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    Chapter 23   
 Role of Plasmid-Encoded Drug Effl ux Pumps 
in Antimicrobial Resistance                     

     Xian-Zhi     Li      and     Manisha     Mehrotra   

    Abstract     Plasmids, as extrachromosomal genetic mobile elements, have been 
widely documented to mediate high-level bacterial resistance to all major clinically 
relevant antibiotics and antiseptic agents. The fi rst drug effl ux pump discovered in 
bacteria is plasmid encoded. Naturally occurring drug resistance plasmids are 
diverse and belong to different incompatibility groups. Multidrug resistance deter-
minants often coexist on the same plasmids with strong linkages to mobile elements 
such as integrons or transposons. Thus, plasmids play a critical role in the evolution 
of resistance and in the dissemination of resistant bacteria, which poses a major 
challenge to antimicrobial therapy. This chapter provides an up-to-date overview 
of the plasmid-mediated genetic and biochemical mechanisms of antimicrobial 
resistance with an emphasis on plasmid-encoded drug effl ux pumps in major 
pathogens.  

  Keywords     Antimicrobial resistance   •   Antiseptic   •   Multidrug resistance   •   Plasmid
   •   Integron   •   Transposon   •   Effl ux pumps  

23.1       Introduction 

 The term plasmid was proposed in 1952 by Joshua Lederberg to be referred to as “a 
generic term for any extrachromosomal hereditary determinant” [ 1 ]. Being extra-
chromosomal genetic elements, plasmids replicate independently and occur com-
monly in bacteria. To date, numerous plasmids have been characterized in detail, 
which include in-depth understanding of the complete nucleotide sequences, gene 
products, and their functions. Such functions include plasmid transfer elements, 
metabolic/catabolic degradation enzymes, virulence determinants, and, frequently, 
antimicrobial resistance genes. The role of plasmids (initially known as “R factor”) 
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in drug resistance was recognized soon after the beginning of the antibiotic era 
[ 2 ,  3 ]. In fact, plasmid-mediated resistance is often of high level and thus threatens 
effective antimicrobial therapy [ 4 ,  5 ]. Plasmids not only possess independent repli-
cons but may also contain other mobile genetic elements (e.g., insertion sequences, 
integrons, and transposons) [ 6 ] and, hence, provide an important means for both 
vertical and horizontal gene transfer that assist the widespread of resistance within 
or across bacterial species or genus of different geographical regions. Plasmids 
make a major contribution to resistance especially in organisms such as the ESKAPE 
pathogens (i.e.,  Enterococcus faecium ,  Staphylococcus aureus ,  Klebsiella pneu-
moniae ,  Acinetobacter baumannii ,  Pseudomonas aeruginosa , and  Enterobacter  
species); epidemic resistance plasmids have been found globally [ 7 ]. Moreover, 
resistance plasmids that simultaneously carry multiple resistance determinants have 
been observed frequently [ 8 ,  9 ]. These plasmids can also encode virulence factors 
and enhance bacterial biofi lm formation or colonization in the host, thus contribut-
ing greatly to the pathogenicity [ 10 ,  11 ]. It is necessary to mention that there is a 
very large amount of studies on plasmid-mediated resistance, a topic that has been 
regularly reviewed over past decades [ 5 ,  12 – 20 ]. This chapter provides an up-to- 
date description of plasmids’ contribution to current antimicrobial resistance crisis 
with an emphasis on the role of plasmid-encoded drug effl ux pumps.  

23.2     Overview of Plasmid-Mediated Antimicrobial 
Resistance 

 The signifi cance of plasmid contribution to antimicrobial resistance cannot be over-
stated since many plasmids from different incompatibility groups, either conjuga-
tive or nonconjugative, have been found to confer resistance to all major classes of 
antimicrobial agents in both Gram-positive and Gram-negative bacteria [ 5 ,  15 ,  19 ]. 
These resistance plasmids are widely present in various environments. Plasmid- 
encoded products exhibit different biochemical mechanisms of resistance, includ-
ing drug inactivation, modifi cation of drug targets, and drug effl ux (Table  23.1 ).

23.2.1       Genetic Characteristics of Resistance Plasmids 

 Like any plasmids, resistance plasmids carry replication elements for their indepen-
dent maintenance. They vary in size (small to mega-plasmids), incompatibility 
groups, and host ranges [ 49 ,  50 ]. For example, a small plasmid of  Staphylococcus 
aureus  is only about 2.8 kb and carries a drug transporter gene [ 51 ], while mega- 
plasmids are >100 kb carrying multiple resistance determinants and mobile genetic 
elements [ 31 ]. Some of them have a broad host range and can replicate in different 
species. They may carry genes for plasmid transfer and become conjugative [ 49 ]. 
The plasmids may encode a single or multiple drug resistance determinants, their 
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    Table 23.1    Examples of plasmid-mediated resistance to major antimicrobial drugs   

 Antimicrobial 
resistance 

 Plasmid 
(GenBank 
accession) 

 Origin of 
bacterial species  Mechanisms  Reference 

 β-Lactams  pRSF1030 
(RSF1030OR) 

  Salmonella  
Panama 

 TEM-1 narrow-
spectrum β-lactamase 

 [ 21 ] 

 pR997   Proteus mirabilis   SHV-1 narrow-spectrum 
β-lactamase 

 [ 22 ] 

 pMG211   E. coli   PSE-1 β-lactamase  [ 23 ] 
 pRGN238 
(J02967) 

  E. coli   OXA-1 β-lactamase  [ 24 ] 

 pMVP-3 
(X92506) 

  E. coli   CTX-M-1 extended- 
spectrum β-lactamase 

 [ 25 ,  26 ] 

 pMVP-2 
(X91840) 

  K. pneumoniae   CMY-2 AmpC 
β-lactamase 

 [ 27 ] 

 pAK9373 
(D50438) 

  S. marcescens   IMP-1 metallo 
β-lactamase 

 [ 28 ] 

 pKpANDM-1 
(FN396876) 

  K. pneumoniae   NDM-1 metallo 
β-lactamase 

 [ 29 ] 

 Aminoglycosides  pCTX-M-3 
(AF550415) 

  C. freundii   ArmA aminoglycoside 
methylase 

 [ 30 ] 

 pNDM-CIT 
(JX182975) 

  C. freundii   AadA2 aminoglycoside 
acetyltransferase 

 [ 31 ] 

 pRH-1238 
(KR091911) 

  Salmonella  
Corvallis 

 AAC(6′)/Aad 
aminoglycoside 
acetyltransferases, and 
AphA6; StrA/B 
aminoglycoside 
phosphotransferases 

 [ 32 ] 

 Amphenicols  pC194 
(NC_002013) 

  S. aureus   Cat chloramphenicol 
acetyltransferase 

 [ 33 ] 

 pSCFS1 
(AJ249217) 

  S. aureus   Cfr methylase  [ 34 – 36 ] 

 Fluoroquinolones  pMG252 
(AY072035) 

  K. pneumoniae   QnrA DNA gyrase 
protection protein 

 [ 37 ] 

 (DQ303918)   E. coli   AAC(6′)-Ib-cr  [ 38 ] 
 pHPA 
(AB263754) 

  E. coli   QepA effl ux pump  [ 38 ] 

 Fosfomycin  p1E1C 
(JF411006) 

  E. coli   FosA3 thioltransferase  [ 39 ] 

 Glycopeptides 
(vancomycin) 

 pLW1043 
(AF017171) 

  S. aureus   VanA  [ 40 ] 

 Macrolides- 
lincosamides- 
streptogramins 

 pE194 
(NC_005908) 

  S. aureus   Erm methylase  [ 41 ] 

 Oxazolidinones- 
amphenicols 

 pE349 
(KP399637) 

  E. faecalis   OptrA effl ux pump  [ 42 ] 

(continued)
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regulatory genes, and other mobile genetic elements such as insertion sequences, 
integrons, and transposons [ 5 ,  28 ,  29 ,  49 ,  52 ]. These multiple resistance-associated 
elements form gene cassettes that occur widely in resistance plasmids. An early 
reported plasmid, R100, of  Shigella fl exneri , is about 94 kb and contains the  tetA  
gene (for tetracycline resistance) in the transposon Tn10,  cat  for chloramphenicol 
resistance in Tn9, and  aadA1  for aminoglycoside resistance,  sul1  for sulfonamide 
resistance, and  mer  operon genes for mercury resistance in Tn21 [ 8 ]. In another 
example, the 140-kb plasmid of  Klebsiella pneumoniae  that encodes a gene for the 
NDM-1 β-lactamase also contains mobile elements (insertion sequences IS26 and 
class 1 integron) and many other resistance genes including  arr - 2  (for rifamycin 
resistance),  ereC  (erythromycin resistance),  aadA1  (aminoglycoside resistance), 
 cmlA  (chloramphenicol resistance),  qacEΔ 1 (defective antiseptic resistance), and 
another gene for an effl ux pump [ 53 ]. A recent study of a 187-kb plasmid of 
 Salmonella enterica  Corvallis demonstrated the presence of 15 resistance gene 
determinants comprising of  bla  NDM-1 ,  bla  CMY-16 ,  fosA3 ,  sulI ,  sulII ,  strA / B ,  aac ( 6 ′)- Ib , 
 aadA5 ,  aphA6 ,  tetA (A),  mphA ,  fl oR ,  dfrA7 , and  merA  genes that provide resistance 
to β-lactams (including carbapenems), aminoglycosides, amphenicols, fosfomycin, 
macrolides, sulfonamides, trimethoprim, and tetracyclines [ 32 ]. Of note, this plas-
mid is considered to originate from Asia and to have been transferred to Germany 
through a migratory wild bird [ 32 ]. Moreover, resistance plasmids may also carry 
virulence genes and play a critical role in pathogenicity, as shown in the example of 
a multidrug resistance (MDR) plasmid of  Salmonella  [ 54 ]. Current identifi cation 

Table 23.1 (continued)

 Antimicrobial 
resistance 

 Plasmid 
(GenBank 
accession) 

 Origin of 
bacterial species  Mechanisms  Reference 

 Pleuromutilins- 
lincosamides- 
streptogramins 

 pSA-7 
(NG_041699) 

  Staphylococcus 
cohnii  

 Vga(E) effl ux pump  [ 43 ] 

 pV7037 
(NG_041616) 

  S. aureus   Lsa(E) effl ux pump  [ 44 ] 

 Polymyxins  pHNSHP45 
(KP347127) 

  E. coli   Mcr-1 
phosphoethanolamine 
transferase 

 [ 45 ] 

 Rifamycins  In53 
(AF205943) 

  E. coli   Arr-2 
ADP-ribosyltransferases 

 [ 46 ] 

 pTNN01 
(AJ277027) 

  K. pneumoniae   Arr-3 
ADP-ribosyltransferases 

 [ 47 ] 

 Sulfonamides/ 
trimethoprim 

 pRH-1238 
(KR091911) 

  Salmonella  
Corvallis 

 SulI /SulII 
dihydropteroate 
synthase; Dfra7 
dihydrofolate reductase 

 [ 32 ] 

 Tetracyclines  pOZ100 
(L12241) 

  Neisseria 
gonorrhoeae  

 Tet(M) ribosomal 
protein 

 [ 48 ] 

 pR100 
(NC_002134) 

  S. fl exneri   TetA(A) effl ux pump  [ 8 ] 
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and characterization of plasmids, facilitated by the whole genome sequencing avail-
ability together with the bioinformatics analysis, continue to provide insights on the 
diversity of resistance plasmids derived from various environments [ 55 ,  56 ].  

23.2.2     Genetic and Biochemical Mechanisms 
of Plasmid- Mediated Resistance 

  β-Lactams     Resistance to β-lactams in Gram-negative bacteria is mostly caused by 
β-lactamases [ 57 ], which are encoded by chromosomes or plasmids (Table  23.1 ). 
There are more types and numbers of plasmid-encoded β-lactamases than those of 
chromosomal β-lactamases. Most Ambler class A β-lactamases are produced by 
plasmids and contain many TEM, SHV, and CTX-M enzymes [ 57 ,  58 ], most of 
which are extended-spectrum β-lactamases (ESBLs) that hydrolyze aztreonam and 
oxyimino-cephalosporins and can be inhibited by β-lactamase inhibitors (clavula-
nate, sulbactam, and tazobactam) [ 57 ,  59 ]. Many CTX-M-producing plasmids are 
MDR plasmids [ 60 ,  61 ]. Class A enzymes also include  K. pneumoniae  carbapene-
mases (KPCs) that pose a major threat to antimicrobial therapy [ 62 ], and these 
enzymes are also frequently encoded by plasmids [ 63 ,  64 ]. Numerous class B 
metallo β-lactamases are encoded by plasmids. Perhaps the most noticeable exam-
ple in recent years is the global spread of NDM-1-encoding plasmids that also con-
tain multiple drug resistance determinants [ 29 ,  65 ]. One major substrate class for 
these metalloenzymes is carbapenems [ 29 ]. A strain harboring both a NDM-1 plas-
mid and a KPC plasmid was also recently noted [ 66 ]. While often encoded by chro-
mosomes, class C AmpC enzymes are also frequently encoded by plasmids, such as 
the CMY enzymes that are widely distributed in isolates of humans and animals and 
can particularly hydrolyze cephamycins and oxyimino-cephalosporins [ 67 – 69 ]. 
Class D OXA β-lactamases are mostly encoded by plasmids and can be divided into 
several subgroups [ 70 ], including carbapenem-hydrolyzing OXA-type carbapene-
mases [ 62 ,  70 ,  71 ].  

  Aminoglycosides     Three types of aminoglycoside-modifying enzymes exist and 
are aminoglycoside  N -acetyltransferases,  O -nucleotidyltranferases, and 
 O -phosphotransferases, which play a major role in aminoglycoside resistance. 
Many of them are encoded by plasmids in both Gram-positive and Gram-negative 
bacteria [ 72 ]. Copresence of aminoglycoside resistance genes with other resistance 
determinants are frequently observed on the same plasmids [ 8 ,  32 ,  44 ,  73 ]. Plasmid- 
encoded methyltransferases such as ArmA, RmtA, and RmtB alter the aminoglyco-
side binding site of 16S rRNA of the 30S ribosomal subunit and are increasingly 
seen as a key mechanism of aminoglycoside resistance [ 49 ,  58 ,  74 ,  75 ].  

  Amphenicols     Resistance to chloramphenicol and thiamphenicol is mainly medi-
ated by drug-specifi c chloramphenicol acetyltransferases through drug inactiva-
tion. This mechanism can be inducible due to the mRNA structural changes in the 
5′-untranslated region of the  cat  gene in the presence of an antimicrobial to enhance 
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the translation of the  cat  mRNA [ 33 ]. These enzymes are often encoded by MDR 
plasmids containing resistance gene cassettes [ 76 ,  77 ]. Plasmids also mediate non-
enzymatic resistance mechanism through amphenicol-specifi c drug exporters 
named CmlA or FloR [ 78 ,  79 ] or multidrug exporters such as OptrA [ 42 ] (see 
details in the section on drug effl ux pumps). A third mechanism is related to 
chloramphenicol- fl orfenicol resistance (Cfr) protein that is encoded by plasmids 
[ 34 ] and is able to methylate 23S rRNA, resulting in reduced binding of 
amphenicols, lincosamides, oxazolidinines, pleuromutilins, and streptogramins to 
their ribosome targets [ 35 ,  36 ]. The fi rst described  cfr -bearing plasmid was an 
MDR transposon plasmid that also contained  erm ( 33 ) for inducible resistance to 
macrolide-lincosamide- streptogramin B and a streptomycin resistance gene [ 80 ]. 
A novel  cfr -containing plasmid was found to carry  blaZ  β-lactamase gene,  msr ( A ) 
effl ux gene, and heavy metal resistance genes [ 81 ]. Another plasmid-borne chlor-
amphenicol-fl orfenicol resistance gene termed  fexA  was also reported with an 
unknown mechanism of resistance [ 82 ].  cfr - and  fexA -carrying resistance plasmids 
are widely present in staphylococci [ 83 ]. A  cfr -carrying plasmid from  Enterococcus 
faecalis  was also described [ 84 ]. More recently, the  fexA  or  fexB  combination with 
plasmid-borne  optrA  transporter gene was observed in enterococci of human and 
food animal sources [ 42 ,  85 ].  

  Fluoroquinolones     While enzymatic inactivation of quinolones by an 
aminoglycoside- fl uoroquinolone acetyltransferase is due to the AAC(6′)-Ib-cr- 
encoding plasmids,  qnr -containing plasmids provide quinolone resistance via a tar-
get protection mechanism [ 20 ,  37 ,  86 – 88 ]. Plasmids carrying  AAC ( 6 ′)- Ib - cr  or  qnr  
genes are widely disseminated in numerous  Enterobacteriaceae  and often exist as 
part of a resistance gene cassette to cause MDR [ 20 ,  37 ,  55 ,  58 ]. Additionally, con-
tribution of the QepA and QepA2 transporters to fl uoroquinolone resistance will be 
described in the next major section.  

  Fosfomycin     This agent is increasingly being recognized for its role in therapy 
against multidrug-resistant pathogens [ 18 ,  89 ]. However, plasmid-borne  fos  genes 
have been well documented to be responsible for fosfomycin resistance in both 
Gram-positive and Gram-negative bacteria [ 90 ,  91 ]. The  fos -encoded thioltransfer-
ases cause enzymatic inactivation of fosfomycin [ 90 ].  fos  genes are divided into 
various groups such as  fosA ,  fosB , and  fosC . Of importance,  fos  genes are also fre-
quently observed in MDR plasmids [ 60 ,  92 ].  fosA3 -containing plasmids of  E. coli  
from China and the USA also carry CTX-M-65 β-lactamase gene and  rmtB  methyl-
ase gene as well as insertion sequences [ 39 ,  91 ]. Another conjugative plasmid 
derived from extensively drug-resistant  Enterobacter cloacae  carries  fosA3 , NDM-1 
β-lactamase gene, and  armA  aminoglycoside resistance gene [ 93 ].  

  Glycopeptides     Transferable resistance to vancomycin and teicoplanin is well rec-
ognized [ 40 ,  94 – 98 ]. Several vancomycin resistance determinants such as  vanA  are 
associated with mobile genetic elements (e.g., typically Tn 1546 ), which also exert 
an important role in the evolution of vancomycin resistance. For example, plasmid 
pLW1043 of  S. aureus  encoded six copies of the IS256 transposase, vancomycin 
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resistance-associated  vanRSHAXYZ  genes, and other resistance genes  dfrA  (for tri-
methoprim resistance),  qacC  (antiseptic resistance),  aacA - aphD  (aminoglycoside 
resistance), and  blaZ  (β-lactam resistance) [ 40 ]. Van resistance determinants (such 
as  vanA ,  vanB , and  vanC ) cause replacement of the terminal D-alanine of the cell 
wall peptidoglycan precursors with D-lactate or D-serine and consequently result in 
reduced binding of drugs to the peptidoglycan precursors [ 99 ]. In enterococci, in 
response to a pheromone peptide, pheromone-responsive plasmids help acquisition 
of resistance genes [ 100 ], although pheromone produced by commensal enterococci 
can also result in killing of multidrug-resistant enterococci [ 101 ].  

  Lincosamides and Macrolides     Plasmid-mediated transferable resistance to 
these classes of agents is well known [ 52 ,  102 – 104 ]. One example is the plasmid- 
mediated inducible resistance to three structurally unrelated classes of antimicro-
bials, macrolides, lincosamides, and streptogramin B [ 41 ,  105 ]. These plasmids 
contain genes encoding erythromycin ribosome methylases (Erm) that lead to the 
posttranscriptional modifi cation of the 23S rRNA by the adenine- N6  methyltrans-
ferase. The binding site in the 50S ribosomal subunit for erythromycin overlaps 
the site of other macrolides, lincosamides, and streptogramin B, resulting in 
cross-resistance to three antimicrobial classes [ 106 ]. The expression of  erm  genes 
can also often be inducible by an antibiotic such as erythromycin due to a deregu-
lation of posttranscriptional attenuation [ 107 ]. In addition to Erm ribosomal 
methylases, several other macrolide resistance proteins are also encoded by plas-
mids such as Ere esterase or Mph phosphotransferase (that cause macrolide inac-
tivation) and Mef, Mel, and Msr exporters [ 31 ,  52 ,  104 ,  108 ]. The different 
resistance determinants play synergistic roles in raising macrolide resistance level 
[ 52 ]. A newly reported plasmid- containing methylase-encoding  erm ( T ) conferred 
a ≥128-fold increase of the MIC values of azithromycin, erythromycin, clindamy-
cin, and lincomycin [ 109 ]. The role of effl ux pumps Mef, Mel, and Msr exporters 
in macrolide resistance [ 31 ,  108 ] will be described below in the section on drug 
effl ux pumps.  

  Oxazolidinones, Pleuromutilins, and Streptogramins     The abovementioned 
 cfr - encoding plasmids also mediate resistance to oxazolidinones due to the modi-
fi cation of 23S rRNA and the overlapping mode of action of these agents with that 
of amphenicols [ 36 ,  81 ,  110 ]. A new plasmid-borne gene dubbed  optrA  which 
encodes an exporter is involved in resistance to oxazolidinones and amphenicols 
(see Drug Effl ux Pumps section below) [ 42 ,  85 ]. Either Lsa(E)- or Vga(E)-
containing plasmids mediate resistance to pleuromutilins, lincosamides, and strep-
togramins [ 43 ,  44 ].  

  Polyketides     The plasmid-borne  mupA  gene mediates high-level resistance to 
mupirocin (≥120-fold MIC increase) in  S. aureus , in contrast to chromosomal 
mutation- related low-level resistance (2- to 32-fold MIC increase) [ 111 ]. The  mupA  
gene encodes a modifi ed isoleucyl tRNA synthetase. Diversity of  mupA -containing 
plasmids has been noted, and these plasmids often contain mobile genetic elements 
and can be conjugative [ 111 ,  112 ].  
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  Polymyxins     Until recently [ 45 ], resistance to polymyxins had been only known to 
be caused by chromosomal mutations that affect structure of lipopolysaccharide, 
the primary target of polymyxins [ 113 ]. For instance, the changes from chromo-
somally encoded PhoPQ and PmrAB systems can modify the lipopolysaccharide-
related outer membrane barrier and subsequently mediate resistance to polymyxins 
[ 114 – 116 ]. The newly discovered colistin resistance plasmid named pHNSHP45 
was isolated from  E. coli  of pig origin and was conjugatively transferred to and 
maintained in  K. pneumoniae  and  P. aeruginosa  [ 45 ]. It produced, respectively, 8- 
to16-fold and four- to eightfold increases in the MIC values of colistin (mostly to 
8 μg/ml) and polymyxin B (to 4 μg/ml) for various transconjugants. This plasmid 
contains a gene dubbed  mcr - 1  that encodes a phosphoethanolamine transferase for 
modifi cation of lipopolysaccharide structure via the addition of phosphoethanol-
amine to lipid A [ 45 ]. The  mcr - 1  gene was found to be in  E. coli  isolates, respec-
tively, derived from 15 %, 21 %, and 1 % of raw meat, animal and human inpatient 
samples [ 45 ].  

  Rifamycins     Plasmids encoding ADP-ribosyltransferases [ 46 ,  47 ] or effl ux pumps 
[ 117 ] have been reported to confer rifamycin resistance via drug inactivation or 
extrusion. The  arr  genes are often located in a resistance gene cassette containing 
integron [ 46 ,  47 ].  

  Sulfonamides and Trimethoprim     Resistance to these anti-folate agents is also 
frequently attributable to plasmids carrying  sul  genes or  dfrA  genes, which encode, 
respectively, dihydropteroate synthase and dihydrofolate reductase to provide an 
alternate folate metabolic pathway [ 118 ]. These resistance genes often exist as part 
of mobile drug resistance gene cassettes [ 119 ]. For instance,  sul  is one of the many 
resistance genes encoded by the mega-plasmid that produces NDM-1 metallo 
β-lactamase described earlier [ 29 ].  sul  genes are among those frequently identifi ed 
resistance genes in various environments [ 120 ]. The vancomycin resistance plasmid 
pLW1043 described earlier in this chapter also carries  dhfr  gene for trimethoprim 
resistance [ 40 ].  

  Tetracyclines     Resistance to tetracyclines is often mediated by plasmids in both 
Gram-positive and Gram-negative species with involvement of active effl ux sys-
tems (see next section below) and ribosomal protection [ 121 ]. The latter includes 
 tet ( M ),  tet ( O ), and  tet ( Q ) determinants encoding proteins that reduce tetracycline 
binding to its target [ 48 ,  122 ].  

  Biocides and Disinfectants     These agents such as benzalkonium chloride and 
chlorhexidine are frequently used in hospital infection control or in preserving food 
products. Exposure to biocides may also select resistance to clinically used antimi-
crobial agents [ 123 ]. Resistance to these agents is attributed to multiple  mechanisms 
including effl ux pumps [ 124 ,  125 ]. Plasmid-mediated resistance to biocides consti-
tutes a major mechanism and include effl ux pumps such as Qac pumps to be dis-
cussed in the next section.    
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23.3     Plasmid-Encoded Drug Effl ux Pumps 

 The fi rst drug effl ux pump discovered in bacteria, i.e., tetracycline-specifi c Tet 
effl ux pump, is plasmid encoded [ 126 – 128 ]. The discovery of this mechanism of 
energy-dependent active extrusion of drugs from bacterial cells was a milestone in 
resistance studies and expanded our understanding of biochemical mechanisms of 
resistance. To date, bacteria are known to contain a large number of plasmid- 
encoded drug effl ux pumps that belong to several transporter families and contrib-
ute to clinically relevant antimicrobial resistance [ 125 ,  129 ]. 

23.3.1     Major Facilitator Superfamily 

 Most known plasmid-borne drug effl ux pumps are members of the major facilitator 
superfamily (MFS), whose characteristics are described in Chap.   2     and have been 
also reviewed elsewhere [ 130 – 132 ]. 

  Tet Effl ux Pumps     These pumps are widely found in both Gram-positive and 
Gram-negative bacteria and include more than two dozen members such as Tet(A) 
to Tet(E), Tet(G), Tet(H), Tet(J), Tet(K), Tet(V), Tet(Y), Tet(Z), Tet(30), Tet(31), 
Tet(33), Tet(35), Tet(38), Tet(39) to Tet(43), TetAB(46), and Tet(47) (  http://faculty.
washington.edu/marilynr/tetweb1.pdf    . Accessed on March 20, 2016). A number of 
plasmid-borne  tet  genes have been revealed to encode Tet effl ux pumps that mediate 
high-level resistance to tetracyclines [ 129 ,  133 ]. The different Tet proteins may vary 
in their substrate specifi cities. Many Tet pumps such as Tet(A) confer resistance to 
chlortetracycline, oxytetracycline, and tetracycline but not the lipophilic minocy-
cline. However, the latter is subject to the extrusion by Tet(B) pump [ 122 ]. 
Glycylcyclines were developed to counter the effect of Tet effl ux pumps (and ribo-
somal protection) and are not the substrates of these pumps [ 134 ].  tet -containing 
plasmids often carry other resistance genes such as  sul ,  fl oR , and  strA / strB  [ 135 ] 
and may also have  tetR  gene (typically seen in various transposons such as Tn10) 
[ 135 – 138 ] that encode a repressor (the prototype of the TetR repressor family [ 139 ]) 
to inhibit the expression of  tet  effl ux gene. Tetracycline binds TetR and thus induces 
expression of the effl ux pump [ 137 ].  

  FloR Pump     This pump confers resistance to amphenicols [ 34 ,  140 ]. The gene 
 fl oR  was fi rst found in a transferable R plasmid in fl orfenicol-resistant fi sh patho-
gen  Pasteurella piscicida  [ 141 ] and subsequently was also located in MDR plas-
mids isolated from a number of animal-derived bacteria including  Salmonella  
[ 78 ],  E. coli  [ 60 ,  138 ,  140 ,  142 ],  Actinobacillus pleuropneumoniae  [ 143 ], 
 Aeromonas salmonicida  [ 144 ],  Haemophilus parasuis  [ 145 ], and  Mannheimia 
haemolytica  [ 146 ].  
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  Mef Pumps     These pumps include Mef(A), Mef(B), and Mef(I), are encoded by 
conjugative genetic elements including plasmids, and provide inducible macrolide 
resistance in streptococci [ 77 ,  147 ,  148 ] or  E. coli  [ 119 ]. The  mef  genes are gener-
ally part of the MDR integron/transposon-containing gene cassettes [ 77 ,  119 ]. A 
 mef  gene and an ABC exporter-encoding gene  mel  was also found to form an operon 
on mobile genetic elements to produce dual effl ux pumps Mef and Mel that are 
inducible by erythromycin [ 147 ,  149 ].  

  QacA and QacB Pumps     Resistance to antiseptics such as monovalent quater-
nary ammonium compounds (e.g., benzalkonium chloride) and divalent cations 
(e.g., chlorhexidine) is frequently mediated by MDR plasmids containing  qac  
effl ux pump genes such as  qacA  and  qacB  [ 150 – 153 ].  qac  plasmids are widely 
distributed in methicillin-resistant  S. aureus  [ 154 – 156 ]. In fact, a description of 
the  qacB - containing plasmid dates back to 1951. It was the earliest known 
 S. aureus  plasmid encoding a drug effl ux pump [ 157 ].  qacA  and  qacB  genes differ 
only by six to nine bases; yet, their proteins produce different phenotypes with 
QacA displaying higher activity in the effl ux of divalent cations [ 158 ,  159 ]. The 
initially discovered  qacA  gene was located on a 28-kb plasmid (called pSK1) 
[ 160 ] which provided resistance to multiple biocides including quaternary ammo-
nium compounds, chlorhexidine, and the intercalating dyes acrifl avine and ethid-
ium bromide [ 153 ]. A  qacB  plasmid of  S. aureus  also contains  aacA - aphD  
aminoglycoside-modifying enzyme genes,  fosB  fosfomycin resistance gene, cad-
mium resistance protein gene, and transposase gene [ 161 ]. Several variants of 
plasmid-encoded QacB have been described with one variant being able to confer 
staphylococcal resistance to fl uoroquinolones (fourfold increase of norfl oxacin 
and ciprofl oxacin MICs, but no change in levofl oxacin MIC values) [ 159 ]. It is 
important to note that a repressor gene dubbed  qacR  is often located upstream of 
either  qacA  or  qacB  gene and transcribed divergently. QacR negatively controls 
the expression of  qacA  or  qacB  by binding to the DNA upstream of  qacA  or  qacB . 
Certain lipophilic cations can bind to QacR and thus derepress or induce the  qacA  
or  qacB  expression [ 152 ].  

  Qep Pumps     These pumps including QepA and QepA2 are encoded by MDR 
plasmids that are mostly of  E. coli  origin and confer fl uoroquinolone-specifi c 
resistance [ 20 ,  162 ,  163 ]. Cloned  qepA  provides resistance to ten fl uoroquino-
lone agents of various generations (2- to 16-fold MIC increase) in a hypersuscep-
tible  E. coli  host with virtually no impact on susceptibility to non-fl uoroquinolone 
agents including ampicillin, erythromycin, kanamycin, acrifl avine, benzalko-
nium, crystal violet, deoxycholate, ethidium bromide, rhodamine 6G, and sodium 
dodecyl sulfate [ 162 ]. QepA pump plays a synergistic role with the chromosomal 
fl uoroquinolone resistance mechanism to raise the resistance level [ 164 ]. The 
 qepA  or  qepA2  gene often  coexists in the same plasmids with transposon ele-
ments and other resistance genes including  bla   CTX - M  ,  aac ( 6 ′)- Ib - cr , and/or  qnr  
genes [ 165 ,  166 ].   
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23.3.2     Resistance-Nodulation-Cell Division Superfamily 

 The drug effl ux systems of the resistance-nodulation-cell division (RND) super-
family are generally chromosomally encoded and are predominately found in 
Gram- negative bacteria, and their importance in MDR is examined in various 
chapters of this book. Since the RND pump systems are typically a tripartite 
effl ux complex requiring three gene products, the discovery of RND pump 
genes on plasmids was quite surprising. However, there is an increasing occur-
rence of plasmid-encoded multicomponent effl ux systems including RND 
pumps. 

  OqxAB     In 1999, a 52-kb plasmid named pOLA52 was obtained from a swine 
 E. coli  isolate that was resistant to olaquindox, an animal feed additive [ 167 ]. 
This plasmid encoded two gene products (dubbed OqxAB) exhibiting high 
homology to AcrAB effl ux proteins (that are, respectively, a periplasmic adap-
tor protein and a pump). The plasmid also has another open-reading-frame 
downstream of  oqxAB  with a divergent transcriptional direction that encodes a 
repressor (OqxR) [ 168 ,  169 ]. Although lacking an OM protein gene from the 
plasmid, OqxAB function requires chromosomally encoded TolC protein, 
which is also an indispensable component of most chromosomal RND systems 
of  E. coli  (see Chap.   9    ). Like most chromosomal RND pumps, OqxAB also 
displays a broad substrate specifi city that includes chloramphenicol, fl uoroqui-
nolones, nalidixic acid, trimethoprim, olaquindox, benzalkonium chloride, and 
sodium dodecyl sulfate (cloned  oqxAB  genes increase the MIC values of these 
agents by 8- to128-fold) [ 167 ,  170 ]. pOLA52 also carries virulence genes such 
as those for type IV secretion system. Similar to pOLA52 MDR transferable 
plasmid, newly identifi ed  oqxAB  plasmids carry other resistance genes such as 
a CTX-M gene or  fl oR  gene [ 61 ,  171 ]. These plasmids are mostly observed in 
 E. coli  [ 61 ,  172 – 175 ] but also in other  Enterobacteriaceae  such as  Salmonella  
spp. and  K. pneumoniae  [ 171 ,  176 – 178 ]. The  oqxAB - oqxR - containing chromo-
some of  K. pneumoniae  has been considered as a possible source of plasmid-
borne  oqxAB  [ 179 ]. Still, additional Gram-negative bacteria such as  Enterobacter 
aerogenes ,  E. cloacae , and  Serratia marcescens  were also recently found to 
contain  oqxAB - oqxR  genes, but the  oqxAB  expression in these bacteria was 
minimal and appeared not to contribute to quinolone resistance [ 169 ]. A newly 
available study further revealed that plasmid-mediated OqxAB is also involved 
in resistance to nitrofurantoin and facilitates to high-level nitrofurantoin resis-
tance [ 180 ].  

  SilCBA/CusCBA     A 180-kb mega-plasmid, pMG101, was isolated from a 
multidrug- resistant  Salmonella  derived in 1973 from a severe burn patient in the 
USA [ 181 ,  182 ]. The plasmid conferred resistance to silver salts (8- to 16-fold 
silver nitrate MIC increase), ampicillin, chloramphenicol, streptomycin, and tet-
racycline [ 181 ]. Being an MDR plasmid, pMG101 produces three gene products 

23 Plasmid-Encoded Drug Effl ux Pumps

http://dx.doi.org/10.1007/978-3-319-39658-3_9


606

SilCBA with high homology to an RND system comprised of the antiporter SilA, 
membrane fusion protein, and outer membrane channel protein SilC. It also encodes 
an ABC transporter SilP and periplasmic metal-binding protein SilE as well as a two- 
component regulatory system SilRS [ 182 ]. SilABC and SilP likely play a synergistic 
role in the extrusion of silver salts. pMG101 is the earliest known RND pump 
encoded by an MDR plasmid. However, the complete nucleotide sequence of this 
plasmid is not available. Using gene-specifi c primers, amplifi cation of  silCBA ,  silE , 
 silP , and  silRS  was obtained from several plasmids of silver-resistant  E. cloacae  
isolates of human and veterinary origin [ 183 ]. The same group also reported the 
detection of  silE  in methicillin-resistant  S. aureus  and other staphylococci with yet 
undetermined location of  silE  [ 184 ]. These studies warrant the need to investigate the 
role of  sil  genes in silver resistance, in particular because silver-derived agents are 
being actively pursued as novel antimicrobials in combating drug resistance.  

 Recently, a study conducted in China has characterized a 273-kb conjugative 
IncH1 MDR mega-plasmid named pEC5207 that was isolated in 2011 from an 
 E. coli  strain of swine origin [ 185 ]. The sequence of this plasmid showed the pres-
ence of a cluster of genes ( silP - copG - cusA - silB - cusC - cusR - cusS - silE ) [ 185 ] that 
had an identical arrangement in comparison with a region containing  silP - orf - silA -
 silB - orf -   silC - silR - silS - silE  of plasmid isolated in 1973 from  Salmonella  spp. in the 
USA [ 182 ]. This gene cluster is also present in another MDR 227-kb mega-plasmid 
pSH111_227 of  Salmonella  origin reported in the USA in 2011 (GenBank accession 
JN983042) [ 185 ]. Specifi cally, these genes encode RND-type effl ux system CusC- 
SilB- CusA, a two-component regulatory system CusRS, ABC transporter SilP, and 
silver-binding protein SilE [ 185 ]. It is important to note that this plasmid-encoded 
CusA-SilB-CusF-CusC-CusR-CusS is organizationally identical to the chromo-
somally encoded CusCFBA-CusRS systems of  E. coli  (see Chap.   9     on  E. coli  effl ux 
pumps). In addition, pEC5207 also contain genes encoding homologs to CopABCE 
(involved in copper resistance), TerZABCDEF (tellurium resistance), EmrE (SMR- 
type pump for antiseptic resistance), and CMY-2 β-lactamase (β-lactam resistance), 
as well as the genes for H-NS regulator and RamA activator.  E. coli  transformants 
with pEC5207 were demonstrated to confer resistance to silver (80-fold increase of 
AgNO 3  MIC) and copper (1.5-fold increase of CuSO 4  MIC) [ 185 ]. All these fi nd-
ings with plasmids pMG101, pEC5207 and pSH111_227, and  E. coli  genome sug-
gest the importance of CusCBA-CusRS/SilCBA-SilRS for persistency of  E. coli  or 
 Salmonella  spp. in diverse environments. 

  Other RND Systems     Plasmid DNAs from uncultured bacteria in wastewater treat-
ment plant contain genes with homologs of chromosomal RND pump genes of 
 E. coli  and  P. aeruginosa  (especially  mexEF - oprN ) [ 186 ]. Several large plasmids 
have also been found to contain RND pump genes. Two conjugative plasmids of ca. 
63 and 67 kb were isolated in 1993 as mercury resistance plasmids due to plasmid- 
borne  mer  resistance genes. However, these plasmids also encode gene products 
showing homology to MexEF-OprN components of  P. aeruginosa  [ 187 – 189 ]. 
 E. coli  carrying one of these two plasmids displayed no altered drug susceptibility 
to chloramphenicol, nalidixic acid, and trimethoprim. An IncHI1 plasmid from an 
extremely drug-resistant  Citrobacter freundii  isolated from a patient returning from 
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India [ 31 ] contained genes encoding carbapenemase NDM-1, ArmA 16S rRNA 
transferase, and an RND system (homologous to AcrR-MexAB-CusC which cor-
respond, respectively, to an effl ux expression repressor, a membrane fusion protein, 
an effl ux transporter, and an outer membrane channel protein) [ 190 ].   

23.3.3     Small Multidrug Resistance Family 

 The most studied chromosomally encoded effl ux pump of this family, EmrE of 
 E. coli , mediates resistance to antiseptics (disinfectants or biocides). Similarly, 
plasmid- encoded small multidrug resistance (SMR) exporters such as Smr, QacC, 
QacD, QacF, QacH, and QacJ and also involved in biocide resistance. They are mostly 
found in staphylococci [ 152 ,  155 ,  191 – 194 ] but also in Gram-negative bacteria [ 195 ]. 
Smr-type  qac  genes were also found in enterococci and  Listeria monocytogenes  
[ 152 ]. A plasmid-encoded QacZ from  E. faecalis  confers resistance to quaternary 
ammonium compounds [ 196 ]. A small 2.7-kb Smr pump-encoding plasmid of 
 S. aureus  confers resistance to quaternary ammonium compounds [ 51 ]. An MDR 
plasmid derived from uncultured bacteria contains an  smr  gene for QacF effl ux pump, 
OXA-2 β-lactamase gene,  aadA4  spectinomycin/streptomycin resistance gene, and 
 sul1  sulfonamide resistance gene and can be transferred to  E. coli  [ 197 ]. A recent 
review examined the phylogenetic relation of  qac  genes that encode either SMR fam-
ily pumps or MFS-type pumps with SMR genes grouping into four clusters [ 152 ].  

23.3.4     ATP-Binding Cassette Superfamily 

 The transporters of the ATP-binding cassette (ABC) superfamily are widely distrib-
uted in bacteria. The abovementioned plasmid pMG101 contains ABC silver 
exporter gene [ 182 ]. Another 48-kb MDR plasmid, pRSB101, from an activated 
sludge of a wastewater treatment plant contains 20-kb resistance region located in a 
Tn402-like transposon. This plasmid encodes an ABC-binding protein, an ABC 
transporter, and a periplasmic membrane fusion protein that may possibly form an 
effl ux complex [ 198 ]. In addition, it also encodes  sul1  for sulfonamide resistance, 
 dhfr1  gene for trimethoprim resistance,  aadA2  for spectinomycin/streptomycin 
resistance, a  bla   TLA - 2   β-lactamase gene,  mph ( A ) for macrolide resistance (including 
 mph [ R ] regulatory protein gene), and  tet ( A ) for tetracycline resistance (including 
 tetR  repressor gene) [ 198 ]. In a recent study from the USA that investigated  bla   CTX -

 M  -containing IncF plasmids of  E. coli , several MDR plasmids (155- to 172-kb) were 
shown to contain genes for ABC transporter(s) and ABC transporter ATB-binding 
protein(s), which were considered as putative virulence factors [ 199 ]. To date, mul-
tiple plasmid-encoded ABC transporters have been reported and include Lsa(E), 
Msr(A), Mel, and Vga(E) (Table  23.2 ). Either Msr(A) or Mel can be coproduced 
with Mph2 from a macrolide resistance cluster of the same MDR plasmid from 
 S. aureus  [ 208 ] or Gram-negative bacteria ( E. coli ,  C. freundii ,  Providencia stuartii , 
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   Table 23.2    Examples of major plasmid-encoded drug effl ux pumps   

 Transporter 
family/pump 

 Plasmid 
(GenBank 
accession) 

 Bacterial 
species 

 Plasmid-borne resistance 
phenotype (resistance gene)  Reference 

  MFS  
 FloR  R plasmid 

(NG_034640) 
  P. piscicida   Florfenicol ( fl oR ), 

sulfonamides ( dhfrIX ) 
 [ 141 ] 

 QacA  pSK1 
(NC_014369) 

  S. aureus   Antiseptic ( qacR qacA ), 
aminoglycoside 
( aacA - aphD ) 

 [ 160 ] 

 QacB  pTZ2162 
(NC_010419) 

  S. aureus   Antiseptic ( qacR qacB ), 
aminoglycoside ( aacA -
 aphD ), fosfomycin ( fosD ), 
arsenate ( arsCBR ), 
cadmium ( cadD ) 

 [ 161 ] 

 QepA  pHPA 
(AB263754) 

  E. coli   Fluoroquinolones ( qepA ) 
β-lactams ( bla   TEM - 1  ), 
aminoglycosides ( rmtB ) 

 [ 38 ] 

 TetA(A)  pRH-1238 
(KR091911) 

  Salmonella  
Corvallis 

 β-Lactams (including 
carbapenems) ( bla  NDM-1 , 
 bla  CMY-16 ), aminoglycosides 
( aac ( 6 ′)- Ib ,  aadA5 ,  aphA6 , 
 strA / B ), amphenicols ( fl oR ), 
fosfomycin ( fosA3 ), 
macrolides ( mphA ), 
sulfonamides ( sulI ,  sulII ), 
tetracyclines ( tetA ( A )), 
trimethoprim ( dfrA7 ), 
mercury ( merA ) 

 [ 32 ] 

 TetA(B)  pHCM1 
(AL513383) 

  Salmonella  
Typhi 

 Tetracyclines ( tetR - 
 tetA ( B )), chloramphenicol 
( cat ), β-lactams ( bla ), 
sulfonamides ( sulII ), 
streptomycin ( strA / B ) 

 [ 200 ] 

  RND  
 MexAB-CusC  pNDM-CIT 

(JX182975) 
  C. freundii   β-Lactams ( bla   MBL  , 

 bla   NDM - 1  ), aminoglycoside 
( aadA2 ,  armA ), 
chloramphenicol ( cat ), 
macrolides ( mel ,  mph2 ), 
sulfonamides ( sulI ), 
trimethoprim ( dfrA12 ), 
antiseptics ( qacEΔ1 ), 
tellurium ( terABCDEFWY ) 

 [ 31 ] 

 MexCD-OprJ  pB4 (AJ431260)  Uncultured 
bacterium 

 β-Lactams ( blas   NPS - 1  ), 
spectinomycin and 
streptomycin ( strA / B ), 
chromate ( chrBAC ) 

 [ 201 , 
 202 ] 
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Table 23.2 (continued)

 Transporter 
family/pump 

 Plasmid 
(GenBank 
accession) 

 Bacterial 
species 

 Plasmid-borne resistance 
phenotype (resistance gene)  Reference 

 OqxAB  pOLA52 
(EU370913) 

  E. coli   β-Lactams ( bla   TEM  ), 
carbadox, nitrofurantoin, 
and olaquindox ( oqxAB ), 
sulfonamides ( sulI ) 

 [ 167 , 
 180 , 
 203 – 205 ] 

 SilCBA  pMG101 
(AF067954) 

  Salmonella  
Typhimurium 

 Ampicillin, 
chloramphenicol, 
streptomycin, tetracycline, 
silver 

 [ 181 , 
 182 ,  206 ] 

 SilCBA/
CusCBA 

 pEC5207 
(KT347600) 

  E. coli   β-Lactams ( bla   CMY - 2  ), 
aminoglycosides ( aacA7 ), 
sulfonamides ( sulI ), silver 
( silP -  cusA -  silB - cusC - silE - 
 cusRS ), copper ( copABCE ), 
antiseptic ( emrE ), tellurium 
( terABCDEFWXYZ ) 

 [ 185 ] 

  SMR  
 QacF  pB8 (AJ863570)  Uncultured 

bacterium 
 Quaternary ammonium 
compounds ( qacF ), 
ethidium bromide 
( qacEΔ1 ), β-lactams 
( bla   OXA - 2  ), aminoglycosides 
( aadA4 ), sulfonamides 
( sul1 ) 

 [ 197 ] 

 QacZ  pTEF1 
(AE016833) 

  E. faecalis   Quaternary ammonium 
compounds ( qacZ ), 
aminoglycosides ( aac - 6 ′) 

 [ 196 , 
 207 ] 

 Smr  pSM52 
(NC_025022) 

  S. aureus   Quaternary ammonium 
compounds ( smr ) 

 [ 51 ] 

  ABC  
 ABC effl ux 
complex 

 pRSB101 
(AJ698325) 

 Uncultured 
bacterium 

 β-Lactams ( bla   TLA - 2  ), 
aminoglycosides ( aadA2 ), 
macrolides ( mph ( A ), 
 mph ( R )), sulfonamides 
( sul1 ), trimethoprim 
( dhfr1 ), tetracyclines 
( tet ( A ),  tetR ) 

 [ 198 ] 

 Lsa(E)  pV7037 
(NG_041616) 

  S. aureus   Pleuromutilins, 
lincosamides and 
streptogramins ( lsa ( E )), 
aminoglycosides ( aacA -
 aphD ,  aadE ), lincosamides 
( lnu ( B )), macrolides ( ermB ) 

 [ 44 ] 

(continued)
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 Salmonella  Paratyphi B, and  A. baumannii ) [ 31 ,  108 ]. Resistance to three structur-
ally unrelated classes of pleuromutilins, lincosamides, and streptogramins is related 
to Lsa(E) or Vga(E) ABC transporters [ 43 ,  44 ].

   A recent new study described a plasmid (named pE349) of oxazolidinone- 
resistant  E. faecalis  of human origin [ 42 ]. This plasmid, 36 kb in size, is conjugative 
and encodes an ABC transporter dubbed OptrA that is almost identical to a known 
putative ABC transporter of  E. faecalis  and  E. faecium . OptrA shows good phylo-
genetic clustering with several staphylococcal ABC transporters such as Lsa(E) and 
Vga(A) that are involved in resistance to lincosamides, pleuromutilins, and strepto-
gramins. Although pE349 also contains the  fexA  gene that confers resistance to 
amphenicols, the cloned  optrA  gene alone produces resistance to linezolid (four- to 
eightfold MIC increase), tedizolid (fourfold IMC increase), and fl orfenicol (16-fold 
MIC increase) in  E. faecalis  and  S. aureus  [ 42 ]. According to current clinical resis-
tance breakpoints for linezolid and chloramphenicol from the Clinical and 
Laboratory Standards Institute [ 209 ], the  optrA -containing plasmid suffi ciently 
changes the interpretive category from susceptible to resistant for enterococci [ 42 ]. 
Of concern, a further survey of 885 enterococci revealed that  optrA  is fi ve- to ten-
fold more frequently present in  E. faecalis  and  E. faecium  of food animal origin 
(20 % and ca. 6 %, respectively) than those of human sources (ca. 4 % and 0.6 %, 
respectively) [ 42 ]. An expanded survey of human hospital-derived 1,159 entero-
cocci in China for the  optrA  gene showed prevalence of  optrA  in 34 (2.9 %) tested 
isolates that had variable molecular typing characteristics [ 85 ].   

23.4     Concluding Remarks 

 Plasmid-mediated high-level resistance to all major clinically relevant antibiotics 
and antiseptic agents has been well documented, with the fi rst bacterial drug effl ux 
pump being plasmid encoded. More importantly, multiple drug resistance 

Table 23.2 (continued)

 Transporter 
family/pump 

 Plasmid 
(GenBank 
accession) 

 Bacterial 
species 

 Plasmid-borne resistance 
phenotype (resistance gene)  Reference 

 Mel  pRSB105 
(DQ839391) 

 Uncultured 
bacterium 

 β-Lactams ( bla   OXA - 10  ), 
macrolides ( mel ,  mph ), 
sulfonamides ( sulI ), 
trimethoprim ( dfrB2 ), 
antiseptics ( qacEΔ1 ) 

 [ 108 ] 

 Msr(A)  pMS97 
(AB092817) 

  S. aureus   Macrolides ( msr ( A ),  mph )  [ 208 ] 

 OptrA  pE349 
(KP399637) 

  E. faecalis   Florfenicol, linezolid, and 
tedizolid ( optrA ) 

 [ 42 ] 

 Vga(E)  pSA-7 
(NG_041699) 

  S. cohnii   Pleuromutilins, 
lincosamides, and 
streptogramins ( vga ( E )) 

 [ 43 ] 
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determinants often coexist on the same plasmids with the presence of various mobile 
elements (insertion sequences, integrons, and/or transposons). Drug resistance plas-
mids are not limited to encoding only the single-component drug effl ux pumps such 
as the diverse tetracycline-specifi c Tet pumps. They are increasingly found to carry 
genes encoding multicomponent drug effl ux systems such as RND transporters 
involved in MDR. Since plasmids play a critical role in the evolution of resistance 
and in the dissemination of resistant bacteria, strategies to inhibit plasmid transfer 
could have potential implications in public health. Indeed, a recent study showed 
the feasibility to minimize resistance spread by blocking bacterial conjugation via 
the use of synthetic 2-alkynoic fatty acids [ 210 ]. Moreover, the enrichment of plas-
mid-containing bacteria in the presence of antimicrobial selective pressure again 
supports the signifi cance of prudent antimicrobial use in any setting. Meanwhile, 
due to the widespread prevalence of plasmid-mediated resistance to antiseptics in 
hospitals, appropriate infection control measures including optimized disinfectant 
or biocide use should be taken into consideration in order to reduce the prevalence 
and spread of resistant pathogens. Lastly, several plasmid-encoded drug effl ux 
pumps such as FloR, Lsa(E), OqxAB, OptrA, and Vga(E) were fi rst identifi ed in 
isolates of food animal origin, highlighting the important role of antimicrobial stew-
ardship in veterinary medicine.     
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