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    Chapter 19   
 Antimicrobial Resistance and Drug Effl ux 
Pumps in  Helicobacter                      

     Jennifer     Li     and     Xian-Zhi     Li    

    Abstract      Helicobacter  spp. play important etiological roles in the pathogenesis of 
gastroenteric diseases such as in the case of  Helicobacter pylori . Despite wild-type 
strains of  H. pylori  being generally susceptible to multiple antimicrobial agents, 
increasing prevalence of antimicrobial resistance in this species constitutes a key 
risk factor that affects the effective therapy of  H. pylori  infections. Resistance to 
anti- H. pylori  agents is mainly mediated by multiple drug-specifi c mechanisms. 
However, drug effl ux systems, represented by the Hef pumps of the resistance- 
nodulation- cell division superfamily, are implicated in both intrinsic and acquired 
multidrug resistance as well as in bile salt/nitrosative stress response and gastric 
colonization of these pathogens. This chapter provides an overview of antimicrobial 
resistance and mechanisms in  Helicobacter  with an emphasis on drug effl ux 
systems.  
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  •   Bile salts   •   HefABC   •   HefDEF   •   HefGHI  

19.1       Introduction 

  Helicobacter  spp. are Gram-negative bacteria belonging to the  Epsilonproteobacteria  
class. The representative species,  Helicobacter pylori , is believed to infect at least 
50 % of the world’s human population [ 1 ]. Although most individuals with  H. pylori  
infection do not experience any clinical complications, these infections are often 
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implicated in the development of chronic gastritis, peptic and duodenal ulcers, as 
well as gastric cancers [ 1 ,  2 ]. Indeed,  H. pylori  has been identifi ed as a carcinogen 
[ 3 ].  H. pylori , along with additional non- H. pylori Helicobacter  species, can be 
divided into three groups (i.e., gastric, enterohepatic, and unsheathed fl agella) based 
on 16S rRNA sequence similarity [ 4 ]. Although many of these species have primary 
animal hosts, some are also known to be associated with gastroenteric and/or hepatic 
diseases in humans and include, for example,  Helicobacter hepaticus ,  Helicobacter 
bilis , and  Helicobacter cinaedi  [ 4 – 8 ]. Furthermore, the clinical signifi cance of 
 Helicobacter  spp. in the development of gastrointestinal diseases has been supported 
by microbiome data generated for gut microbiota [ 9 ,  10 ].  Helicobacter  species can 
persist and cause chronic infl ammation in human gut, thus contributing to the patho-
genesis of various gastroenteric diseases [ 7 ,  8 ,  10 ,  11 ]. Antimicrobial therapy is 
needed for the eradication of these bacterial infections; however, the antimicrobials 
available for the treatment of these infections are quite limited, and a combination 
therapy is required to achieve optimal clinical effectiveness. Moreover, increasing 
prevalence of antimicrobial resistance has been observed in  H. pylori  against agents 
used in  H. pylori  treatment emerges as a crucial issue when tackling  H. pylori  infec-
tions [ 12 ]. Drug effl ux pumps are one of many mechanisms increasingly recognized 
to play an important role in the emerging resistance in  H. pylori  and other species. 
Drug effl ux pumps of various known transporter families are inherently encoded in 
 Helicobacter  genomes. In this chapter, we examine the current status of antimicro-
bial resistance in this genus with an emphasis on drug effl ux pumps.  

19.2     Antimicrobial Susceptibility, Therapeutic Options, 
and Resistance Prevalence 

 Antimicrobial susceptibility studies of  Helicobacter  spp. have been mostly limited 
to  H. pylori , which displays signifi cant  in vitro  susceptibility to a number of antimi-
crobial agents including β-lactams, macrolides, fl uoroquinolones, nitroimidazoles, 
nitrofurans, and tetracyclines [ 1 ,  13 ,  14 ]. Wild-type strains of  H. pylori  generally 
have greater susceptibility to antimicrobial agents compared to  Escherichia coli  and 
 Pseudomonas aeruginosa , with certain exceptions such as polymyxins, glycopep-
tides, nalidixic acid, sulfonamides, trimethoprim, and streptogramins (Table  19.1 ) 
[ 13 ,  17 ]. The lowered pH within the gastrointestinal tract, the habitat of  H. pylori , 
has a negative impact on antimicrobial activity of β-lactams, macrolides, tetracy-
cline, and fl uoroquinolones, with values of minimal inhibitory concentrations 
(MICs) decreased by 4- to 130-fold with pH changes from 7.2 to 5.5 [ 13 ]. 
Susceptibility data for non- H. pylori Helicobacter  species are very limited, though 
several isolates of  H. hepaticus  show signifi cant intrinsic resistance to amoxicillin 
with MIC values of 8–64 μg/ml (cf. with values of ≤0.5 μg/ml for  H. pylori ) [ 28 ].

   Despite the high  in vitro  susceptibility of  H. pylori  to numerous agents 
(Table  19.1 ),  in vivo  therapy of  H. pylori  infections may not correlate well with 
expectations based on  in vitro  data [ 13 ]. The harsh environment within the stomach 
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poses a challenge for drug selection among orally administered antimicrobial 
agents. Indeed, therapy has been limited to certain individual agents of various 
classes which include amoxicillin, clarithromycin, furazolidone, fl uoroquinolones, 
metronidazole, rifabutin, and tetracycline [ 13 ,  29 ]. Therapeutic regimens require 
combination therapy or sequential therapy with the abovementioned antimicrobials 
[ 13 ,  29 – 31 ]. The recommended fi rst-line therapy for the treatment of  H. pylori  
infections consists of a standard triple-drug therapy with any two of three antibiotics 
(amoxicillin, clarithromycin, and metronidazole) and either a proton pump inhibitor 
(e.g., esomeprazole) or ranitidine bismuth citrate for a duration of 7–14 days [ 13 ]. 
Proton pump inhibitors and bismuth salts possess anti- H. pylori  activity at high 
concentration levels [ 13 ]. A second-line therapy consists of a quadruple regimen of 
tetracycline, metronidazole, a bismuth salt, and a proton pump inhibitor [ 13 ,  29 – 31 ]. 
Third-line treatment regimens and other rescue therapies are based on the antimi-
crobial susceptibility profi le of the specifi c strain in question and may include fl uo-
roquinolones, tetracyclines, rifabutin, and furazolidone [ 32 – 35 ]. 

 Antimicrobial resistance is increasingly being recognized as a risk factor affect-
ing treatment effi cacy against  Helicobacter  infections [ 31 ,  36 – 39 ]. A review from 
20 years ago has documented a variable but overall high prevalence of 10–70 % 

      Table 19.1    Antimicrobial susceptibility of wild-type strains of  H. pylori    

 Antimicrobial  MIC (μg/ml)  Antimicrobial  MIC (μg/ml) 

 Amoxicillin  0.008 a , 0.06 b   Gentamicin  1 a  
 Ampicillin  0.015 a , 0.06 c   Tobramycin  0.25–0.5 i  
 Mezlocillin  1 b   Metronidazole  2 e  
 Penicillin  0.03 d , 0.12 c   Furazolidone  0.06–0.25 i  
 Piperacillin  0.125 a   Nitrofurantoin  1 e  
 Aztreonam  4 a   Linezolid  8 a  
 Cefaclor  0.5 a   Novobiocin  0.1 c , 2 a  
 Cephalexin  2 d   Rifampin  0.25 j  
 Cefuroxime  0.5 b   Rifabutin  0.008 j , <0.015 k  
 Cefotaxime  0.02 c , 0.125 a   Tetracycline  0.03 c , 0.125 a  ,  0.19 l  
 Ceftazidime  0.5 a   Doxycycline  0.19 l  
 Ceftriaxone  0.125a, 0.5b  Minocycline  0.19 l  
 Nalidixic acid  32 a   Tigecycline  0.015 d  
 Ciprofl oxacin  0.12 c , 0.25 a   Polymyxin B  5 c  
 Gemifl oxacin  ≤0.006 d   Polymyxin E  8 c  
 Levofl oxacin  0.25–0.5 e   Streptogramin A  4 h  
 Moxifl oxacin  ≤0.25 d   Streptogramin B  8 h  
 Nemonofl oxacin  ≤0.12 d   Amixicile  0.5 m  
 Clarithromycin  0.008 a , 0.03 g   Bismuth subcitrate  16 e  
 Erythromycin  0.06 e , 0.25 a , 0.5 c   Ethidium bromide  8 a  
 Chloramphenicol  0.5 c , 4 a   Glutaraldehyde  1–10 n  
 Clindamycin  1 a , 32 h  

  The data are derived from:  a [ 15 ],  b [ 16 ],  c [ 17 ],  d [ 18 ],  e [ 13 ],  f [ 19 ],  g [ 20 ], h [ 21 ],  i [ 22 ],  j [ 23 ],  k [ 24 ], 
 l [ 25 ], m [ 26 ], and  n [ 27 ]  
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metronidazole resistance [ 1 ]. Antimicrobial treatment failure has been linked to 
increased prevalence of resistant isolates [ 40 ]. In a recent study that tested around 
340 isolates (including those from patients with up to three treatment failures), the 
MIC values of amoxicillin varied from <0.015 to 4 μg/ml, with higher prevalence 
of amoxicillin resistance in isolates from the treatment failures [ 41 ]. The rates of 
resistance to clarithromycin, a major agent for fi rst-line therapies, have increased 
from 9 % to 18 % in 1998–2008 in Europe and from 7 % to 28 % in 2000–2006 in 
Japan (reviewed in reference [ 42 ]). A recent report has described the rates of resis-
tance to clarithromycin (18 %), levofl oxacin (14 %), and metronidazole (35 %) in 
Europe, and the increased prevalence of resistance was attributable to the increased 
use of fl uoroquinolones and macrolides in clinic [ 43 ]. Similarly, a study conducted 
in China showed increased rates of resistance to clarithromycin (9 % in 2000 to 
21 % in 2009) and levofl oxacin (10 % in 2000 to 33 % in 2009) with stable rates of 
about 40–50 % for resistance to metronidazole within a 10-year period [ 44 ]. Yet 
resistance to amoxicillin, furazolidone, or tetracycline was not detectable and/or 
rarely occurred [ 44 ]. A surveillance of nearly 18,000 isolates that were sampled in 
China between 2009 and 2012 revealed resistance rates of ca. 21 % for clarithromy-
cin and levofl oxacin and 94 % for metronidazole with only 0.1 % for amoxicillin, 
furazolidone, and gentamicin [ 45 ]. Resistance to rifabutin remains generally low 
with the rates of 1.4 % in Germany and 0.24 % in Japan [ 24 ,  46 ]. A German study 
identifi ed simultaneous resistance to three or four agents in 15 % of isolates con-
tributing to unsuccessful antimicrobial treatment [ 47 ]. Furthermore, a Canadian 
study has also suggested a general increase in resistance to clarithromycin, cipro-
fl oxacin, levofl oxacin, and metronidazole beginning from the early 2000s. 
Together, these data also suggest variable prevalence of resistance in different 
regions and countries [ 31 ]. Newer agents such as fi nafl oxacin and linezolid have 
been tested for their activity against  H. pylori , but their implications for therapy 
require clinical trials [ 48 ,  49 ]. Lastly, heteroresistance, a circumstance in which 
subpopulations of isogenic strains develop varying antimicrobial susceptibilities 
[ 50 ], was also observed in isolates from the same patients (even before antimicro-
bial treatment) [ 51 ,  52 ]. Resistance identifi cation can be hindered by heteroresis-
tance with an undesired consequence of selecting more resistant isolates via 
antimicrobial  therapy [ 50 ,  51 ,  53 ]. 

 It is also noteworthy that the combinatory use of antimicrobials for treating 
 H. pylori  infections can have an adverse long-term  in vivo  impact on resistance 
development and persistence in the gut microbiota. For instance, a short-term 
clarithromycin- metronidazole combination regimen dramatically reduced the diver-
sity of gut microbiota and resulted in a 1,000-fold increase in the  ermB  gene (encod-
ing the macrolide target-modifying RNA methylase), which then persisted in the 
gut microbiota for at least 4 years [ 54 ]. This observation is consistent with an earlier 
study showing the persistence of  ermB -mediated resistant enterococci for 1–3 years 
following an anti- H. pylori  treatment regimen [ 55 ]. Additionally, by modifi ng lipid 
A and biofi lm formation,  H. pylori  can adapt  in vivo  to resist the antimicrobial activ-
ity of calprotein, which is a component of the host innate immune system and is 
present during the infl ammatory response [ 56 ].  
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19.3     Mechanisms of Antimicrobial Resistance 

  H. pylori  displays intrinsic resistance to multiple-unrelated antimicrobials including 
glycopeptides and polymyxins (Table  19.1 ) [ 13 ], suggesting that access to drug tar-
gets likely contributes to resistance manifestation. Acquired resistance can be further 
developed. One early study from 1990 showed the  in vitro  selection of resistant 
mutants by antimicrobials at the levels of 4× or 8× MIC, with spontaneous resistance 
frequencies in the range of 10 −8 –10 −6  for ciprofl oxacin, erythromycin, metronidazole, 
and tobramycin [ 22 ]. Another study in 2001 reported the frequencies of the  in vitro  
spontaneous mutants resistant to clarithromycin, ciprofl oxacin, metronidazole, and 
rifampin being 3 × 10 −9  to 7 × 10 −8 , while no mutants were recovered for amoxicillin 
[ 57 ]. Development of increasing resistance in  H. pylori  has prompted the investiga-
tion of resistance mechanisms. Table  19.2  lists the identifi ed mechanisms of resis-
tance to the major antimicrobials used in the treatment of  H. pylori  infection. 
Although antimicrobial target changes are a major form of resistance for  H. pylori , 
the role of drug effl ux systems should not be underestimated.

19.3.1       Amoxicillin Resistance 

 Resistance to amoxicillin in  H. pylori  appears to occur less frequently [ 36 ,  44 ,  57 ]. 
This phenomenon is attributable to mutations in the genes encoding penicillin- 
binding proteins (PBPs) [ 41 ].  H. pylori  possess three to four major PBPs [ 58 ]. 
Amoxicillin-resistant mutants show signifi cant reduction in the affi nity of PBP1 to 
amoxicillin [ 59 ]. Furthermore, amino acid substitutions were observed in PBP1 of 
resistant isolates [ 41 ]. Although mutations in the  pbp2  gene were also noted with 
those in the  pbp1 , they did not affect amoxicillin resistance [ 85 ]. In addition to 
mutations in PBP1, other unidentifi ed mechanism(s) are likely also needed for high- 
level amoxicillin resistance [ 85 ]. A cysteine-rich protein named HcpA (encoded by 
 HP0211 ) was earlier suggested to not only be a PBP but also a β-lactamase of 
 H. pylori  that slowly hydrolyzes penicillin derivatives [ 86 ]. However, more recent 
studies only demonstrated HcpA as a bacterial virulence factor triggering the release 
of a concerted set of cytokines [ 87 ,  88 ]. No further studies support HcpA as a typi-
cal β-lactamase. Indeed, typical β-lactamase activity is not detectable in  H. pylori  
[ 89 ], although it is well known that PBPs generally may have certain β-lactamase 
activity. This is consistent with the observation that the  H. pylori  genome does not 
contain genes encoding typical β-lactamases, whose production constitutes the 
predominant mechanism of β-lactam resistance in Gram-negative bacteria. However, 
given that many β-lactamase genes are located on plasmids and that  H. pylori  has a 
strong natural transformation capability, it is not surprising to see the report of a 
high-level amoxicillin-resistant isolate (≥256 μg/ml amoxicillin) carrying the 
 bla   TEM   gene [ 60 ]; it remains unclear whether this gene was plasmid borne or chro-
mosome encoded. 
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 Interestingly, two studies have revealed that amoxicillin-resistant/multidrug- 
resistant mutants accumulate less penicillin, chloramphenicol, and/or tetracycline 
than susceptible strains [ 59 ,  89 ]. Yet, the accumulation of penicillin and tetracycline 
by resistant strains was not affected by the ionophore proton conductor, carbonyl 
cyanide  m -chlorophenyl hydrazone (CCCP) [ 59 ,  89 ]). Thus, a reduced  accumulation 
of drugs was explained by investigators as due to reduced uptake and not active effl ux. 
However, the involvement of drug effl ux systems needs to be carefully assessed 
before a solid conclusion is made regarding additional mechanisms of amoxicillin 
resistance. The outer membrane permeability barrier alone cannot suffi ciently explain 

   Table 19.2    Mechanisms of resistance to antimicrobials used for the treatment of  H. pylori  
infection   

 Drug (class)  Mode of action  Resistance  References 

 Amoxicillin (β-lactams)  Inhibition of cell 
wall synthesis by 
targeting 
penicillin-binding 
proteins 

 Mutations in PBP1 with 
reduced affi nity to amoxicillin; 
reduced porin production; drug 
effl ux 

 [ 16 ,  58 – 61 ] 

 Clarithromycin 
(macrolides) 

 Inhibition of 
protein synthesis 
by binding to 23S 
rRNA 

 Mutations in genes  rrn ,  infB , 
and  rpl22  encoding 23S rRNA, 
translation intuition factor 
IF-2, and ribosome protein 
L22; RND effl ux pumps 

 [ 15 ,  17 ,  20 , 
 57 ,  62 – 65 ] 

 Furazolidone 
(nitrofurans) 

 Inhibition of DNA 
synthesis by 
cross-linking to 
DNA 

 Mutations in nitroreductase 
genes  porCDAB  and  oorDABC  
( nfsA  and  nfsB  in  E. coli ) 

 [ 66 – 69 ] 

 Levofl oxacin 
(fl uoroquinolones) 

 Inhibition of DNA 
synthesis by 
targeting DNA 
gyrase 

 Mutations in DNA gyrase 
genes ( gyrA  and  gyrB ) 

 [ 32 ,  57 ,  70 , 
 71 ] 

 Metronidazole 
(nitroimidazoles) 

 Production of 
superoxide radicals 
and interaction 
with DNA 

 Decreased prodrug reduction 
due to the mutations in  rdxA , 
 frxA , and  frxB ; reduction of 
superoxide radicals (due to the 
mutations in ferric uptake 
regulator); effl ux pump 
overexpression 

 [ 72 – 75 ] 

 Rifabutin (rifamycins)  Inhibition of RNA 
synthesis by 
targeting the 
DNA-dependent 
RNA polymerase 

 Mutations in  rpoB  gene  [ 23 ,  24 ,  57 , 
 76 ,  77 ] 

 Tetracycline 
(tetracyclines) 

 Inhibition of 
protein synthesis 
by preventing 
aminoacyl-tRNA 
association to 
ribosome 

 Mutations in 16S rRNA 
 rrnA / B  genes; drug effl ux 
pumps 

 [ 25 ,  78 – 84 ] 
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drug accumulation differences in the steady state (e.g., within 30–60 min of accumu-
lation). These drug molecules are expected to cross the outer membrane barrier in less 
than a second [ 90 ]. Based on various drug accumulation assays, the steady state of 
drug levels in intact cells should generally be reached within 30 min [ 59 ,  89 ,  90 ]. 
Indeed, the contribution from porin alterations and effl ux pumps to amoxicillin resis-
tance in  Helicobacter  spp. has been observed [ 16 ,  28 ] as discussed in the next section. 
This fi nding explains a phenotypic relationship between high β-lactam resistance and 
low- to moderate-level multidrug resistance [ 89 ].  

19.3.2     Clarithromycin Resistance 

 Macrolides inhibit bacterial protein synthesis by targeting 23S rRNA. Mutations in 
the 23S rRNA genes reduce the binding of macrolides to the 23S rRNA [ 62 – 64 ,  91 ] 
and are the major mechanism of resistance to macrolides (and particularly clarithro-
mycin for  H. pylori ) [ 42 ]. Major mutations include A2142G and A2143G transitions 
and an A2142C transversion [ 62 ,  92 ] with additional mutations in the 23S rRNA 
genes reported in the literature [ 19 ,  36 ]. Mutations within other genes, including those 
in  infB  (encoding translation initiation factor IF-2) and  rpl22  (ribosomal protein L22), 
were also found to cooperate with 23S rRNA gene mutations in raising resistance 
level [ 20 ]. Lastly, macrolides are often the substrates of multidrug resistance or mac-
rolide-specifi c effl ux pumps in various bacteria [ 93 ,  94 ], and indeed effl ux pumps also 
mediate resistance to clarithromycin, as described in the next section.  

19.3.3     Metronidazole Resistance 

 As a nitroimidazole agent, metronidazole requires reduction by oxygen-insensitive 
NADPH nitroreductase (RdxA), NADPH-fl avin oxidoreductase (FrxA), and 
ferredoxin- like enzymes (FrxB) to be activated from its prodrug form. Thus, muta-
tions in relevant encoding genes ( rdxA ,  frxA , and  frxB ) are responsible for metroni-
dazole resistance [ 66 ,  85 ,  91 ,  95 ,  96 ]. Annotated mutations in  rdxA  consist of frame 
shift mutations, missense mutations, deletions, and insertions [ 36 ,  72 ]. The  rdxA  
mutations are also better correlated to clinically relevant resistance (metronidazole 
MIC >8 μg/ml) than those in  frxA  [ 73 ]. Mutations in  frxA  alone may not be suffi -
cient in generating metronidazole resistance [ 53 ,  96 ]. In addition to confi rming the 
role of  rdxA  and  frxA  mutations, a recent study also identifi ed, via whole genome 
sequencing and natural transformation approaches, mutations in another gene,  rpsU  
[ 97 ]. The  rpsU  gene encodes ribosomal protein S21; mutations  rpsU  alone do not 
produce suffi cient resistance levels but instead cooperate with  rdxA  mutations to 
achieve high resistance [ 97 ]. Inhibition of superoxide dismutase production in 
strains with mutations in the ferric uptake regulator is also known to be involved in 
metronidazole resistance [ 74 ]. The contribution of effl ux mechanism to metronidazole 
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resistance is discussed in the next section. Interestingly, the loss of metronidazole 
resistance occurs under low oxygen conditions (that mimic  in vivo  microaerophilic 
situation) or in the presence of chloramphenicol [ 98 ], suggesting multiple factors 
affecting metronidazole susceptibility.  

19.3.4     Fluoroquinolone Resistance 

 Fluoroquinolones act on DNA gyrase (A 2 B 2  complex) and topoisomerase 
IV. However,  H. pylori  strains lack the gene encoding topoisomerase IV [ 42 ]. Thus, 
resistance occurs mainly as a result of mutations in the quinolone resistance deter-
mining region of the gyrase A gene (e.g., Asn87Lys; Asn87Tyr; Asp91Gly, Asp91Asn, 
or Asp91Tyr) [ 42 ,  70 ,  91 ]. Mutations in the gyrase B gene were have also been noted 
[ 70 ]. Furthermore, although fl uoroquinolone resistance frequently occurs as a result 
of effl ux pump overproduction in Gram-negative bacteria [ 94 ], no effl ux pumps 
affecting quinolone susceptibility have been identifi ed in  H. pylori  to date.  

19.3.5     Furazolidone Resistance 

 The broad-spectrum furazolidone inhibits DNA biosynthesis by crossing-linking to 
DNA molecules [ 67 ]. Mechanisms for furazolidone resistance in  Helicobacter  spp. 
are not well understood. However, resistance to nitrofurans in  E. coli  has primarily 
been linked to mutations in genes encoding nitroreductases such as  nfsA  and  nfsB  
[ 99 ]. A recent study further demonstrated involvement of these mutations in fura-
zolidone-resistant  E. coli  [ 68 ]. Pyruvate/fl avodoxin oxidoreductase (PorCDAB) and 
2-oxoglutarate oxidoreductase (OorDABC) act as nitrofuran nitroreductases in  H. 
pylori  [ 66 ], and mutations in the  porD  and  oorD  genes have been noted in all 
furazolidone- resistant (>2 μg/ml furazolidone) clinical isolates of  H. pylori  that 
were obtained from patients previously treated with metronidazole [ 69 ].  

19.3.6     Rifabutin Resistance 

 Rifabutin acts on the β-subunit of the DNA-dependent RNA polymerase encoded by 
the  rpoB  gene. Amino acid substitutions resulting from point mutations in  rpoB  con-
fer high-level resistance to rifampicin and rifabutin (with >128-fold MIC increases) 
[ 23 ,  24 ]. These resistance levels are dependent on the amino acid substitutions with 
four distinct regions identifi ed in  rpoB  [ 76 ]. Similar to many other species, rifamycin 
resistance in  H. pylori  occurs more frequently than resistance to other agents [ 57 ]. 
The history of rifamycin use has been linked to the emergence of rifabutin- resistant 
isolates including those from cases with treatment failure [ 24 ,  46 ,  77 ].  
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19.3.7     Tetracycline Resistance 

 Tetracyclines inhibit protein synthesis by binding to the 30S subunit of the ribosome 
and preventing association between aminoacyl-tRNAs with the ribosome [ 78 ,  79 ]. 
Mutations in the 16S rRNA  rrnA / rrnB  genes reduce drug binding to the ribosome 
[ 100 ] and yield high-level tetracycline resistance (>40-fold MIC increases for tetra-
cycline, doxycycline, and minocycline [ 25 ,  80 ,  81 ]). However, other types of tetra-
cycline-resistant isolates were found to lack any mutations in the 16S rRNA genes 
and instead rely on the altered uptake or effl ux [ 82 ,  83 ]. One study has shown proton 
motive force-dependent effl ux of tetracycline in clinical isolates without identifying 
specifi c pump(s) [ 84 ]. The requirement for multiple mutations in the development 
of tetracycline resistance may explain its low prevalence in clinical resistance [ 101 , 
 102 ]. The involvement of effl ux pumps (HP1165) in tetracycline resistance [ 83 ] will 
be discussed in the next section.  

19.3.8     Molecular Methods for Resistance Detection 

 Molecular methods have been developed to detect resistance caused by the specifi c 
gene mutations, and have been facilitated by advances in technology such as whole 
genome sequencing [ 92 ]. Commercially available molecular methods for detection 
of antimicrobial resistance in  H. pylori  also exist as reviewed in the reference [ 42 ]. 
The GenoType HelicoDR test is able to identify point mutations in the  rrn  and  gyrA  
genes that are linked to clarithromycin and levofl oxacin resistance, respectively 
[ 103 ], but this application has limited in its sensitivity and specifi city, apparently 
making it infeasible for clinical applications [ 104 ]. Overall, genetic molecular meth-
ods are only applied to known resistance mechanisms for certain genes, as mutations 
can also be independent of the resistance phenotype [ 13 ]. Molecular approaches for 
examining genetic mutations alone will not be suffi cient in characterizing resistance 
attributable to effl ux mechanisms, particularly because multiple regulatory genes can 
impact effl ux gene expression and ultimately the resistance phenotype.   

19.4     Outer Membrane Permeability Barrier 
and Drug Effl ux Systems 

 In Gram-negative bacteria, the outer membrane permeability barrier and drug export-
ers affect the infl ux and effl ux of antimicrobial agents, respectively, and thus play a 
role in determining the susceptibility phenotype [ 94 ]. A large number of outer mem-
brane and effl ux proteins are encoded in the  Helicobacter  genomes [ 105 – 107 ], 
although the sizes of several known  Helicobacter  genomes are relatively small (only 
about 1.7–2.0 Mbp) [ 105 ,  108 – 110 ]. For example, at least 32 outer membrane proteins 
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[ 111 ] and 27 proven or putative drug transporters [ 112 ] have been identifi ed in 
 H. pylori . These transporters belong to one of the following superfamilies or families 
[ 94 ]: (i) resistance-nodulation-cell division (RND) superfamily, (ii) the major facilita-
tor superfamily (MFS), (iii) the multidrug and toxic compound extrusion (MATE) 
family, (iv) the small multidrug resistance (SMR) family, and (v) the ATP-binding 
cassette (ABC) superfamily (Table  19.3 ).

19.4.1       Outer Membrane Permeability Barrier 

 The outer membrane consists of a lipopolysaccharide-containing lipid bilayer with 
water-fi lled porins and serves as an effective barrier in limiting the infl ux of antimicro-
bial molecules [ 117 ]. Small hydrophilic agents, such as amoxicillin, cross the outer 
membrane via the porin channels, while large or hydrophobic agents require penetra-
tion of the outer membrane lipid bilayer [ 94 ]. Many outer membrane proteins of  H. 
pylori  have been studied for their role in infection pathogenesis [ 107 ,  118 ,  119 ], with 
fi ve proteins (HopA to E) investigated for their channel-forming activity [ 120 ,  121 ]. 
The HopA to HopD porins form similar pores with relatively small channel size [ 120 ], 
while the less abundant HopE protein forms a larger nonspecifi c channel  in vitro  
[ 121 ]. The presence of these porins explains the high susceptibility of  H. pylori  to 
small hydrophilic antimicrobials such as amoxicillin, which is expected to enter the 
periplasm through the porin channels. Indeed, mutations in HopB and HopC proteins 
render cells less susceptible to β-lactams (two- to eightfold reductions in the MIC val-
ues) and cooperate with PBP1 mutations to raise levels of β-lactam resistance (16- to 
64-fold amoxicillin MIC reductions) [ 16 ]. Alterations in outer membrane protein pro-
fi les were observed in high-level amoxicillin- resistant isolates [ 89 ]. The outer mem-
brane permeability of  H. pylori  to the small hydrophobic agent, 1- N -phenylnaphthylamine, 
was found to be higher than that of  E. coli  [ 17 ], an observation consistent with the low 
MIC values of many hydrophobic agents (Table  19.1 ). An increased susceptibility to 
metronidazole occurred in the presence of aspirin, which enhanced intracellular con-
centrations of tetracycline, but no signifi cant changes in the transcriptional expression 
of the genes encoding the HopA, HopB, HopC, HopD, and HopE porins and HefABC 
effl ux system were observed [ 122 ]. Hypersusceptibility to several hydrophobic agents 
(e.g., erythromycin, novobiocin, and rifampicin) was reported for mutants carrying 
null mutations in the  ostA  (also called  imp ) and/or  msbA  genes [ 27 ], which encode an 
organic solvent tolerance outer membrane protein and a lipopolysaccharide lipid pre-
cursor exporter, respectively – both of which are involved in the biogenesis of lipo-
polysaccharide [ 107 ,  123 ].  

19.4.2     RND Pumps 

 Multiple putative RND pumps have been identifi ed, based on protein homology, in 
several  Helicobacter  spp. (as presented in Table  19.3 ). The total numbers are fewer 
than those found in  E. coli  (which contains six RND pumps) or  P. aeruginosa  (>12 RND 
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       Table 19.3    Confi rmed and putative drug effl ux transporters in  Helicobacter  spp.   

 Species/
transporter 
family  Transporter 

 Membrane 
fusion 
protein 

 Outer 
membrane 
protein 

 Affected drug 
susceptibility and 
functions  References 

  H. pylori  26695 
 RND  HefC (HP0607)  HefB 

(HP0606) 
 HefA 
(HP0605) 

 Amoxicillin, 
aztreonam, 
cefotaxime, 
ceftriaxone, 
ceragenins, 
clindamycin, 
deoxycholate, 
erythromycin, 
ethidium bromide, 
novobiocin, 
penicillin, 
piperacillin, and 
tetracycline; stress 
response to bile 
salts 

 [ 15 ,  17 ,  61 , 
 105 ,  112 ] 

 RND  HefF (CznA; 
HP0969) 

 HefE 
(CznB; 
HP0970) 

 HefD 
(CznC; 
HP0971) 

 Metronidazole, 
cadmium, nickel, 
and zinc; urease 
activity 
modulation; 
gastric 
colonization 

 [ 17 ,  105 , 
 112 ,  113 ] 

 RND  HefI (CzcA; 
HP1329) 

 HefH 
(CzcB; 
HP1328) 

 HefG 
(CrdB; 
HP1327) 

 Copper; 
potentially in 
nitrosative 
response 

 [ 17 ,  105 , 
 112 – 114 ] 

 RND  HP1487  HP1488  HP1489  Ethidium bromide  [ 112 ] 
 MATE  HP1184  Ethidium bromide  [ 112 ] 
 MATE  HP0759  [ 105 ] 
 MFS  HP1165  Tetracyclines  [ 83 ] 
 MFS  HP1181  [ 105 ,  115 ] 
 ABC  CadA (HP0791)  Cadmium, zinc  [ 114 ,  116 ] 
 ABC  CopA (HP1072)  Copper  [ 114 ] 
 ABC  CopA2 (HP1503)  Metal  [ 114 ] 
 ABC  MsbA (HP1082)  Erythromycin, 

ethidium bromide, 
glutaraldehyde, 
novobiocin, and 
rifampin; 
lipopolysaccharide 
fl ippase 

 [ 27 ,  105 ] 

  H. hepaticus  ATCC51449 
 RND  HH0174  HP0175  [ 28 ,  108 ] 

(continued)
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pumps) [ 94 ]; these differences are likely due to the relatively small genome sizes of 
 Helicobacter  spp. The four RND systems of  H. pylori  are each encoded by a puta-
tive three-gene operon [ 17 ], which produces the typical three components of RND 
tripartite effl ux complexes; these components include an effl ux transporter located 
in the cytoplasmic membrane, an accessory membrane fusion protein, and an outer 
membrane channel protein [ 94 ]. For two non- H. pylori  species, putative RND 
pumps are instead each encoded by a two-gene operon [ 106 ] and likely requires an 
outer membrane channel protein encoded elsewhere in the genome for proper func-
tioning (Table  19.3 ). Interestingly, unlike in  E. coli  or  P. aeruginosa  [ 94 ], no regula-
tory genes have been identifi ed adjacent to the structural genes of these RND 
systems. One exception is HefGHI (also known as CrdB-CzcB-CzcA), where the 
encoded HP1326 (CrdA) is required for induction of HefGHI by copper [ 114 ]. 
CrdA expression is further controlled by a two-component regulatory system CrdRS 
(HP1364- 1365) [ 124 ]. A recent study has demonstrated the importance of CrdRS in 

Table 19.3 (continued)

 Species/
transporter 
family  Transporter 

 Membrane 
fusion 
protein 

 Outer 
membrane 
protein 

 Affected drug 
susceptibility and 
functions  References 

 RND  HH0222 (HefC)  HH0223 
(HefB) 

 HH0224 
(HefA) 

 Amoxicillin, 
cholic acid, 
deoxycholic acid, 
ethidium bromide, 
ofl oxacin, and 
rifampin; stress 
response to bile 
salts 

 [ 28 ,  108 ] 

 RND  HH0625 (HefF)  HN0624 
(HefE) 

 HH0623 
(HefD) 

 [ 28 ,  108 ] 

 RND  HH1859  [ 108 ] 
 MFS  HH1614  [ 108 ] 
 MATE  HH0031  [ 108 ] 
 MATE  HH0167  [ 108 ] 
 SMR  HH0508- 0509  [ 108 ] 
 SMR  HH1451- 1452  [ 108 ] 
 ABC  HH1857- 1858  [ 108 ] 
  H. cinaedi  PAGU611 
 RND  HCN_0595  HCN_0594  HCN_0593  [ 106 ,  110 ] 
 RND  HCN_1563  HCN_1564  [ 106 ,  110 ] 
 MATE  HCN_0708  [ 106 ,  110 ] 
 MATE  HCN_0807  [ 106 ,  110 ] 
 MFS  HCN_0741  [ 106 ,  110 ] 
 SMR  HCN_1599- 1600  [ 106 ,  110 ] 
 SMR  HCN_2016- 2017  [ 106 ,  110 ] 
 ABC  HCN_0962  HCN_0964  HCN_0965  [ 106 ,  110 ] 
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nitrosative response of  H. pylori  and its infl uence on the transcriptional expression 
of about 100 genes (including the upregulation of  crdA ) [ 125 ]. Overall, regulation 
of  Helicobacter  RND pump expression remains a mystery. 

 Phylogenetic analysis of the RND pumps of  H. pylori  suggest that HefC is closer 
to the RND pumps involved in drug effl ux while HefF and HefC are related to RND 
pumps involved in the extrusion of divalent cations [ 17 ]. Further studies have been 
conducted to analyze their expression and functional roles [ 17 ,  113 ]. Despite their 
expression in wild-type cells, an early study used a genetic inactivation approach to 
suggest only a minimal role of HefABC, HefDEF, and HefGHI in the antimicrobial 
resistance in  H. pylori  [ 17 ]. Indeed, pretreatment of  H. pylori  cells with CCCP did 
not result in increased accumulation of either chloramphenicol or tetracycline (on 
the contrary, reduced drug accumulation was observed), arguing against involve-
ment of a proton motive force-dependent drug effl ux pump in intrinsic resistance to 
chloramphenicol or tetracycline [ 17 ]. 

 Two other studies indicate a strong contribution of the HefABC effl ux system to 
intrinsic and acquired multidrug resistance [ 15 ,  126 ]. The expression of  hefABC  in 
one study was generally the strongest among the four RND systems in clarithromycin- 
resistant (≥1.0 μg/ml clarithromycin) isolates [ 65 ]. Inactivation of the HefC pump 
gene in a wild-type strain rendered the mutant hypersusceptible to β-lactams (aztre-
onam, cefotaxime, ceftriaxone, penicillin, and piperacillin but not amoxicillin), 
clindamycin, erythromycin, ethidium bromide, novobiocin, and tetracycline with 
four- to 330-fold MIC reduction (Table  19.4 ) [ 15 ]. These antimicrobials are known 
substrates for RND pumps. Furthermore, CCCP treatment of wild-type cells 
increased the accumulation of ethidium bromide [ 15 ]. Chloramphenicol accumula-
tion was increased slightly in CCCP-treated resistant cells [ 89 ]. However, suscepti-
bility to quinolones was not affected by genetic disruption of the  hefA  or  hefC  gene 
[ 15 ,  126 ]. In another study, disruption of  hefA  (but not  hefD ,  hefG , or  HP1489 ) 
made the cells more susceptible to deoxycholate and novobiocin and the simultane-
ous inactivation of  hefA  and  hefD  sensitized cells to metronidazole [ 112 ]. Together, 
these results support that the HefABC pump plays an important role in the intrinsic 
drug resistance of  H. pylori . This conclusion is further supported by the involve-
ment of HefABC (not HefDEF or HefGHI) in resistance to bile salts and their deriv-
atives, ceragenins [ 127 ]. Elevated  hefA  expression was noted in multidrug-resistant 
chloramphenicol-selected mutants [ 126 ] as well as in multidrug-resistant isolates 
from another study [ 128 ].

   The contribution of HefC pumps to amoxicillin resistance was noted in certain 
resistant isolates, and the combination of 1-(1-naphthylmethyl)-piperazine (NMP; 
an RND pump inhibitor) at 100 μg/ml reduced the amoxicillin MIC by 16-fold in 
HefC overproducers [ 61 ]. In this case, given the overall hydrophilic nature of amox-
icillin, one would expect that the effl ux process alone may have a limited role in 
amoxicillin resistance, but this process may still be possible if the infl ux of amoxi-
cillin is also affected by reduced porin expression (as already reported in the refer-
ence [ 16 ]; see above in the outer membrane permeability barrier section). Thus, it 
would be ideal to assess the porins for the isolates of this study [ 61 ]. Mutations in 
multiple genes were analyzed in this study [ 61 ], and surprisingly mutations in HefC 
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(Asp131Glu and Leu378Phe) were identifi ed in several resistant strains; these muta-
tions appeared to yield a gain of function. In another paper, the inclusion of RND 
pump inhibitor phenylalanine-arginine β-naphthylamide (PAβN) reduced clarithro-
mycin MIC values by four to eightfolds (from 4–32 to 1–8 μg/ml) for 15 clinical 
clarithromycin-resistant isolates [ 65 ] Lastly, HefABC overproduction was revealed 
to be the fi rst step in the development of acquired resistance [ 72 ] to metronidazole. 
All of these results jointly suggest that HefABC plays a major role in acquired mul-
tidrug resistance. 

 Although the regulation of HefABC expression remains unknown, this effl ux 
system is clearly inducible. The exposure of fi ve clinical isolates to metronidazole 
at 8 or 16 μg/ml revealed a concentration-dependent increase in  hefA  expression, 
even though  hefA  was already constitutively expressed in these isolates [ 129 ]. The 
presence of cholesterol also induces  hefABC  expression and thus contributes to 
resistance to bile salts [ 127 ]. It was also found that the expression of all four RND 
systems was elevated in biofi lm cells in comparison with that of planktonic cells 
[ 130 ]. 

 Another RND pump of  H. pylori , CznABC (i.e., HefDEF), is a metal effl ux 
pump involved in cadmium, nickel, and zinc resistance. Only minimal growth 
occurred for pump-defi cient mutants in the presence of cadmium (10 μM), nickel 
(1.2 mM), and zinc (0.8 mM) [ 113 ]. Furthermore, CznABC is also critical for gas-
tric colonization and modulation of urease activity [ 113 ], providing a possible phys-
iological role of RND pumps in  H. pylori . (Urease activity plays an essential role in 
acid tolerance of  H. pylori  [ 131 ].) The third RND pump, HefGHI, confers resistance 

   Table 19.4    Effect of the  hefABC  inactivation on antimicrobial susceptibility of  H. pylori    

 Antimicrobial 
 Parental strain 
(MIC in μg/ml) 

 Δ hefABC  (MIC 
in μg/ml) 

 MIC ratio of parental strain 
to Δ hefABC  (fold) 

 Cefotaxime  0.125  0.015  8 
 Ceftriaxone  0.125  0.008  16 
 Penicillin  0.002  0.00006  330 
 Piperacillin  0.125  0.0008  16 
 Clarithromycin  0.008  0.002  4 
 Erythromycin  0.25  0.015  16 
 Chloramphenicol  4  2  2 
 Clindamycin  1  0.125  8 
 Novobiocin  2  0.03  6 
 Tetracycline  0.125  0.015  8 
 Ethidium bromide  8  0.5  16 
 Cefotaxime  Not reported  Not reported  32 a  
 Clarithromycin  Not reported  Not reported  8 a  
 Chloramphenicol  Not reported  Not reported  16 a  
 Gentamicin  Not reported  Not reported  8 a  

  Data are from Kutschke and de Jonge [ 15 ] (where the tested mutant had  Δ  hefC ) except otherwise 
noted 

  a Data are from Liu et al. [ 126 ] (where the tested mutant had  Δ  hefA )  
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to copper, and its inactivation renders cells more susceptible to copper – with only 
minimal growth in the presence of 0.1 mM copper [ 114 ]. Based on the CrdRS sys-
tem’s involvement in regulation of  crdA  (located immediately upstream of the  hef-
GHI  genes in the same transcriptional direction) [ 125 ], CrdRS could also infl uence 
 hefGHI  expression, and thus HefGHI may possibly contribute to nitrosative stress 
response. Indeed, the role of RND pumps in nitrosative stress response has been 
demonstrated in  E. coli ,  Klebsiella pneumoniae , and  P. aeruginosa  [ 132 – 134 ]. 
Additionally, in contrast to the HefC pump, both HefF and HefH are not involved in 
cholesterol-dependent resistance to bile salts [ 127 ]. Inactivation of either the HefF 
or HefI pump did not alter the drug susceptibility of cells (with 20 tested agents) 
[ 15 ]. 

 Several RND systems exist in  H. hepaticus  (Table  19.3 ). Intriguingly,  H. hepati-
cus  strains appear to be much less susceptible to amoxicillin than  H. pylori , and they 
do not have PBP alterations nor produce β-lactamases [ 28 ]. Inactivation of  hefA  
rendered a mutant strain hypersusceptible to amoxicillin (256-fold MIC reduction 
but not to another tested β-lactam tested, cefotaxime), rifampicin (ninefold MIC 
reduction), ofl oxacin (fourfold MIC reduction), ethidium bromide (>fourfold MIC 
reduction), and bile salts (2.5- to 10-fold MIC decreases) [ 28 ]. Thus, HefABC likely 
contributes to intrinsic resistance in  H. hepaticus  to multiple agents including 
amoxicillin. Moreover, the expression of  hefA  is inducible by bile salts (but not by 
amoxicillin) [ 28 ]. This fact suggests that HefABC may be involved in the survival 
of  H. hepaticus  in the gastrointestinal tract where it would be exposed to high bile 
salt concentrations, similar to the role of the  E. coli  AcrAB-TolC system and the 
 Campylobacter jejuni  CmeABC system [ 135 ,  136 ].  

19.4.3     Non-RND Pumps 

 This group includes ABC, MFS, MATE, and SMR pumps that remain to be charac-
terized (Table  19.3 ) [ 105 ,  112 ,  115 ]. Inactivation of the ABC-type MsbA trans-
porter rendered the mutant strain more susceptible to several agents including 
erythromycin and glutaraldehyde. The impact of CCCP treatment on the accumula-
tion of ethidium bromide supported an effl ux process contributed by MsbA [ 27 ]. 
This pump also cooperates synergistically with another lipopolysaccharide biogen-
esis protein OstA to enhance hydrophobic drug resistance [ 27 ]. However, since 
MsbA is a lipopolysaccharide fl ippase [ 107 ], mutants with MsbA defi ciency (and/
or with OstA defect) have a reduced lipopolysaccharide production [ 27 ]. A few 
ABC transporters such as CadA and CopA are involved in heavy metal resistance 
[ 114 ,  116 ]. 

 The HP1165 protein is a homolog of the TetA(P) effl ux pump of  Clostridium 
perfringens  belonging to the MFS family [ 83 ]. Its gene is constitutively expressed 
in any growth phase of a wild-type tetracycline-susceptible strain and its inactiva-
tion renders the mutant strain more susceptible to tetracycline (tenfold MIC reduc-
tion). While the overproduction of HP1165 is has been linked to tetracycline 
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resistance following tetracycline exposure, its absence abolishes the ability of tetra-
cycline to induce tetracycline resistance [ 83 ]. Additionally, the HP1181 protein is 
another putative MFS exporter, a homolog of the NorA pump of  Staphylococcus 
aureus , but its functional properties remain to be characterized [ 115 ].  

19.4.4     Effect of Effl ux Pump Inhibitors and Methodological 
Considerations 

 As described above, many studies have employed effl ux pump inhibitors in charac-
terizing drug effl ux contribution to resistance in  Helicobacter . PAβN and NMP are 
known inhibitors of RND pumps [ 94 ]. We have been unable to fi nd data on the 
activities of these two inhibitors alone against  Helicobacter  spp. (such as MIC val-
ues), but these values can be informative in assessing the effect of these agents 
themselves on  Helicobacter  [ 94 ]. In one study [ 65 ], PAβN was used at 10, 20, 40, 
60, and 120 μg/ml, and it appeared that this agent alone at levels of up to 40 μg/ml 
did not affect the growth of a particular  H. pylori  strain [ 65 ]. Thus, the observations 
with effect of 40 μg/ml PAβN on the reduction of the MIC values of clarithromycin 
[ 65 ] and metronidazole [ 72 ] are interpreted as the involvement of an effl ux mecha-
nism. Similarly, NMP can be used at 100 μg/ml without detectable adverse impact 
on  Helicobacter , and thus the effect of NMP on HefC is also considered to be related 
to effl ux inhibition [ 61 ]. In this regard, it is worth mentioning that the inclusion of a 
plant extract (baicalin, berberine, emodin, or schizandrin) enhanced antibacterial 
activity of amoxicillin and tetracycline [ 128 ]. 

 Multiple studies have used the proton conductor CCCP, which abolishes proton 
motive force across the cytoplasmic membrane and therefore is not an effl ux pump 
inhibitor per se. In two independent studies, CCCP at 40 and 100 μM reduced 
(instead of increased) the accumulation of chloramphenicol and tetracycline [ 17 , 
 122 ], suggesting an impact on uptake processes [ 17 ]. However, two other studies 
showed an increase in accumulation of ethidium bromide or chloramphenicol in the 
presence of 10 or 100 μM CCCP [ 27 ,  89 ]. No impact of 40 or 100 μM CCCP on 
penicillin and tetracycline resistance was also reported [ 61 ,  89 ]. CCCP at 100 μM 
produced more effects in drug-CCCP combination susceptibility testing on 
chloramphenicol- selected multidrug-resistant isolates than the parental strains for 
multiple drugs [ 137 ]. There are also studies that used CCCP at a high level of 
200 μM, which increased accumulation of ethidium bromide and tetracycline [ 84 , 
 138 ]. Given the apparently inconsistent results on the effect of CCCP on drug accu-
mulation in  H. pylori , additional investigations are needed to carefully reassess the 
use of CCCP including its appropriate concentrations. 

  H. pylori  infection also requires the treatment with the proton pump inhibitor 
acid-inhibitory drugs as part of a drug combination regimen. Proton pump inhibi-
tors themselves exhibit anti- H. pylori  activities at the levels which are not achiev-
able  in vivo  [ 13 ]. Interestingly, studies have examined the effect of proton pump 
inhibitors on the multidrug resistance phenotype of either bacterial isolates or 
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mammalian tumor cells [ 139 – 141 ]. Specifi c to  H. pylori , esomeprazole, lansopra-
zole, omeprazole, pantoprazole, and rabeprazole (each at 10 μg/ml) were found to 
exhibit certain reduction of MICs of amoxicillin and metronidazole (particularly 
with pantoprazole and rabeprazole) [ 137 ]. Yet, clinical relevance of this observa-
tion remains unknown.   

19.5     Concluding Remarks 

 The treatment of  Helicobacter  infections is adversely affected by the increasing 
emergence of acquired resistance in  H. pylori . Even though drug-specifi c mecha-
nisms are predominantly responsible for the clinically relevant resistance phenotypes 
that compromise  H. pylori  infection therapy effectiveness, the contribution of drug 
effl ux systems (particularly the RND-type pumps) to intrinsic and acquired multi-
drug resistance in  Helicobacter  spp. is being recognized. Furthermore, as already 
observed in other bacteria of the same class as  Helicobacter  spp., these effl ux sys-
tems likely also function beyond drug resistance and are involved in its pathogene-
sis. However, the data regarding the role of the HefABC pump and its substrate 
profi le vary within the literature. These discrepancies may be due to methodological 
challenges in conducting antimicrobial susceptibility testing with  H. pylori  as well 
as the high susceptibility of the wild-type  H. pylori  to many agents  in vitro . A better 
understanding of  Helicobacter  drug effl ux pumps should be pursued to characterize 
better strategies for therapeutic interventions. Agents that inhibit the effl ux pumps 
could serve as antimicrobial adjuvants to improve the activities of the existing anti-
 Helicobacter  drugs. Furthermore, an open-ended question remains on how expres-
sion of these effl ux systems is regulated. Physiological roles of the  Helicobacter  
drug effl ux systems are also likely linked to stress response or colonization [ 113 , 
 125 ,  127 ]. The current knowledge clearly warrants further investigations of 
 Helicobacter  drug effl ux pumps and, in particular, their regulation and functional 
roles.     
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