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    Chapter 16   
 Antimicrobial Drug Effl ux Pumps 
in  Burkholderia                      

     Viola     Camilla     Scoffone    ,     Tom     Coenye    ,     Giovanna     Riccardi    , and     Silvia     Buroni    

    Abstract     The genus  Burkholderia  includes more than 90 species able to colonize 
different environments and characterized by a versatile metabolism. Some members 
of the  Burkholderia  genus are opportunistic pathogens, especially for immunocom-
promised and cystic fi brosis patients. Of note, they show a high level of intrinsic drug 
resistance, and many genes encoding virulence factors were identifi ed in their 
genomes. Main contributors to antimicrobial resistance of these bacteria are effl ux 
pump proteins which span the cytoplasmic and outer membranes. These systems are 
able to recognize and extrude very dissimilar compounds, thus rendering the antimi-
crobial therapy challenging. A detailed description of the resistance-nodulation-cell 
division (RND) transporter superfamily, which is the most represented in Gram-
negative bacteria such as  Burkholderia  spp., is given. This includes the distribution 
of RND-encoding genes in the various  Burkholderia  spp. genomes and the list of the 
principal RND pumps in  B. cenocepacia ,  B. vietnamiensis ,  B. pseudomallei ,  B. mal-
lei  and  B. thailandensis . The clinical signifi cance of RND effl ux transporters in 
 Burkholderia  spp. and relevant existing effl ux pump inhibitors is also discussed.  

  Keywords      Burkholderia    •    Burkholderia cepacia  complex   •   Antimicrobial resis-
tance   •   Effl ux pumps   •   RND  

16.1       Introduction 

 Currently the genus  Burkholderia  consists of more than 90 formally described spe-
cies and a large number of candidate species [ 1 – 4 ].  Burkholderia  species are Gram- 
negative bacteria occurring in very different environments and possessing very 
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diverse metabolisms; they can be found in pristine and contaminated soils, in plant 
rhizospheres and phytosphere, in invertebrate intestinal tracts and in the human 
respiratory tract [ 5 – 7 ]. The metabolic versatility of these species is partially due to 
their large genomes that are among the largest bacterial genomes known, with sizes 
spanning from 7 to 9 Mb [ 8 ]. These large genomes consist of two to three different 
chromosomes and, in some species such as  Burkholderia cenocepacia , also of plas-
mids [ 9 ]. Most members of the  Burkholderia  genus are pathogens characterized by 
well-known drug resistance and virulence factors [ 10 ,  11 ]. Among various mecha-
nisms of antimicrobial resistance, drug effl ux pumps play an important role in 
 Burkholderia  spp. In this chapter, we fi rst describe the major features of several 
species of  Burkholderia  of public health concern and then provide a review of the 
current status on the role of drug effl ux pumps in drug resistance in these species.  

16.2     The Genus  Burkholderia  

16.2.1      Burkholderia cepacia  Complex 

 Members of the  Burkholderia cepacia  complex (Bcc) bacteria share a high level 
(>97.5 %) of 16S rRNA gene sequence similarity and moderate (30–60 %) DNA- 
DNA hybridization values. They are characterized by very different biological fea-
tures making them both a friend and a foe to humans [ 12 ]. Bcc bacteria have large 
genomes (7.5–8.5 Mb) with a G+C base composition of approximately 67 %, and 
they are characterized by multiple replicons, providing them with exceptional meta-
bolic capacities [ 13 ]. Currently, Bcc has been dissected into more than 20 species, 
but all available data demonstrated that there is still a large number of unnamed Bcc 
species. From old and new classifi cation techniques, it is clear that Bcc bacteria 
constitute a genotypic continuum in which separated entities, called species, have 
only developed in the last years. New methods are better than the traditional 16S 
rRNA-based approach, as they analyse a larger part of the genome with a higher 
resolution in order to precisely discriminate closely related bacteria [ 13 ]. 

 Presently, the complex consists of more than 20 genetically closely related spe-
cies, isolated from human infections, as well as from natural environments [ 14 – 16 ]. 
Many members of the Bcc are opportunistic pathogens particularly dangerous for 
immunocompromised individuals and cystic fi brosis patients. Several Bcc species 
are transmissible from one cystic fi brosis patient to another, thus causing epidemic 
outbreaks [ 17 – 19 ]. Among Bcc bacteria,  B. cenocepacia  and  B. multivorans  pre-
dominate in cystic fi brosis, accounting for 85–97 % of all Bcc infections [ 14 ]. 

  B. cenocepacia  is one of the most dangerous pathogens in cystic fi brosis, and 
infection with this organism is associated with reduced survival and a high risk of 
developing fatal cepacia syndrome [ 20 ,  21 ]. Research on the pathogenicity of Bcc 
bacteria is focused on  B. cenocepacia  because of the preponderance of epidemic 
strains and because the fi rst Bcc genome sequenced was that from  B. cenocepacia  
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J2315 [ 9 ,  22 ]. The latter was isolated from a cystic fi brosis patient and is a member 
of the epidemic ET12 lineage, which is responsible for infecting many patients in 
Canada and the United Kingdom. The  B. cenocepacia  J2315 genome of 8.06 Mb 
consists of three circular chromosomes plus a plasmid [ 9 ]. It contains 14 genomic 
islands not found in other  Burkholderia  spp. [ 9 ]. In the evolution of the ET12 lin-
eage, the exchange of genomic islands was shown as crucial, introducing features 
necessary for the survival and for the pathogenesis in the cystic fi brosis lung. In 
particular, J2315 strain has developed increased resistance to many antimicrobials 
[ 23 ], and the genome sequencing showed that it contains drug resistance determi-
nants in genomic islands, underlining the important role of a horizontal transfer [ 9 ]. 
Comparative genomic studies highlighted that gain of functions through horizontal 
transfer and loss of functions via mutations were necessary for J2315 strain to sus-
tain the growth and persistence in cystic fi brosis infections [ 9 ]. 

 Pharmacological treatment of Bcc infections is very diffi cult due to the high 
intrinsic and acquired resistance of most strains to a broad range of antimicrobial 
drugs. Such resistance is due to various mechanisms, including reduced permeabil-
ity, changes in lipopolysaccharide structure, the presence of numerous multidrug 
effl ux pumps, inducible chromosomal β-lactamases and altered penicillin-binding 
proteins [ 24 ]. Furthermore, Bcc bacteria are able to form biofi lms that contribute to 
increase the survival in the cystic fi brosis lung environment protecting bacteria from 
antimicrobials [ 24 ]. In this scenario, the treatment of Bcc-infected patients should 
be based on a combination therapy driven by antimicrobial susceptibility tests, with 
two or three antimicrobial agents that function synergistically.  

16.2.2      Burkholderia pseudomallei  

  B. pseudomallei  is a saprophytic intracellular opportunistic pathogen that multiplies 
within macrophages. It causes melioidosis, a disease characterized by sepsis, pneu-
monia and abscess formation in almost any organ. It is endemic in tropical and 
subtropical regions [ 25 – 27 ].  B. pseudomallei  is a potential bioterrorism agent and 
should be manipulated in biosafety level 3 (BSL-3) laboratories only. The genome 
of  B. pseudomallei  has been sequenced and found to comprise two chromosomes of 
4.07 Mb and 3.17 Mb, respectively [ 28 ]. The larger chromosome contains genes 
associated with core function such as cell growth and metabolism, while the smaller 
one carries genes for accessory functions and for adaptation and survival in different 
environments. Approximately 6 % of the genome is constituted by putative genomic 
islands, probably derived from horizontal gene transfer, but it is not known if these 
regions are involved in pathogenesis [ 29 ]. Using multilocus sequence typing to 
study the molecular epidemiology of  B. pseudomallei , a high level of genetic recom-
bination was hypothesized [ 30 ]. From the comparison of  B. pseudomallei  and 
 B. mallei  (see below), it seems that the latter derived from a single clone of the former 
through a “genomic down-sizing” [ 29 ]. 
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 The clinical symptoms of melioidosis are multifarious, ranging from acute sepsis 
to chronic recurrent infections as well as disease without clinical symptoms. These 
different aspects are due to a combination of infecting dose, type of infection, host 
risk factors and still unknown bacterial virulence determinants [ 27 ]. If the diagnosis 
is not rapid, and without appropriate antimicrobial treatment, the mortality rate is 
~40 % and can increase to >90 % in subjects with septic shock [ 26 ]. The disease 
affects at-risk patients, like those suffering from cystic fi brosis [ 28 ,  29 ,  31 ,  32 ], non- 
cystic fi brosis bronchiectasis [ 33 ] and also diabetes. 

 Infections caused by  B. pseudomallei  are characterized by particular morbidity 
and mortality. Therapy is extensive and divided in many phases: parenteral 
 (ceftazidime, amoxicillin-clavulanic acid or meropenem) and oral 
(trimethoprim-sulfamethoxazole). 

 The resistance mechanisms documented in  B. pseudomallei  are the modifi cation 
of the cell envelope constituents to decrease the cell permeability, effl ux pump acti-
vation and modifi cation or deletion of target sites [ 34 ]. Moreover, other factors that 
contribute to antimicrobial resistance are the biofi lm formation like in Bcc strains 
[ 35 ], the intracellular and non-replicative metabolic state [ 36 ] and growth under 
stress conditions [ 37 ].  

16.2.3      Burkholderia mallei  

  B. mallei , an obligate mammalian pathogen, is a non-motile, facultative intracellular 
bacterium known as the etiologic agent of glanders.  B. mallei  infection can be chronic 
or acute: in the fi rst case, the clinical symptoms are mucopurulent nasal discharge, 
lung lesions and nodules involving the liver and spleen, while the acute infection 
results in high fever and emaciation, with ulceration of the nasal septum, accompa-
nied by haemorrhagic discharge [ 38 ]. Rarely,  B. mallei  can infect humans, including 
laboratory workers and those in contact with infected animals. Bacteria enter the 
body through the eyes, nose, mouth or wounds in the skin. Human symptoms are 
initial onset of fever, rigors and malaise and rapid onset of pneumonia, bacteraemia, 
pustules and abscesses, with death coming in 7–10 days without antimicrobial treat-
ment. Ninety-fi ve percent of untreated infections and 50 % of antimicrobial- treated 
cases are fatal [ 38 ].  B. mallei  is highly infectious in the aerosol form, and only few 
bacteria are required to establish the infection, thus rendering it a potential biological 
threat agent. The use of this bacterium is confi ned to BSL-3 laboratories. 

 The genome of the  B. mallei  comprises two circular chromosomes (5.8 Mb) and 
a G+C content of 69 % [ 39 ]. The comparison with the closely related species  B. 
pseudomallei  and  B. thailandensis  reveals a signifi cant similarity, with 99 %  identity 
between the conserved genes in  B. pseudomallei , even if  B. mallei  contains approxi-
mately 1.41 Mb less DNA than  B. pseudomallei  [ 39 ]. It is probable that  B. mallei  
evolved from a single strain of  B. pseudomallei  after a colonization of an equine-
like ancestral host [ 40 ]. 

 The evolution was a result of intergenic sequence (IS)-mediated gene loss and 
genomic recombination [ 39 ,  41 ]. The IS intervention was found in diverse symbionts 

V.C. Scoffone et al.



421

and obligate pathogens, suggesting an elaborated genome transition during the ini-
tial bacterial evolution after establishing constant association with the host. The 
structural fl exibility is the major feature of  B. mallei  genome in order to adapt to 
multiple distinct mammalian hosts and to increase the ability to escape the adaptive 
immune responses. 

 Many  B. mallei  strains show resistance to a high number of antimicrobial agents; 
in fact the genome contains at least 33 genes involved in the drug resistance [ 39 ]. 
 B. pseudomallei  is resistant to macrolide and aminoglycoside antibiotics because of 
the presence of multidrug effl ux pumps, while  B. mallei  shows susceptibility to 
these drugs. In  B. mallei , the 50 kb region where these genes are located in  B. pseu-
domallei  genome is absent [ 39 ].  

16.2.4      Burkholderia thailandensis  

  B. thailandensis  is a soil saprophyte common to tropical and subtropical regions, 
and it is used, as generally considered non-pathogenic, for antimicrobial and vac-
cine studies because it can be manipulated in BSL-2 laboratories. It is closely related 
to  B. pseudomallei , and only occasionally it is reported to cause human disease in 
association with traumatic event or reduced immune competence [ 42 ]. 

  B. thailandensis  and  B. pseudomallei  diverged from a common ancestor about 47 
million years ago, and the two species show a high level of 16S rRNA sequence 
similarity [ 43 ]. Their genomes are highly syntenic and approximately 85 % of their 
genes are conserved, with only four large inversions. It has been demonstrated that 
the use of live  B. thailandensis  expressing capsular polysaccharide on  B. pseudom-
allei  induces protective responses [ 44 ]. This result revealed the importance of cap-
sular polysaccharides in the stimulation of immune response against  B. pseudomallei  
and the effi cacy of  B. thailandensis  E555 strain as potential vaccine in protecting 
against melioidosis [ 44 ].   

16.3     Drug Effl ux Pumps 

 Effl ux pumps are considered among the three principal causes of drug resistance in 
bacteria, together with drug-modifying enzymes and alterations of the antimicrobial 
target [ 45 ]. Effl ux pumps are able to extrude chemically very different compounds 
(including cationic dyes, detergents, solvents and antimicrobials) out of the cell, 
thus preventing these compounds from reaching their target [ 46 ]. 

 Effl ux pumps can be divided into fi ve major families/superfamilies: ATP-binding 
cassette (ABC) superfamily, the resistance-nodulation-cell division (RND) superfam-
ily [ 47 ], the multidrug and toxic compound extrusion (MATE) family [ 48 ], the major 
facilitator superfamily (MFS) [ 49 ] and the small multidrug resistance (SMR) family 
[ 50 ]. The ABC superfamily is the only one that uses ATP as the energy source [ 51 ], 
while the others obtain energy through the proton motive force. All the families are 
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found in bacteria, including pathogens [ 52 ]. Here we will focus on RND effl ux trans-
porters, as the members belonging to this super family are the principal mediators of 
multidrug resistance in Gram-negative bacteria, including  Burkholderia  spp. [ 53 ]. 

 RND effl ux transporters are good examples of the typical translocators of Gram- 
negatives, being composed of three proteins: an inner membrane protein; a mem-
brane fusion protein, located in the periplasm; and an outer membrane protein [ 47 , 
 54 ]. These components span the Gram-negative membranes, thus allowing the 
translocation of different kind of molecules from the outer leafl et of the inner mem-
brane to the outside of the cell. 

 While the other families of effl ux transporters can be composed of only one unit 
or form similar three-component complexes, it is thought that RND members coop-
erate with other transporters to deliver their substrates through their periplasmic and 
outer membrane proteins [ 55 ]. For example, in  Pseudomonas aeruginosa , the TetA 
effl ux pump has been shown to work in concert with MexAB-OprM and enable the 
resistance to tetracycline higher in the presence of both effl ux pumps [ 56 ]. 

 The regulation of the expression of these systems is at the transcriptional level 
and involves DNA-binding proteins acting as repressors or activators that, in turn, 
sense the presence of various compounds (including the ones that are translocated 
by the effl ux pump). As an example, the crystal structures of AcrAB-TolC of 
 Escherichia coli  [ 57 – 59 ] and of its regulator AcrR [ 60 ] helped to shed light on its 
mechanism of extrusion and activation. Moreover, transcriptional regulation can be 
performed by global regulators belonging to the Mar, Sox and Rob families [ 61 ]. 

 Additional information may be gained from studying kinetics. To this aim, both 
 in vitro  and  in vivo  experiments can be performed. The latter is interesting, but it is 
diffi cult to discriminate whether the data collected only come from one transporter 
or from the whole cellular environment. In this way, many knock-out mutants 
should be tested to properly assess the contribution of one protein in respect to the 
other ones. Examples of  in vivo  assays are the effl ux of fl uorescent dyes [ 62 ] and 
antimicrobial minimal inhibitory concentration (MIC) determination in wild type 
and mutant strains [ 63 ]. As regarding  in vitro  approaches, they allow to obtain 
kinetic constants of purifi ed proteins [ 64 ]. The two assays can be combined due to 
the diffi culties in designing a classical protein assay for effl ux transporters. One 
useful method is the preparation of liposomes. 

 The  in vitro  approach presents limitations due to the hydrophobic properties of 
the substrate and its tendency to non-specifi cally bind to the membrane. Moreover, 
the proton gradient needed by the RND to perform the translocation is not easy to 
produce [ 64 ]. Different strategies to create the proton gradient and to perform 
 liposome assays have been described by Verchère and collaborators [ 65 ]. Their con-
clusions are that the reconstitution of an effl ux pump in a membrane-like environ-
ment and the vectorial substrate translocation represent the bottleneck step in 
developing functional  in vitro  assays, but they remain an excellent tool for the char-
acterization of transport activity at the molecular level. 

 The importance of RND effl ux pumps in different clinical isolates has been well 
described [ 66 ]. In clinical infections due to  E. coli , about 50 % of the isolates exhib-
ited an effl ux pump overproduction [ 67 ]. Similarly, a serious increase in the preva-
lence of effl ux-producing  Enterobacter aerogenes  strains was observed in a French 
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hospital [ 68 ]. Moreover, the involvement of active effl ux in clinical isolates of 
 Klebsiella pneumoniae  has been reported to be responsible for the extrusion of 90 % 
of ciprofl oxacin [ 69 ]. RND multidrug effl ux pumps have been well described also 
in  P. aeruginosa , another opportunistic pathogen of the respiratory tract. Examples 
are the MexAB-OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM transport-
ers [ 70 – 72 ]. A clear involvement of MexAB-OprM and MexXY-OprM in the expul-
sion of commonly used antimicrobial drugs has been described [ 73 – 77 ].  

16.4     RND Effl ux Pump Distribution in the Genus 
 Burkholderia  

 The members of the RND superfamily are further classifi ed into nine subfamilies: 
aryl polyene pigment exporter (APPE), eukaryotic (putative) sterol transporter 
(EST), hydrophobe/amphiphile effl ux-1 (HAE1), hydrophobe/amphiphile effl ux-2 
(HAE2), hydrophobe/amphiphile effl ux-3 (HAE3), heavy metal effl ux (HME), 
putative nodulation factor exporter (NFE), secretion system DF family (SecDF) and 
hopanoid biosynthesis-associated RND (HpnN) [ 54 ,  78 ]. The names of the sub-
families depend on the substrate that they translocate: heavy metals (HME), multi-
ple compounds (HAE), lipooligosaccharides (NFE) [ 79 ] or hopanoids (HpnN) [ 80 ]. 
APPE, HME, HAE1 and NFE are restricted to Gram-negative bacteria; HAE2 are 
typical for Gram-positives, while EST are found in eukaryotes. HAE3 are distrib-
uted among Archaea and Spirochaetes, while representatives of the SecDF family 
can be found in Gram-negatives, Gram-positives and Archaea [ 79 ]. 

 In the  B. cenocepacia  J2315 genome, 16 operons encoding putative RND effl ux 
pumps were described [ 9 ,  81 ], while in  B. pseudomallei  K96243, 10 operons encode 
RND transporters [ 82 ]. Most of these pumps consist of a polypeptide chain of 700–
1,300 amino acids, with a characteristic topology of a transmembrane segment 
(TMS) at the N-terminus, an extracytoplasmic domain, six TMSs, another extracy-
toplasmic domain and fi ve C-terminal TMSs. 

 In 2010, Perrin and collaborators analysed the 16 operons of  B. cenocepacia  and 
confi rmed the presence of four highly conserved motifs [ 83 ] in all of them [ 84 ]. The 
12 TMSs and the 2 large loops that are characteristic of RND proteins [ 79 ] were 
found in all of them. The organization of the operons was then studied, revealing 
three different arrays, based on the  ceoB  (the inner membrane portion) encoding 
gene position, while a phylogenetic analysis further splits the 16 sequences into 5 
clusters [ 84 ]. Then, the distribution of the CeoB-like proteins was checked in the 
entire  Burkholderia  genus, and a variable number of proteins, ranging from 6 (in 
 B. mallei  strains) to 18 (in  B. cenocepacia  strains), were found. All the sequences 
identifi ed in the  Burkholderia  genus were assigned to two RND subfamilies: HAE1 
(further divided into three groups that likely transport unrelated substrates) and 
HME (split into two different groups, one for the export of monovalent and one for 
divalent cations) [ 84 ]. While no apparent relationship between bacterial lifestyle (in 
the environment, in the host or in both), pathogenicity or genome size and RND 
protein number was detected, a correlation between the number of proteins and 
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taxonomy could be found. In fact, a similar number of RND proteins are present in 
strains of the same species and/or related species [ 84 ]. As regarding the evolution of 
RND-encoding genes, they seem to derive from an ancestral  ceoB -like sequence. In 
fact, the degree of sequence similarity is very high. Probably the ancestor was able 
to recognize different substrates, and then, through differentiation and duplication 
events, the transporters acquired the substrate specifi city [ 84 ]. 

 These analyses were subsequently deepened by performing a comprehensive 
comparative analysis of the RND superfamily effl ux systems in 26 completely 
sequenced  Burkholderia  genomes [ 84 ,  85 ]. In this way, a new uncharacterized RND 
family was discovered, and the distribution of the other subfamilies was evaluated. 
In particular, at least one copy of the genes belonging to the HAE1 and SecDF fami-
lies and to HpnN transporters was found in all the genomes analysed, indicating that 
these proteins are involved in the extrusion of different antimicrobial and/or toxic 
compounds in different microorganisms [ 86 ,  87 ], thus mediating the resistance.  

16.5     RND Effl ux Pumps in  B. cenocepacia  

 The fi rst evidence of the contribution of effl ux transporters to  Burkholderia  spp. 
drug resistance came in 1989 when Burns and collaborators determined the mecha-
nism of chloramphenicol resistance of a cystic fi brosis clinical isolate [ 88 ]. An outer 
membrane protein homologous to  P. aeruginosa  OprM was found to be responsible 
for that phenotype [ 89 ]. The entire effl ux gene cluster was subsequently isolated 
and characterized and named “ ceo ” for “ cepacia  effl ux operon” encoding CeoAB- 
OpcM [ 90 ]. It showed the ability to actively effl ux chloramphenicol and salicylate 
out of the cell, and its involvement in the transport of trimethoprim and ciprofl oxa-
cin was assessed [ 90 ]. 

 In 2006, a bioinformatic analysis allowed our group to identify 14 putative oper-
ons encoding RND effl ux transporters in the genome of  B. cenocepacia  J2315 [ 81 ]. 
After the completion of the genome sequencing, two additional transporters were 
added to the list [ 9 ]. By reverse transcription-PCR experiments,  orf3 ,  orf9 ,  orf11  
and  orf13  were shown to be expressed in  B. cenocepacia  J2315, and  orf3  expression 
was strongly induced in the presence of chloramphenicol [ 81 ]. One of the 
 RND- encoding genes ( orf2 ) was cloned into an inducible vector and transformed 
into an  E. coli  strain which lacks the  acrAB  genes. Orf2 was able to confer resis-
tance to streptomycin, tetraphenylphosphonium, ethidium bromide, nalidixic acid, 
ciprofl oxacin, ofl oxacin and norfl oxacin and was demonstrated to effl ux ethidium 
bromide out of the cell [ 81 ]. 

 Subsequently, to better understand the role of effl ux pumps in the intrinsic drug 
resistance of  B. cenocepacia  J2315, we performed gene knock-out experiments. 
Firstly, we deleted three operons encoding RND-1 ( BCAS0591 - BCAS0593 ), RND-3 
( BCAL1674 - BCAL1676 ) and RND-4 ( BCAL2820 - BCAL2822 ). Then, the MICs of 
different compounds were determined for the deleted strains and compared to the 
wild type [ 91 ]. Strain D1 with inactivation of RND-1 did not show any increased 
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susceptibility to tested compounds, while an eightfold reduction in the MIC of nali-
dixic acid was observed in strain D3 with inactivation of RND-3. As regarding 
strain D4 with RND-4 disruption, it showed a 4- to 16-fold increase in drug suscep-
tibility to aztreonam, chloramphenicol, ethidium bromide, gentamicin, tobramycin, 
nalidixic acid, ciprofl oxacin, levofl oxacin, norfl oxacin and sparfl oxacin, indicating 
that RND-4 plays a crucial role in the intrinsic resistance of  B. cenocepacia  [ 91 ]. 
RND-3 and RND-4 were also shown to be involved in  N -acyl homoserine lactone 
export, an important trait which contributes to quorum sensing signalling and to the 
virulence of the bacterium [ 91 ]. 

 In another work, the tolerance of  B. cenocepacia  to the disinfectant chlorhexi-
dine was evaluated [ 92 ]. To verify whether effl ux pumps contribute to this, chlorhex-
idine MIC was determined for the wild type and various mutant strains, both grown 
as biofi lms or planktonically. The results indicated that RND-3 and RND-9 
( BCAM1945 – BCAM1947 ) are associated with chlorhexidine tolerance when cells 
are grown as a biofi lm, while inactivation of RND-4 rendered  B. cenocepacia  plank-
tonic cells more susceptible than wild type cells [ 92 ]. The double mutant D4-D9 
was hypersusceptible, both in sessile and planktonic cultures. All these data sug-
gested the presence of specifi c chlorhexidine tolerance mechanisms related to the 
bacterial lifestyle [ 92 ]. 

 More features about RND-4 and RND-9 were elucidated by analysing the tran-
scriptome of three mutants: the single mutants D4 and D9 and the double mutant 
D4-D9 [ 93 ]. Major classes of  B. cenocepacia  genes, with differential expression in 
the deleted strains as compared to the wild type, belonged to fl agellum assembly, 
motility and chemotaxis. In particular, D4 and D4-D9 mutants shared 26 upregu-
lated fl agellum-related genes and 13 upregulated chemotaxis-related genes. Instead, 
the genes that showed a decreased expression profi le in D4 and D4-D9 mutants 
belonged to many different functional classes. Exactly the contrary was true for D9 
mutant. Microarray data were confi rmed by quantitative reverse transcription-PCR 
and phenotypic experiments, as well as by phenotype microarrays. Together these 
results showed a phenotypic and molecular similarity between D4 and D4-D9 strains 
and suggested that the RND-4 and RND-9 pumps might have a biological role not 
only restricted to transport but also related to motility and/or chemotaxis [ 93 ]. 

 RND-4 was further characterized by comparing the intracellular proteome of the 
deletion mutant to that of the wild type strain using two-dimensional electrophore-
sis [ 94 ]. The results pointed out 70 differentially expressed proteins, with 13 protein 
spots upregulated and 35 downregulated. Fifty percent of the 35 downregulated 
proteins belonged to the functional categories: “amino acids transport and metabo-
lism”, “nucleotides transport and metabolism”, “lipid transport and metabolism”, 
“translation” and “ribosomal structure and biogenesis”. Conversely, 46 % of the 13 
upregulated proteins belonged to the categories: “energy production and conver-
sion”, “posttranslational modifi cation” and “protein turnover, chaperones”. Together 
these results confi rmed a wider role than just in drug resistance for RND-4 [ 94 ]. 
However, the prominent role in drug resistance of RND-4 was further highlighted 
when, in attempt to identify the cellular target of a new thiopyridine derivative 
effective against  B. cenocepacia , a mechanism of resistance was characterized 
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which relied on RND-4 itself [ 95 ]. In addition, RND-9 has been very recently 
shown to contribute to resistance of  B. cenocepacia  J2315 against a new benzothia-
diazole derivative [ 96 ]. 

 To fi nally assess the role of each of the 16 RND effl ux transporters of  B. ceno-
cepacia , we created knock-out mutants for all of them [ 97 ]. First of all, we checked 
if differences could be detected in the MICs of some drugs for the deleted strains in 
respect to the wild type strains. Strains D3 and D4 were more susceptible to cipro-
fl oxacin, minocycline and tobramycin, while the behaviour of most mutants was 
identical to the one of the wild type. These data suggest that RND-3 and RND-4 
effl ux pumps are involved in resistance of planktonic  B. cenocepacia  cells, while the 
other RND systems do not play a major role. As regarding to the sessile cells, strain 
D3 showed the highest reductions in the number of cells in the presence of high 
concentrations of tobramycin and ciprofl oxacin, thus indicating that this effl ux sys-
tem is important also for the protection of  B. cenocepacia  when grown as biofi lm. 
RND-8 and RND-9 seem instead to protect sessile cells against tobramycin [ 97 ]. 

 In summary, at present only a few RND effl ux transporters out of 16 appear to 
play a role in drug resistance or to be involved in virulence (due to the transport of 
quorum sensing signal molecules) in  B. cenocepacia . In particular, (a) RND-3 is 
involved in the effl ux of nalidixic acid, ciprofl oxacin, tobramycin and  N -acyl homo-
serine lactone in planktonic cells and seems to have a role in the protection of sessile 
cells against ciprofl oxacin, tobramycin and chlorhexidine; (b) RND-4 plays a role 
in the effl ux of aztreonam, ethidium bromide, chloramphenicol, gentamicin, tobra-
mycin, fl uoroquinolones, chlorhexidine, a thiopyridine derivative and  N -acyl homo-
serine lactone in planktonic cells; (c) RND-8 is important for the effl ux of tobramycin 
in sessile cells; (d) RND-9 is involved in the transport of chlorhexidine and tobra-
mycin in biofi lm grown cells; it contributes to the resistance towards a new benzo-
thiadiazole derivative; (e) RND-10 (Ceo) transports chloramphenicol, salicylate, 
trimethoprim and ciprofl oxacin out of the cell. 

 In  B. cenocepacia , only two non-RND effl ux transporters have been described for 
their contribution to resistance, BcrA and a homolog to the  E. coli  Fsr, both belong-
ing to the MFS. The former is able to confer resistance to tetracycline and nalidixic 
acid when overexpressed in  E. coli  [ 98 ] and the latter to fosmidomycin [ 99 ,  100 ].  

16.6     RND Effl ux Pumps in Other  Burkholderia  Species 

16.6.1      Burkholderia pseudomallei  and  Burkholderia mallei  

 Ten operons encoding RND effl ux pumps are present in the genome of  B. pseudo-
mallei  [ 82 ], but their clinical importance is diffi cult to study. Only the role of 
AmrAB-OprA [ 101 ], BpeAB-OprB [ 102 ,  103 ] and BpeEF-OprC [ 104 ] was 
elucidated. 

 AmrAB-OprA is a multidrug effl ux system required for both aminoglycoside 
and macrolide antibiotic extrusion. This effl ux pump shows homology to multidrug 
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effl ux systems studied in  E. coli ,  P. aeruginosa  and  Neisseria gonorrhoeae  [ 101 ]. 
 B. pseudomallei  strains susceptible to aminoglycosides and macrolides have single 
point mutations or deletions in the  amrAB - oprA  operon [ 105 ]. The presence of this 
effl ux mechanism in  B. pseudomallei  explains the lack of therapeutic effect observed 
for aminoglycosides and macrolides. AmrAB-OprA is also able to reduce the activ-
ity of newer antimicrobials like cethromycin: indeed the exposure to cethromycin 
induces the selection of mutants overexpressing the operon and results in high resis-
tance levels [ 106 ]. 

 Another  B. pseudomallei  effl ux pump is BpeAB-OprB which extrudes macro-
lides, fl uoroquinolones, tetracyclines and chloramphenicol and contributes to the 
intrinsic resistance. However, except for macrolides, the resistance levels are low. 
Despite the relationship between BpeAB-OprB and the  P. aeruginosa  MexAB- 
OprM, they are quite different: the latter is broadly expressed and it is involved in 
the intrinsic resistance to many compounds [ 107 ], while BpeAB-OprB has lower 
expression levels and it plays a minor role in the resistance. Studies regarding the 
correlation between RND effl ux pump and quorum sensing or virulence traits 
showed that BpeAB-OprB in  B. pseudomallei  KHW strain is used for the secretion 
of  N -acyl homoserine lactones [ 108 ] and virulence-associated determinants, such as 
siderophores [ 109 ]. 

 The last described effl ux system in  B. pseudomallei  is BpeEF-OprC, the most 
important pump for antimicrobial resistance. Initially, it was identifi ed as chloram-
phenicol and trimethoprim transporter. The  bpeEF - oprC  operon is expressed only 
in  B. pseudomallei  strains carrying mutations in the regulatory region. Its expres-
sion confers resistance to chloramphenicol, fl uoroquinolones, tetracyclines and tri-
methoprim, and it is responsible for the spread of trimethoprim resistance in 
 B. pseudomallei  isolates [ 110 ]. In  P. aeruginosa , there is a related effl ux pump, 
MexEF-OprN, which is characterized by similar substrate effl ux profi le [ 111 ]. The 
clinical signifi cance of BpeEF-OprC is described below in the section “RND effl ux 
pumps in  Burkholderia  clinical isolates”. 

  B. mallei , as already described above, is generally more susceptible than  B. pseu-
domallei  to antimicrobial agents. The ATCC 23344 strain is susceptible to amino-
glycosides because of a chromosomal deletion which involves the  amrAB - oprA  
operon [ 39 ]. In  B. mallei , the genes coding for BpeAB-OprB and BpeEF-OprC 
effl ux pumps are present, but it is not known if the corresponding effl ux systems are 
functional or not.  

16.6.2      Burkholderia thailandensis  

  B. thailandensis  becomes multidrug resistant following chloramphenicol exposure 
due to the overexpression of two RND effl ux systems very similar to the already 
studied BpeAB-OprB and BpeEF-OprC of  B. pseudomallei  [ 112 ]. In another work, 
Biot and colleagues [ 113 ] showed that doxycycline resistance was correlated with 
the overexpression of AmrAB-OprA or BpeEF-OprC effl ux pumps. The expression 
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levels varied depending on the antimicrobial concentration, and this indicated a 
reversible multidrug resistance phenotype [ 113 ]. Moreover, analysis of mutants 
overexpressing the effl ux pumps highlighted that BpeAB-OprB is able to partially 
substitute the absence of AmrAB-OprA or BpeEF-OprC [ 113 ]. Furthermore, 
another effl ux pump of the MFS family, responsive only to urate, xanthine and 
hypoxanthine and controlled by a multiple antimicrobial resistance regulator MarR- 
like, has been described [ 114 ]. However, its contribution to drug resistance is still 
unclear.  

16.6.3      Burkholderia vietnamiensis  

 In contrast to many other Bcc species,  B. vietnamiensis  is susceptible to aminogly-
cosides and to a broad range of other antimicrobials, while it remains highly resis-
tant to other cationic agents [ 115 ]. The same study reported the acquisition of 
aminoglycoside resistance of  B. vietnamiensis  in cystic fi brosis chronic infection or 
during the  in vitro  exposure to the drugs [ 115 ]. This resistance was caused by an 
effl ux pump homologous to the  B. pseudomallei  and  B. thailandensis  AmrAB- 
OprA. Mutations in  amrR , the putative effl ux pump regulator, infl uenced the expres-
sion of the  B. vietnamiensis  gene  amrB  [ 116 ]. Moreover, in  B. vietnamiensis , the 
 norM  gene encoding a MATE-type effl ux protein was described. The disruption of 
 norM  alone was shown to be insuffi cient to reduce high levels of norfl oxacin resis-
tance, because of the presence of other effl ux systems [ 117 ]. Although the physio-
logical role of NorM is yet unclear, it is probably involved in resistance to the 
cationic peptide polymyxin B, especially under stress conditions [ 117 ].   

16.7     RND Effl ux Pumps in  Burkholderia  Clinical Isolates 

 Due to the high degree of antimicrobial resistance among  Burkholderia  species, it is 
very important to evaluate the contribution of effl ux transporters, especially in clini-
cal isolates. In the last years, some papers describing this topic were published. 

 Recently, Tseng and collaborators [ 118 ] evaluated the role of effl ux pumps in 66 
clinical Bcc isolates recovered between 2009 and 2011 in Taiwan. In order to assess 
the presence of active effl ux, resistance patterns were determined by measuring the 
MICs of antimicrobials in the presence of the effl ux pump inhibitor carbonyl cya-
nide  m -chlorophenylhydrazone (CCCP), and the effl ux pump expression was evalu-
ated through quantitative reverse transcription-PCR. The results showed that 78.6 % 
isolates (resistant to ceftazidime, chloramphenicol, levofl oxacin, meropenem and 
trimethoprim-sulfamethoxazole) demonstrated presence of the effl ux pump activity. 
Moreover, RND-3 and RND-9 transcripts were more abundant in all the tested 
strains compared to a strain without effl ux pump activity. DNA sequences of the 
regulators of these two pumps were also sequenced, together with the promoter, 
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thus revealing fi ve nucleotide deletions in RND-3 regulator which affected RND-3 
effl ux pump expression in  B. cenocepacia  clinical isolates causing antimicrobial 
resistance [ 118 ]. 

 In  B. pseudomallei , mutations in the  amrB  gene have been reported to be respon-
sible for aminoglycoside sensitivity [ 119 ]. The whole-genome sequencing revealed 
non-synonymous mutations in a highly conserved region of  amrB  gene [ 119 ]. In 
another work, susceptibility of three isolates from Thailand was shown to be due to 
the lack of or greatly reduced expression of AmrAB-OprA, caused by deletions 
affecting the pump itself [ 105 ]. The role of AmrAB-OprA in the high-level cethro-
mycin resistance of  B. pseudomallei  clinical isolates was further assessed by mea-
suring the  amrB  transcript levels, the  amrR  repressor gene and the  amrR - amrA  
intergenic region for presence of mutations and deleting the  amrAB - oprA  operon 
[ 106 ]. 

 The clinical signifi cance of BpeEF-OprC was corroborated by sequencing 
genomes of isolates from patients suffering from melioidosis with increased resis-
tance to chloramphenicol, ofl oxacin and trimethoprim-sulfamethoxazole [ 120 ]. As 
an example, a large inversion of 800 kb resulted in a deletion of the last 24 codons 
of  bpeT , coding for the transcriptional regulator of the effl ux pump. All these data 
sustained the hypothesis that BpeEF-OprC effl ux pump has an important role in 
antimicrobial resistance of  B. pseudomallei  [ 34 ]. In another report by Podnecky and 
co-workers, the BpeEF-OprC effl ux pump has been shown to contribute to trime-
thoprim resistance in  B. pseudomallei  clinical and environmental isolates from 
northeast Thailand and northern Australia [ 110 ]. 

 The role of effl ux transporters in intrinsic drug resistance of clinical isolates was 
also shown in the case of  B. vietnamiensis  strains [ 115 ,  116 ]. The authors demon-
strated that strains that acquired aminoglycoside resistance during infection and 
after exposure to tobramycin or azithromycin overexpressed AmrAB-OprM and 
contained missense mutations in its repressor gene  amrR  [ 116 ].  

16.8     Effl ux Pump Inhibitors 

 A main concern for the treatment of  Burkholderia  infections is the inability to eradi-
cate them with the available drugs. A possible new approach could be a combination 
of antimicrobial agents with effl ux pump inhibitors (EPIs). This could potentially 
improve the antimicrobial therapy as the phenotype driven by effl ux transporters 
frequently results in multidrug resistance. In this way, an EPI appears useful to 
block many pumps at a time, thus rendering bacteria more susceptible to drugs. 
Moreover, EPI administration should reduce the rates of resistance development 
[ 121 ]. 

 Unfortunately, until now no EPIs entered the clinical trials because of toxicity, 
even if many have been developed [ 122 ,  123 ]. As an example, phenylalanine- 
arginine- β-naphthylamide (PAβN) exhibited a great activity in  P. aeruginosa  [ 124 , 
 125 ], but it is nephrotoxic. Also, inhibitors of the MexAB-OprM effl ux system were 
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developed and tested  in vivo  but subsequently abandoned [ 126 ,  127 ]. Moreover, 
some generic uncouplers (such as CCCP) are available. However, these compounds, 
causing the dissipation of the proton motive force and reducing the viability of the 
cells themselves, are cytotoxic, so this road is not feasible. 

 Moreover, EPIs, which have been shown to be effective in one microorganism, 
not always showed their activity in other species. As an example, PAβN seems to be 
ineffective in the genus  Burkholderia  [ 91 ,  102 ]. Also, not all the compounds 
extruded by a pump are potentiated by PAβN because it works by competing with 
antimicrobials for their binding site [ 124 ]. 

 The unsuccessful development of EPI could be ascribed to the diffi culties in 
understanding the features and mechanism of action of effl ux pumps, in particular 
of RND. In fact, only a few crystal structures of individual components of these 
pumps are available, while a comprehensive knowledge of their assembly and 
mechanism of translocation is missing. In this way, it is very diffi cult to predict the 
specifi city of the potential inhibitor and to study its pharmacokinetics. This is com-
plicated also by the fact that the EPI has to be administered together with other 
antimicrobials, and their pharmacokinetics should be tailored. Even if the structure 
of the inhibitor D13-9001 bound to AcrB has been solved [ 128 ], another main prob-
lem for the development of Gram-negative EPIs is the uptake inside the cell (which 
is preferential for small hydrophilic molecules) and the specifi c binding to the inner 
membrane portion of RND pumps (usually hydrophobic molecules). The genetic 
and biochemical studies and the computational methods which could help to over-
come these issues have been recently reviewed by Opperman and Nguyen [ 129 ].  

16.9     Concluding Remarks 

 This chapter presents the genus  Burkholderia , which includes more than 90 species. 
These species show a high level of intrinsic drug resistance and have many viru-
lence factors. One of the contributors to resistance is the presence of effl ux pump- 
encoding genes in their genomes. These pumps are able to recognize and extrude 
very dissimilar compounds, thus rendering the bacteria particularly diffi cult to erad-
icate. We described the distribution of RND pump-encoding genes in the various 
 Burkholderia  genomes and showed the role of the principal RND pumps in  B. ceno-
cepacia  (especially studied in our laboratory), in  B. pseudomallei , in  B. mallei , in 
 B. thailandensis  and in  B. vietnamiensis  in drug resistance. A brief description of 
non- RND systems (MFS and MATE) has been added for each species in which they 
were studied. The clinical signifi cance of RND effl ux transporters in  Burkholderia  
spp. has been demonstrated, thus confi rming the importance of the research in this 
fi eld and highlighting the need for new therapeutic solutions to be combined with 
the existing antimicrobial drugs to overcome the resistance problem of these 
infections.     
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