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    Chapter 12   
 Antimicrobial Resistance and Drug Effl ux 
Pumps in  Vibrio  and  Legionella                      

     Yuji     Morita      and     Xian-Zhi     Li   

    Abstract     The two genera,  Vibrio  and  Legionella , are associated with aquatic envi-
ronments and cause severe illnesses such as cholera and legionellosis, respectively. 
The representative species,  Vibrio cholerae ,  Vibrio parahaemolyticus , and 
 Legionella pneumophila , are generally susceptible to a range of antimicrobial 
agents, but their resistance to antimicrobials can be readily selected after exposure 
to antimicrobial agents. The genomes of these species contain a large number of 
genes encoding proven and putative drug effl ux transporters (including the proto-
typical NorM drug exporter identifi ed in  Vibrio  spp.), some of which have been 
demonstrated to play an important role in intrinsic resistance to structurally unre-
lated antimicrobials as well as to involve in other functions such as virulence. 
However, the expressional regulation of these drug effl ux pumps and their contribu-
tion to acquired antimicrobial resistance remain a key area for future research. This 
chapter provides an overview of antimicrobial resistance in  Vibrio  and  Legionella  
with a focus on current understanding of drug effl ux pumps in resistance and other 
functions.  
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12.1       Introduction 

 The bacterial species in the genera of  Vibrio  and  Legionella  are often present in 
aquatic environments and can cause severe illness such as cholera or legionellosis 
(frequently occurring in epidemic outbreaks) in humans [ 1 – 3 ]. The  Vibrio  species 
are facultatively anaerobic, straight, curved rods that are primarily in marine waters, 
of which some species are pathogenic for humans [ 4 ]. The latter species can be clas-
sifi ed into two groups according to the type of diseases they cause: the gastrointes-
tinal infection group (e.g.,  Vibrio cholerae ) and the extraintestinal infection group 
(e.g.,  Vibrio vulnifi cus ) [ 5 ].  V. cholerae  strains (mostly serogroup O1 and O139) 
produce cholera toxin and are associated with epidemic of cholera, and others are 
agents of watery and severe disease diarrhea usually milder than typical cholera [ 2 , 
 4 ,  5 ].  Legionella pneumophila , the causative, intracellular agent of legionellosis, 
was initially isolated in 1976 from patients in an outbreak of fatal pneumonia [ 6 ,  7 ]. 
 L. pneumophila  serogroup 1 that includes the three initially sequenced strains 
Philadelphia [ 8 ], Paris, and Lens [ 9 ] is the predominant serogroup responsible for 
Legionnaires’ disease [ 7 ]. 

 Antimicrobial therapy constitutes an important part of the management of  Vibrio - 
and  Legionella -causing diseases. However, antimicrobial resistance including mul-
tidrug resistance (MDR) has been observed in these two genera, in particular in 
 Vibrio  spp. [ 10 – 12 ]. Among various mechanisms of resistance, drug effl ux pumps 
are also present in these species. In fact,  V. cholerae  and  Vibrio parahaemolyticus  
are two well-studied species with respect to their drug effl ux systems. In this chap-
ter, current status of drug resistance and major resistance mechanisms in  Vibrio  and 
 Legionella  are reviewed with an up-to-date description of drug effl ux pumps.  

12.2     Antimicrobial Resistance and Major Resistance 
Mechanisms 

 Antimicrobial resistance including MDR in  Vibrio  spp. has been a major concern 
[ 13 ]. In fact, rapid resistance development in  V. cholerae  was observed in the 1970s 
during therapeutic and preventive use of tetracycline [ 14 ]. One of the mechanisms 
for resistance emergence was likely due to the acquisition of transferable resistance 
plasmids carrying determinants of resistance to ampicillin, chloramphenicol, strep-
tomycin, sulfonamides, and tetracycline [ 15 ]. Outbreaks of resistant  Vibrio  spp. 
containing resistance plasmids have been well documented in literature [ 13 ,  16 – 19 ]. 
It is now clear that these MDR plasmids often carry resistance gene cassettes and 
mobile genetic elements such as integrative conjugative elements (also referred as 
SXT elements) or integrons [ 18 – 20 ]. One report described plasmids containing 
 dfrA1  (for trimethoprim resistance),  sul2  (for sulfonamide resistance),  strA / B  (for 
streptomycin resistance), and  fl oR  (for amphenicol exporter) genes reported in one 
plasmid [ 18 ], while another article showed two types of plasmids with one type 
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containing three resistance regions that included  sul2  region ( fl oR - tetA - strAB - sul2 ), 
 cmy - 2  insertion region (for β-lactam resistance and Tn21-like region ( aad - aac ) (for 
aminoglycoside resistance), and another type containing  sul2  and  cmy - 2  insertion 
regions, an  arr3 - drfA27 - aadA16 - sul1  resistance gene cassette at the Tn-21 location, 
and other resistance genes ( aac ( 3 )- IIa ,  bla   CTX - M - 2  ,  bla   TEM - 1  ,  mphA , and  sul1 ) [ 21 ]. 

 Chromosomal mutations also mediate drug resistance. Mutations in quinolone 
resistance-determining region of gyrase-encoding  gyrA  gene or in topoisomerase 
IV-ending  parC  gene confer quinolone resistance [ 22 ,  23 ]. Repressed expression of 
the outer membrane protein OmpU is linked to resistance to cationic antimicrobial 
peptides including polymyxin B and a bactericidal/permeability-increasing peptide 
[ 24 ]. A distinctive class of integron that includes  V. cholerae  repeated sequence- 
associated, integrase-encoding  intl4  gene has been identifi ed in the  V. cholerae  
genome and this helps heterologous gene acquisition [ 25 ]. In  V. parahaemolyticus , 
resistance to β-lactams occurs by induction of β-lactamase production by β-lactam 
antibiotics via the action of β-lactams on the two-component regulatory system his-
tidine kinase sensor/response regulator pair VbrK-VbrR. Mutants defi cient in  vbrK  
or  vbrR  do not produce β-lactamase and are not resistant to β-lactams [ 26 ]. This 
study shows the histidine kinase sensor as a β-lactam receptor, which represents a 
novel mechanism for bacterial β-lactamase production. Additionally, resistance 
mechanisms are also suggested to link to virulence process to facilitate an evolution 
response of invasive  Vibrio  spp. [ 27 ]. 

  L. pneumophila  is generally susceptible to antimicrobial agents such as macro-
lides, ketolides, rifamycins, fl uoroquinolones, and carbapenems [ 28 – 33 ]. β-Lactams 
show varied activities against  L. pneumophila  [ 34 ]. A new fl uoroketolide agent, 
solithromycin, exhibits a strong in vitro activity against  L. pneumophila  with its 
MIC 50  and MIC 90  values to be 8- and 32-fold, respectively, lower than those of the 
macrolide azithromycin [ 35 ]. Omadacycline of the aminomethylcycline class also 
displays signifi cant in vitro activity [ 36 ]. Since it is an intracellular pathogen, the 
antimicrobials of choice for the treatment of  L. pneumophila  infections include 
agents such as macrolides, rifamycins, and fl uoroquinolones that can have adequate 
intracellular drug concentrations [ 32 ,  37 ]; resistance or reduced drug susceptibility 
may have signifi cant adverse impact of legionellosis therapy. A major challenge is 
to interpret antimicrobial susceptibility data because of no standardized testing 
assay. The existing methods are extracellular susceptibility testing, making the 
results to be diffi cult to predict clinical outcomes [ 7 ]. Currently, only limited infor-
mation is available regarding drug resistance in  L. pneumophila . Fluoroquinolone 
resistance can be readily obtained by in vitro selection in the presence of a fl uoro-
quinolone agent, and this is attributable to target modifi cations in GyrA and ParC 
[ 11 ]. High-level resistance to clindamycin (with minimal inhibitory concentration 
[MIC] values of 4–32 μg/ml) has been reported [ 30 ]. An unusual aminoglycoside 
phosphotransferase, APH(9)- Ia , mediates resistance to spectinomycin in  L. pneu-
mophila  [ 38 ]. A recent study showed the in vivo selection of fl uoroquinolone resis-
tance during hospitalization after fl uoroquinolone therapy [ 12 ]. Involvement of the 
membrane permeability and drug effl ux pumps in resistance will be discussed in 
next section.  
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12.3     Drug Effl ux Pumps in  Vibrio  and  Legionella  

 Effl ux, or the energy-dependent extrusion from bacterial cells, is recognized as one 
major mechanism of antimicrobial resistance [ 39 ,  40 ]. Some pumps are drug-/class- 
specifi c to only extruding a narrow range of antimicrobials such as a variety of tet-
racycline effl ux pumps [ 41 ]. Other pumps are multidrug transporters that are able to 
export a broad range of antimicrobials, which differ in structures and in mode of 
action [ 39 ,  40 ]. Bacterial chromosomes encode various drug effl ux pumps which 
fall into at least six families or superfamilies, i.e., the resistance-nodulation-cell 
division (RND) superfamily, the major facilitator superfamily (MFS), the multidrug 
and toxic compound extrusion (MATE) family, the small multidrug resistance 
(SMR) family, the ATP-binding cassette (ABC) superfamily, and the proteobacterial 
antimicrobial compound effl ux (PACE) family [ 40 ,  42 ]. Most drug effl ux pumps 
function as secondary active transporters coupled with the H + -motive force (and 
also, rarely, the Na + -motive force) to antiport drug with ion (H +  or Na + ), while ABC 
systems are primary active transporters which hydrolyze ATP to drive drug effl ux. 
In Gram-negative bacteria, drug effl ux pumps can be divided in single-component 
transporters (which act at the cytoplasmic membrane) or multicomponent transport-
ers (which span the entirety of the Gram-negative cell envelop and typically contain 
a cytoplasmic membrane pump, an outer membrane channel-forming protein, and a 
periplasmic accessory membrane fusion protein) [ 39 ]. 

12.3.1      V. cholerae  

  V. cholerae  strains (mostly serogroup O1 and O139) which produce cholera toxin 
and are associated with epidemic of cholera and others are agents of watery and 
severe disease diarrhea usually milder than typical cholera [ 4 ,  5 ]. Following inges-
tion,  V. cholerae  colonizes the small intestine via a process that is dependent upon 
the induction of genes (including transporter genes) which are required for intesti-
nal colonization and disease development [ 2 ,  43 – 46 ]. Persistence in the intestine is 
dependent upon  V. cholerae ’s ability to overcome antibacterial barriers intrinsic to 
gastrointestinal tract, including the presence of high concentrations of toxic small 
molecules such as bile salts and other detergent-like molecules, antimicrobial prod-
ucts generated by resident fl ora, and products of the innate immune system [ 43 , 
 45 – 47 ]. 

 Wild-type non-plasmid-containing  V. cholerae  isolates are generally susceptible 
to a wide variety of antimicrobials, particularly hydrophobic and amphipathic 
agents (such as macrolides and rifamycins) [ 48 ,  49 ], and this is likely attributable to 
the presence of phospholipids in the outer leafl et of the outer membrane [ 50 ]. The 
lipopolysaccharide moiety in the outer membrane also has a relatively low negative 
charge [ 50 ]. These characteristics are expected to produce a rapid permeation of 
large hydrophobic/lipophilic agents [ 40 ]. Moreover, the major porins of  V. cholerae , 
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OmpU and OmpV, also produce channels which are even larger than the classic 
trimeric porins of  Escherichia coli  [ 51 ]. However, even with a relatively high per-
meability outer membrane, several drug effl ux pumps have been shown to play an 
important role in drug resistance. 

  RND Pumps     Six RND-encoding loci were annotated in the  V. cholerae  genome 
(strain El Tor N161962) [ 44 ], although eight RND transporters are predicted 
based on the TransportDB (  http://www.membranetransport.org    ; accessed on 
November 25, 2015) [ 52 ,  53 ]. Five of the loci map to the larger chromosome I (of 
2.96 Mb) and one to the smaller chromosome II (of 1.07 Mb) [ 44 ,  47 ]. These 
RND effl ux systems are arranged each in a probable operon structure and named 
 vexAB ,  vexCD  (also known as  breAB  for bile response genes [ 54 ]),  vexEF , 
 vexGH ,  vexIJK , and  vexLM  [ 47 ,  55 ]. As shown in Fig.  12.1a , each operon includes 
an RND pump gene ( vexB ,  vexD ,  vexF ,  vexH ,  vexK , or  vexM ) and at least a gene 
for the membrane fusion protein gene ( vexA ,  vexC ,  vexE ,  vexG ,  vexI ,  vexJ , and 
 vexL ) with the  vexIJK  operon containing a pair of genes ( vexIJ ) for two mem-
brane fusion proteins. However, these operons lack the genes that encode the 
outer membrane protein components of typical RND tripartite effl ux complex. In 
this regard, the  V. cholerae  genome (chromosome I) contains several outer mem-
brane protein genes (e.g.,  VC1565 ,  VC1606 ,  VC1621 , and  VC2436 ) that encode 
the homologs to the outer membrane effl ux channel protein TolC of  E. coli . Yet, 
only the VC2436 protein shows the highest similarity (71 %) to  E. coli  TolC, and 
only its inactivation results in hypersusceptibility to bile salts, erythromycin, 
novobiocin, and polymyxin B [ 56 ], similar or identical to the inactivation the 
RND pumps [ 47 ]. Thus, the VC2436-encoded protein is considered as the outer 
membrane channel protein which plays a functional role in the Vex RND pump 
complexes.

    Bina et al. [ 47 ] showed that  V. cholerae  RND effl ux systems are required for 
antimicrobial resistance, optimal virulence factor production such as cholera toxin 
and the toxin co-regulated pilus, and colonization of the infant mouse small intes-
tine using  V. cholerae  O1 biovar El Tor N16961 and its derivatives. The RND-null 
strain displayed signifi cant decreases in the MICs for the bile salts cholate (>160- 
fold) and deoxycholate (>500-fold), the detergents Triton X-100 (>250-fold) and 
sodium dodecyl sulfate (>40-fold), and the antibiotics erythromycin (100-fold) and 
polymyxin B (fourfold) but not for chloramphenicol, carbenicillin, cefotaxime, 
kanamycin, nalidixic acid, ciprofl oxacin, rifampicin, and tetracycline [ 47 ]. Among 
the six RND pumps, VexB, VexD, VexH, and VexK are responsible for in vitro anti-
microbial resistance and are required for virulence factor production and intestinal 
colonization [ 45 ,  47 ]. Although these four pumps are redundant for some substrates, 
they do not have equal activity [ 45 ,  47 ]. VexB and VexD are major contributors to 
bile acid resistance in vitro, while VexH and VexK play minor roles [ 45 ]. VexB is 
the primary RND effl ux pump-mediated resistance to the broadest range of antimi-
crobials including bile acids, detergents, and antibiotics [erythromycin, novobiocin, 
penicillins, and polymyxin B]) [ 47 ,  55 ]. VexD is limited to bile salts and has over-
lapping substrate profi le with VexB. Contribution from VexH and VexK to resis-
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tance is masked due to redundancy with VexBD (for bile salts) or VexB (for 
detergents and antibiotics) [ 45 ,  47 ]. VexH possesses a relatively broad specifi city 
(only less broad than VexB) and is involved in resistances to bile salts, Triton X-100, 
novobiocin, and ampicillin, but not to penicillin and erythromycin [ 45 ]. Moreover, 
VexB is conserved in  Vibrionaceae  (at least in  V. parahaemolyticus ,  Vibrio fi scheri , 
 Vibrio harveyi , and  V. vulnifi cus ) [ 57 ] and is also highly similar to MexW and MexI 
of  Pseudomonas aeruginosa  (50 % and 47 % identity, respectively) among the char-
acterized RND pumps [ 58 ,  59 ]. VexK possesses a limited specifi city and contrib-
utes to resistance to bile salts and detergents [ 47 ]. VexF and VexM of the remaining 
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  Fig. 12.1    Genetic organization of the known and putative chromosomally encoded RND ( a ) and 
MFS ( b ) effl ux pumps in  V. cholerae  strain El Tor N161962. The effl ux pump operons or genes are 
presented with  arrows  showing their gene transcriptional directions. Three colors ( orange ,  red , and 
 blue ) correspond to their roles as a membrane fusion protein ( MFP ), a pump, or an outer mem-
brane protein ( OMP ), respectively. Genes encoding the proven or putative regulators including a 
two-component regulatory system (CpxRA) are shown on the  left . The  green lines  represent the 
positive regulation of the effl ux gene expression, while the  red lines  denote the repression of rele-
vant gene transcription by repressors       
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two RND pumps do not affect in vitro antimicrobial resistance but do negatively 
affect cholera toxin and the toxin co-regulated pilus production [ 45 ]. 

 Rahman et al. [ 60 ] cloned each of the six RND operons (Fig.  12.1 ) from  V. 
cholerae  non-O1 NCTC4716 in effl ux-defi cient hypersusceptible  E. coli  mutants. 
VexAB, VexCD, and VexEF were functionally associated with  Vibrio  TolC in the 
 E. coli  mutant [ 45 ,  60 ]. Judging from the MIC profi les, VexB and VexD of strain 
non- O1 NCTC4716 possess similar substrate specifi cities in comparison with 
those of strain O1 biovar El Tor N16961 [ 47 ,  55 ,  60 ]. Still, VexF of strain non-
O1 NCTC4716 was shown to mediate broader resistance to antimicrobials than 
VexB when both were compared in the  E. coli  host, including bile salts, antibiot-
ics (erythromycin and novobiocin), disinfectants (benzalkonium chloride), and 
others (crystal violet, ethidium bromide, Hoechst 33342, rhodamine 6G, and 
tetraphenylphosphonium), but not antibiotics (norfl oxacin, tetracycline, and 
streptomycin) in the  E. coli  [ 60 ]. Moreover, VexF-mediated effl ux requires Na +  
in  E. coli , indicating that VexF is either a Na + -activated or Na + -coupled trans-
porter [ 60 ]. 

 The expression of certain RND pumps is under control by regulators. Upstream 
of the  vexAB  operon is a gene named  vexR  that encodes a TetR family transcrip-
tional regulator [ 47 ,  55 ]. Deletion of  vexR  was found to cause reduced expression of 
 vexRAB  [ 46 ]. Indeed, bile salts within the concentration of the intestinal lumen 
(0.2–2 %) was revealed to induce the  vexRAB  and  vexCD  ( breAB ) operons [ 54 ,  55 ]. 
Expression of  vexRAB , not  vexCD  ( breAB ), was also induced by erythromycin, 
novobiocin, and sodium dodecyl sulfate, all of which are substrates of the VexAB 
pump [ 46 ,  54 ]. Such induction of  vexRAB  expression is dependent on cognate VexR 
transcriptional activator which binds to certain inducers, including deoxycholate 
(also a substrate of VexAB), indole, and other cellular metabolites [ 46 ]. Expression 
of the  vexCD  effl ux operon is repressed by BreR belonging to TetR transcriptional 
regulator family and the  breR  gene is not located immediately up of the  vexCD  
operon and is also transcribed divergently in comparison with the  vexCD  transcrip-
tion (Fig.  12.1 ) [ 54 ]. Additionally, the two-component regulatory system, CpxAR, 
a critical system in bacteria stress response [ 61 ,  62 ], also positively participates in 
regulation of the expression of at least two RND operons (i.e.,  vexRAB  and  vexGH ) 
and the  tolC  gene (Fig.  12.1 ), thereby enhancing the RND pump-mediated antimi-
crobials resistance [ 63 ,  64 ]. Yet, the functional status of the VexAB pump was also 
found to affect the expression of Cpx system, thus revealing the reciprocal effect of 
these gene expressions [ 63 ]. 

  Non-RND Pumps     From the genome sequence of  V. cholerae  O1 N16961, 22 non- 
RND family effl ux systems (11 MFS, 6 MATE, 1 SMR, and 4 ABC pumps) are 
present [ 65 ]. Among them, VceCAB and NorM were shown to contribute to antimi-
crobial resistance in  V. cholerae  cells [ 66 – 68 ]. VceCAB is the earliest-reported tri-
partite effl ux pump from  Vibrio  spp. [ 66 ] that shares many characteristic features of 
the EmrAB-TolC of  E. coli  [ 69 ,  70 ]. This MFS-type effl ux system consists of the 
cytoplasmic membrane transporter (VceB), outer membrane channel protein 
(VceC), and periplasmic membrane fusion protein (VceA), which are encoded by 
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the  vceCAB  operon (Fig.  12.1b ) [ 66 ,  67 ]. This operon is under the negative control 
of the product of the divergently transcribed  vceR  repressor gene [ 67 ], which codes 
for a TetR family transcriptional autoregulatory protein [ 71 ]. The VceABC- 
inactivated strain displayed signifi cant decreases in the MICs of bile acids (e.g., 
deoxycholate [fourfold]) and antimicrobials (e.g., nalidixic acid [eightfold]) and 
others (e.g., carbonyl cyanide  m -chlorophenylhydrazone [80-fold], phenylmercuric 
acetate and pentachlorophenol [both with fourfold]) in  V. cholerae  [ 66 ]. Another 
study assessed fi ve MFS pumps of  V. cholerae  (named Mfs1-5), and the upstream of 
each of these pump’s encoding genes is paired with a divergently transcribed gene 
that encodes a LysR-type transcriptional activator (named MfsR1-5) [ 72 ]. Gene 
inactivation study demonstrated the involvement of these pumps in resistance to bile 
salts and tetracycline as well as the positive control of the pump gene expression by 
LysR-type regulators [ 72 ].  

 NorM of  V. cholerae  is a member of the MATE family transporters [ 68 ] and has 
a high level of sequence similarity to the NorM of  V. parahaemolyticus  which is the 
fi rst example of MATE proteins [ 68 ,  73 ]. The NorM-null strain displayed signifi -
cant decreases in the MICs of norfl oxacin (16-fold) and ciprofl oxacin (tenfold) as 
well as ethidium bromide (fourfold) in  V. cholerae  [ 68 ], indicating that NorM is a 
major fl uoroquinolone intrinsic resistance determinant in  V. cholerae . Tsuchiya and 
colleagues characterized all six MATE family pumps (VcmA [identical to NorM], 
VcmB, VcmD, VcmH, VcmN, and VcrM) and one ABC pump (VcaM) of strain 
non-O1 N16961 expressed from a plasmid in  E. coli  mutant lacking the major mul-
tidrug pump gene  acrB  [ 65 ,  74 – 76 ]. Their substrates are shown in Table  12.1 . All 
MATE pumps except for VcrM rendered the  E. coli  mutant more resistant to fl uoro-
quinolones [ 65 ,  74 ]. The VcaM expression produced elevated MICs of fl uoroquino-
lones and tetracycline in the tested  E. coli  host [ 76 ]. It is noted that the  vceABC  and 
 norM  were induced in the presence of bile acids at the levels available in the intes-
tinal lumen [ 54 ]. Recently, using the proteoliposome reconstituted with the purifi ed 
protein, NorM of  V. cholerae , was demonstrated to simultaneously couples to the 
sodium-motive force and proton motive force [ 87 ].

12.3.2         V. parahaemolyticus  

  V. parahaemolyticus  is a slightly halophilic marine bacterium that is found in estua-
rine, marine, and coastal environments and the leading causal agent of human acute 
gastroenteritis following the consumption of raw, undercooked, or mishandled 
marine products [ 88 ]. Upon entering the human host,  V. parahaemolyticus  cells pass 
through the gastric acid barrier of the stomach and colonize the small intestine 
where bile acids are a key factor to infl uence bacterial colonization [ 80 ]. Drug effl ux 
pumps contribute to antimicrobial resistance and other functions as detailed below. 

  RND Pumps     The genome of clinical  V. parahaemolyticus  RIMD2210633 is rela-
tively large in size (ca. 5.2 Mb with chromosome I of 3.3 Mb and chromosome II of 
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       Table 12.1    Antimicrobial drug effl ux pumps in  Vibrio  spp. and  L. pneumophila    

 Species/transporter 
family 

 Effl ux pump 
(regulator)  Substrates  References 

  V. cholerae  
 RND  VexAB-TolC (VexR, 

CpxRA) 
 AMP, DT, ERY, NOV, PMB, 
SDS 

 [ 54 ,  55 ,  60 ] 

 RND  VexCD-TolC (BreR)  BS, DT, ERY  [ 47 ,  54 ,  55 , 
 60 ] 

 RND  VexEF-TolC  BAC, DOC, EB, ERY, NOR, 
NOV, SDS, TET, TMP 

 [ 60 ] 

 RND  VexGH (CpxRA)  DT, NOV  [ 45 ] 
 RND  VexIJK  BS, DT  [ 45 ,  47 ] 
 RND  VexLM  [ 45 ,  47 ] 
 MFS  EmrD-3  CHL, EB, ERY, LZD, MIN, 

R6G, RIF, TPP 
 [ 77 ] 

 MFS  Mfs1-5 (MfsR1-5)  BS, TET  [ 72 ] 
 MFS  VceCAB (VceR)  CCCP, DOC, NAL, PCP, 

PMA 
 [ 66 ,  67 ] 

 MATE  NorM/VcmA  ACR, EB, CIP, DAU, DOR, 
NOR, KAN, STR 

 [ 68 ,  74 ] 

 MATE  VcmB, VcmD, 
VcmH, VcmN 

 AG, EB, FQ, HO  [ 65 ] 

 MATE  VcrM  ACR, DAP, EB, HO, R6G, 
TPP 

 [ 75 ] 

 ABC  VcaM  CIP, DAP, DAU, DOR, HO, 
NOR, TET 

 [ 76 ] 

  V. fl uvialis  
 MATE  VFD, VFH  CIP, NOR  [ 78 ] 
  V. parahaemolyticus  
 RND  VmeAB-VpoC 

(VP0425) 
 ACR, BS, CIP, CLX, CV, 
DOC, EB, ERY, NOR, NOV, 
OXA, R6G, SDS, TET, TMP, 
TPP 

 [ 57 ,  79 ] 

 RND  VmeCD-VpoC 
(VP0040-TetR) 

 BAC, BS, CV, EB, ERY, NOV, 
R6G, SDS, TPP 

 [ 57 ] 

 RND  VmeEF-VpoC  BS, EB, NOV, R6G, SDS  [ 57 ] 
 RND  VmeGHI-VpoC  SDS  [ 57 ] 
 RND  VmeJK-VpoC  [ 57 ] 
 RND  VmeLM-VpoC  [ 57 ] 
 RND  VmeNO-VpoM 

(VPA0366) 
 [ 57 ] 

 RND  VmePQ  [ 57 ] 
 RND  VmeRS-Vpa0482  [ 57 ] 
 RND  VmeTUV-VpoC 

(VdeR-TetR) 
 ACR, BAC, BS, CHX, CLX, 
EB, OXA, R6G, SDS, TPP 

 [ 57 ,  80 ] 

(continued)
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1.9 Mb) [ 89 ] and is estimated to contain ca. 560 transporters including 16 putative 
RND pumps (  http://www.membranetransport.org    ; accessed on November 25, 2015) 
[ 52 ,  53 ], although the published studies only described 12 RND pump-encoding loci 
in the same genome [ 57 ,  79 ,  80 ]. Each of these RND effl ux systems is arranged in a 
probable operon structure (Fig.  12.2 ). Five of the operons ( vmeAB ,  vmeCD ,  vmeEF , 
 vmeGHI ,  vmeJK , and  vmeLM ) map to the chromosome I (Fig.  12.2a ) and seven 
( vmeLM ,  vmeNO - vpoM ,  vmePQ ,  vmeRS ,  vmeTUV ,  vmeWX , and  vmeYZ ) to the chro-

Table 12.1 (continued)

 Species/transporter 
family 

 Effl ux pump 
(regulator)  Substrates  References 

 RND  VmeWX 
(VPA0947-ArsR) 

 [ 57 ] 

 RND  VmeYZ-VpoC  BS, NOV, SDS  [ 57 ] 
 MATE  NorM  EB, FQ, KAN, STR  [ 73 ] 
 MATE  VmrA  ACR, DAP, EB, TPP  [ 81 ] 
 PACE  VP1155  ACR, BAC, CHX, PRO  [ 82 ] 
  V. vulnifi cus  
 RND  VexAB-TolC  ACR, BS, EB, ERY, NOV, 

SDS 
 [ 83 ,  84 ] 

 RND  VexCD  ACR  [ 83 ] 
  L. pneumophila  
 RND  CeaABC  BAC, ERY, NOR, NOV  [ 85 ] 
 RND  HelABC  NOR, NOV, Ni, Zn  [ 85 ] 
 RND  LmxFE-LprN  ERY, NOR, Zn  [ 85 ] 
 RND  Lpl0757-0758  CATB, MB, NOR, R6G, SDS, 

Ni, Zn 
 [ 85 ] 

 RND  Lpl2104-2103  CTAB, ERY, NOR,  [ 85 ] 
 MFS  LbtB  LGB  [ 86 ] 
 ABC  LssDB  BAC, ERY, NOR  [ 85 ] 
 ABC  Lpl0278-0279-0280  BAC, EB, ERY, NOR, Ni  [ 85 ] 
 ABC  Lpl0695-0696- 

0697- 0698-0699 
 BAC, NOR, NOV, R6G, Ni  [ 85 ] 

 ABC  Lpl0880-0881-0882  BAC, ERY  [ 85 ] 
 ABC  Lpl2849-2850- 

2851- 2852 
 ACR, BAC, CTAB, ERY, 
NOR, SDS, Ni 

 [ 85 ] 

   ACR  acrifl avine,  AG  aminoglycosides,  AMP  ampicillin,  BAC  benzalkonium chloride,  BS  bile salts, 
 CCCP  carbonyl cyanide  m -chlorophenylhydrazone,  CHL  chloramphenicol,  CHO  cholate,  CHX  
chlorhexidine,  CIP  ciprofl oxacin,  CLX  cloxacillin,  CTAB  acetyl trimethylammonium bromide,  CV  
crystal violet,  DAP  4′,6-diamidino-2-phenylindole,  DAU  daunorubicin,  DOC  deoxycholate,  DOR  
doxorubicin,  DT  detergents,  EB  ethidium bromide,  ERY  erythromycin,  FQ  fl uoroquinolones,  HO  
Hoechst 33342,  KAN  kanamycin,  LGB  legiobactin (a siderophore),  LZD  linezolid,  MB  methylene 
blue,  MIN  minocycline,  NAL  nalidixic acid,  Ni  nickel sulfate,  NOR  norfl oxacin,  NOV  novobiocin, 
 OXA  oxacillin,  PCP  pentachlorophenol,  PMA  phenylmercuric acetate,  PMB  polymyxin B,  PRO  
profl avine,  R6G  rhodamine 6G,  RIF  rifampicin,  STR  streptomycin,  SXT  trimethoprim- 
sulfamethoxazole,  TET  tetracycline,  TMP  trimethoprim,  TPP  tetraphenylphosphonium,  Zn  zinc 
sulfate  
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mosome II (Fig.  12.2b ) [ 57 ]. Each operon includes RND pump genes, at least a 
membrane fusion protein gene, and an outer membrane protein gene (Fig.  12.2 ) 
[ 57 ]. The  vmeGHI  and  vmeTUV  operons each include a pair of genes that encode the 
membrane fusion proteins ( vexGH  and  vexTU ). The TolC homolog of  E. coli , VpoC, 
is encoded by a gene that is located at a remote site of the chromosome I (gene 
 VP0425 ) from any RND genes [ 57 ]. The expression of TolC was found to be dif-
ferentially regulated under various culture conditions [ 90 ]. Yet, we note an addi-
tional gene,  VP1998 , which also encodes a TolC homolog as well as several putative 
regulator genes (in addition to the reported  vdeR  gene [ 80 ]) in the genome (Fig.  12.2 ). 
 V. parahaemolyticus  possess twice more RND pumps than  V. cholerae . Four of the 
12 RND pumps of  V. parahaemolyticus  are phylogenetically orthologues of  V. chol-
erae  RND pumps, i.e., VmeD, VmeK, VmeF, and VmeI to VexB, VexF, VexH, and 
VexK [ 57 ]. VmeAB and VmeCD pumps were mainly involved in antimicrobial 
resistance because the double knockout mutant showed almost the same antimicro-
bial susceptibility phenotype as the RND-null strain [ 57 ]. VmeB is similar to AcrB 
of  E. coli  and MexB of  P. aeruginosa  (64 % and 61 % identity, respectively), both of 
which are major multidrug transporters in these organisms [ 40 ]. VmeD seems to be 
an orthologue of VexB (88 % identity) phylogenetically and functionally [ 57 ].

    Among the 12 RND pump-encoding operons, four of them are locally linked to 
a regulatory gene, either located immediately or separately by a few genes from 
upstream of the RND pump operon (Fig.  12.2 ). These genes mostly encode the 
regulators of TetR family [ 71 ] which often function as repressors to negatively con-
trol expression of RND pumps in Gram-negative bacteria [ 40 ]. Experimentally, 
only the VdeR regulator of TetR family was demonstrated to play a role in down-
regulating the expression of VmeTUV since mutations of either point mutation or 
deletion in  vdeR  were seen in VmeV-overproducing deoxycholate-resistant mutants 
[ 80 ]. Similarly,  vmeD  was upregulated in response to deoxycholate, which is one of 
the constituents of bile acids [ 57 ]. A putative TetR family transcriptional regulator 
gene ( VP0040 ) is upstream of the  vmeCD  genes [ 57 ]. The protein encoded by 
 VP0040  is similar to VexR, the activator of the  vexRAB  operon [67 % (81) identity 
(similarity)] in  V. cholerae  [ 46 ]. 

 Matsuo et al. [ 57 ,  79 ,  80 ] published several studies that demonstrated that 
 V. parahaemolyticus  RND effl ux systems are required for antimicrobial resistance 
including tolerance to bile salts and pathogenicity in the intestine. The RND-null 
strain displayed signifi cant decreases in the MICs for the bile salts such as cholate 
(>64-fold) and deoxycholate (64-fold); the detergent such as sodium dodecyl sulfate 
(1,024-fold); antibiotics such as cloxacillin (128-fold), erythromycin (16-fold), and 
novobiocin (32-fold); and disinfectants such as benzalkonium chloride (fourfold) 
and chlorhexidine (eightfold) [ 57 ]. The antimicrobial susceptibility profi le of the 
RND-null strain was almost the same to that of the  vpoC  deletion mutant, indicating 
that VpoC is an outer membrane component for several RND effl ux systems [ 57 ]. 

  Non-RND Pumps     Non-RND family effl ux systems of  V. parahaemolyticus  are not 
characterized except for two MATE effl ux proteins (NorM and VmrA) [ 73 ,  81 ,  91 , 
 92 ] and the AceI homolog of the PACE family [ 82 ]. In fact, NorM of  V. parahaemo-
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lyticus  is recognized as a prototype of MATE family transporters [ 73 ], which are 
widely distributed in all kingdoms of living organisms [ 93 ]. Studies suggested that 
both NorM and VmrA couple the movement of toxic organic cations out of the cell 
(against their prevailing concentration gradient) to the energetically favorable 
movement of sodium ions into cell, along their electrochemical gradient [ 94 ]. 
Among the 24 species tested, the AceI homolog (VP1155) from  V. parahaemolyti-
cus  strain RIMD2210633 was a few pumps that showed to confer, when expressed 
from a plasmid in a hypersusceptible AcrB-EmrE-MdfA-defi cient  E. coli  mutant, 
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  Fig. 12.2    Genetic 
organization of 12 known 
and putative RND effl ux 
pumps encoded by 
chromosome 1 ( a ) and 
chromosome 2 ( b ) of 
 V. parahaemolyticus  strain 
RIMD2210633. The effl ux 
pump operons or genes are 
presented with  arrows  
showing their gene 
transcriptional directions. 
Three colors ( orange ,  red , 
and  blue ) correspond to 
their roles as a membrane 
fusion protein ( MFP ), a 
pump, or an outer 
membrane protein ( OMP ), 
respectively. Genes 
encoding the putative 
regulators are shown on the 
 left , and yet, the effect of 
these regulators on the 
effl ux pump expression 
remains to be determined 
(denoted by the  dotted 
lines  with  arrows )       
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resistance to several biocides including chlorhexidine, benzalkonium chloride, 
 acrifl avine, and profl avine (fourfold MIC reduction) [ 82 ,  95 ]. Interestingly, the 
function of VP1155 and AceI (of  Acinetobacter baumannii ) was not TolC depen-
dent [ 82 ]. VP1155-mediated effl ux of acrifl avine and profl avine in the intact cells of 
the  E. coli  host was also demonstrated [ 82 ]. The PACE exporters may suggest 
another family of proteins that also contributes to intrinsic drug resistance [ 42 ].   

12.3.3     Other  Vibrio  spp. 

 The genomes of several other  Vibrio  spp. also confi rm the wide presence of the 
putative drug effl ux pumps such that the marine pathogen  V. vulnifi cus  (5.2 Mb) has 
15–16 putative RND pumps (strains CMCP6 and YJ016) in addition to two TolC 
homologs (  http://www.membranetransport.org    ) [ 96 ]. A study using mutants carry-
ing deletion of one of the three RND systems (which are, respectively, homologous 
to VexAB, VexCD [both of  V. cholerae ], and AcrAB of  E. coli ) suggested that the 
VexAB homolog is mainly involved in intrinsic resistance to multiple antimicrobi-
als system [ 83 ]. Another earlier study from the same group assessed the effect of the 
deletion of either  tolCV1  or  tolCV2  on antimicrobial susceptibility. Inactivation of 
TolCV1 rendered the mutant more susceptible to those agents shown to be sub-
strates of VexAB (Table  12.1 ) in addition to novobiocin and tetracycline, highly 
suggesting that VexAB and TolCV1 likely function as a major drug effl ux pump in 
this species. Disruption of TolCV2 had no or little effect on antimicrobial suscepti-
bility [ 84 ]. These  Vibri o TolC proteins can function with MacAB ABC transporter 
of  E. coli  [ 97 ]. An RND pump (containing VV1_1681) is involved in the export of 
vulnibactin that is required for iron acquisition from the environment in  V. vulnifi cus  
[ 98 ]. VV1_1681 is an orthologue to VmeK (VP2472) of  V. parahaemolyticus  (87 % 
identity). In  Vibrio tasmaniensis , fi ve genes,  cusCBAF  and  copA , are predicted to 
encode an RND effl ux system and an ABC transporter for copper effl ux that pro-
vides copper resistance in order to resist the action from phagocytes, induce cytosis 
of immune cells, and colonize the host [ 99 ].  

12.3.4      L. pneumophila  

 The genome of  L. pneumophila  Philadelphia 1 contains a single circular chromo-
some of ca. 3.4 Mb in size [ 8 ] with genes encoding a relatively small number of 
putative transporters (only 156 are predicated on the basis of TransportDB at   http://
www.membranetransport.org    ; accessed on March 25, 2016). However, based on the 
phylogenetic analysis, there are still a number of genes encoding transporters of 
three superfamilies, e.g., 9 RND, 35 MFS, and 35 ABC (in strain Philadelphia) as 
well as genes encoding membrane fusion proteins and OM channel proteins [ 8 ]. Of 
note, no member of the MATE family was identifi ed [ 100 ]. Similarly, the genomes 
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of strains Paris and Lens [ 9 ] contain, respectively, 7 and 11 putative RND systems 
[ 85 ,  100 ]. The transcriptional organizations of the genes that encode the putative 
RND pumps from strain Lens are shown in Fig.  12.3  [ 9 ]. To estimate the potential 
role of an effl ux mechanism in antimicrobial resistance, there is a need to consider 
the infl ux of antimicrobial agents, thus the outer membrane permeability barrier 
features of  L. pneumophila  [ 40 ,  101 ]. This species possesses a major 28 kDa outer 
membrane protein that is similar to  E. coli  porins in terms of channel-forming activ-
ity and forms cation-selective and voltage-independent gating channel [ 102 ]. 
 L. pneumophila  strains also display high-level in vitro susceptibility to macrolides, 
rifamycins, fl uoroquinolones, aminoglycosides, and β-lactams [ 103 ,  104 ]. These 
data may likely suggest the limited contribution from the outer membrane permea-
bility barrier or drug effl ux pumps to intrinsic resistance in  L. pneumophila . 
However, mutants with both low-level and high-level resistance phenotypes have 
been generated in vitro [ 11 ,  30 ]. For instance, the presence of erythromycin or cip-
rofl oxacin selected in vitro mostly low-level resistance, which is often seen in 
Gram-negative bacteria as an indicator of possible drug effl ux involvement [ 30 ]. 
High-level resistance with an increase of 8- to 512-fold moxifl oxacin MIC values 
was associated with DNA gyrase-based target mutations [ 11 ].

   To date, there is only a limited characterization regarding the possible drug effl ux 
transporters of  L. pneumophila . The study of Ferhat [ 85 ] assessed the expression of a 
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large number of the genes that encode 5 RND, 5 MFS, 4 SMR, and 15 ABC 
 transporters by quantitative reverse transcription PCR assays for strain Lens to com-
pare the gene expression between exponential and stationary phase of the growth. 
Among the RND pump-related genes, expression of  lpl2063  ( ceaA ),  lpl2434  ( lmxF ), 
and  lpl0736  ( tolC ) was highly increased during the exponential phase of growth, 
while  lpl1046  ( helA ) expression was elevated in the stationary stage. Ferhat also con-
structed a number of deletion mutants in order to assess their contribution to antimi-
crobial susceptibility. Mutants with inactivation of RND-type  lpl2065 - 2063  ( ceaABC ), 
 lpl1044 - 1046  ( helABC ),  lpl2436 - lpl2434  ( lmxFE - lprN ),  lpl0757 - 0758 ,  and lpl2103 -
 2104  became more susceptible to a variety of antimicrobial agents including heavy 
metal salts as specifi ed in Table  12.1 , mostly with a moderate twofold MIC reduction. 
Disruption of several putative ABC transporter genes or operons (such as  lpl1509 -
 1510  [ lssD - lssB ],  lpl 0278 - 279 - 280 ,  lpl0695 - 0696 - 0697 - 0698 - 0699 ,  lpl0880 - 0881 -
 0882 , and  lpl2849 - 2850 - 2851 ) rendered mutants with similar increased susceptibilities 
to several agents listed in Table  12.1  (generally a twofold MIC reduction) [ 85 ]. These 
data support a modest role of drug effl ux pumps in drug resistance. 

  L. pneumophila  has a homolog of 455 amino acids (encoded by  lpg0699  [strain 
Philadelphia],  lpl0736  [strain Lens] [ 9 ] or  LPC2595  [strain Corby]) that is 36 % 
identical to the TolC channel protein of  E. coli  (475 amino acids), and inactivation 
of this protein rendered the mutant susceptible to a wide range of antimicrobial 
agents (e.g., 16-fold erythromycin MIC reduction and two- to eightfold decrease 
for MIC values of benzalkonium chloride, deoxycholate, ethidium bromide, meth-
ylene blue, nickel sulfate, norfl oxacin, novobiocin, and rhodamine 6G [ 8 ,  85 , 
 100 ]. This phenotype is highly indicative of the operation of a drug effl ux mecha-
nism in  L. pneumophila . Comparing the modest reduction of the MIC values and 
the overlapping substrate profi les for various RND or ABC pump mutants 
described above (Table  12.1 ), it is likely that TolC functions with multiple multi-
component effl ux pumps since the hypersusceptible phenotype of the  tolC  mutant 
supports that inactivation of TolC function would simultaneously abolish the oper-
ation of multiple effl ux systems that are functionally dependent on 
TolC. Consistently, ethidium bromide accumulation assay in intact cells revealed 
signifi cant accumulation of ethidium bromide in  tolC  mutant cells than the wild-
type cells and increased accumulation to the same levels in both cell types after the 
treatment of the cells by the proton conductor carbonyl cyanide  m -chlorophenyl-
hydrazone [ 85 ,  100 ]. 

 Moreover, as expected with multifunctional role of TolC protein as a key compo-
nent of multiple effl ux systems in Gram-negative bacteria,  L. pneumophila  TolC 
also contributes to oxidative stress response caused by hydrogen peroxide or cool-
ing tower biocides and is required for virulence against protozoa and macrophages 
[ 85 ,  100 ]. It is also involved in secretion of a lipid-containing unidentifi ed surfactant 
that promotes  Legionella  motility [ 85 ,  100 ,  105 ]. An MFS exporter with 12 trans-
membrane segments, LbtB, is a homolog of several effl ux proteins (23 % and 21 %, 
respectively, identical to bicyclomycin resistance protein Bcr and tetracycline effl ux 
pump TetA of  E. coli ) and is involved in secretion a siderophore named legiobactin 
that helps the intracellular growth of the species [ 86 ]. 
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 Lastly, it is necessary to emphasize that the intracellular nature of  L. pneumoph-
ila  may particularly suggest an important role which a drug effl ux pump could play 
in acquired resistance affecting effi cacy of antimicrobial treatment regime. This is 
because the multiplication of  L pneumophila  within macrophages has limited the 
choice of antibiotics to those that can penetrate phagocytic cells such as macrolides, 
rifamycins, and fl uoroquinolones [ 106 ,  107 ], which are generally good substrates of 
typical drug effl ux pumps [ 40 ].   

12.4     Concluding Remarks 

 The two species,  Vibrio  and  Legionella  discussed in this chapter, are associated with 
aquatic environments. They both have a relatively high permeable outer membrane 
and thus are generally susceptible  in vitro  to a wide range of antimicrobials includ-
ing those typically against Gram-positive bacteria such as macrolides. These spe-
cies also possess a large number of proven and putative drug effl ux transporters 
including the prototypical MATE pump, NorM, fi rst identifi ed in  V. parahaemolyti-
cus . Some of these transporters have been demonstrated to mediate intrinsic resis-
tance to multiple antimicrobial agents and are also involved in function beyond drug 
resistance such as colonization and virulence. However, a major question remains to 
be answered on whether or how these transporters could contribute to acquired drug 
resistance, although there is already evidence to support their role in low-level mul-
tidrug resistance. It is also important to see whether loss of porins could occur in 
these species, and this could synergistically interplay with drug effl ux systems to 
raise resistance level. Moreover, there is little information regarding the regulation 
of the expression of these transporters, particularly in vivo conditions.  Vibrio  spp. 
infect people through digestive tract, where various chemicals such as bile salts can 
induce the expression of drug effl ux pumps.  L. pneumophila  resides intracellularly 
and contribution from drug effl ux pumps may signifi cantly affect the drug accessi-
bility. All of these aspects warrant future research to better understand the role of 
drug effl ux pumps in antimicrobial resistance and beyond.     
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