 
protein insertion decreased, but the drug transport activity and folding of inserted 
proteins improved [ 138 ,  140 ,  142 ]. The addition of derivatized anionic lipids, like 
phosphatidylglycerol (present at 15–18 % in  E. coli  membranes [ 148 ]), to PE/PC 
liposomes increased Eco-EmrE drug transport [ 80 ]. In the same study, the addition 
of the derivatized anionic phospholipid, phosphatidylinositol (present at 12.5 % in 
 M. tuberculosis  membranes [ 148 ]), to PE/PC liposomes containing Mtu-Smr also 
increased drug transport [ 80 ]. Studies of Eco-EmrE protein reconstituted into lipid 
monolayers also identifi ed that EmrE clustering was signifi cantly altered in the pres-
ence of the anionic lipid, cardiolipin, and long unsaturated fatty acid chains [ 149 ]. 
Brewster angle microscopy experiments with Eco-EmrE reconstitution into lipid 
monolayers have demonstrated preferential lipid domain sorting around EmrE clus-
ters [ 149 ,  150 ]. Bioinformatic analysis of SMR homologs from diverse Gram-
positive and Gram-negative bacteria revealed that the conservation and abundance of 
positively charged residues that determine dual topology were correlated to the total 
anionic phospholipid abundance [ 151 ]. When considered altogether, these fi ndings 
highlight the importance and infl uence of anionic phospholipid content on SMR 
protein structural stability, topology, and transport activity.  

3.3.4     SMR Transporter Ligand Binding 

 Site-directed mutagenesis studies of SMR members Sau-Smr and Eco-EmrE deter-
mined that the antiport of drug and H +  was associated with a single highly conserved 
and negatively charged glutamate residue (TMS1 Glu14 of Eco-EmrE; TMS1 
Glu13 of Sau-Smr) in its membrane-spanning segments [ 2 ,  4 ,  5 ,  16 ]. In Eco- EmrE, 
replacement of Glu14 with Cys or Ala resulted in a complete loss of drug resistance 
[ 2 ,  4 ,  152 ] and replacement with Asp resulted in reduced or selective drug resistance 
compared to wild-type proteins [ 4 ,  5 ]. Analysis of all SMR subclass members indi-
cates that these members possess a glutamate residue within the fi rst TMS [ 6 ] and 
replacement of this conserved residue in mutagenesis studies of PSMR subclass 
members from  B. subtilis  Bsu-EbrAB [ 59 ,  94 ], Bsu-YkkCD [ 63 ] YvaE [ 9 ], and  E. 
coli  MdtIJ [ 60 ] reduced or eliminated their ability to confer drug resistance. 

 In addition to Glu14 within TMS1, biochemical and mutagenesis studies target-
ing residue replacements within the fi rst three TMS domains of Eco-EmrE have 
identifi ed that a number of aromatic residues, such as conserved residues Tyr40, 
Tyr60, and Trp63, also contribute to drug binding and resistance within the 
membrane- spanning domains [ 153 – 155 ]. Charged residue replacement within 
loop1 (Lys22, Glu24, and Arg29) and loop3 (Arg82 and Asp84) of Eco-EmrE has 
demonstrated reductions in drug transport [ 4 ]. 
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 X-ray [ 71 ], cryo-EM [ 69 ], and NMR [ 72 ,  105 ] structural analyses of the SMR 
archetype Eco-EmrE all indicate that ligand binding occurs within TMS1–TMS3. 
Cysteine-scanning mutagenesis of Eco-EmrE determined that the TMS1 residues 
Ala10, Ile11, and Thr18 all located on the same α-helical face as Glu14 participated 
in the substrate binding pocket [ 130 ,  152 ,  156 ]. TMS2 has been implicated as a 
hydrophobic pathway [ 156 ], and alterations of conserved residues in this helix were 
tolerated to greater extents than other TMSs, suggesting that TMS2 plays a role in 
determining SMR drug polyspecifi city [ 157 ]. Eco-EmrE TMS3 fl exibility [ 105 ] and 
the structured loop between TMS3 and TMS4 [ 75 ] have been shown to alter ligand 
binding within the dimer. Therefore, a number of key residues located within 
TMS1–TMS3 and the positioning of these helices relative to TMS4 all appear to 
infl uence drug binding interactions. 

 Due to the chemical diversity of substrates recognized and transported by SMR 
family proteins, drug binding studies have endeavored to identify additional resi-
dues responsible for polyspecifi city by these proteins. A recent study exploring 
SMP protein specifi city to methyl viologen identifi ed that Eco-EmrE residue Ser43 
was specifi cally involved in methyl viologen resistance [ 158 ]. Alteration of this 
residue located at the same position in SMP proteins that lack methyl viologen 
transport ability, Bpe-Smr (Ala43Ser) and Mtu-Smr (Ala42Ser), to Ser conferred 
resistance to methyl viologen [ 158 ]. Arrangement dynamics determined for Eco- 
EmrE TMS1–TMS3 have also been proposed to contribute to polysubstrate recog-
nition by SMR proteins [ 105 ,  157 ]. A recent study compared the substrate specifi city 
of  A. baumannii  AbeS with that of EmrE, and several AbeS variants (with Ala16Gly, 
Tyr3Ala, and/or Ala42Ser substitution) produced a substrate-dependent phenotype, 
providing the molecular basis of polyspecifi city of AbeS pump [ 20 ]. Further explo-
ration of conserved and variable residues in SMR family proteins using these 
approaches will likely identify other residues responsible for specifi c drug recogni-
tion and transport. 

 The stoichiometry of H + /SMR binding has been demonstrated to be variable, 
where H + /protein binding was shown to be 1:1 [ 143 ,  159 ], 1:2 [ 67 ,  71 ], and 2:3 [ 5 , 
 160 ]. High-resolution structural models currently favor a 1H + /2SMR stoichiometry. 
Ligand/SMR binding was shown to be much more variable at 1:1 [ 88 ,  129 ], 1:2 [ 67 , 
 71 ,  131 ], 1:3 [ 5 ,  67 ,  160 ,  161 ], and 1:5 [ 67 ]. The affi nity of ligand binding to SMR 
proteins in these experiments was also shown to range from μM to nM concentra-
tions. These variations may refl ect differences in ligand properties, such as differ-
ences in cationic charge (methyl viologen +2 versus tetraphenylphosphonium +1), 
aromatic versus acyl chain composition of the ligand tested, oligomerization, and 
the membrane mimetics used to reconstitute the protein (as reviewed in [ 12 ]). Based 
on the structural plasticity, dual-topology, and potential lipid dependence of SMR 
proteins, it is not surprising that SMR/ligand interactions also appear to be dynamic 
and condition dependent. It is clear that SMR proteins bind and transport a variety 
of structurally diverse lipophilic cation compounds as well as other potentially lipo-
philic or transiently charged compounds. It seems likely that the plasticity of SMR 
proteins is essential to recognize diverse substrates and may be intrinsically tied to 
their broad substrate recognition [ 128 ,  134 ,  162 ].   
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3.4     Transport Mechanisms of SMR Effl ux Pumps 

 Numerous transport mechanisms have been proposed to explain Eco-EmrE effl ux 
(as reviewed in [ 12 ]). Transport mechanisms have been proposed to account for 
specifi c multimers such as the trimeric model of EmrE protein [ 5 ,  160 ] or variable 
multimeric states [ 139 ,  163 ] during H + /drug transport. The remaining mechanisms 
involve variable H +  binding by EmrE dimers [ 159 ] and differ based on the involve-
ment of particular TMS [ 68 ,  71 ,  134 ] and/or their movements [ 69 ,  75 ]. Recent 
NMR analyses support the involvement of symmetrical inward and outward confor-
mation transitions of the asymmetric dimer during H + /ligand transport [ 66 ,  72 ]. 
Based on current studies, further exploration by NMR analysis may provide more 
detail into EmrE transport dynamics and clarify its transport mechanism. A recent 
study demonstrated asymmetric protonation of EmrE by focusing on the pKa values 
of the active-site residue of Glu14 with  1 H- 15 N transverse relaxation optimized 
spectroscopy-heteronuclear single quantum coherence spectra [ 164 ]. Protonation of 
the membrane-embedded Glu14 was shown to modulate the dynamics of EmrE in 
an allosteric fashion [ 165 ,  166 ]. This protonation leads to extensive rotation and tilt 
of TMS1–TMS3 in conjunction with repacking of loops, at this point conforma-
tional changes alter the coordination of the bound substrate and modulate its access 
to the binding site from the lipid bilayer [ 166 ]. Additionally, using EmrE as the 
model transporter, a novel liposome method, termed fl uorosomes, was developed to 
study the interaction of antimicrobial substrates and single effl ux transporters [ 167 ]. 

 Another question that has concerned SMR transport is how QCCs transported by 
these proteins are completely expelled from Gram-negative systems. Studies of 
other MDR transporters such as AcrAB and EmrAB identifi ed the involvement of 
an outer membrane protein TolC forming a multipartite complex spanning both 
membranes to completely effl ux substrates from the cell (as reviewed in [ 168 ,  169 ]). 
Studies of Eco-EmrE and other SMP members failed to demonstrate any require-
ment for TolC [ 29 ,  170 ,  171 ]. A recent study involving an osmotic growth pheno-
type and screening of overexpressed Eco-EmrE in outer membrane protein gene 
deletion mutants identifi ed that OmpW participates with EmrE in drug and osmo-
protectant effl ux in  E. coli  [ 18 ]. It is uncertain if OmpW forms a multipartite dual 
membrane-spanning complex with EmrE, but it does support the involvement of 
outer membrane protein(s), such as OmpW, in substrate effl ux by other SMR mem-
bers and potentially for other TolC-independent MDR transporters in Gram- negative 
bacteria.  

3.5     SMR Effl ux Pumps in Antimicrobial Resistance 

 SMR proteins confer resistance to a variety of toxic lipophilic QCCs used as indus-
trial surfactants (tetraphenylphosphonium and tetraphenylarsonium), membrane- 
disrupting detergents (alkylpolyaminoethylglycine cetylpyridinium and 
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cetyltrimethylammonium), antiseptics (benzalkonium chloride, cetrimide, and 
8-hydroxyquinoline), DNA-intercalating (acrifl avine and ethidium bromide) and 
toxic dyes (crystal violet, rhodamine 6G, and safranin O), and reactive oxygen- 
generating compounds (methyl viologen) (Table  3.1 ). QCCs represent a structurally 
diverse group of chemicals that possess one or more cationic atoms (most com-
monly nitrogen and phosphorous) bound to three to four R groups that consist of 
acyl chain or aromatic hydrocarbons. SMR members have also demonstrated low to 
moderate resistance to antibiotics such as chloramphenicol, erythromycin, fl uoro-
quinolones, and tetracyclines (Table  3.1 ) [ 42 ,  51 ,  62 ,  172 ] by comparison to other 
larger MDR transporters [ 15 ,  170 ]. Curiously, reports have also shown that SMR 
proteins can confer resistance to sodium dodecyl sulfate [ 15 ,  42 ,  53 ] (Table  3.1 ). 
Based on the negative charge of the conserved glutamate residue shown to bind both 
drugs and protons and the lack of conserved positively charged residues in mem-
brane-spanning segments in SMR proteins [ 6 ], it is diffi cult to understand how 
anionic sodium dodecyl sulfate can be transported by SMR proteins. It is more 
likely that tolerance to this detergent is enhanced in bacterial strains overexpressing 
SMR members due to their affi nity for anionic lipids as discussed in Sect.  3.3 . In 
general, it appears that the lipophilicity and cationic properties of a drug determines 
its potential as an SMR substrate. 

 Studies of SMR family member drug resistance have also demonstrated SMR 
members belonging to each subclass appear to differ in their conferred drug resis-
tance profi les suggesting that different SMR subclass members have evolved to 
accommodate more specifi c substrates [ 6 ]. Supporting evidence of this can be 
observed when comparing the substrate diversity of SUG and PSMR members to 
SMP drug resistance profi les as well as comparisons between chromosomally 
encoded SMR genes and those present on mobile genetic elements (Table  3.1 ). 

3.5.1     Natural SMR Substrates and Potential Functions 

 SMR proteins confer resistance to a variety of anthropogenically derived QCC anti-
microbials. Naturally synthesized QCCs can also build up in cells as metabolic inter-
mediates that serve as osmoprotectants and/or toxic by-products like polyamines 
during amino acid catabolism. Recent studies involving the effl ux of biologically 
produced QCCs have identifi ed the involvement of many SMR members (Table  3.1 ). 
A study assessing growth phenotype changes in  E. coli  cells grown in media with 
high osmolarities identifi ed the Eco-EmrE involvement in osmoprotectant (betaine 
and choline) export and its participation in cellular osmoregulation [ 18 ]. PSMR 
members Eco-MdtIJ were shown to transport the polyamine spermidine, a toxic 
metabolite that builds up during amino acid degradation [ 60 ]. Mutagenic analysis of 
Eco-EmrE has demonstrated that a single residue mutation of conserved Trp63Gly 
converts the protein into a polyamine exporter [ 173 ]. These fi ndings agree with evo-
lutionary studies demonstrating that Eco-MdtJI has recently evolved from EmrE 
homologs in Gram-negative species [ 60 ]. The PSMR member Ani-NepAB encoded 
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by a plasmid of a Gram-positive aerobe has shown transport of the toxic nicotin-
amide degradation intermediate methylamine [ 61 ]. Interestingly, the PSMR member 
Hda-PsmrAB, a homolog of Bsu-YvdRS that fails to confer drug resistance, was 
recently shown to function as a Na + /H +  antiporter indicating its involvement in cell 
osmoregulation [ 62 ]. Altogether, SMR subclass diversity and their selective trans-
port of natural substrates and ions may also explain why signifi cant differences in 
drug resistance profi les occur within subclasses and some of driving forces infl uenc-
ing their phylogenetic distinctions [ 6 ]. Selective transport of particular biological 
substrates may also explain the redundancy of SMR family proteins and other MDR 
transporters that confer resistance to similar drugs (as discussed by [ 171 ]).  

3.5.2     Clinical Signifi cance and Pathogenicity 

 Improving our understanding of the structure, function, and regulation of SMR fam-
ily proteins is essential to combat the emerging problem of antiseptic resistance. 
Exposure to QCCs is increasing as these antiseptics are added to commonly used 
commercial products such as soaps, detergents, mouthwashes, toothpastes, and cos-
metics. Large quantities of QCCs are also used in industrial surfactants and in medi-
cal/agricultural sterilization resulting in QCC-polluted environments (as reviewed in 
[ 8 ]). SMR family members transmitted via mobile genetic elements and plasmids 
are frequently associated with QCC-polluted environments [ 174 – 176 ]. The pressure 
to maintain SMR genes within these mobile elements also appears to be driven by 
QCC and antibiotic exposure [ 11 ,  177 ] indicating that QCC contamination is a major 
factor driving SMR-mediated resistance and transmission. 

 The clinical relevance of SMR-mediated QCC resistance may be associated with 
bacterial growth states. Enhanced QCC resistance associated with SMR effl ux 
genes has been demonstrated for bacterial cultures grown as sessile surface-attached 
biofi lms [ 178 ,  179 ] and as free-living planktonic cultures [ 170 ]. Hence, SMR mem-
bers may infl uence the biofi lm formation and virulence similar to other MDR trans-
porters [ 179 ]. Recent studies identifying SMR family member involvement in the 
effl ux of osmoprotectants, polyamines, and other metabolites (as discussed above) 
have also shown that similar to other MDR transporters, SMR proteins may confer 
added benefi ts and improve cell fi tness by removing potentially toxic natural sub-
strates (as reviewed in [ 180 ]). Overall, this suggests that the bacterial lifestyle and 
physiology play an important role in determining the extent of virulence associated 
with SMR activity and QCC resistance. 

 Efforts to thwart SMR-mediated QCC resistance have focused on the design and use 
of TMS-like peptide inhibitors that disrupt multimer formation in the Hsa-Smr com-
plex and its QCC resistance [ 26 ,  136 ]. This inhibition strategy relies on fundamental 
structural knowledge gained from SMR structural and functional analyses and under-
scores their importance for novel SMR effl ux pump inhibitor design. The initial success 
of this peptide-based inhibition may provide a future therapeutic strategy that could be 
applied to selectively inhibit SMR and potentially other MDR effl ux systems.   
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3.6     Concluding Remarks 

 After two decades of research examining SMR family protein structure and func-
tion, many insights have been gained into how its members confer drug resistance 
and have provided a number of high-resolution structures. It has also fueled a num-
ber of controversies surrounding SMR topology and multimerization which have 
helped drive and focus structural exploration of Eco-EmrE and other members. 
Further examination of Eco-EmrE and SMR subclass members, specifi cally those 
encoded on mobile genetic elements and SUG subclass members, will reveal more 
insights into the structure, function, clinical signifi cance, and evolution of these 
remarkable SMR proteins.     
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