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    Chapter 14   
 Antimicrobial Drug Effl ux Pumps 
in  Pseudomonas aeruginosa                      

     Xian-Zhi     Li      and     Patrick     Plésiat   

    Abstract      Pseudomonas aeruginosa  is a major opportunistic pathogen that exhibits 
high-level intrinsic and acquired multiple antimicrobial resistance. In addition to the 
accumulation of individual drug-specifi c resistance mechanisms, such resistance 
phenotypes are attributed to the interplay between the polyspecifi c multidrug effl ux 
pumps and the low outer membrane permeability, and this refl ects evolution of 
 P. aeruginosa  in exposure to diverse hostile environments. A dozen drug effl ux 
pumps, which belong to the resistance-nodulation-cell division (RND) superfamily, 
have been characterized in  P. aeruginosa . Several RND pumps, as represented by 
MexAB- OprM and MexXY, play important roles in clinically relevant resistance, 
stress responses, and virulence. Regulation of these pumps is often under the control 
of local regulators (repressors or activators), global regulators, two-component reg-
ulatory systems, and modulators, whose mutations produce elevated antimicrobial 
resistance in many clinical isolates. This chapter provides an up-to-date overview of 
antimicrobial drug effl ux pumps in  P. aeruginosa  with a focus on their substrates, 
regulation, inhibition, and clinical signifi cance.  

  Keywords      Pseudomonas aeruginosa    •   Multidrug resistance   •   Effl ux pumps   • 
  Outer membrane   •   Effl ux pump inhibitor   •   RND   •   MexAB-OprM   •   MexXY  

14.1       Introduction 

  Pseudomonas aeruginosa  is a non-fermentative Gram-negative rod thriving in 
aquatic environments impacted by human activities. It is a notorious cause of severe 
healthcare-associated infections in immunocompromised patients, as well as 
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pro- infl ammatory chronic lung colonization in cystic fi brosis patients [ 1 ,  2 ]. This 
species is also a pathogen for animals such as dogs, cats, and bovines [ 3 ], whose 
virulence holds on production of multiple cell wall-associated or secreted factors 
(e.g., alginate, pili, lipopolysaccharide, toxins, and proteases) [ 4 – 6 ] and formation 
of biofi lms [ 7 ,  8 ]. Because of the relatively high-level intrinsic resistance of this 
species to a wide range of structurally diverse antimicrobials, chemotherapy of 
 P. aeruginosa  infections relies on a limited number of antipseudomonal antimicro-
bials [ 1 ]. However, clinically signifi cant resistance to these agents is commonly 
developed by clinical strains via various adaptive or acquired mechanisms [ 9 ,  10 ]. 
In the USA, it was estimated that 13 % of severe healthcare-associated  P. aeruginosa  
infections are due to multidrug-resistant strains [ 11 ]. A more recent US study 
showed non-susceptible rates of up to 25 % toward major antipseudomonal drugs 
(except colistin) among 1,743  P. aeruginosa  isolates [ 12 ]. In addition to the accu-
mulation of individual drug-specifi c resistance mechanisms, multidrug resistance 
(MDR) may be achieved through the synergistic interplay between the low perme-
ability outer membrane (OM) barrier and a number of multidrug effl ux pumps 
belonging to the resistance-nodulation-cell division (RND) superfamily of trans-
porters [ 13 ,  14 ]. Initially discovered in the early 1990s with the predominant role of 
the MexAB-OprM effl ux system in both intrinsic and acquired resistance [ 15 – 18 ], 
multidrug transporters of  P. aeruginosa  have been further characterized for their 
roles in drug resistance and other functions [ 14 ,  19 – 21 ]. This chapter provides an 
up-to- date overview of effl ux pump-mediated drug resistance in  P. aeruginosa  with 
an emphasis on the substrates, regulation, inhibition, and clinical relevance of these 
export systems. The roles of MDR effl ux pumps beyond drug resistance such as in 
biofi lm formation, stress responses, and pathogenicity of  P. aeruginosa  are described 
elsewhere (see Chaps.   25    ,   26    , and   27    ).  

14.2     Historical Perspectives on  P. aeruginosa  Chromosomal 
MDR Effl ux Pumps 

 During the early studies on  P. aeruginosa  in the 1960s, MDR phenotypes character-
ized by a simultaneous resistance to aminoglycosides, chloramphenicol, penicillins, 
sulfonamides, and tetracyclines were observed [ 22 ,  23 ]. While at that time resistant 
 P. aeruginosa  strains were known to produce drug-inactivating enzymes (e.g., 
β-lactamases and aminoglycoside-modifying enzymes) [ 23 ,  24 ], these drug-specifi c 
enzymatic mechanisms offered no satisfactory explanation of resistance to structur-
ally distinct antimicrobials. Because of the barrier function of the OM, most Gram- 
negative bacteria are less susceptible than Gram-positive bacteria to amphiphilic or 
bulky drug molecules [ 25 ,  26 ]. Breakthrough studies also specifi cally demonstrated 
that  P. aeruginosa  is a species with exceptionally low OM permeability [ 27 – 31 ], 
which is due to its major porin OprF mainly existing as closed channels [ 32 ,  33 ]. 
(Of note,  P. aeruginosa  and  Escherichia coli  have similar low permeable asymmet-
ric lipid bilayer domains [ 34 ,  35 ].) Indeed, an antimicrobial-hypersusceptible 
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 P. aeruginosa  mutant had OM lipopolysaccharide defi ciency with easy drug access 
[ 29 ,  36 ,  37 ]. (This mutant was later found to be also defi cient in drug effl ux activity 
[ 16 ].) Moreover, drug uptake in  P. aeruginosa  may be further reduced in isolates 
resistant to aminoglycosides (e.g., streptomycin) or carbapenems (e.g., imipenem) 
by quantitative or qualitative changes in the lipopolysaccharide or porin (OprD) 
content of the OM [ 38 ,  39 ]. 

 In the 1980s, the use of advanced broad-spectrum β-lactamase-stable β-lactams 
and fl uoroquinolones was accompanied with increased isolation of multidrug- 
resistant isolates  in vivo  during drug administration [ 40 – 44 ]. These agents were also 
found to readily select MDR  in vitro  under laboratory conditions. While investigat-
ing the biochemical mechanisms of MDR or fl uoroquinolone resistance, the OM 
protein profi les of  P. aeruginosa  isolates were assessed in numerous studies, which 
showed overproduction of ca. 50 kDa OM proteins that were associated with several 
gene loci named as  nalB ,  nfxB , and  nfxC  [ 45 – 51 ]. One of these reports by Masuda 
and Ohya [ 51 ] designated the MDR-associated OM protein as OprM. Importantly, 
quinolone-resistant isolates also showed reduced uptake of ciprofl oxacin [ 47 ] and 
active extrusion of ofl oxacin [ 52 ]. Regardless of these studies, it became clear that 
the OM permeability barrier and periplasmic β-lactamase activity [ 53 ,  54 ] cannot 
fully explain MDR phenotypes (including β-lactam resistance in multidrug-resistant 
isolates/impermeability-type carbenicillin-resistant isolates) [ 55 ], which led to our 
initiative to investigate intrinsic and acquired MDR of  P. aeruginosa  [ 16 ,  17 ,  56 ]. In 
1993, Poole et al. [ 15 ] reported the identifi cation of the  mexAB - oprK  (i.e.,  mexAB -
 oprM ) operon from  P. aeruginosa  which encodes a three- component effl ux system 
involved in MDR. Together, these studies demonstrated a predominant role of drug 
effl ux mechanism in intrinsic and acquired MDR (including β-lactam resistance) 
and expression of multiple drug effl ux pumps in  P. aeruginosa  [ 15 – 18 ]. Subsequently, 
three MexAB-OprM homologues, MexCD-OprJ [ 57 ], MexEF-OprN [ 58 ], and 
MexXY (initially referred to as MexGH or AmrAB) [ 59 – 61 ], were also reported to 
be involved in  P. aeruginosa  MDR before the availability of the fi rst whole genome 
annotated sequence for  P. aeruginosa  strain PAO1 [ 62 ]. All these Mex pumps belong 
to the RND superfamily of secondary active transporters [ 63 ], which typically 
require multiple components to form an energy-dependent functional extrusion 
complex across the entire cytoplasmic (inner) and outer membranes of Gram-
negative bacteria [ 14 ].  

14.3     Antimicrobial Drug Effl ux Pumps and Their Clinical 
Signifi cance in  P. aeruginosa  

  P. aeruginosa  genome sequences show the presence of a larger number of primary 
and secondary active transporters (TransportDB at   http://www.membranetransport.
org    ; accessed on February 15, 2016) [ 62 ,  64 ]. Both the widely studied strain PAO1 
and more virulent strain UCBPP-PA14 contain 17 RND-type transporters. To date, 
12 RND effl ux pumps have been characterized for their substrate profi les as shown 
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in Table  14.1 . The rest of the RND members include homologues to protein export 
components such as SecD and SecF, but their role in drug resistance, if any, remains 
unknown. These RND pumps are generally encoded by operons and are each com-
posed of three components that include a cytoplasmic membrane transporter (e.g., 
MexB), a cytoplasmic membrane-associated periplasmic adaptor protein (membrane 
fusion protein) (e.g., MexA), and an OM channel protein (e.g., OprM) (see Chaps.   1     
and   5    ). These multicomponent pumps refl ect the complex structures of  P. aeruginosa  
cell envelopes and provide the structural and functional basis to directly extrude 
substrates out of the cell.  In vitro  transport activity of an assembled MexAB- OprM 
in proteoliposomes was recently demonstrated to show energy-dependent substrate 
translocation in a system mimicking Gram-negative dual-membrane envelope archi-
tecture [ 129 ]. Additionally, members of other transporter superfamilies or families 
have been identifi ed, including the members of the major facilitator superfamily 
(MFS), the multidrug and toxic compound extrusion (MATE) family, the small mul-
tidrug resistance (SMR) family, and the ATP-binding cassette (ABC) superfamily 
(Table  14.1 ). For instance, of fi ve proteins of the SMR family present in  P. aeruginosa , 
one pump with the highest identity to the EmrE homologue of  E. coli  was shown to 
contribute to intrinsic resistance to aminoglycosides and dyes in low ionic strength 
media [ 120 ]. An ABC exporter was recently noted to be regulated by the PhoPQ two-
component regulatory system and to contribute to tetracycline resistance [ 125 ]. 
However, the roles of the non-RND pumps in drug resistance remain largely unclear. 
Hence, we limit the descriptions below to RND effl ux pumps.

14.3.1       MexAB-OprM 

 This effl ux system, which has a constitutive though growth phase-dependent expres-
sion in wild-type strains, signifi cantly contributes to intrinsic drug resistance of 
 P. aeruginosa  [ 130 ]. Inactivation of any component of MexAB-OprM renders the 
wild-type strains extremely hypersusceptible with ≥8-fold reduction in the values 
of the minimal inhibitory concentrations (MICs) for diverse antimicrobial agents 
(e.g., carbenicillin MIC was reduced by ≥128-fold) [ 18 ,  65 – 67 ]. MexAB-OprM 
 overproduction contributes to the acquired MDR and is observed in clinical isolates 
of several mutant types including  mexR  ( nalB ),  nalC , and  nalD  mutants [ 18 ,  51 , 
 131 – 144 ]. An investigation of 12 multidrug-resistant MexAB-OprM-overproducing 
strains showed an equivalent distribution of  mexR ,  nalC , and  nalD  mutants [ 136 ], 
which was supported by similar fi ndings from independent studies [ 138 ,  145 ]. 
MexAB-OprM overproducers have also been selected  in vitro  after exposure to 
β-lactams, quinolones, chloramphenicol, macrolides, tetracyclines, as well as bio-
cides and organic solvents [ 16 ,  45 ,  51 ,  146 – 148 ].  In vitro  studies on reference 
strains have shown that any mutations inactivating genes  mexR ,  nalC , or  nalD  or 
impairing the activity of their respective products, MexR, ArmR, or NalD (see 
Sect.  14.4  below), can result in overexpression (≥threefold) of  mexAB - oprM  with 
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        Table 14.1    Non-exhaustive substrate specifi city of characterized drug effl ux pumps in 
 P. aeruginosa    

 Transporter 
family/effl ux 
pump  Regulator/modulator  Substrates  References 

 RND 
 MexAB-OprM  MexR, NalC, NalD, ArmR, 

RocS1/S2-A2, BrlR, MexT 
 AG, BL, CHIR, CHL, 
COL a , CP, CRL, CV, EB, 
FQ, ID, QL, ML, NOV, OS, 
PDM, QS, SDS, SUL, TC, 
TLM, TMP, TRI, TTO 

 [ 18 ,  65 – 81 ] 

 MexXY-OprM, 
MexXY-OprA 

 MexZ, ArmZ, AmgRS, 
ParRS, SuhB 

 ACR, AG, BPR, EB, FEP, 
FQ, LBM, ML, TC, TGC 

 [ 59 – 61 ,  82 – 91 ] 

 MexCD-OprJ  NfxB, EsrC, AlgU, VqsM  AZI, BPR, CHIR, CHL, 
COL a , CHX, FEB, FQ, 
NBTI, NCD, OS, PDM, 
QAC, QL, TC, TGC, TRI 

 [ 57 ,  67 ,  74 ,  76 , 
 82 ,  92 – 99 ] 

 MexEF-OprN  MexT, MexS, MvaT, AmpR, 
BrlR, ParRS 

 CHIR, CHL, DA, FQ, 
HHQ, TET, TMP, TRI 

 [ 58 ,  67 ,  76 , 
 100 – 103 ] 

 MexGHI- 
OpmD 

 SoxR  ACR, EB, FQ, TET, TPP, 
QS, Va 2+  

 [ 104 – 106 ] 

 MexJK-OprM  MexL  ERY, TET  [ 107 ,  108 ] 
 MexJK-OpmH  MexL  TRI  [ 107 ,  108 ] 
 MexMN-OprM  CHL, TML  [ 109 ] 
 MexPQ-OpmE  ML, QL, TPP  [ 109 ] 
 MexVW-OprM  ACR, CHL, EB, ERY, FQ, 

QL, TC 
 [ 110 ] 

 MuxABC- 
OpmB 

 ATM, COL a , ML, NOV, 
TET 

 [ 111 – 113 ] 

 TriABC-OprM  ?  [ 114 ] 
 TriABC-OpmH  TRI  [ 114 ] 
 CzcCBA  CzcRS, CopRS  Cd 2+ , Zn 2+   [ 115 – 117 ] 
 MATE 
 PmpM  ACR, BAC, EB, TPP  [ 118 ] 
 MFS 
 Cml b   CHL, THL  [ 119 ] 
 TetA b   TetR  TC  [ 119 ] 
 SMR 
 EmrE  AG, EB  [ 120 ] 
 QacE b   QAC  [ 121 ] 
 QacF b   QAC  [ 122 ] 
 ABC 
 PA1874-1877  CIP a , GEN a , TOB a   [ 123 ] 
 PA2812 
(CcmA) 

 CIP  [ 124 ] 

(continued)
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concomitant increase in resistance (2- to 16-fold MIC increases) to the pump sub-
strates compared to baseline levels, with  nalC  mutants being in general twofold 
more susceptible than the  nalB  and  nalD  mutants [ 68 – 70 ,  82 ,  132 ,  149 – 151 ]. 

 Similar to  E. coli  AcrAB-TolC (see Chap.   9    ), the MexAB-OprM effl ux system 
shows the broadest substrate profi le among the known multidrug effl ux pumps of 
 P. aeruginosa  (Table  14.1 ) [ 15 – 18 ,  51 ,  65 – 67 ,  71 ,  72 ,  120 ,  152 – 156 ]. Those antimi-
crobial agents that have been confi rmed as substrates are comprised of β-lactams 
(including β-lactamase inhibitors), chloramphenicol, quinolones/fl uoroquinolones, 
macrolides, novobiocin, sulfonamides, trimethoprim, tetracyclines, cerulenin, 
pacidamycin, and thiolactomycin [ 16 – 18 ,  65 ,  73 ,  74 ,  157 ]. Moreover, the substrates 
also extend to nonantibiotics, such as dyes (acridine orange, acrifl avine, crystal vio-
let, and ethidium bromide), detergents, triclosan, organic solvents, tea tree oils, and 
quorum-sensing molecules/inhibitors [ 66 ,  72 ,  73 ,  75 ,  120 ,  148 ,  155 ,  158 ]. MexAB- 
OprM is also involved in reduced aminoglycoside susceptibility in low ionic 
strength medium [ 120 ]. Intriguingly, antipseudomonal activity of imipenem, a car-
bapenem β-lactam, appears not a substrate of the MexAB-OprM pump since 
MexAB-OprM overexpression has no impact on imipenem MIC in an OprD- 
defi cient mutant vs. wild-type OprD strain [ 159 ]. (The OprD channel protein func-
tions as a specifi c pathway for active basic amino acid uptake and also permits rapid 
penetration of imipenem [ 39 ], thus potentially masking the role of an effl ux pump.) 
Nevertheless, other carbapenems such as doripenem, panipenem, and meropenem 
are substrates for MexAB-OprM [ 51 ,  160 – 162 ]. 

 Reminiscent of  E. coli  TolC protein, OprM serves as a universal OM effl ux pro-
tein and functions in multiple effl ux systems (Table  14.1 ) [ 163 – 165 ]. OprM contrib-
utes to MDR, not only in conjunction with MexAB [ 18 ] but also independent of 

Table 14.1 (continued)

 Transporter 
family/effl ux 
pump  Regulator/modulator  Substrates  References 

 PA4456  PhoPQ  TET  [ 125 ] 
 PvdRT-OpmQ  PMC, SMC  [ 126 – 128 ] 

   ACR  acrifl avine,  AG  aminoglycosides,  ATM  aztreonam,  AZI  azithromycin,  BAC  benzalkonium 
chloride,  BL  β-Lactams (except carbapenems),  BPR  ceftobiprole,  BS  bile salts,  CHIR  CHIR-090 
(LpxC inhibitor),  CHL  chloramphenicol,  CHX  chlorhexidine,  CIP  ciprofl oxacin,  COL  colistin,  CP  
carbapenems (except imipenem),  CRL  cerulenin,  CV  crystal violet,  DA  diamide,  EB  ethidium 
 bromide,  ERY  erythromycin,  FEP  cefepime,  FQ  fl uoroquinolones,  GEN  gentamicin,  HHQ  
4-hydroxy-2-heptylquinoline,  ID  indoles,  LBM  LBM415 (peptide deformylase inhibitor),  ML  
macrolides,  NBTI  novel bacterial type II topoisomerase inhibitor NBTI5463,  NCD  N-chloramine 
derivative,  NOV  novobiocin,  OS  organic solvents,  PDM  pacidamycin,  PMC  pyoverdine-metal 
complexes,  QAC  Quaternary ammonium compounds,  QL  quinolones,  QS  quorum-sensing 
 molecules/inhibitors,  SDS  sodium dodecyl sulfate,  SMC  siderophore-monobactam conjugate,  SUL  
sulfonamides,  TC  tetracyclines,  TET  tetracycline,  TGC  tigecycline,  THL  thiamphenicol,  TLM  thio-
lactomycin,  TMP  trimethoprim,  TOB  tobramycin,  TPP  tetraphenylphosphonium,  TRI  triclosan, 
 TTO  tea tree oil 
  a Effl ux pump contribution to resistance to these agents was observed in biofi lms only 

  b These pumps are plasmid borne  
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MexAB [ 166 ]. To date, OprM is known to work with other RND transporters 
(whose encoding operons often lack a linked gene for an OM component) including 
MexXY [ 59 – 61 ], MexJK [ 107 ], MexMN [ 109 ], MexVW [ 110 ], and TriABC [ 114 ], 
although other OM proteins can function with some of these transporters such as 
OpmH [ 114 ,  167 ] and OprA [ 168 ] (Table  14.1 ). Moreover, OprM can functionally 
replace the role of either OprJ of MexCD-OprJ or OprN of MexEF-OprN without 
affecting substrate profi les of these systems [ 163 ,  169 ]. 

 Relevant to its clinical signifi cance, MexAB-OprM when overproduced decreases 
the susceptibility of clinical isolates to antipseudomonal antimicrobials by a two- to 
eightfold in MIC values in comparison with the baseline levels in the absence of 
non-effl ux resistance mechanisms such as enzymatic drug inactivation and drug 
target alterations [ 133 ,  142 ,  154 ,  170 ]. Based on the clinical susceptibility break-
points from the Clinical and Laboratory Standards Institute (CLSI) [ 171 ], a maxi-
mal effect from the elevated MexAB-OprM effl ux mechanism (eightfold MIC 
increase) would change strain categorization for a small number of antipseudo-
monal drugs such as aztreonam and ticarcillin (from drug susceptible [S] to inter-
mediate [I] or resistant [R]) and meropenem, ciprofl oxacin, and levofl oxacin (from 
S to I). Another study showed that MexAB-OprM overproduction (via measuring 
 mexA  expression) was linked to median MIC values above the clinical resistance 
breakpoints (from the European Committee on Antimicrobial Susceptibility Testing 
[EUCAST]) for ciprofl oxacin, cefepime, and meropenem [ 142 ]. Although further 
investigations are required to assess the therapeutic impact of MexAB-OprM  in vivo 
 [ 172 ], a recent study demonstrated that isolates with overproduction of either 
MexAB-OprM, MexCD-OprJ, or MexEF-OprN negatively affected antimicrobial 
effi cacy in a  Galleria mellonella   in vivo  infection model [ 173 ]. Higher drug dosages 
or antimicrobial-effl ux pump inhibitor combinations are expected to be required in 
the treatment of infections associated with MexAB-OprM overproducers [ 173 , 
 174 ]. Additionally, elevated MexAB-OprM expression also facilitates the emer-
gence of other resistance mechanisms [ 147 ,  175 ]. Simultaneous expression of 
MexAB-OprM and other Mex pumps (e.g., MexXY or MexEF-OprN) have been 
reported, and this can produce additive effects in raising drug MIC levels as evident 
with fl uoroquinolones [ 136 ,  141 ,  142 ,  176 – 180 ]. 

 As a key mechanism responsible for high-level intrinsic resistance, the role of 
MexAB-OprM is also tightly linked to the low OM permeability barrier. Thus, the 
OM barrier and MexAB-OprM interplay to limit the access of antimicrobials to their 
cellular targets. The differential MIC values shown in Table  14.2  clearly demonstrate 
such synergistic interplay between the membrane barrier and the major effl ux sys-
tem in  P. aeruginosa  [ 181 ,  182 ]. Membrane disorganizers, such as chelating agent 
ethylenediaminetetraacetate (EDTA), potentiate antimicrobial activity of amphiphi-
lic agents (which are expected to cross the OM through the lipidic domains), espe-
cially in the absence of MexAB-OprM (Table  14.2 ) [ 181 ]. This is also supported by 
an observation on the association of the defi ciency in both MexAB-OprM and lipo-
polysaccharide with the hypersusceptible phenotype of strain Z61 [ 16 ,  37 ,  183 ]. 
Together, these data support a strategy to reverse antimicrobial resistance through 
the inhibition of drug effl ux pumps and disruption of the OM barrier.
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14.3.2        MexXY-OprM/MexXY-OprA 

 Encoded by a two-gene operon that lacks a gene for an OM protein, the MexXY 
system utilizes OprM to form a functional effl ux pump in most  P. aeruginosa  strains 
[ 59 ,  60 ]. However, in the phylogenetically distinct isolate, PA7, and related strains, 
the  mexXY  genes are linked to a downstream gene encoding an OM protein dubbed 
OprA [ 168 ]. MexXY can function with either OprM or OprA in PA7 [ 168 ]. MexXY 
can also operate with another OM protein, OpmB, under still unclear conditions 
[ 83 ]. Inducibly expressed in  P. aeruginosa , MexXY pump provides intrinsic resis-
tance to aminoglycosides, a class of highly hydrophilic antimicrobial drugs, and to 
other agents that can, at subinhibitory levels, induce MexXY expression [ 59 ,  184 ]. 
Intriguingly, all of these inducers target ribosomes and this feature is related to 

    Table 14.2    Contributions of MexAB-OprM and the outer membrane permeability barrier to 
intrinsic and acquired antimicrobial resistance in  P. aeruginosa  (MICs, μg/ml)   

 Antimicrobial 

 Permeabilizer 
(EDTA a  at 
1 mM) 

 Wild-type 
strain (basal 
MexAB-OprM 
expression) 

 MexAB- 
OprM- 
defi cient 
mutant b  

 MexAB-OprM- 
overproducing 
mutant 

 Carbenicillin  −  64  2  512 
 +  4  0.0125  32 

 Piperacillin  −  4  0.5  16 
 Cefoperazone  −  8  0.5  32 

 +  1  <0.125  2 
 Cefotaxime  −  16  1  64 
 Ceftazidime  −  2  0.5  8 
 Cefpirome  −  2  0.5  8 
 Ciprofl oxacin  −  0.1  0.05  0.4 

 +  0.1  0.025  0.4 
 Norfl oxacin  −  0.5  0.5  2 

 +  0.125  0.03  1 
 Chloramphenicol  −  128  2  512 

 +  4  0.5  8 
 Erythromycin  −  512  64  1,024 

 +  128  8  256 
 Novobiocin  −  512  64  >512 

 +  64  2  256 
 Fosfomycin  −  524  64  1,024 
 Streptomycin  −  64  16  128 
 Tetracycline  −  8  1  64 

 +  1  0.06  2 

  The data were from Refs. [ 181 ,  182 ] 
  a EDTA (disodium ethylenediaminetetraacetate at pH 8.0) 
  b Inactivation of MexAB-OprM in wild-type cells abolishes the function of at least two effl ux sys-
tems, MexAB-OprM and MexXY-OprM  
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regulation of MexXY expression (see Sect.  14.4  below) [ 184 ,  185 ]. Inactivation of 
MeXY in wild-type strains leads to a four- to eightfold reduction in MIC values of 
aminoglycosides (e.g., amikacin, gentamicin, isepamicin, netilmicin, and tobramy-
cin), erythromycin, and tetracycline [ 59 ]. Aminoglycoside resistance in so-called 
“impermeability-type” clinical isolates is caused by MexXY overproduction [ 61 ]. 
Amino acid residues important for aminoglycoside recognition in MexY have been 
identifi ed recently [ 186 ]. Elevated MexXY expression confers a 2- to 16-fold higher 
resistance to its pump substrates. When overexpressed from plasmid vectors in 
 P. aeruginosa  or  E. coli , MexXY also mediates resistance to fl uoroquinolones [ 59 , 
 60 ]. Interestingly, induction of MexXY expression by spectinomycin is correlated 
with an increased susceptibility to polymyxins (up to a fourfold MIC reduction), 
due to the reduced expression of polymyxin resistance-promoting lipopolysaccha-
ride modifi cation locus [ 187 ]. 

 MexXY-overproducing mutants can be easily selected  in vitro  and  in vivo  in the 
presence of substrate antimicrobial agents including peptide deformylase inhibitors 
[ 82 ,  84 – 86 ,  142 ,  188 ] [ 85 ]. Indeed, MexXY overproducers are highly prevalent in 
clinical isolates from cystic fi brosis [ 61 ,  189 – 194 ] and non-cystic fi brosis patients 
worldwide [ 137 ,  140 ,  178 ,  179 ,  195 – 205 ]. Abundance of reactive oxygen species in 
the cystic fi brosis lung environment may offer an explanation for such high rates of 
resistance [ 206 ]. Consistent with this, prolonged exposure of  P. aeruginosa  to 
hydrogen peroxide was shown to facilitate the emergence of MexXY overproducers 
 in vitro  [ 207 ]. 

 Based on the locations of mutations, MexXY-overproducing mutants can be 
divided into three types:  agrZ ,  agrW1 , and  agrW2  mutants. With  agrZ  mutants, 
various mutations occur in gene  mexZ  that encodes a repressor of MexXY [ 84 ,  138 , 
 168 ,  188 – 191 ,  193 ,  197 ,  200 ,  205 ,  208 ,  209 ]. With  agrW1  mutants, mutations affect 
ribosomal proteins such as L1 [ 61 ], L25 [ 210 ], L21, and L27 [ 211 ] or components 
of the methionyl-tRNA fmet  formylation bypass [ 85 ]. Actually, lines of evidence sug-
gest that whatever its origin (e.g., mutations, ribosome targeting drugs) impairment 
of protein synthesis is a stimulus for MexXY expression. For  agrW2  mutants, muta-
tional activation of the two-component regulatory system ParRS results in constitu-
tive expression of MexXY [ 86 ,  203 ]. The presence of these three types of mutants 
in clinical isolates was confi rmed among non-cystic fi brosis isolates that exhibited 
a moderate, nonenzymatic resistance to aminoglycosides [ 205 ]. However, the  agrZ  
type predominates over the two others in cystic fi brosis isolates [ 189 – 191 ]. 

 Isolates with overexpression of MexXY (via measuring  mexX  expression) also 
showed median MIC values higher than the EUCAST resistance breakpoints for 
amikacin, ciprofl oxacin, cefepime, and meropenem [ 142 ]. However, only a few 
studies have assessed the potential role of MexXY in clinical therapeutic outcomes. 
In a rabbit experimental model of pneumonia treated with intravenous administra-
tion of tobramycin, a modest infl uence from MexXY overexpression on animal sur-
vival and post-treatment bacterial loads was observed [ 212 ]. Elevated effl ux activity 
due to  mexXY  derepression is likely one of the multiple means  P. aeruginosa  can 
accumulate gradually to increase its resistance toward potent antimicrobials [ 205 , 
 210 ]. As mentioned earlier, simultaneous overexpression of multiple effl ux pumps 
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(e.g., MexAB-OprM, MexXY, and MexEF-OprN) in conjunction with other resis-
tance mechanisms is common in hospital strains [ 16 ,  136 ,  140 ,  178 ,  179 ,  213 ].  

14.3.3     MexCD-OprJ 

 This effl ux system is apparently quiescent in wild-type strains under normal labora-
tory growth conditions, and thus, chromosomal disruption of the  mexCD - oprJ  
operon does not alter antimicrobial susceptibility of wild-type cells [ 57 ,  158 ]. 
MexCD-OprJ expression is inducible by various membrane-damaging nonantibio-
tic toxicants, including acrifl avine, ethidium bromide, rhodamine 6G, chlorhexi-
dine, and tetraphenylphosphonium, which are also the substrates of MexCD-OprJ 
[ 92 ,  93 ]. Exposure of  P. aeruginosa  to waste water was found to lead to MexCD- 
OprJ overexpression [ 214 ]. Mutation-mediated overexpression of this operon in 
 nfxB -type mutants signifi cantly contributes to resistance to fourth-generation ceph-
alosporins (cefepime and cefpirome), quinolones/fl uoroquinolones, chlorampheni-
col, cerulenin, pacidamycin, tetracycline, and novel inhibitors of lipid A synthesis 
such as CHIR-90 [ 57 ,  67 ,  74 ,  76 ,  94 ,  215 ]. Similar to MexAB-OprM, the substrates 
for MexCD-OprJ also include other cytotoxic compounds, such as acrifl avine, 
ethidium bromide, quaternary ammonium compounds, rhodamine 6G, triclosan, 
and organic solvents [ 66 ,  92 ,  93 ,  95 ]. Based on the variability in drug resistance 
levels, MexCD-OprJ-overproducing  nfxB  mutants can be grouped into two types 
[ 215 ]. Type A mutants are resistant to erythromycin, ofl oxacin, and zwitterionic 
cephems (cefclidin, cefozopran, cefoselis, and cefpirome), while type B mutants are 
resistant not only to these aforementioned agents but also to chloramphenicol and 
tetracycline [ 215 ]. Type B mutants are, however, four- to eightfold more susceptible 
to many conventional penicillins (e.g., carbenicillin), atypical β-lactams (aztreonam 
and moxalactam), carbapenems (biapenem and imipenem), and aminoglycosides 
(gentamicin and kanamycin) than the wild-type PAO1 strain [ 215 ]. This hypersus-
ceptibility to conventional β-lactams and aminoglycosides [ 215 ,  216 ] is possibly 
attributable to the downregulation of MexAB-OprM [ 183 ,  216 ], MexXY [ 94 ], and 
the AmpC β-lactamase [ 217 ] in the MexCD-OprJ-overproducing mutants, although 
other mechanism(s) may exist [ 218 ]. 

 MexCD-OprJ overproducers are associated with fl uoroquinolone resistance, 
although fl uoroquinolone-resistant isolates may also overexpress other effl ux pumps 
(e.g., MexAB-OprM, MexXY, or MexEF-OprN) and/or carry quinolone-target 
mutations [ 94 ,  178 ,  219 ]. Indeed, overexpression of MexCD-OprJ, as with that of 
MexAB-OprM or MexXY, was reported to occur in a large proportion of fl uoroqui-
nolone- and/or carbapenem-resistant clinical isolates [ 220 ,  221 ]. (However, this 
MexCD-OprJ overexpression issue remains controversial and requires further 
investigations since  nfxB -type MexCD-OprJ-overexpressing mutants are strongly 
defi cient in fi tness. The reverse-transcription-qPCR thresholds used to arbitrarily 
defi ne  mexCD - oprJ  overexpression may have a strong impact on the mutant rates 
found in the clinical setting such as non-cystic fi brosis patients.) An  in vitro  study 
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suggested newer fl uoroquinolone agents were in favor of the selection of MexCD- 
OprJ producers [ 147 ]. Supporting this notion, elevated MexCD-OprJ expression is 
linked to levofl oxacin resistance in  P. aeruginosa  isolates from urinary tract infec-
tions [ 222 ]. A patient treated by two substrates of MexCD-OprJ, ciprofl oxacin and 
cefepime, produced over the treatment period  nfxB  mutants which had a change of 
bacteria from S to I or R as regards their susceptibility to fl uoroquinolones based on 
the CLSI resistance breakpoints [ 223 ].  nfxB  mutations causing MexCD-OprJ over-
production can be the fi rst-step mutations in addition to further mutations in other 
resistance determinants as evident by a selection with a novel bacterial type II topoi-
somerase inhibitors [ 96 ,  224 ]. Here, it is worth mentioning that the genotypic altera-
tions in MexCD-OprJ overproducers may not correlate with the phenotype [ 213 , 
 225 ], likely attributed at least partly to global changes in the physiology and metab-
olism caused by  nfxB  mutations [ 111 ,  226 ]. MexCD-OprJ overexpression produces 
an increased susceptibility to complement-mediated killing and consequently 
results in reduced virulence [ 227 ]. In this regard, a recent study showed that quater-
nary compounds were substrates of MexCD-OprJ but were unable to select resistant 
mutants including MexCD-OprJ-overproducing mutants with these biocides [ 95 ]. 
Nevertheless, the negative resistance selection results warrant further investigation. 
Another study revealed that  P. aeruginosa  adapted to 2-phenoxyethanol displayed 
reduced susceptibility to different biocides but increased susceptibility to several 
antipseudomonal antibiotics including amikacin, tobramycin, ceftazidime, and cip-
rofl oxacin [ 228 ]. Another biocide, triclosan, can select MexCD-OprJ overproducers 
[ 229 ,  230 ]. High-level resistance to this biocide was speculated to play a role in 
antibiotic resistance in an epidemic isolate [ 231 ].  

14.3.4     MexEF-OprN 

 This effl ux system is also not well expressed in wild-type cells of  P. aeruginosa , and 
thus its inactivation leads to no or little change in antimicrobial susceptibility [ 58 , 
 183 ]. MexEF-OprN is highly expressed in  nfxC  mutants to confer an increased 
resistance to chloramphenicol, quinolones/fl uoroquinolones, tetracycline, and trim-
ethoprim [ 58 ,  169 ,  178 ]. Decrease in susceptibility to carbapenems, a phenotype 
characteristic of some  nfxC  mutants [ 58 ], is partly attributable to the downregula-
tion of OprD expression [ 232 ,  233 ].  nfxC  mutants are readily selected by chloram-
phenicol and fl uoroquinolones, but not by carbapenems [ 147 ,  234 ,  235 ]. They have 
been observed in clinical isolates from cystic fi brosis and other patients [ 221 ,  225 ], 
but their prevalence varies from one study to another. While many studies appar-
ently suggest low frequencies or even no detection of  nfxC  mutants among clinical 
isolates [ 178 ,  195 ,  199 ,  204 ,  233 ], recent studies revealed more prevalence of 
MexEF-OprF overproducers [ 221 ,  236 ]; for example, about 30 % of 62 isolates 
(mostly obtained from intensive care unit patients and with reduced carbapenem 
susceptibility) had an increased production of MexEF-OprN (from >4- to 19-fold in 
 mexF  mRNA transcripts in comparing with a wild-type reference isolate) [ 236 ]. 
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MexEF-OprN overproducers can likely also be among the fi rst-step mutants, which 
may further acquire higher resistance [ 178 ]. Unexpectedly, tobramycin- 
hypersusceptible mutants (eightfold MIC reduction) were associated with inser-
tional inactivation of  mexF  that generated the aberrant hybrid MexF-alkaline 
phosphatase proteins. These hybrid proteins were interpreted to cause cytoplasmic 
membrane stress for gain-of-function changes with increased aminoglycoside sus-
ceptibility [ 87 ].  

14.3.5     MexJK-OprM/OpmH 

 This effl ux system is expressed at low levels in wild-type cells [ 107 ,  112 ]. Despite 
the lack of a gene for OM protein in its encoding operon, MexJK requires an OM 
channel protein for drug effl ux. While OprM is involved in the extrusion by MexJK 
of ciprofl oxacin, erythromycin, and tetracycline, MexJK is dependent on another 
OM protein, OpmH, for providing resistance to triclosan [ 107 ,  167 ]. Clinical sig-
nifi cance of this pump remains unknown. Nevertheless, MexJK overproduction was 
observed in two MexXY-hyperexpressing cefepime-resistant isolates [ 197 ] as well 
as in a MexXY-/MexVW-overproducing isolate [ 179 ].  

14.3.6     MexGHI-OpmD 

 Encoded by a four-gene operon, PA4205-PA4208 genes [ 62 ], MexGHI-OpmD is 
operative in wild-type cells and mediates intrinsic resistance to vanadium [ 237 ]. 
While MexH and MexI are, respectively, the cytoplasmic membrane exporter and 
the accessory membrane fusion protein, MexG is a protein with unknown function. 
This system is involved in PQS (pseudomonas quinolone signal) homeostasis and is 
associated with quorum sensing in  P. aeruginosa  [ 112 ]. Its inactivation results in 
reduced production of several virulence factors, thus linking antimicrobial suscep-
tibility and pathogenicity [ 104 ,  237 ]. Intriguingly, vanadium hypersusceptibility of 
the  mexGHI - opmD  null mutants is accompanied by increased resistance to netilmi-
cin, tetracycline, and ticarcillin-clavulanic acid [ 237 ], likely due to the compensat-
ing overexpression of other MDR pumps [ 183 ].  

14.3.7     Other RND Effl ux Pumps 

 Several additional RND effl ux systems, when expressed from vectors, were able to 
confer resistance in  P. aeruginosa  or  E. coli  host defi cient in major RND pumps 
(Table  14.1 ): MexMN-OprM for resistance to fl uoroquinolones and macrolides 
[ 109 ]; MexPQ-OpmE for resistance to amphenicols [ 109 ]; MexVW-OprM for 
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resistance to chloramphenicol, fl uoroquinolones, macrolides, and tetracycline 
[ 110 ]; MuxABC-OpmB for resistance to aztreonam, macrolides, novobiocin, and 
tetracyclines [ 112 ,  113 ]; and TriABC-OpmH for triclosan resistance [ 114 ]. While 
the MuxABC-OpmB system possesses two RND components, MuxBC [ 114 ], 
TriABC-OpmH requires two periplasmic accessory membrane fusion proteins, 
TriA and TriB [ 114 ], which play different roles in the assembly and function of 
TriABC pump [ 238 ]. MuxABC-OpmB is expressed in wild-type strains, and inter-
estingly, its inactivation results in elevated β-lactamase production with increased 
β-lactam resistance [ 112 ]. MuxABC-OpmB is one of the RND effl ux systems that 
affect the development of colistin-tolerant subpopulations in  P. aeruginosa  biofi lms 
[ 111 ]. Co-overexpression of MexVW and MexXY was also reported [ 179 ]. Finally, 
one RND effl ux system, CzcCBA (also called CzrCBA), contributes to resistance to 
cadmium, cobalt, and zinc salts [ 115 ,  116 ]. Phenotypically, CzcCBA-mediated 
heavy metal resistance is also linked to imipenem resistance as a result of the down-
regulated OprD expression and the elevated expression of quorum-sensing autoin-
ducer molecules, due to a shared two-component regulatory system, CzcRS [ 117 , 
 239 ]. We have observed one imipenem-insusceptible isolate with overexpressed 
CzcCBA and reduced OprD production from an intensive care unit [ 203 ].   

14.4       Regulation of  P. aeruginosa  RND Effl ux Pumps 

 Regulation of  P. aeruginosa  RND effl ux pumps has been studied intensively over 
the last two decades, which shows the complexity of RND pump regulatory network 
with involvement of various transcriptional regulators and modulators at multiple 
levels [ 14 ]. Changes in natural or host environments of  P. aeruginosa  such as anti-
microbial exposures and nutrient, oxidative, and nitrosative stresses can affect the 
expression of drug effl ux pumps and subsequently contribute to phenotypic adapta-
tions such as the development of MDR [ 20 ,  240 ]. The expressional status of one 
drug effl ux pump may also be linked to the production of other pumps through 
complex regulatory networks [ 94 ,  183 ]. Together, different regulatory pathways 
interconnect antimicrobial susceptibility, stress responses, pathogenicity, and even 
biofi lm formation. 

14.4.1     MexAB-OprM 

 Although constitutively expressed, the  mexAB - oprM  operon is subject to a complex 
and fi nely tuned regulation. Multiple gene products MexR, NalD, ArmR (via NalC), 
and a two-component regulatory system, RocS1/S2-RocA2, are involved in the 
regulation of  mexAB - oprM  expression (Fig.  14.1 ).

   MexR, a MarR-family repressor, is encoded by a self-regulated gene ( mexR / nalB ) 
that is divergently transcribed upstream of the  mexAB - oprM  operon [ 68 ]. Binding of 

14 Antimicrobial Drug Effl ux Pumps in Pseudomonas aeruginosa



372

mexR mexA mexB oprM

armR PA1720        nalC nalD rocS2-A2

nfxB mexC mexD oprJ esrC

brlR mexT

vqsM algU Muc

mexZ mexX mexY (oprA )

mexS mexT mexE mexF oprN

MexAB-OprM

MexEF-OprN

MexCD-OprJ

MexXY-(OprA)

armZ rplU-rpmA suhB parRS amgRS

parRS ampR mvaT brlR

htpX

PA5528

?

  Fig. 14.1    Regulation of the expression of four RND multidrug effl ux systems of  P. aeruginosa . 
These pumps are controlled by a local regulator (mostly by a repressor [MexR, NfxB, EsrC, or 
MexZ] or by an activator [MexT]). Positive and negative regulations of the relevant gene transcrip-
tions are, respectively, denoted by red and green lines. Local repressors are controlled by anti- 
repressor proteins (ArmR and ArmZ) and can also bind to ligands (e.g., antimicrobial agents) or be 
induced under various conditions (nitrosative, oxidative, or cell envelope stress). Mutational 
changes can also lead to inactivation of these regulators. See text for details       
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MexR as a dimer to the intergenic divergent overlapping promoters of  mexR  and 
 mexAB - oprM  produces a balanced transcription of both  mexR  and  mexAB - oprM , 
which provides  P. aeruginosa  with a protective baseline level of wide-spectrum 
effl ux activity [ 149 ,  241 ]. Mutations in  mexR  ( nalB  mutants) are typically associ-
ated with MexAB-OprM overexpression [ 68 ,  135 ,  144 ,  148 ]. The crystal structure 
of MexR suggests an effector-induced conformational change for inhibiting DNA 
binding [ 242 ]. Based on  in vitro  data that MexR dimerization through the formation 
of intermonomer disulfi de bonds between two redox-active cysteines prevents 
MexR from interacting with its cognate DNA binding sites, redox modulation of 
MexR was proposed to occur  in vivo  under stressful conditions such as the presence 
of oxidative agents (e.g., hydrogen peroxide) or antibiotics (meropenem and nali-
dixic acid) [ 243 ,  244 ]. However, several agents including hydrogen peroxide, colis-
tin, and tobramycin apparently do not signifi cantly induce  mexAB - oprM  transcription 
[ 245 – 248 ]. 

 The expression of  mexAB - oprM  is positively modulated by ArmR, a 53-residue 
peptide, whose encoding gene is located in a two-gene operon, PA3720- armR  [ 69 ]. 
By an allosteric polypeptide-protein interaction of high affi nity, ArmR function as 
an anti-repressor to sequester MexR, consequently reducing the MexR repressor 
activity [ 249 ,  250 ]. Unless mutations inactivate gene  nalC  ( PA3721 ) which encodes 
a TetR-family repressor to strongly downregulate the adjacent  PA3720 - armR  
operon, basal amounts of ArmR do not affect MexAB-OprM production in wild- 
type cells [ 69 ]. In fact,  nalC  mutants only show modestly elevated expression of 
 mexAB - oprM , and disruption of ArmR in these  nalC  mutants reduces MexAB- 
OprM expression to wild-type levels and compromises MDR [ 69 ]. By reversible, 
non-covalent binding to NalC, various chlorinated phenols including pentachloro-
phenol at relatively high levels can induce the expression of operons  PA3720 - armR  
and  mexAB - oprM  [ 77 ,  251 ]. Although pentachlorophenol affects expression of 
 armR , MexAB-OprM induction by pentachlorophenol can also be ArmR- 
independent, yet MexR-dependent [ 252 ]. This suggests that  in vivo  generated catab-
olite effectors may mimic more specifi c phenolic antimicrobial compounds than 
pentachlorophenol that  P. aeruginosa  encounters in its natural habitat [ 252 ]. 

 NalD, a TetR-family repressor, is another regulator of  mexAB - oprM  that binds to 
the proximal promoter upstream of the effl ux operon [ 70 ,  78 ], resulting in  mexAB - 
 oprM  being expressed essentially from its distal promoter [ 78 ]. A recent study dem-
onstrated direct binding of novobiocin to NalD to result in dissociation of NalD 
from the promoter with subsequent derepression of  mexAB - oprM  expression [ 253 ]. 
The combinational mutations in  mexR ,  nalC , and  nalD  have been observed in clini-
cal isolates including epidemic strains which are MexAB-OprM overproducers 
[ 136 ,  138 ,  145 ,  254 ]. 

 The  mexAB - oprM  expression is also growth-phase regulated and reaches a maxi-
mum level at the onset of the stationary phase, independently of MexR and of LasR, 
a transcriptional regulator controlling the production of quorum-sensing cell-to-cell 
signal  N -3-oxo-dodecanoyl-L-homoserine lactone (3-oxo-C 12 -HSL) [ 130 ,  255 , 
 256 ].  P. aeruginosa  has several intertwined quorum-sensing systems, such as Las, 
Pqs, and Rhl, that control virulence gene expression [ 257 ,  258 ]. The Rhl 
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 quorum- sensing signal  N -butanoyl-L-homoserine lactone (C 4 -HSL) can induce 
 mexAB -  oprM  expression [ 152 ,  259 ], possibly via its role in the growth-phase-
dependent regulation of MexAB-OprM [ 72 ,  79 ] with MexR being not required in 
this control [ 260 ]. This regulation of MexAB-OprM can be canceled by MexT, the 
activator of  mexEF - oprN  operon in  nfxC  mutants [ 79 ]. Additionally, AmpR, a 
LysR-family global transcriptional regulator implicated in AmpC β-lactamase 
expression and other genes of the AmpR regulon, was reported to potentially dere-
press the MexAB- OprM expression by negatively modulating the  mexR  expression 
[ 261 ]. Several 14- and 15-membered macrolides including azithromycin at subin-
hibitory levels can repress the cell density-dependent expression of MexAB-OprM 
in a MexR- dependent manner through yet-unidentifi ed mechanism [ 262 ]. 

 MexAB-OprM expression in biofi lm cells is further regulated by additional 
mechanisms. MexAB-OprM pump contributes to tolerance to colistin in a metaboli-
cally active subpopulation of biofi lm cells [ 263 ]. The histidine kinase sensors RocS1 
and RocS2 act through their cognate response regulator RocA2 to repress  mexAB - 
 oprM  expression in biofi lms [ 80 ]. BrlR, a biofi lm-specifi c MerR-family regulator, 
functions as an activator and is required to sustain expression of  mexAB - oprM  (and 
 mexEF - oprN ) during an early stage of biofi lm development through its binding to 
the promoter regions of the two operons [ 81 ,  264 ]. Intriguingly, BrlR is responsive 
to the secondary messenger, cyclic dinucleotide c-di-GMP, which is required for 
BrlR production and function [ 265 ]. During the early developmental stage of bio-
fi lms, the two-component hybrid histidine kinase SagS is also produced, and it posi-
tively affects the production of c-di-GMP and BrlR, which contribute to increased 
expression of MexAB-OprM and MexEF-OprN and high-level biofi lm-specifi c 
resistance to antimicrobial agents [ 266 ,  267 ]. Therefore,  mexAB - oprM  expression 
in biofi lms is likely affected by at least two distinct signal transducing systems (i.e., 
RocS1/RocS2-RocA2 and SagS-BrlR). However, contribution of the MexAB- 
OprM pump to antimicrobial resistance in  P. aeruginosa  biofi lms remains contro-
versial and might depend upon the experimental conditions used or stage of biofi lm 
development [ 268 ].  

14.4.2     MexXY 

 The MexXY effl ux system is also subject to a multi-level regulation (Fig.  14.1 ). 
MexZ is the local transcriptional repressor of the  mexXY  or  mexXY-oprA  operon [ 59 , 
 168 ]. Binding of dimerized MexZ to the overlapping promoters of mexXY and 
 mexZ  allows very low baseline production of MexXY [ 208 ,  269 ,  270 ]. Unlike many 
other TetR-family regulators [ 271 ], MexZ’s DNA binding is not relieved by antimi-
crobials through a direct ligand-regulator interaction but seemingly via indirect 
protein-protein sequestration, which is dependent on the anti-repressor of  mexZ , 
ArmZ (PA5471) [ 270 ,  272 ,  273 ]. Induction of  mexXY  expression occurs through an 
ArmZ-dependent manner [ 88 ,  272 ] in response to the exposure of  P. aeruginosa  
to a number of ribosome-targeting antimicrobials (such as aminoglycosides, 
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chloramphenicol, macrolides, and tetracyclines) [ 185 ] or oxidative stress conditions 
[ 207 ]. Expression of  armZ  itself is induced by ribosome-targeting agents through a 
transcriptional attenuation, ribosome stalling mechanism that involves a short 
13-amino acid leader peptide, PA5471.1 [ 88 ]. Ribosome stalling at this leader pep-
tide mRNA yields  armZ  transcription to subsequently upregulate  mexXY  expression 
[ 88 ]. In this regard, another protein, SuhB, was found to interact with the ribosome 
[ 89 ]. The  suhB  gene was fi rst identifi ed as an entragenic suppressor of a component 
of the type II secretion system in  E. coli  [ 274 ] and was also revealed to be involved 
as a regulator of multiple virulence genes implying types III and VI secretion sys-
tems and biofi lm formation in  P. aeruginosa  [ 275 ]. A  suhB  mutant exhibited higher 
level of  PA5471.1  mRNA with elevated  mexXY  expression, which was consistent 
with the reduced susceptibility of the  suhB  mutant to aminoglycosides [ 89 ]. 
Additionally, in pan-aminoglycoside-resistant mutants, reduced expression of the 
 rplU-rpmA  operon is attributable to mutations in the promoter region of the operon, 
which encodes ribosomal proteins L21 and L27 [ 211 ]. This change is also linked to 
an ArmZ-dependent MexXY overproduction. Hence, the ribosome-perturbing 
mutations act in a way reminiscent of  mexXY  induction by ribosome-targeting anti-
microbials [ 89 ,  211 ]. However,  mexXY  expression still remains inducible to some 
extent in  mexZ  and  mexZ-armZ  null mutants [ 185 ,  273 ], suggesting the presence of 
additional contributors in induction of  mexXY . 

 Regulation of MexXY is also mediated by the two-component regulatory system 
ParRS. Either mutations or exposure to subinhibitory levels of polycationic com-
pounds such as polymyxins can activate ParRS [ 276 ], which upregulates both 
 mexXY  and lipopolysaccharide modifi cation operon  arnBCADTEF-ugd  and down-
regulates the  oprD  expression, yielding an MDR phenotype by activation of three 
distinct mechanisms (effl ux, lipopolysaccharide modifi cation, and OprD reduction) 
[ 86 ,  205 ]. Analysis of tobramycin-hypersusceptible mutants revealed mutations in 
more than a dozen genes that included  mexXY ,  oprM , and the two-component regu-
latory system genes  amgRS  with  amgRS  mutants showing 8- to 16-fold reduction of 
tobramycin MIC values [ 87 ]. AmgRS was shown to be required for tobramycin 
induction of several genes, including three genes,  htpX ,  PA5528 , and  yccA  (which 
encode, respectively, a cytoplasmic membrane-associated protease, a modulator of 
the FtsH protease, and a protease-associated factor) involved in positively stimulat-
ing  mexXY  expression [ 87 ,  90 ,  91 ]. A recent study showed AmgRS-dependent 
potentiation of the activity of 4,5-linked aminoglycosides (such as neomycin, paro-
momycin, and ribostamycin) by rifampicin [ 277 ]. The latter targets AmgRS and 
repressed expression of AmgRS-dependent genes including  htpX ,  yccA , and 
 mexXY . Rifampicin also potentiated the activity of two 4,6-linked aminoglycosides 
such as amikacin and gentamicin in two clinical isolates [ 277 ]. 

 Inactivation of either gene  PA2572  (for a non-canonical response regulator) or 
 PA2573  (for a probable methyl-accepting chemotaxis protein) strongly increased 
 mexXY  expression by >10-fold when measuring  mexX  or  mexY  transcripts, and this 
explains the reduced susceptibility of these mutants to two aminoglycosides, amika-
cin and tobramycin (10- to 40-fold MIC increase) [ 278 ]. However, the detailed cas-
cade affecting  mexXY  expression remains unknown.  
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14.4.3     MexCD-OprJ 

 The MexCD-OprJ pump is negatively controlled by NfxB and EsrC repressors, 
whose encoded genes are located, respectively, upstream and downstream of the 
 mexCD-oprJ  operon (Fig.  14.1 ) [ 57 ,  97 ,  279 ]. NfxB acts as a multimer (dimer of 
dimers) with C-termini required for multimerization and N-termini in DNA binding 
[ 97 ,  280 ].  nfxB  mutations can occur over the entire  nfxB  gene with the deletion- 
generated frameshifts frequently observed in clinical strains [ 94 ,  281 ]. Inactivation 
of DNA oxidative repair system also increases frequencies of  nfxB  mutations [ 282 ]. 
Intriguingly, VqsM, an AraC-family master transcriptional regulator involved in the 
regulation of virulence factors and quorum-sensing compounds, can bind to the 
promoter of  nfxB  to likely increase  nfxB  expression, although  vqsM  mutants derived 
from wild-type PAO1 strain show higher resistance to kanamycin and tetracycline 
(16- and 32-fold MIC increase, respectively) with no changes in susceptibility to 
ceftazidime, ciprofl oxacin, polymyxin B, and tobramycin [ 98 ]. Given the low-level 
expression of  mexCD-oprJ  in wild-type cells, it would be interesting to know 
whether VqsM infl uences MexCD-OprJ production in  nfxB  mutants. 

 Another regulator of MexCD-OprJ, EsrC, is functionally dependent on NfxB for 
repressing  mexCD-oprJ  expression when cells are under envelope stress [ 279 ]. 
Expression of  mexCD-oprJ  is induced by a number of biocides (e.g., benzalkonium 
chloride and chlorhexidine), dyes (ethidium bromide), and other membrane- 
damaging agents (detergents, solvents, polymyxin B, and antimicrobial peptides 
including human host defense peptide LL-37) [ 92 ,  93 ,  283 ]. Exposure to chlorhexi-
dine diacetate produces a signifi cant transcriptomic response [ 284 ]. These 
membrane- damaging agents apparently generate membrane lipid derivatives to 
stimulate the membrane-associated Muc proteins and to eventually activate the 
stress response sigma factor, AlgU, for upregulating MexCD-OprJ expression.  nfxB  
mutation-related  mexCD-oprJ  hyperexpression is also dependent on AlgU [ 93 ]. 
Finally, disruption of the aforementioned gene  PA2572  that codes for a putative 
response regulator was also found to modestly increase  mexCD-oprJ  activity (a 
fourfold increase in  mexC  transcripts) [ 278 ].  

14.4.4     MexEF-OprN 

 Expression of MexEF-OprN is also controlled by several regulators (Fig.  14.1 ). 
MexT, a LysR-family global regulator, controls expression of multiple genes in 
 nfxC  mutants including  mexEF-oprN ,  oprD , and genes for virulence factors [ 232 , 
 285 – 288 ]. Inactive and active forms of MexT exist, respectively, in wild-type strains 
and nfxC mutants. One gene of the MexT regulon,  mexS  (encoding an oxidoreduc-
tase of unknown function [ 285 ]), because of its alteration in  nfxC  mutants, pro-
motes  mexEF-oprN  expression with concomitant development of MDR [ 289 ]. This 
induction occurs as a result of MexS-MexT interplays through presumed 
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intracellular accumulation of toxic metabolites recognized by MexT as co-inducers 
[ 289 ]. Indeed, exposure of  P. aeruginosa  to nitrosative stressors such as 
S-nitrosoglutathione activates  mexEF-oprN  transcription via MexT [ 290 ]. Disulfi de 
stress response and the type III secretion system are affected by MexS-MexT inter-
action [ 100 ,  291 ], thus providing another example for the linked regulation among 
drug effl ux pumps, redox stress response, and virulence factor production. But, 
MexS-independent  mexEF-oprN  overexpression has also been observed [ 292 ]. 
Similar upregulation of  mexS  and  mexEF-oprN  was noted when  P. aeruginosa  was 
exposed to human airway epithelial cells releasing unknown effl ux-inducing signals 
[ 293 ]. Expression of  mexEF-oprN  was also found to be abolished by the downregu-
lation of MexS through mutations in the ParRS two-component regulatory system 
[ 101 ]. The latter is also involved in the regulation of MexXY, OprD, and lipopoly-
saccharide modifi cations [ 86 ,  276 ]. A recent study showed single amino acid sub-
stitutions in MexS in a good proportion of clinical  nfxC  mutants, which had an 
association with moderate effects on drug resistance and virulence factor produc-
tion, supporting the notion of  in vivo  selection of partially defective  mexS  mutants 
retaining some degree of pathogenicity [ 294 ]. Additionally, the global regulator 
MvaT infl uences expression of hundreds of genes including  mexEF-oprN  and oth-
ers involved in biofi lm formation, quorum sensing, and virulence [ 295 – 297 ]. 
Independent of  mexT  or  mexS , inactivation of  mvaT  results in MexEF-OprN hyper-
expression and marginal OprD reduction (associated with increased susceptibility 
to imipenem) [ 102 ], suggesting the complexity in MexEF-OprN expression. 
Consistently, despite the observed mutations in  mexS ,  mexT , and  mvaT  in MexEF- 
OprN- overproducing clinical isolates [ 178 ], a good proportion of  nfxC  mutants do 
not show any mutations in these genes [ 294 ], revealing involvement of additional 
regulatory mechanisms. In this regard, AmpC β-lactamase regulator AmpR affects 
expression of >500 genes, and its inactivation increases MexEF-OprN production 
with an MDR phenotype [ 261 ]. The abovementioned BrlR also positively affects 
MexEF-OprN expression in biofi lm cells [ 81 ]. The reduced virulence of  nfxC  
mutants has been attributed to MexEF-OprN-dependent extrusion of 4-hydroxy- 2-
heptylquinoline [ 103 ] and/or kynurenine [ 298 ,  299 ], to two precursors of quorum- 
sensing molecule PQS, and to MexT-dependent downregulation of type III secretion 
system and pyocyanin production [ 286 ,  291 ].  

14.4.5     Other RND Pumps 

 The  mexGHI-ompD  operon is positively regulated by SoxR transcriptional regulator 
as part of an oxidative stress response to the presence of methyl viologen [ 105 ], the 
phenazine pyocyanin (a heterocyclic, redox-active agent) [ 106 ], and oxidative com-
pounds such as 7-hydroxyindole involved in anti-virulence [ 300 ]. A human host 
defense peptide, LL-37, is also able to induce expression of MexGHI-OmpD [ 283 ]. 
Expression of MexJK is negatively regulated by MexL repressor, which is encoded 
by a gene transcribed divergently from the adjacent  mexJK  operon [ 107 ]. CzcCBA 
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metal exporter is upregulated by at least two two-component regulatory systems, 
CzcRS (CzrRS) [ 115 ] and CopRS [ 117 ]. Subinhibitory concentrations of zinc or 
copper salts can induce expression of  czcCBA ,  czcRS , and  copRS . CzcRS and 
CopRS are also involved in the downregulation of OprD expression with concomi-
tant resistance to carbapenems [ 116 ]. CzcR further affects various genes involved in 
virulence including gene expression of quorum-sensing 3-oxo-C12- HSL and 
C4-HSL autoinducers [ 239 ]. A  mvaT  mutant also shows a decreased expression of 
the two-component regulator gene (PA2570) located immediately downstream of 
the  czcABC  effl ux operon [ 296 ].   

14.5     Overcoming P. aeruginosa Drug Effl ux Activities 

 The characterization of RND pumps shows the scientifi c challenge of fi nding anti-
microbial drugs that can bypass the effl ux mechanisms (see Chap.   28    ). Numerous 
newer antimicrobial agents are substrates of RND pumps, such as ceftobiprole, 
doripenem, and tigecycline [ 14 ,  82 ,  301 ,  302 ]. In fact, recent success in clinical use 
of a new β-lactam-β-lactamase inhibitor combination product, ceftazidime- 
avibactam, has faced an unexpected challenge from archived  P. aeruginosa  isolates, 
i.e., drug effl ux and membrane permeability barrier to reduce activity of this prod-
uct [ 303 ]. To combat the effl ux impact, rational drug design can be exploited to 
minimize or to avoid effl ux. This approach is becoming increasingly feasible due to 
the in-depth structural and biochemical understanding of RND effl ux pumps [ 129 , 
 165 ,  304 – 309 ]. 

 The following examples show that despite the multi-specifi city and multiplicity 
of RND transporters in  P. aeruginosa , novel antimicrobials can be developed to 
escape effl ux mechanism. The activity of a novel parenteral aminopyrazolium ceph-
alosporin, FR264205, is unlikely affected by the expression of MexAB-OprM, 
MexCD- OprJ, MexEF-OprN, or MexXY [ 310 ,  311 ]. A methylcarbapenem, tomo-
penem, displays broad-spectrum activity against Gram-positive and Gram-negative 
pathogens including  P. aeruginosa , and this is at most minimally impacted by over-
expression of Mex pumps [ 312 ,  313 ]. The latter may, however, be partly attributable 
to the high affi nity of tomopenem to the major lethal targets, penicillin-binding 
proteins 2 and 3 [ 314 ]. Antimicrobial polypeptides generally do not appear to be 
impacted by effl ux systems including RND pumps [ 315 ]. Polymyxins are often 
active against multidrug-resistant  P. aeruginosa  despite reports suggesting that 
MexAB-OprM, MexCD-OprJ, and MuxABC-OpmB pumps contribute to nonspe-
cifi c adaptive resistance to polymyxins in biofi lms [ 111 ,  263 ]. In comparing with 
several fl uoroquinolones such as ciprofl oxacin, activity of clinafl oxacin is less com-
promised by Mex pumps [ 71 ]. Overall, multiple factors such as effl ux pump effect, 
affi nity to the drug targets, and membrane permeation contribute to collectively the 
antipseudomonal activity of drug molecules. 

 The role of clinically relevant effl ux pumps also highlights a needed strategy to 
look for agents that can function as effl ux pump inhibitors either to restore 
 susceptibility of multidrug-resistant strains or to prevent the emergence of 
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mutation-driven resistance mechanisms, when combined with conventional antibi-
otics. Since the discovery of RND pumps, efforts have also been undertaken to 
identify pump inhibitors and  P. aeruginosa  RND pumps have particularly been a 
major target (see Chaps.   29     and   30    ) [ 240 ,  316 ]. Phenylalanine-arginine 
β-naphthylamide is one of the earliest effl ux pump inhibitors identifi ed and is 
accepted as a typical effl ux pump inhibitor of RND pumps [ 316 ,  317 ]. It potentiates 
 in vitro  activity of a number of antipseudomonal agents against multidrug-resistant 
strains [ 316 ,  318 ], but its clinical applications have been challenged by various fac-
tors including unfavorable pharmacokinetics and toxicity [ 14 ]. Compounds of syn-
thetic pyridopyrimidine series have also been investigated for MexAB-OprM-specifi c 
inhibition, and these include a potential preclinical candidate, quaternary analogue 
D13-9001 [ 319 ,  320 ], which potentiates the activity of aztreonam and levofl oxacin 
and reduces  in vitro  invasiveness of  P. aeruginosa  into mammalian cells [ 319 ,  321 ]. 
Molecular modes of action of these inhibitors including their interaction with RND 
pumps were reviewed recently [ 14 ,  320 ,  322 ]. Similar to the effect from genetic 
inactivation of PvdRT- OpmQ effl ux pump [ 126 ,  127 ], reserpine was found to inhibit 
this exporter to synergize both  in vitro  and  in vivo  activities of a siderophore-mono-
bactam conjugate [ 128 ]. 

 Certain existing drug agents have also been assessed for their potential to be used 
as effl ux pump inhibitors such as sertraline and trimethoprim [ 173 ]. (However, fur-
ther studies are required since only wild-type strains, not effl ux-upregulated 
mutants, were affected.) Various natural extracts have been assessed for combina-
tional use with conventional antibiotics against  P. aeruginosa  [ 240 ,  323 – 326 ]. The 
compound 3,4-dibromopyrrole-2,5-dione isolated from a  Pseudoalteromonas  spp. 
was shown to potentiate activity of multiple antimicrobials against Mex pump over-
producers [ 327 ]. However, more investigations are needed to rule out any non-effl ux 
inhibitory effects of these compounds on cell growth. Transcriptional inhibition of 
the RND pumps has been shown to reduce effl ux-mediated resistance although 
clinical implications of this approach remain unknown. Andrographolide, isolated 
from an herb, appears to reduce MexAB-OprM expression via transcriptional inhi-
bition and to increase drug susceptibility [ 328 ]. The use of a deoxyribozyme (i.e., 
DNA molecules with catalytic action in gene replication) against the mRNA of a 
probable ATP-binding component of an ABC transporter (which is likely PA2812, 
homologous to CcmA involving in cytochrome c maturation) seems to be able to 
decrease ciprofl oxacin resistance  in vitro  [ 124 ]. The antisense phosphorothioate oli-
godeoxynucleotides which targeted the  oprM  gene and were encapsulated in anionic 
liposomes were shown to reduce  oprM  expression and to increase antimicrobial 
susceptibility of multidrug-resistant isolates [ 329 ].  

14.6     Concluding Remarks 

 Over the last two decades, huge advances have been achieved in our in-depth 
understanding of multidrug effl ux systems of  P. aeruginosa . These effl ux pumps 
play a predominant role in clinically relevant MDR, which demonstrates a 
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remarkable ability of  P. aeruginosa  to develop sophisticated defense mecha-
nisms against a variety of old and new antimicrobial agents. Actually, very few 
existing drugs appear to escape the multiple and complementary effl ux pumps 
in this microorganism. Effl ux phenomenon can not only serve as the initial 
mechanism of resistance to acquire other means of resistance but also interplay 
synergistically with them to raise resistance levels. The high percentages of 
effl ux mutants from clinical settings around the globe further highlight the sig-
nifi cance of these drug effl ux systems as a major  in vivo  mechanism of resis-
tance, which also link resistance selection and cross- resistance between 
conventional antibiotics and biocides. Minimizing exposure of  P. aeruginosa  to 
multiple structurally unrelated effl ux selecting antimicrobial agents would limit 
the development of resistance, including multidrug-resistant effl ux mutants, 
thus providing another compelling argument for antimicrobial stewardship in 
any environment that includes prudent antimicrobial use in both clinical settings 
and community hygiene practice. Effl ux mechanisms can also be taken into 
consideration in pharmacokinetic-pharmacodynamics of individual antimicro-
bial agents to guide clinical drug use in minimizing resistance emergence [ 330 ]. 
Evidently, therapeutic approaches to intervene in effl ux mechanisms are attrac-
tive for antimicrobial research and development, in particular because drug 
effl ux systems also contribute to stress responses and virulence factor produc-
tion. The increasing structural and biochemical understanding of drug effl ux 
pumps such as drug recognition or binding sites and transport kinetics should 
facilitate such an effort. However, despite the progress made in the fi eld of drug 
effl ux research to date, challenges continue to be faced in the development of 
novel antimicrobial agents or effl ux pump inhibitors that can be applied to com-
bat infections associated with multidrug- resistant  P. aeruginosa .  

14.7     Addendum in Proof 

 A lytic bacteriophage of the  Myoviridae  family was recently shown to utilize 
OprM as a receptor-binding site and consequently to compromise the function of 
MexAB-OprM and MexXY-OprM effl ux systems, leading to restore antimicro-
bial susceptibility in multidrug-resistant isolates [ 331 ]. A new study has reported 
the transport, via MexGHI-OpmD pump, of 5-methylphenazine-1-carboxylate, 
an intermediate involved in phenazine biosynthesis in the conversion of phen-
azine-1-carboxylic acid to pyocyanin [ 332 ]. Expression of MexGHI-OmpD is 
suffi ciently induced by 5-methylphenazine-1-carboxylate and this induction is 
required for biofi lm development. Finally, a recent study has revealed that MexR 
with Arg21Trp mutation displays a mutation-induced allosteric coupling of con-
tact networks that are independent of the wild-type MexR protein in the regula-
tion of MexAB-OprM expression, suggesting a novel mechanism for MarR 
family derepression that mimics derepression by small-molecule binding to 
MarR proteins [ 333 ].     
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